
COARSE CLASSIFICATION OF BINARY MINIMAL CLONES

ZARATHUSTRA BRADY

1. Introduction

The classification of minimal clones on a finite set is a very old problem, studied by many
authors. For a survey of previous results, the reader is directed to the papers of Quackenbush [10]
and Csákány [4]. First we review a few of the basic definitions and results.

Definition 1. A clone C is minimal if f ∈ C nontrivial implies C = Clo(f). An algebra A will
be called clone-minimal (equivalently: Clo(A) is a minimal clone) if A has no nontrivial proper
reduct.

Proposition 1. If Clo(f) is minimal and g ∈ Clo(f) nontrivial, then f ∈ Clo(g).

Definition 2. A is called a set if all of its operations are projections. Otherwise, we say A is
nontrivial.

Proposition 2. If Clo(A) is minimal and B ∈ Var(A) nontrivial, then Clo(B) is minimal.

Theorem 1 (Rosenberg [11]). Suppose that A = (A, f) is a finite clone-minimal algebra, and f
has minimal arity among nontrivial elements of Clo(A). Then one of the following is true:

(1) f is a unary operation which is either a permutation of prime order or satisfies f(f(x)) ≈
f(x),

(2) f is ternary, and A is the idempotent reduct of a vector space over F2,
(3) f is a ternary majority operation,
(4) f is a semiprojection of arity at least 3,
(5) f is an idempotent binary operation.

Rosenberg’s classification is not fully satisfactory: it can be very difficult to check whether a given
majority operation, semiprojection, or idempotent binary operation generates a minimal clone.
This paper is mainly concerned with the binary case. Previous authors have proven classifications
of binary minimal clones under additional assumptions, such as the assumption that the binary
operation is entropic [7], or the assumption that the associated algebra is weakly abelian [12], or
the assumption that the number of binary operations in the clone is small [8]. In this paper, we
consider the general case of binary minimal clones.

Definition 3. We say a property P of functions f is nice if it satisfies the following conditions:

• Given f as input, we can verify in polynomial time whether f has property P,
• If f has property P and g ∈ Clo(f) is nontrivial, then there is a nontrivial f ′ ∈ Clo(g) such

that f ′ has property P.
• There exists a fixed nontrivial algebra AP such that for any nontrivial algebra A = (A, f)

where f has the property P, the algebra AP is in the variety generated by A.
• The set of finite algebras (A, f) such that f has the property P is closed under finite

products, homomorphic images, and subalgebras, that is, it forms a pseudovariety.

The first three cases in Rosenberg’s classification are given by nice properties (with the caveat
that in the case of unary permutations of prime order, we actually get an infinite family of nice
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properties indexed by the primes). As an example, we’ll check that being a ternary majority
operation is a nice property. The first, third, and fourth conditions are straightforward to verify.
For the second condition, we use the following elementary result, which appears in [14] and is used
there to simplify the study of minimal majority clones.

Proposition 3. If f is a majority operation and g ∈ Clo(f) is nontrivial, then g is a near-
unanimity operation. In this case, g has a majority term as an identification minor.

Proof. The proof is by induction on the construction of g in terms of f . If g = f(g1, g2, g3), then by
induction each gi is either a near-unanimity term or a projection. If two of the gis are equal to the
same projection, then so is g. Otherwise, it is easy to check that g is a near-unanimity operation.

Since any near-unanimity operation is not a semiprojection, if g is not already majority we can
identify two variables to get a nontrivial g′ ∈ Clo(g) of smaller arity. Thus g has a majority term
as an identification minor. �

The fact that being a majority operation is nice implies that in order to check whether a majority
clone Clo(f) is minimal, one only needs to enumerate the ternary majority operations g ∈ Clo(f)
and check that f ∈ Clo(g) for each one. While this may be difficult, we are at the very least assured
that if f is a majority operation, then Clo(f) contains some minimal majority clone (in fact every
minimal clone contained in Clo(f) will be a majority clone).

On the other hand, if one is given a binary idempotent operation f , then it can difficult to rule
out the possibility that Clo(f) might contain a semiprojection of very large arity. As a result,
checking whether a binary operation generates a minimal clone could in principle be an enormous
undertaking. The goal of the present paper is to provide a coarse classification of binary minimal
clones, that is, a list P1,P2, ... of nice properties such that every binary minimal clone contains an
operation satisfying exactly one of the nice properties Pi.

As a starting point, a previous paper by the present author has given a coarse classification of
minimal clones which have a Taylor operation, into just three cases. Two of these cases are defined
by nice properties, while the third (vector spaces over a prime field) is given in terms of an infinite
family of nice properties, one for each prime p.

Theorem 2 (Clone-minimal Taylor algebras [2]). Suppose A is a finite algebra which is both clone-
minimal and Taylor. Then one of the following is true:

(1) A is the idempotent reduct of a vector space over Fp for some prime p,
(2) A is a majority algebra,
(3) A is a spiral.

The last case above was one of the author’s main motivations for introducing the concept of nice
properties. Spirals are defined as follows.

Definition 4. An algebra A = (A, f) is a spiral if f is binary, idempotent, commutative, and
for any a, b ∈ A either {a, b} is a subalgebra of A, or SgA{a, b} has a surjective map to the free
semilattice on two generators.

The reader may find it instructive to check that being a spiral is a nice property. While this
follows from the results of [2], it is simple enough to give a direct argument. For now, we just note
that it is possible to test whether a given algebra A = (A, f) is a spiral in time polynomial in |A|:
for any a, b with {a, b} not a subalgebra of A, if SgA{a, b} = {a, b} ∪ S with a, b 6∈ S, then any
surjective homomorphism from SgA{a, b} to the free semilattice on two generators x, y must map a
to one generator, say x, map b to the other generator y, and map every element of S to xy. Thus,
the existence of such a surjective homomorphism is equivalent to S being a subalgebra of A such
that aS ⊆ S and bS ⊆ S.
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The main classification result of this paper is the following coarse classification of the non-Taylor
binary minimal algebras.

