Stable subalgebras and weak consistency

Zarathustra Brady

Background on multisorted CSPs

- If \mathcal{V} is a pseudovariety of finite algebras, we get an associated multisorted Constraint Satisfaction Problem, which we will call $\operatorname{CSP}(\mathcal{V})$.

Background on multisorted CSPs

- If \mathcal{V} is a pseudovariety of finite algebras, we get an associated multisorted Constraint Satisfaction Problem, which we will call $\operatorname{CSP}(\mathcal{V})$.
- An instance X of $\operatorname{CSP}(\mathcal{V})$ consists of a set of variables and constraints.

Background on multisorted CSPs

- If \mathcal{V} is a pseudovariety of finite algebras, we get an associated multisorted Constraint Satisfaction Problem, which we will call $\operatorname{CSP}(\mathcal{V})$.
- An instance X of $\operatorname{CSP}(\mathcal{V})$ consists of a set of variables and constraints.
- A variable is a variable name x together with a variable domain $\mathbb{A}_{x} \in \mathcal{V}$.

Background on multisorted CSPs

- A constraint is:

Background on multisorted CSPs

- A constraint is:
- a constraint relation $\mathbb{R} \in \mathcal{V}$,

Background on multisorted CSPs

- A constraint is:
- a constraint relation $\mathbb{R} \in \mathcal{V}$,
- a list of variable names x_{1}, \ldots, x_{k}, and

Background on multisorted CSPs

- A constraint is:
- a constraint relation $\mathbb{R} \in \mathcal{V}$,
- a list of variable names x_{1}, \ldots, x_{k}, and
- a projection homomorphism $\pi_{i}: \mathbb{R} \rightarrow \mathbb{A}_{x_{i}}$ for each i.

Background on multisorted CSPs

- A constraint is:
- a constraint relation $\mathbb{R} \in \mathcal{V}$,
- a list of variable names x_{1}, \ldots, x_{k}, and
- a projection homomorphism $\pi_{i}: \mathbb{R} \rightarrow \mathbb{A}_{x_{i}}$ for each i.

Background on multisorted CSPs

- A constraint is:
- a constraint relation $\mathbb{R} \in \mathcal{V}$,
- a list of variable names x_{1}, \ldots, x_{k}, and
- a projection homomorphism $\pi_{i}: \mathbb{R} \rightarrow \mathbb{A}_{x_{i}}$ for each i.

- A solution is an assignment $x \mapsto a_{x} \in \mathbb{A}_{x}$, such that for each constraint, $\exists r \in \mathbb{R}$ with

$$
\pi_{i}(r)=a_{x_{i}}
$$

for $i=1, \ldots, k$.

Paths

- A step from y to z is a constraint

$$
\left(\mathbb{R},\left(x_{1}, \ldots, x_{k}\right),\left(\pi_{1}, \ldots, \pi_{k}\right)\right)
$$

and a pair i, j such that $x_{i}=y$ and $x_{j}=z$.

Paths

- A step from y to z is a constraint

$$
\left(\mathbb{R},\left(x_{1}, \ldots, x_{k}\right),\left(\pi_{1}, \ldots, \pi_{k}\right)\right)
$$

and a pair i, j such that $x_{i}=y$ and $x_{j}=z$.

Paths

- A step from y to z is a constraint

$$
\left(\mathbb{R},\left(x_{1}, \ldots, x_{k}\right),\left(\pi_{1}, \ldots, \pi_{k}\right)\right)
$$

and a pair i, j such that $x_{i}=y$ and $x_{j}=z$.

- A path is a sequence of steps where the endpoints match up.

Paths

- A step from y to z is a constraint

$$
\left(\mathbb{R},\left(x_{1}, \ldots, x_{k}\right),\left(\pi_{1}, \ldots, \pi_{k}\right)\right)
$$

and a pair i, j such that $x_{i}=y$ and $x_{j}=z$.