Theorem 3. Suppose that A = (A, f) and Clo(f) is a binary minimal clone which is not Taylor.
Then, after possibly replacing f(x, y) by f(y, x), one of the following is true:

(1) A is a rectangular band, i.e. an idempotent groupoid satisfying (xy)(zw) ≈ xw,
(2) A is a p-cyclic groupoid for some prime p,
(3) there is a nontrivial s ∈ Clo(f) which is a “partial semilattice operation”: s(x, s(x, y)) ≈

s(s(x, y), x) ≈ s(x, y),
(4) A is an idempotent groupoid satisfying (xy)(zx) ≈ xy (a “meld”),
(5) A is a “dispersive algebra” (defined below).

Furthermore, each of the above cases is defined by a nice property, other than the case of p-cyclic
groupoids, which consists of an infinite family of nice properties indexed by the primes.

Most of the cases appearing in the classification have been described by previous authors. Rect-
angular bands are well-known in the theory of bands. The structure of p-cyclic groupoids was
described by P lonka [9]. Partial semilattice operations were isolated by Bulatov [3] in his study
of colored graphs attached to finite Taylor algebras, but they were not named there or studied for
their own sake. Melds were described by Lévai and Pálfy in Theorem 5.2(e) of [8], which classifies
binary minimal clones having exactly four binary operations, but melds were not given a name
there, and no structure theory for them was given.

The last case of the above theorem - the case of dispersive algebras - has a definition which has
a similar flavour to the definition of spirals, but is somewhat harder to work with in practice. The
author has struggled for some time to give a structure theory for this case, but was ultimately
unsuccessful. Several difficult conjectures about the structure of dispersive algebras are given at
the end of the paper.

To define the dispersive algebras, we first define the variety D of idempotent groupoids satisfying

x(yx) ≈ (xy)x ≈ (xy)y ≈ (xy)(yx) ≈ xy,(D1)

∀n ≥ 0 x(...((xy1)y2) · · · yn) ≈ x.(D2)

This variety of minimal clones appears in Lévai and Pálfy [8], and the notation D for this variety
is from Waldhauser’s thesis [13].

Proposition 4 (Lévai, Pálfy [8]). If A ∈ D, then Clo(A) is a minimal clone. Also, FD(x, y) has
exactly four elements: x, y, xy, yx.

Definition 5. An idempotent groupoid A is dispersive if it satisfies (D2) and if for all a, b ∈ A,
either {a, b} is a two element subalgebra of A or there is a surjective map

SgA2{(a, b), (b, a)}� FD(x, y).

The name “dispersive” for such algebras was chosen in order to reflect the fact that they satisfy
very few absorption identities. Absorption identities are a crucial tool in the study of minimal
clones. (There is an unfortunate naming collision here: absorption identities have nothing to do
with the theory of absorbing subalgebras from [1] which recently found many applications in the
study of Taylor algebras.)

Definition 6. An absorption identity is an identity of the form

t(x1, ..., xn) ≈ xi.

Proposition 5 (Kearnes [6], Lévai, Pálfy [8]). If A is clone-minimal and B ∈ Var(A) is nontrivial,
then any absorption identity which holds in B must also hold in A.
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Proof. Suppose that the absorption identity t(x1, ..., xn) ≈ xi holds in B but not in A. Then t
generates a nontrivial proper subclone of Clo(A): the reduct of B with basic operation t is trivial,
so it must be proper, and it is nontrivial on A since t can’t act as any projection on A. �

As a consequence of the third condition for being a nice property, if P is a nice property and f
has property P, then the set of absorption identities that hold in A = (A, f) depends only on P.
Thus the coarse classification of binary minimal clones given in this paper is also a classification of
the possible collections of absorption identities which can be satisfied in a binary minimal clone.

In the case of partial semilattice operations, no absorption identities hold at all (other than those
following from idempotence), for the simple reason that every nontrivial partial semilattice contains
a two-element semilattice subalgebra. In the case of melds, every absorption identity follows from
idempotence and the identity

x((yx)z) ≈ x,

and in fact this identity is equivalent to the defining identity (xy)(zx) ≈ xy of melds (modulo
idempotence). In the case of dispersive algebras, all absorption identities follow from idempotence
and the absorption identity (D2).

In light of the coarse classification of binary minimal clones provided in this paper, it is natural
to ask whether a coarse classification of semiprojections can be found. Such a classification would,
in a certain sense, complete the classification of minimal clones which was started by Rosenberg
[11]. The author has not made any attempt at classifying semiprojections, but the main result of
[5] which classifies conservative semiprojections indicates that a classification may be within reach.

2. Proof of the classification

Definition 7. If t : A2 → A is a binary function and A is finite (or even profinite), then we define
t∞ to be the pointwise limit

t∞(x, y) = lim
n→∞

tn!(x, y),

where t1 = t and tn+1(x, y) = t(x, tn(x, y)).

Proposition 6. For any binary term t, we have

t∞(x, t∞(x, y)) ≈ t∞(x, y).

If t is idempotent, then so is t∞.

Proposition 7. If f is an idempotent binary term which satisfies the identity

f(x, f(x, y)) ≈ f(x, y),

and if we define a term u by

u(x, y) = f(x, f(y, x)),

then u satisfies the identity

u(u(x, y), x) ≈ u(x, y).

Similarly, if an idempotent term g satisfies the identity g(g(x, y), y) ≈ g(x, y), then g(g(x, y), x) is
a binary term satisfying the above identity.
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Proof. We have

u(u(x, y), x) ≈ f(u(x, y), f(x, u(x, y)))

≈ f(u(x, y), f(x, f(x, f(y, x))))

≈ f(u(x, y), f(x, f(y, x)))

≈ f(u(x, y), u(x, y))

≈ u(x, y).

For the last claim, take f(x, y) = g(y, x). �

Proposition 8. If u is a binary term which satisfies the identity

u(u(x, y), x) ≈ u(x, y),

then s = u∞ satisfies the identity

s(x, s(x, y)) ≈ s(s(x, y), x) ≈ s(x, y).

Proof. First, note that we have

u(u(x, y), u(x, y)) ≈ u(u(u(x, y), x), u(x, y))

≈ u(u(x, y), x)

≈ u(x, y).

Define un as in the definition of u∞. Then for any m we have

um(u(x, y), x) ≈ u(x, y),

and on replacing y by un−1(x, y), we get

um(un(x, y), x) ≈ un(x, y)

for any m,n. �

Definition 8. We say that an idempotent binary operation s is a partial semilattice if it satisfies
the identity

s(x, s(x, y)) ≈ s(s(x, y), x) ≈ s(x, y).

Proposition 9. If an idempotent algebra A has a 6= b ∈ A with

(b, b) ∈ SgA2{(a, b), (b, a)}

then it has a nontrivial partial semilattice operation. Furthermore, if s is a partial semilattice
operation, then for any nontrivial term t ∈ Clo(s) there is a nontrivial partial semilattice operation
s′ ∈ Clo(t).

Proof. Choose f ∈ Clo(A) such that f(a, b) = f(b, a) = b. Let u(x, y) = f∞(x, f∞(y, x)) and let
s = u∞, then s is a partial semilattice, and we have s(a, b) = s(b, a) = b so s is nontrivial.

For the second part, if s is a nontrivial partial semilattice operation, then there are a, b ∈ A with
s(a, b) 6= a, so {a, s(a, b)} is a proper subalgebra of A, on which s acts as a semilattice operation.
Then any nontrivial t ∈ Clo(s) which depends on all its inputs also acts as a semilattice operation
on {a, s(a, b)}, so if we take g(x, y) = t(x, y, ..., y) then we have g(a, s(a, b)) = g(s(a, b), a) = s(a, b),
so by the first part of the argument there is a nontrivial partial semilattice operation s′ ∈ Clo(g) ⊆
Clo(t). �

Definition 9. We say that an algebra A is a set if all of its basic operations are projections. We
say that A is nontrivial if it is not a set.
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Proposition 10. If A is a minimal clone and B ∈ Var(A) is nontrivial, then for any term t ∈
Clo(A) such that the identity

tB(x1, ..., xn) ≈ x1
holds in B, we have t(x1, ..., xn) ≈ x1 in A as well.

Definition 10. We say that an idempotent binary operation f is a rectangular band if it satisfies
the identity

f(f(x, y), f(z, w)) ≈ f(x,w).

Proposition 11. If a minimal clone A has a term f such that there are algebras B1,B2 ∈ Var(A)
such that fB1 is first projection and fB2 is second projection, then A is a rectangular band.

Proof. Assume without loss of generality that |B1| = |B2| = 2, and let B = B1 × B2. Also, assume
that f is binary (otherwise replace it with f(x, y, ..., y)). On B, f satisfies the identity

f(f(f(u, x), y), f(z, f(w, u))) ≈ u,
so this identity must hold on A as well. Similarly, we have

f(f(x,w), x) ≈ x
and

f(w, f(x,w)) ≈ w,
so

f(f(x, y), f(z, w)) ≈ f(f(f(f(x,w), x), y), f(z, f(w, f(x,w)))) ≈ f(x,w). �

Definition 11. Let Clo2(A) be the set of binary terms of A, and let Cloπ12 (A) be the set of binary
terms of A which restrict to the first projection on some algebra B ∈ Var(A) of size at least 2.

Theorem 4. If A is a binary minimal clone which is not a rectangular band and which does not
have any nontrivial partial semilattice operations, then for any f, g ∈ Cloπ12 (A) we have

f(x, g(x, y)) ≈ x.
If f, g are nontrivial, then we also have f(g(x, y), x) 6≈ x, and more generally for any h ∈

Cloπ12 (A) we have
f(g(x, y), h(x, y)) 6≈ x.

Proof. We may assume A is not Taylor. Choose B ∈ Var(A) such that B is not a set, but such that
every proper subalgebra or quotient of B is a set. Suppose for contradiction that there are a, b ∈ B
such that

f(a, g(a, b)) 6= a.

Then we have SgB{a, g(a, b)} = B, so there is some h ∈ Cloπ12 (A) with

h(a, b) = b.

The other assertions we need to prove are handled similarly - in each case, if one of them is violated,
then we can find h ∈ Cloπ12 (A) and a, b ∈ B with h(a, b) = b; this is what we will use to produce a
contradiction.

Define S ≤sd B2 by
S = SgB2{(a, b), (b, a)}.

If S is the graph of an automorphism of B then we have h(b, a) = a, so {a, b} is a subalgebra of B
on which h acts like second projection, contradicting the assumption that A is not a rectangular
band.