- A path is a sequence of steps where the endpoints match up.
- We use additive notation for combining paths: $p+q$ means "first follow p, then q ".

Propagating information along paths

- If $B \subseteq \mathbb{A}_{y}$ and p is a step from y to z through a relation \mathbb{R}, we write

$$
B+p=B+\pi_{y z}(\mathbb{R})=\pi_{z}\left(\pi_{y}^{-1}(B)\right) \subseteq \mathbb{A}_{z}
$$

Propagating information along paths

- If $B \subseteq \mathbb{A}_{y}$ and p is a step from y to z through a relation \mathbb{R}, we write

$$
B+p=B+\pi_{y z}(\mathbb{R})=\pi_{z}\left(\pi_{y}^{-1}(B)\right) \subseteq \mathbb{A}_{z}
$$

- This encodes the implication: "if $a_{y} \in B$, then $a_{z} \in B+p$ ".

Propagating information along paths

- If $B \subseteq \mathbb{A}_{y}$ and p is a step from y to z through a relation \mathbb{R}, we write

$$
B+p=B+\pi_{y z}(\mathbb{R})=\pi_{z}\left(\pi_{y}^{-1}(B)\right) \subseteq \mathbb{A}_{z}
$$

- This encodes the implication: "if $a_{y} \in B$, then $a_{z} \in B+p$ ".
- Extend this notation to paths in the obvious way:

$$
B+\left(p_{1}+p_{2}\right)=\left(B+p_{1}\right)+p_{2}, \text { etc. }
$$

Propagating information along paths

- If $B \subseteq \mathbb{A}_{y}$ and p is a step from y to z through a relation \mathbb{R}, we write

$$
B+p=B+\pi_{y z}(\mathbb{R})=\pi_{z}\left(\pi_{y}^{-1}(B)\right) \subseteq \mathbb{A}_{z}
$$

- This encodes the implication: "if $a_{y} \in B$, then $a_{z} \in B+p$ ".
- Extend this notation to paths in the obvious way:

$$
B+\left(p_{1}+p_{2}\right)=\left(B+p_{1}\right)+p_{2}, \text { etc. }
$$

- If $\mathbb{B} \leq \mathbb{A}_{y}$ is a subalgebra, then $\mathbb{B}+p \leq \mathbb{A}_{z}$ is also a subalgebra.

Consistency

- An instance is arc-consistent if for all paths p from x to y, we have

$$
\mathbb{A}_{x}+p=\mathbb{A}_{y}
$$

Consistency

- An instance is arc-consistent if for all paths p from x to y, we have

$$
\mathbb{A}_{x}+p=\mathbb{A}_{y}
$$

- Arc-consistency is equivalent to: for all constraint relations \mathbb{R}, the projections $\pi_{i}: \mathbb{R} \rightarrow \mathbb{A}_{x_{i}}$ are surjective.

Consistency

- An instance is arc-consistent if for all paths p from x to y, we have

$$
\mathbb{A}_{x}+p=\mathbb{A}_{y}
$$

- Arc-consistency is equivalent to: for all constraint relations \mathbb{R}, the projections $\pi_{i}: \mathbb{R} \rightarrow \mathbb{A}_{x_{i}}$ are surjective.
- An instance is cycle-consistent if for all paths p from x to x, and for all $a \in \mathbb{A}_{x}$, we have

$$
a \in\{a\}+p
$$

Consistency

- An instance is arc-consistent if for all paths p from x to y, we have

$$
\mathbb{A}_{x}+p=\mathbb{A}_{y}
$$

- Arc-consistency is equivalent to: for all constraint relations \mathbb{R}, the projections $\pi_{i}: \mathbb{R} \rightarrow \mathbb{A}_{x_{i}}$ are surjective.
- An instance is cycle-consistent if for all paths p from x to x, and for all $a \in \mathbb{A}_{x}$, we have

$$
a \in\{a\}+p .
$$

- Beginner Sudoku players start by establishing arc-consistency, then they move on to establishing cycle-consistency.