If S is not linked, then the linking congruence of S defines a nontrivial congruence ∼ on B. Since
B/∼ is a set, we have b = h(a, b) ∼ a, and since a, b generate B we have a 6∼ b, a contradiction.
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Thus S must be linked. In particular, there must be some proper subalgebra C < B such that

π2(S ∩ (C× B)) = B.
Let c, d ∈ C with (a, c), (b, d) ∈ S. Since C is a set, we have h(c, d) = c, so

(b, c) = (h(a, b), h(c, d)) = h((a, c), (b, d)) ∈ S.
If b, c generate B, then from (a, b), (a, c) ∈ S we see that (a, a) ∈ S, contradicting the assumption
that A has no nontrivial partial semilattice terms. Otherwise {b, c} is a set, and we must have
h(b, c) = b, so

(b, b) = (h(a, b), h(b, c)) = h((a, b), (b, c)) ∈ S,
again contradicting the assumption that A has no nontrivial partial semilattice terms. �

Definition 12. We say that an idempotent binary operation f is a p-cyclic groupoid if it satisfies
the identities

f(x, f(y, z)) ≈ f(x, y),

f(f(x, y), z) ≈ f(f(x, z), y),

and
f(· · · f(f(x, y), y) · · · y) ≈ x,

where there are p ys in the last identity.

Theorem 5. If a binary minimal clone is not a rectangular band and does not have any nontrivial
term f satisfying the identity

f(f(x, y), f(y, x)) ≈ f(x, y),

then it is a p-cyclic groupoid for some prime p.

We will prove this in a series of lemmas, all using the following assumption:

(∗) A is a finite binary minimal clone which is not a rectangular band and A has no nontrivial
term satisfying the identity f(f(x, y), f(y, x)) ≈ f(x, y).

Definition 13. For any f, g ∈ Clo2(A), define their circular composition f ∗ g ∈ Clo2(A) by

(f ∗ g)(x, y) = f(g(x, y), g(y, x)).

Proposition 12. If A satisfies (∗), then Clo2(A) and Cloπ12 (A) form groups under ∗. In particular,
for any binary term f ∈ Clo(A) there exists a binary term f− ∈ Clo(A) such that

f−(f(x, y), f(y, x)) ≈ f(f−(x, y), f−(y, x)) ≈ x.

Proposition 13. If A satisfies (∗), then A is not a Taylor algebra and A has no nontrivial partial
semilattice operations.

Proof. That A is not Taylor follows from the fact that every binary minimal clone which is also
Taylor has a term f such that f(x, y) ≈ f(y, x).

Suppose for contradiction that A has a nontrivial partial semilattice operation s, then by the
previous proposition there is a term s− ∈ Clo(A) such that

s−(s(x, y), s(y, x)) ≈ x.
Replacing y with s(x, y) above, we see that

s(x, y) ≈ s−(s(x, y), s(x, y)) ≈ x,
contradicting the assumption that s is nontrivial. �

Proposition 14. If A satisfies (∗), B ∈ Var(A) is not a set, and f, g ∈ Clo2(A) have fB = gB,
then f(x, y) ≈ g(x, y).
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Proof. We have

f−(g(x, y), g(y, x)) = x

for any x, y ∈ B, so by clone minimality this identity also holds in A (otherwise, f−(f, g) would
generate a strictly smaller nontrivial clone). Thus, we have

f(x, y) ≈ f(f−(g(x, y), g(y, x)), f−(g(y, x), g(x, y)))

≈ g(x, y). �

Proposition 15. If A satisfies (∗) and t ∈ Clo3(A), f ∈ Clo2(A) satisfy

t(x, y, z) = f(x, y)

whenever two of x, y, z are equal, then t(x, y, z) ≈ f(x, y).

Proof. Since A has no ternary semiprojections, we have the identities

f−(t(x, y, z), f(y, x)) ≈ x
and

f−(f(y, x), t(x, y, z)) ≈ y.
Thus we have

t(x, y, z) ≈ f(f−(t(x, y, z), f(y, x)), f−(f(y, x), t(x, y, z)))

≈ f(x, y). �

Lemma 1. If A satisfies (∗) and there are nontrivial terms f, g ∈ Cloπ12 (A) satisfying

f(x, g(y, x)) ≈ f(x, y),

then A is a p-cyclic groupoid for some prime p.

Proof. By Theorem 4, we have

f(x, g(x, y)) ≈ x,
so

f(x, g(y, z)) = f(x, y)

whenever two of x, y, z are equal. Thus, we have

f(x, g(y, z)) ≈ f(x, y).

Since g is nontrivial, for any h ∈ Cloπ12 (A) we have h ∈ Clo(g) and by iteratively applying the above
identity we deduce that

f(x, h(y, z)) ≈ f(x, y).

Thus, for any h ∈ Cloπ12 (A) we have

f(h(x, y), x) ≈ f(h(x, y), h−(h(x, y), h(y, x)))

≈ f(h(x, y), h(x, y))

≈ h(x, y),

and in particular we have

f(f(x, y), z) = f(f(x, z), y)

whenever two of x, y, z are equal. Since we have

f(f−(x, y), y) ≈ f(f−(x, y), f−(y, x)) ≈ x
and

f−(f(x, y), y) ≈ f−(f(x, y), f(y, x)) ≈ x
8



(using here that f− = f∗n for some n - alternatively, we could deduce that f−(f(x, y), y) ≈ x from
f(f−(x, y), y) ≈ x from the finiteness of FA(x, y)), we see that

f−(f−(f(f(x, y), z), y), z) = x

whenever two of x, y, z are equal. Since A has no nontrivial semiprojections, the above holds
identically, and so we get

f(f(x, y), z) ≈ f(f(x, z), y).

Now define a sequence of functions fn by f0 = π1, f1 = f , and

fn+1(x, y) = f(fn(x, y), y).

We see that every element of Cloπ12 (A) can be written as fn for some n. Letting p = |Cloπ12 (A)|,
we see that f− ≈ fp−1, fp(x, y) ≈ x, and

fi(fj(x, y), y) ≈ fi+j(x, y).