Bounded Width

Theorem (Bulatov, Barto, Kozik)
If \mathcal{V} is a pseudo-variety of finite idempotent algebras, then TFAE:

- $\operatorname{CSP}(\mathcal{V})$ can be solved by a local consistency algorithm,

Bounded Width

Theorem (Bulatov, Barto, Kozik)
If \mathcal{V} is a pseudo-variety of finite idempotent algebras, then TFAE:

- $\operatorname{CSP}(\mathcal{V})$ can be solved by a local consistency algorithm,
- \mathcal{V} contains no nontrivial quasi-affine algebras,

Bounded Width

Theorem (Bulatov, Barto, Kozik)
If \mathcal{V} is a pseudo-variety of finite idempotent algebras, then TFAE:

- $\operatorname{CSP}(\mathcal{V})$ can be solved by a local consistency algorithm,
- \mathcal{V} contains no nontrivial quasi-affine algebras,
- \mathcal{V} is congruence meet-semidistributive,

Bounded Width

Theorem (Bulatov, Barto, Kozik)
If \mathcal{V} is a pseudo-variety of finite idempotent algebras, then TFAE:

- $\operatorname{CSP}(\mathcal{V})$ can be solved by a local consistency algorithm,
- \mathcal{V} contains no nontrivial quasi-affine algebras,
- \mathcal{V} is congruence meet-semidistributive,
- every cycle-consistent instance of $\operatorname{CSP}(\mathcal{V})$ has a solution.

Some other types of consistency

- The original proof of the cycle-consistency result proved something stronger: only need " $p q$-consistency".

Some other types of consistency

- The original proof of the cycle-consistency result proved something stronger: only need " $p q$-consistency".
- An instance is $p q$-consistent if for all cycles p, q from x to x and all $a \in \mathbb{A}_{x}$, there exists a $j \geq 0$ such that

$$
a \in\{a\}+j(p+q)+p
$$

Some other types of consistency

- The original proof of the cycle-consistency result proved something stronger: only need "pq-consistency".
- An instance is $p q$-consistent if for all cycles p, q from x to x and all $a \in \mathbb{A}_{x}$, there exists a $j \geq 0$ such that

$$
a \in\{a\}+j(p+q)+p
$$

- $p q$-consistency is a strange condition, but usefully weak.

Some other types of consistency

- The original proof of the cycle-consistency result proved something stronger: only need " $p q$-consistency".
- An instance is $p q$-consistent if for all cycles p, q from x to x and all $a \in \mathbb{A}_{x}$, there exists a $j \geq 0$ such that

$$
a \in\{a\}+j(p+q)+p
$$

- $p q$-consistency is a strange condition, but usefully weak.
- Before $p q$-consistency was introduced, there were "Prague instances".

Weak Prague Instances

- An instance is a weak Prague instance if:

Weak Prague Instances

- An instance is a weak Prague instance if:
- (P1) it is arc-consistent,

Weak Prague Instances

- An instance is a weak Prague instance if:
- (P1) it is arc-consistent,
- $(\mathrm{P} 2) A+p=A$ implies $A-p=A$,

Weak Prague Instances

- An instance is a weak Prague instance if:
- (P1) it is arc-consistent,
- (P2) $A+p=A$ implies $A-p=A$,
- (P3) $A+p+q=A$ implies $A+p=A$.

Weak Prague Instances

- An instance is a weak Prague instance if:
- (P1) it is arc-consistent,
- (P2) $A+p=A$ implies $A-p=A$,
- $(\mathrm{P} 3) A+p+q=A$ implies $A+p=A$.
- Condition (P2) is closely related to the Linear Programming relaxation of the instance.

Weak Prague Instances

- An instance is a weak Prague instance if:
- (P1) it is arc-consistent,
- $(\mathrm{P} 2) A+p=A$ implies $A-p=A$,
- $(\mathrm{P} 3) A+p+q=A$ implies $A+p=A$.
- Condition (P2) is closely related to the Linear Programming relaxation of the instance.
- Condition (P3) is closely related to the Semidefinite Programming relaxation of the instance.

Weak Prague Instances

- An instance is a weak Prague instance if:
- (P1) it is arc-consistent,
- (P2) $A+p=A$ implies $A-p=A$,
- $(\mathrm{P} 3) A+p+q=A$ implies $A+p=A$.
- Condition (P2) is closely related to the Linear Programming relaxation of the instance.
- Condition (P3) is closely related to the Semidefinite Programming relaxation of the instance.
- Barto asks: are (P1) and (P3) enough to guarantee solvability for bounded width CSPs?

Relationships between consistency notions

Even weaker consistency!

- I call an instance weakly consistent if it satisfies:
(P1) arc-consistency, and
(W) $A+p+q=A$ implies $A \cap(A+p) \neq \emptyset$.

Even weaker consistency!

- I call an instance weakly consistent if it satisfies:
(P1) arc-consistency, and
(W) $A+p+q=A$ implies $A \cap(A+p) \neq \emptyset$.
- This is equivalent to requiring that for all cycles p, q from x to x and $a \in \mathbb{A}_{x}$, there exist $j, k \geq 0$ such that

$$
a \in\{a\}+j(p+q)+p-k(p+q) .
$$

Even weaker consistency!

- I call an instance weakly consistent if it satisfies:
(P1) arc-consistency, and
(W) $A+p+q=A$ implies $A \cap(A+p) \neq \emptyset$.
- This is equivalent to requiring that for all cycles p, q from x to x and $a \in \mathbb{A}_{x}$, there exist $j, k \geq 0$ such that

$$
a \in\{a\}+j(p+q)+p-k(p+q) .
$$

- My main result:

Theorem (Z.)

If \mathcal{V} is a pseudovariety of finite $\mathrm{SD}(\wedge)$ algebras, then every weakly consistent instance of $\operatorname{CSP}(\mathcal{V})$ has a solution.

Main tool

- The only algebraic tool needed to prove this result is the concept of a stable subalgebra, based on the ideas in Zhuk's paper "Strong subalgebras and the Constraint Satisfaction Problem".

Main tool

- The only algebraic tool needed to prove this result is the concept of a stable subalgebra, based on the ideas in Zhuk's paper "Strong subalgebras and the Constraint Satisfaction Problem".
- Stable subalgebras are like absorbing subalgebras, but they are aimed at constraining the structure of subdirect relations instead of arbitrary relations.

Main tool

- The only algebraic tool needed to prove this result is the concept of a stable subalgebra, based on the ideas in Zhuk's paper "Strong subalgebras and the Constraint Satisfaction Problem".
- Stable subalgebras are like absorbing subalgebras, but they are aimed at constraining the structure of subdirect relations instead of arbitrary relations.
- My definition of stable subalgebras is ugly, so instead I will describe the axioms that stable subalgebras satisfy.

Axioms for Stability

Definition

A binary relation \prec on \mathcal{V} is a stability concept if \prec satisfies the following axioms:

- (Subalgebra) If $\mathbb{B} \prec \mathbb{A}$, then $\mathbb{B} \leq \mathbb{A}$.

Axioms for Stability

Definition

A binary relation \prec on \mathcal{V} is a stability concept if \prec satisfies the following axioms:

- (Subalgebra) If $\mathbb{B} \prec \mathbb{A}$, then $\mathbb{B} \leq \mathbb{A}$.
- (Transitivity) If $\mathbb{C} \prec \mathbb{B} \prec \mathbb{A}$, then $\mathbb{C} \prec \mathbb{A}$.