If d is a nontrivial divisor of p then fd is nontrivial and f 6∈ Clo(fd), contradicting the assumption
that A is a minimal clone. Thus p is prime, and we are done. �

Lemma 2. If A satisfies (∗) and doesn’t have any nontrivial term f ∈ Cloπ12 (A) which satisfies the
identity

f(f(x, y), y) ≈ f(x, y),

then A is a p-cyclic groupoid.

Proof. We define a second composition law ∗2 on Cloπ12 (A) by

(f ∗2 g)(x, y) = g(f(x, y), y).

The assumption implies that G = (Cloπ12 (A), ∗2) is a group.
Now we define an action · of G on Cloπ12 (A) by

(g · f)(x, y) = f(x, g(y, x)).

First we verify that this is an action:

((g ∗2 h) · f)(x, y) = f(x, (g ∗2 h)(y, x))

= f(x, h(g(y, x), x))

= (h · f)(x, g(y, x))

= (g · (h · f))(x, y).

Note that {π1} is an orbit of this action, so every nontrivial orbit has size at most |G| − 1. Thus,
by the orbit-stabilizer theorem there are nontrivial g ∈ G and f ∈ Cloπ12 (A) such that g · f = f , i.e.

f(x, g(y, x)) ≈ f(x, y).

Now we can apply Lemma 1 to finish the argument. �

Lemma 3. There is no A which satisfies (∗) and has a nontrivial term f ∈ Cloπ12 (A) which satisfies
the identity

f(f(x, y), y) ≈ f(x, y).

Proof. Suppose for contradiction that such A and f existed. Note that such an A can’t be a p-cyclic
groupoid. Define a term t by

t(x, y) = f(x, f(y, x)).
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Now we have

t(x, f(y, x)) = f(x, f(f(y, x), x))

≈ f(x, f(y, x))

= t(x, y),

so by Lemma 1 t must be trivial. Thus we have

f(x, f(y, x)) ≈ x,
so we have

f(f(x, z), f(y, z)) = f(x, z)

whenever two of x, y, z are equal, hence always.
Also, by Theorem 4 we have

f(x, f(x, y)) ≈ x,
but these identities imply that

f(x, y) ≈ f(f(x, f(x, y)), f(y, f(x, y)))

≈ f(x, f(x, y))

≈ x,
contradicting the assumption that f was nontrivial. �

This finishes up the proof of Theorem 5.

Corollary 1. If A is a minimal binary algebra which is not Taylor, not a rectangular band, and
has no nontrivial term g ∈ Cloπ12 (A) satisfying the identity

g(g(x, y), y) ≈ g(x, y),

then A is a p-cyclic groupoid.

Proof. We define the composition law ∗2 on Cloπ12 (A) by

(f ∗2 g)(x, y) = g(f(x, y), y).

The assumption implies that G = (Cloπ12 (A), ∗2) is a group.
We’ll show that the free algebra FA(x, y) has a large automorphism group: for any f ∈ Cloπ12 (A),

the fact that G forms a group implies that x is in the subalgebra generated by f(x, y) and y, so

SgFA(x,y)(f(x, y), y) = FA(x, y).

Thus the homomorphism FA(x, y)→ FA(x, y) which sends x to f(x, y) and y to y is surjective, so
it must be an automorphism (by the finiteness of FA(x, y)). Similarly, the map which sends x to x
and y to f(y, x) is also an automorphism. Since this holds for any f ∈ Cloπ12 (A), we can compose
automorphisms of both types to show that for any f, g ∈ Cloπ12 (A) the map sending x to f(x, y)
and y to g(y, x) is an automorphism.

In particular, for any f ∈ Clo2(A) the map

(x, y) 7→ (f(x, y), f(y, x))

is invertible, so f can’t satisfy the identity f(f(x, y), f(y, x)) ≈ f(x, y) unless f is trivial. �

One application is the following connectivity result.

Definition 14. For any algebra A, we let GA be the graph of two element subalgebras of A.

Theorem 6. If A is an idempotent minimal clone which is neither an affine algebra over Fp nor
a p-cyclic groupoid, then the graph GA is connected.
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Proof. This is easy to check in the cases where A has a semiprojection or is a rectangular band.
If A is Taylor then we know that it must have a nontrivial partial semilattice operation since it is
neither affine nor majority. By Theorem 5, we see that A has a nontrivial term f satisfying the
identity

f(f(x, y), f(y, x)) ≈ f(x, y).

If A has a nontrivial partial semilattice operation s, then the set {x, s(x, y)} is a two element
subalgebra of FA(x, y). Since f ∈ Clo(s), we see that f(x, y) is connected to at least one of x, y in
GF(x,y), and since f(x, y) is adjacent to f(y, x) we see that x and y must be connected to eachother.

Now suppose that A has no nontrivial partial semilattice operations. By Corollary 1, A has a
nontrivial g ∈ Cloπ12 (A) satisfying

g(g(x, y), y) ≈ g(x, y).

Define a term u by
u(x, y) = g(g(x, y), x).

Then u is a nontrivial term (by Theorem 4 and the fact that g is nontrivial) satisfying the identity

u(u(x, y), x) ≈ u(x, y),

and by Theorem 4 we have
u(x, u(x, y)) ≈ x,

so {x, u(x, y)} is a two element subalgebra of FA(x, y). Since f ∈ Clo(u), we can finish the proof
with the same argument we used in the partial semilattice case. �

Next we introduce a class of binary minimal clones which has a nice structure theory (which I
think is new).

Definition 15. We’ll call an algebra A = (A, f) a meld if f is idempotent and satisfies the identity

f(f(x, y), f(z, x)) ≈ f(x, y).(G)

Theorem 7. Suppose A has no ternary semiprojections and has a nontrivial term f that satisfies
the identity

f(x, f(x, y)) ≈ f(x, f(y, x)) ≈ x.
Then f satisfies the identity

f(f(x, y), f(z, x)) ≈ f(x, y).

Any nontrivial idempotent f satisfying the above identity defines a minimal clone.

Proof. The given identity implies that

f(f(x, y), y) ≈ f(f(x, y), f(y, f(x, y)))

≈ f(x, y)

and

f(f(x, y), x) ≈ f(f(x, y), f(x, f(x, y)))

≈ f(x, y).

Thus, we have
f(x, f(f(y, x), z)) = x

whenever two of x, y, z are equal. Since A has no ternary semiprojections, it must hold identically.
Replacing x with f(x, y), we get

f(x, y) ≈ f(f(x, y), f(f(y, f(x, y)), z))

≈ f(f(x, y), f(y, z)),

11



and similarly replacing x with f(x, y) and y with f(z, x), we get

f(x, y) ≈ f(f(x, y), f(f(f(z, x), f(x, y)), z))

≈ f(f(x, y), f(f(z, x), z))

≈ f(f(x, y), f(z, x)).

Now we prove that such an f defines a minimal clone. Suppose that f is a nontrivial idempotent
operation satisfying the identity

f(f(x, y), f(z, x)) ≈ f(x, y).

First we show that whenever we have f(a, b) = a, we also have f(b, a) = b. Supposing that
f(a, b) = a, we have

f(b, a) = f(f(b, b), f(a, b)) = f(b, b) = b.

Therefore the graph GA has an edge connecting a to b whenever f(a, b) = a.
I claim that for any x, y, f(x, y) is adjacent to x, y, and to every neighbour of x in GA. To see

this, we just check that

f(f(x, y), x) ≈ f(f(x, y), f(x, x)) ≈ f(x, y),

that
f(y, f(x, y)) ≈ f(f(y, y), f(x, y)) ≈ f(y, y) ≈ y,

and that for any z with f(z, x) = z we have

f(f(x, y), z) = f(f(x, y), f(z, x)) = f(x, y).

Applying this repeatedly, we see that GA has a vertex which connects to all other vertices. Since
f is nontrivial, we also see that GA is not a complete graph. Conversely, for any such graph G and
any idempotent function f which restricts to first projection on every edge of G and which has
the property that f(x, y) connects to x, y, and every neighbour of x, f will satisfy the identity
f(f(x, y), f(z, x)) ≈ f(x, y).

It’s easy to see that the free algebra FA(x, y) has exactly four elements (x, y, f(x, y), and f(y, x)),
and the associated graph has only one non-edge (between x and y). So the only way that A can
fail to be a minimal clone is if it has a semiprojection. I claim that if t ∈ Clo(f) has

t(x, y, ..., y) ≈ x,
then t is first projection, and that if

t(x, y, ..., y) 6≈ y
then t(x, y, z, ...) must be adjacent to x in the graph associated to FA(x, y, z, ...). These can be
proved easily by an induction on the size of the definition of t (in terms of f) together with our
understanding of the structure of FA(x, y). �

Proposition 16. If A is a minimal clone and any nontrivial B ∈ Var(A) is a meld, then so is A.

Lemma 4. If A is a binary minimal clone, not a rectangular band, such that there are nontrivial
terms f, g ∈ Cloπ12 (A) satisfying the identity

f(x, g(y, x)) ≈ x,
then A is a meld.

Proof. Suppose A is a counterexample of minimal size (so, in particular, every proper subalgebra or
quotient of A is a set). The argument of Theorem 4 shows that Cloπ12 (A), considered as a subalgebra
of FA(x, y), is a set.

We will first prove that for any n ≥ 0 and any z1, ..., zn, we have

f(x, g(...g(g(y, x), z1), ..., zn)) ≈ x.
12



We prove this by induction on n. Since A has no semiprojections, we just have to check the above
identity when at most two distinct values occur among x, y, z1, ..., zn. If x = y, the identity follows
from the fact that Cloπ12 (A) is a set. If zn = x, this follows from the identity f(x, g(..., x)) ≈ x. If
zn = y, then from the fact that Cloπ12 is a set, we have

f(x, g(g(...g(g(y, x), z1), ..., zn−1), y)) ≈ f(x, g(...g(g(y, x), z1), ..., zn−1)),

and the claim follows from the inductive hypothesis.
Since g generates Clo(A), we see that for any h ∈ Cloπ12 (A), we have

f(x, h(g(y, x), x)) ≈ x.

Since A does not satisfy the conditions of Theorem 7, there are a, b ∈ A with

g(a, g(b, a)) 6= a.

Thus a and g(b, a) generate A. For any h ∈ Cloπ12 (A), we then have

f(a, h(g(b, a), a)) = a = f(a, h(a, g(b, a))),

so for all c ∈ A we have f(a, c) = a. Since g ∈ Cloπ12 (f), this implies that for all c ∈ A we have
g(a, c) = a, but taking c = g(b, a) gives us a contradiction. �

Lemma 5. If A is a binary minimal clone, not a rectangular band, such that there are f, g, h ∈
Cloπ12 (A) with f, g nontrivial satisfying the identities

f(h(x, y), g(y, x)) ≈ x,
g(g(x, y), y) ≈ g(x, y),

then A is a meld.

Proof. Again, we take A to be a minimal counterexample, and let a, b ∈ A such that

g(a, g(b, a)) 6= a.

Similarly to Lemma 4, we show that

f(h(x, y), g(...g(g(y, x), z1), ..., zn)) ≈ x,

this time using the identity g(g(y, x), x) ≈ g(g(y, x), y) ≈ g(y, x). From this we see that for all
c ∈ A we have

f(h(a, b), c) ∈ {a, h(a, b)}.
If h(a, b) = a then we finish as in Lemma 4. Otherwise, the argument of Theorem 4 shows that A
has a congruence ∼ such that A/∼ is a two element set, and that for any c ∼ b we have

SgA{h(a, b), c} = A.