Axioms for Stability

Definition

A binary relation \prec on \mathcal{V} is a stability concept if \prec satisfies the following axioms:

- (Subalgebra) If $\mathbb{B} \prec \mathbb{A}$, then $\mathbb{B} \leq \mathbb{A}$.
- (Transitivity) If $\mathbb{C} \prec \mathbb{B} \prec \mathbb{A}$, then $\mathbb{C} \prec \mathbb{A}$.
- (Intersection) If $\mathbb{B}, \mathbb{C} \prec \mathbb{A}$ and $\mathbb{B} \cap \mathbb{C} \neq \emptyset$, then $\mathbb{B} \cap \mathbb{C} \prec \mathbb{B}$.

Axioms for Stability

Definition

A binary relation \prec on \mathcal{V} is a stability concept if \prec satisfies the following axioms:

- (Subalgebra) If $\mathbb{B} \prec \mathbb{A}$, then $\mathbb{B} \leq \mathbb{A}$.
- (Transitivity) If $\mathbb{C} \prec \mathbb{B} \prec \mathbb{A}$, then $\mathbb{C} \prec \mathbb{A}$.
- (Intersection) If $\mathbb{B}, \mathbb{C} \prec \mathbb{A}$ and $\mathbb{B} \cap \mathbb{C} \neq \emptyset$, then $\mathbb{B} \cap \mathbb{C} \prec \mathbb{B}$.
- (Propagation) If $f: \mathbb{A} \rightarrow \mathbb{B}$ is surjective, then

Axioms for Stability

Definition

A binary relation \prec on \mathcal{V} is a stability concept if \prec satisfies the following axioms:

- (Subalgebra) If $\mathbb{B} \prec \mathbb{A}$, then $\mathbb{B} \leq \mathbb{A}$.
- (Transitivity) If $\mathbb{C} \prec \mathbb{B} \prec \mathbb{A}$, then $\mathbb{C} \prec \mathbb{A}$.
- (Intersection) If $\mathbb{B}, \mathbb{C} \prec \mathbb{A}$ and $\mathbb{B} \cap \mathbb{C} \neq \emptyset$, then $\mathbb{B} \cap \mathbb{C} \prec \mathbb{B}$.
- (Propagation) If $f: \mathbb{A} \rightarrow \mathbb{B}$ is surjective, then
- (Pushforward) if $\mathbb{C} \prec \mathbb{A}$, then $f(\mathbb{C}) \prec \mathbb{B}$, and

Axioms for Stability

Definition

A binary relation \prec on \mathcal{V} is a stability concept if \prec satisfies the following axioms:

- (Subalgebra) If $\mathbb{B} \prec \mathbb{A}$, then $\mathbb{B} \leq \mathbb{A}$.
- (Transitivity) If $\mathbb{C} \prec \mathbb{B} \prec \mathbb{A}$, then $\mathbb{C} \prec \mathbb{A}$.
- (Intersection) If $\mathbb{B}, \mathbb{C} \prec \mathbb{A}$ and $\mathbb{B} \cap \mathbb{C} \neq \emptyset$, then $\mathbb{B} \cap \mathbb{C} \prec \mathbb{B}$.
- (Propagation) If $f: \mathbb{A} \rightarrow \mathbb{B}$ is surjective, then
- (Pushforward) if $\mathbb{C} \prec \mathbb{A}$, then $f(\mathbb{C}) \prec \mathbb{B}$, and
- (Pullback) if $\mathbb{D} \prec \mathbb{B}$, then $f^{-1}(\mathbb{D}) \prec \mathbb{A}$.

Axioms for Stability

Definition

A binary relation \prec on \mathcal{V} is a stability concept if \prec satisfies the following axioms:

- (Subalgebra) If $\mathbb{B} \prec \mathbb{A}$, then $\mathbb{B} \leq \mathbb{A}$.
- (Transitivity) If $\mathbb{C} \prec \mathbb{B} \prec \mathbb{A}$, then $\mathbb{C} \prec \mathbb{A}$.
- (Intersection) If $\mathbb{B}, \mathbb{C} \prec \mathbb{A}$ and $\mathbb{B} \cap \mathbb{C} \neq \emptyset$, then $\mathbb{B} \cap \mathbb{C} \prec \mathbb{B}$.
- (Propagation) If $f: \mathbb{A} \rightarrow \mathbb{B}$ is surjective, then
- (Pushforward) if $\mathbb{C} \prec \mathbb{A}$, then $f(\mathbb{C}) \prec \mathbb{B}$, and
- (Pullback) if $\mathbb{D} \prec \mathbb{B}$, then $f^{-1}(\mathbb{D}) \prec \mathbb{A}$.
- (Helly) If $\mathbb{B}, \mathbb{C}, \mathbb{D} \prec \mathbb{A}$ have $\mathbb{B} \cap \mathbb{C} \neq \emptyset, \mathbb{C} \cap \mathbb{D} \neq \emptyset$, and $\mathbb{B} \cap \mathbb{D} \neq \emptyset$, then $\mathbb{B} \cap \mathbb{C} \cap \mathbb{D} \neq \emptyset$.

Axioms for Stability

Definition

A binary relation \prec on \mathcal{V} is a stability concept if \prec satisfies the following axioms:

- (Subalgebra) If $\mathbb{B} \prec \mathbb{A}$, then $\mathbb{B} \leq \mathbb{A}$.
- (Transitivity) If $\mathbb{C} \prec \mathbb{B} \prec \mathbb{A}$, then $\mathbb{C} \prec \mathbb{A}$.
- (Intersection) If $\mathbb{B}, \mathbb{C} \prec \mathbb{A}$ and $\mathbb{B} \cap \mathbb{C} \neq \emptyset$, then $\mathbb{B} \cap \mathbb{C} \prec \mathbb{B}$.
- (Propagation) If $f: \mathbb{A} \rightarrow \mathbb{B}$ is surjective, then
- (Pushforward) if $\mathbb{C} \prec \mathbb{A}$, then $f(\mathbb{C}) \prec \mathbb{B}$, and
- (Pullback) if $\mathbb{D} \prec \mathbb{B}$, then $f^{-1}(\mathbb{D}) \prec \mathbb{A}$.
- (Helly) If $\mathbb{B}, \mathbb{C}, \mathbb{D} \prec \mathbb{A}$ have $\mathbb{B} \cap \mathbb{C} \neq \emptyset, \mathbb{C} \cap \mathbb{D} \neq \emptyset$, and $\mathbb{B} \cap \mathbb{D} \neq \emptyset$, then $\mathbb{B} \cap \mathbb{C} \cap \mathbb{D} \neq \emptyset$.
- (Ubiquity) For all $\mathbb{A} \in \mathcal{V}$, there is some $a \in \mathbb{A}$ such that $\{a\} \prec \mathbb{A}$.

Alternate forms of the axioms

- The propagation axiom is equivalent to:

$$
\mathbb{R} \leq_{s d} \mathbb{A} \times \mathbb{B}, \quad \mathbb{C} \prec \mathbb{A} \Longrightarrow \mathbb{C}+\mathbb{R} \prec \mathbb{B} .
$$

Alternate forms of the axioms

- The propagation axiom is equivalent to:

$$
\mathbb{R} \leq_{s d} \mathbb{A} \times \mathbb{B}, \quad \mathbb{C} \prec \mathbb{A} \Longrightarrow \mathbb{C}+\mathbb{R} \prec \mathbb{B} .
$$

- Modulo the intersection axiom, the Helly axiom is equivalent to:

$$
\mathbb{B}_{1}, \ldots, \mathbb{B}_{n} \prec \mathbb{A}, \quad \mathbb{B}_{i} \cap \mathbb{B}_{j} \neq \emptyset \forall i, j \Longrightarrow \bigcap_{i} \mathbb{B}_{i} \neq \emptyset
$$