By the condition on g, we see that A can’t be a p-cyclic groupoid, so by Theorem 5 A has a
nontrivial term t satisfying

t(t(x, y), t(y, x)) ≈ t(x, y).

From h ∈ Clo(t) and h(a, b) 6= a, b, we see that there are u, v ∈ A \ {h(a, b)} with t(u, v) = h(a, b).
Since each ∼-class of A is a set, we have u 6∼ v, so

t(v, u) ∼ b.

But then we have

A = SgA{h(a, b), t(v, u)} = SgA{t(u, v), t(v, u)} 6= A,
a contradiction. �
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Definition 16. We define the variety D of idempotent groupoids with basic operation f satisfying

f(x, f(y, x)) ≈ f(f(x, y), x) ≈ f(f(x, y), y) ≈ f(f(x, y), f(y, x)) ≈ f(x, y)(D1)

and

∀n ≥ 0 f(x, f(...f(f(x, y1), y2), ..., yn)) ≈ x.(D2)

We say that a binary algebra A = (A, f) is weakly dispersive if there is a surjective map

FA(x, y) � FD(x, y)

and if f satisfies (D2).

Note that FD(x, y) is a four element algebra, with the following multiplication table.

FD(x, y) x y f(x, y) f(y, x)
x x f(x, y) x f(x, y)
y f(y, x) y f(y, x) y

f(x, y) f(x, y) f(x, y) f(x, y) f(x, y)
f(y, x) f(y, x) f(y, x) f(y, x) f(y, x)

Proposition 17. If A is a weakly dispersive algebra, then Clo(A) has no semiprojections. If
g ∈ Clo(A) is nontrivial, then there is a nontrivial f ′ ∈ Clo(g) which is weakly dispersive.

Proof. First, we prove that the preimage of x in the homomorphism FA(x, y) � FD(x, y) is {x}
(by induction on the definition of any g ∈ Clo2(A) in terms of f , using the explicit description of
FD(x, y) as a four element algebra).

Second, we use this to show that any term t ∈ Clo(A) which satisfies the identity

t(x, y, ..., y) ≈ x
is first projection (using another induction on the definition of t in terms of f , together with (D2)).

Finally, if g ∈ Clo(A) is nontrivial then since g is not a semiprojection and A is not Taylor, we
can find a nontrivial f ′ ∈ Cloπ12 (g) by permuting and identifying inputs of g. Then by the first step
the image of f ′ in FD(x, y) is nontrivial, so the map (Clo2(f

′), f ′) → FD(x, y) is surjective (and
can be checked to be a homomorphism). Since f ′ ∈ Cloπ12 (f), f ′ satisfies (D2). �

Theorem 8. If A is a minimal binary clone which is not Taylor, has no partial semilattice opera-
tions, is not a rectangular band or a p-cyclic groupoid, and is not a neghborhood algebra, then A is
a weakly dispersive algebra.

Proof. By Theorem 4 and the fact that A has no semiprojections, any binary operation of A satisfies
the identity (D2). By Corollary 1, A has a nontrivial term t ∈ Cloπ12 (A) satisfying

t(t(x, y), y) ≈ t(x, y).

Suppose first that there are nontrivial f, g ∈ Cloπ12 (A) such that

f(g(x, y), y) ≈ x.
Then we have

f(g(x, t(y, x)), t(y, x)) ≈ x,
and taking h(x, y) = g(x, t(y, x)) we see that this contradicts Lemma 5.

Now suppose that there are nontrivial f, g, h ∈ Cloπ12 (A) such that

f(h(x, y), g(y, x)) ≈ x.
Define gn(x, y) inductively by g0 = π1, g1 = g, and

gn+1(x, y) = g(gn(x, y), y).
14



Then for any n ≥ 1 we have
f(h(x, gn−1(y, x)), gn(y, x)) ≈ x.

If there is any n such that gn is trivial, then we must have h(x, gn−1(y, x)) trivial (otherwise we
are in the case of the previous paragraph), but then we see that f(x, y) ≈ x, contradicting the
assumption that f is nontrivial. Otherwise, there is some n such that gn(gn(x, y), y) ≈ gn(x, y),
and we get a contradiction to Lemma 5.

By the last two paragraphs, Lemma 4, and Theorem 4, we see that there is a surjective map

FA(x, y) � FD(x, y),

and this finishes the proof. �

Proposition 18. If a binary minimal clone A is a weakly dispersive algebra, then for any a, b ∈ A
which generate a nontrivial subalgebra of A there is a surjective homomorphism

SgA2{(a, b), (b, a)}� FD(x, y).

Definition 17. We say an algebra A = (A, f) is dispersive if f satisfies (D2), and if for any a, b ∈ A
which generate a nontrivial subalgebra of A there is a surjective homomorphism SgA2{(a, b), (b, a)}�
FD(x, y).

Proposition 19. If A = (A, f) is a dispersive algebra, then for any a 6= b ∈ A and any c ∈ A, we
have (c, c) 6∈ SgA2{(a, b), (b, a)}. In particular, we have f(a, b) 6= f(b, a).

Definition 18. If A = (A, f) is a dispersive algebra, we define the digraph DA to be the set of
edges from a to f(a, b) for all pairs a, b ∈ A with f(a, b) 6= a. We think of this as a labeled digraph,
where the label of an edge a → c is the set of all elements b such that f(a, b) = c. We define the
right orbit of a, written â, to be the set of elements which are reachable from a in DA. We define
the preorder � on A by a � b iff b ∈ â, and we consider � to be a partial order on the strongly
connected components of DA in the obvious way. We say that a subalgebra B ⊆ A is a strong
subalgebra of A if for all b ∈ B, a ∈ A, we have f(b, a) ∈ B.