Alternate forms of the axioms

- The propagation axiom is equivalent to:

$$
\mathbb{R} \leq_{s d} \mathbb{A} \times \mathbb{B}, \quad \mathbb{C} \prec \mathbb{A} \Longrightarrow \mathbb{C}+\mathbb{R} \prec \mathbb{B} .
$$

- Modulo the intersection axiom, the Helly axiom is equivalent to:

$$
\mathbb{B}_{1}, \ldots, \mathbb{B}_{n} \prec \mathbb{A}, \quad \mathbb{B}_{i} \cap \mathbb{B}_{j} \neq \emptyset \forall i, j \Longrightarrow \bigcap_{i} \mathbb{B}_{i} \neq \emptyset
$$

- The propagation, intersection, and Helly axioms imply that

$$
\left.\begin{array}{l}
\mathbb{R} \leq_{s d} \prod_{i} \mathbb{A}_{i} \\
\mathbb{B}_{i} \prec \mathbb{A}_{i} \\
\pi_{i j}(\mathbb{R}) \cap\left(\mathbb{B}_{i} \times \mathbb{B}_{j}\right) \neq \emptyset
\end{array}\right\} \Longrightarrow \mathbb{R} \cap\left(\prod_{i} \mathbb{B}_{i}\right) \neq \emptyset
$$

Aside: the binary part of an instance

- To any instance X, we can associate a simpler instance $X^{\text {bin }}$ where all relations are binary.

Aside: the binary part of an instance

- To any instance X, we can associate a simpler instance $X^{\text {bin }}$ where all relations are binary.
- We replace every k-ary relation of X by $\binom{k}{2}$ binary relations:

Aside: the binary part of an instance

- To any instance X, we can associate a simpler instance $X^{\text {bin }}$ where all relations are binary.
- We replace every k-ary relation of X by $\binom{k}{2}$ binary relations:

- If X is arc-consistent and $X^{\text {bin }}$ has a stable solution, then this solution will also be a solution to X by the Helly axiom.

Stability exists

- Main technical result:

Theorem (Z.)
If \mathcal{V} is a pseudovariety of finite idempotent $\mathrm{SD}(\wedge)$ algebras, then there is at least one stability concept \prec on \mathcal{V}.

Stability exists

- Main technical result:

Theorem (Z.)
If \mathcal{V} is a pseudovariety of finite idempotent $\mathrm{SD}(\wedge)$ algebras, then there is at least one stability concept \prec on \mathcal{V}.

- My proof is an ad-hoc mess. I use König's Lemma to reduce to the case where \mathcal{V} is finitely generated, take a convenient reduct...

Stability exists

- Main technical result:

Theorem (Z.)
If \mathcal{V} is a pseudovariety of finite idempotent $\mathrm{SD}(\wedge)$ algebras, then there is at least one stability concept \prec on \mathcal{V}.

- My proof is an ad-hoc mess. I use König's Lemma to reduce to the case where \mathcal{V} is finitely generated, take a convenient reduct...
- Morally, stability is generated by three basic cases:

Stability exists

- Main technical result:

Theorem (Z.)
If \mathcal{V} is a pseudovariety of finite idempotent $\mathrm{SD}(\wedge)$ algebras, then there is at least one stability concept \prec on \mathcal{V}.

- My proof is an ad-hoc mess. I use König's Lemma to reduce to the case where \mathcal{V} is finitely generated, take a convenient reduct...
- Morally, stability is generated by three basic cases:
- Zhuk's "central" absorbing subalgebras are stable subalgebras,

Stability exists

- Main technical result:

Theorem (Z.)
If \mathcal{V} is a pseudovariety of finite idempotent $\mathrm{SD}(\wedge)$ algebras, then there is at least one stability concept \prec on \mathcal{V}.