Proposition 20. If A is a dispersive algebra, then every strongly connected component of DA is a
set subalgebra of A.

Proposition 21. If A = (A, f) = Sg{a, b} is a dispersive algebra with a 6= b, then b 6∈ â, that is,
a 6� b. In particular, f(a, b) 6= b.

Proposition 22. If A is a minimal dispersive algebra, then the set of strongly connected components
of DA and the partial ordering � on them depends only on the clone of A, that is, for any g ∈
Cloπ12 (A), the digraph D(A,g) has the same collection of strongly connected components and the same
partial ordering �. Equivalently, any strong subalgebra of A is also a strong subalgebra of (A, g).

Proposition 23. For any dispersive algebra A = (A, f), there is a term g ∈ Cloπ12 (A) such that as
elements of FA(x, y) we have f(x, y) � g(x, y) and g(x, y) contained in a maximal strongly connected
component of FA(x, y), and such that g satisfies any one of the identities g(g(x, y), y) ≈ g(x, y),
g(g(x, y), g(y, x)) ≈ g(x, y), g(g(x, y), x) ≈ g(x, y).

Definition 19. For every n ≥ 1, we define the minimal dispersive algebras Ln,L′n on the set
{a, b, c0, ..., cn−1, d0, ..., dn−1} by the multiplication tables

Ln a b cj dj
a a c0 a a
b b b b b
ci di ci ci ci
di di ci+1 di di

L′n a b cj dj
a a d0 a a
b b b b b
ci di ci ci ci
di di ci+1 di di

where the indices are considered cyclically modulo n.
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Note that the algebras Ln,L′n are term-equivalent. The basic operation of Ln satisfies the identity
f(f(x, y), y) ≈ f(x, y) ≈ f(f(x, y), f(y, x)), while the basic operation of L′n satisfes the identity
f(f(x, y), x) ≈ f(x, y), but no nontrivial term of either algebra satisfies both of these identities
simultaneously.

Proposition 24. Suppose that a binary minimal clone A = (A, f) is a dispersive algebra, with
A = Sg{a, b} such that for all c ∈ A, we have f(b, c) = b. Then either |A| ≤ 3, or A is isomorphic
to one of the algebras Ln,L′n for some n ≥ 1.

Proof. Choose g ∈ Cloπ12 (A) such that g(g(x, y), y) ≈ g(x, y) and such that g(a, b) is contained in a
maximal strongly connected component of A. Let c = g(a, b). Then since a � c, we have g(a, x) = a
for all x ∈ ĉ, so ĉ ∪ {a, b} is closed under g and must therefore be equal to A. Furthermore, since
ĉ is strongly connected it must be a set. If we consider the digraph D(A,g), we see that the edge
labels are subsets of {a, b}, and that no two consecutive edges can share a label. Assume now that
|A| > 3, so |ĉ| ≥ 2. Since every element of ĉ has indegree and outdegree at least one, we see that
no edge in ĉ is labelled {a, b}, and that in fact each element of ĉ must have outdegree exactly one.
Thus ĉ is a directed cycle, with edge labels alternating between {a} and {b}. �

Corollary 2. If A is a minimal dispersive algebra and b � a in A, then SgA{a, b} either has size
at most 3, or is isomorphic to one of the algebras Ln,L′n for some n ≥ 1.

Definition 20. We say that a dispersive algebra A is inert if â is a set for each a ∈ A.

Proposition 25. If A is a dispersive algebra, then the union of all of the maximal strongly connected
components of DA forms an inert subalgebra of A.

Proposition 26. If A is a minimal inert dispersive algebra, A = Sg{a, b}, and |b̂| ≤ 2, then |â| ≤ 2
and A is isomorphic to a subalgebra of FD(x, y).

Definition 21. For every n ≥ 1 and every 0 ≤ k < n, we define the minimal inert dispersive
algebras Wa

n,k,Ws
n on the set {a, b, c0, ..., cn−1, d0, ..., dn−1} by the multiplication tables

Wa
n,k a b cj dj
a a c0 a cj+1

b dk b dj b
ci ci ci ci ci
di di di di di

Ws
n a b cj dj
a a c0 a cj+1

b d0 b dj+1 b
ci ci ci ci ci
di di di di di

where the indices are considered cyclically modulo n. We define Wa
n to be Wa

n,0.

Proposition 27. Wa
n,k is isomorphic to Wa

n,n−1−k. If n is odd, then Ws
n is isomorphic to Wa

n,n−1
2

.

For every n ≥ 2 and every k, Sg(Wa
n,k)

2{(a, b), (b, a)} is isomorphic to Ws
2n. Finally, if A ∈

{Wa
n,k,Ws

n}, then any nontrivial term g ∈ Cloπ12 (A) defines an algebra which is isomorphic to
A.

Proposition 28. Up to isomorphism, the only minimal inert dispersive algebras generated by two
elements with size ≤ 6 are FD(x, y), its three element subalgebra {x, f(x, y), f(y, x)}, Wa

2, and Ws
2.

Conjecture 1. If A is a minimal dispersive algebra, then for any a 6= b ∈ A, there is a surjective
homomorphism from Sg{a, b} to a two element set. Equivalently, the digraph DSg{a,b} has exactly
two weakly connected components.

Conjecture 2. If A is a minimal dispersive algebra, and if there is some c ∈ Sg{a, b} such that
{c, d} is a two element set for all d ∈ Sg{a, b}, then Sg{a, b} = {a, b, c}. It’s enough to show that
at least one of (a, c), (b, c) is contained in SgA2{(a, b), (b, a)}.
Conjecture 3. If A is a minimal dispersive algebra which is generated by two elements, then DA
has at least three strongly connected components.
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