- My proof is an ad-hoc mess. I use König's Lemma to reduce to the case where \mathcal{V} is finitely generated, take a convenient reduct...
- Morally, stability is generated by three basic cases:
- Zhuk's "central" absorbing subalgebras are stable subalgebras,
- every element of a polynomially complete, absorption-free algebra is stable, and

Stability exists

- Main technical result:

Theorem (Z.)
If \mathcal{V} is a pseudovariety of finite idempotent $\mathrm{SD}(\wedge)$ algebras, then there is at least one stability concept \prec on \mathcal{V}.

- My proof is an ad-hoc mess. I use König's Lemma to reduce to the case where \mathcal{V} is finitely generated, take a convenient reduct...
- Morally, stability is generated by three basic cases:
- Zhuk's "central" absorbing subalgebras are stable subalgebras,
- every element of a polynomially complete, absorption-free algebra is stable, and
- any subalgebra which contains a strongly absorbing subalgebra is stable.

Applying stability

- Let's use \prec to prove the result about weakly consistent instances of $\operatorname{CSP}(\mathcal{V})$.

Applying stability

- Let's use \prec to prove the result about weakly consistent instances of $\operatorname{CSP}(\mathcal{V})$.
- First we go even weaker...

Applying stability

- Let's use \prec to prove the result about weakly consistent instances of $\operatorname{CSP}(\mathcal{V})$.
- First we go even weaker...
- Say an instance is stably consistent if:
(P1) it is arc-consistent, and
(S) if $\mathbb{B} \prec \mathbb{A}_{x}$ and $\mathbb{B}+p+q=\mathbb{B}$, then $\mathbb{B} \cap(\mathbb{B}+p) \neq \emptyset$.

Applying stability

- Let's use \prec to prove the result about weakly consistent instances of $\operatorname{CSP}(\mathcal{V})$.
- First we go even weaker...
- Say an instance is stably consistent if:
(P1) it is arc-consistent, and
(S) if $\mathbb{B} \prec \mathbb{A}_{x}$ and $\mathbb{B}+p+q=\mathbb{B}$, then $\mathbb{B} \cap(\mathbb{B}+p) \neq \emptyset$.
- We will prove that every stably consistent instance has a stable solution by induction.

Standard inductive strategy

- All the arguments in the literature on bounded width CSPs have the same structure:

Standard inductive strategy

- All the arguments in the literature on bounded width CSPs have the same structure:

Step 1 produce an arc-consistent reduction with nice algebraic properties,

Standard inductive strategy

- All the arguments in the literature on bounded width CSPs have the same structure:

Step 1 produce an arc-consistent reduction with nice algebraic properties,

Step 2 prove that every arc-consistent reduction with nice algebraic properties inherits a stronger form of consistency.

Standard inductive strategy

- All the arguments in the literature on bounded width CSPs have the same structure:

Step 1 produce an arc-consistent reduction with nice algebraic properties,

Step 2 prove that every arc-consistent reduction with nice algebraic properties inherits a stronger form of consistency.

- By a reduction, I mean replace all of the variable domains and constraint relations of the instance by subalgebras of the original ones.

Step 1

- For Step 1, everyone uses the same main idea.

Step 1

- For Step 1, everyone uses the same main idea.
- Define an implication digraph, where:

Step 1

- For Step 1, everyone uses the same main idea.
- Define an implication digraph, where:
- vertices are pairs (x, \mathbb{B}) s.t. $\mathbb{B} \subsetneq \mathbb{A}_{x}$, and

Step 1

- For Step 1, everyone uses the same main idea.
- Define an implication digraph, where:
- vertices are pairs (x, \mathbb{B}) s.t. $\mathbb{B} \subsetneq \mathbb{A}_{x}$, and
- for every step p from x to y, we have a directed edge from (x, \mathbb{B}) to $(y, \mathbb{B}+p)$.

Step 1

- For Step 1, everyone uses the same main idea.
- Define an implication digraph, where:
- vertices are pairs (x, \mathbb{B}) s.t. $\mathbb{B} \subsetneq \mathbb{A}_{x}$, and
- for every step p from x to y, we have a directed edge from (x, \mathbb{B}) to $(y, \mathbb{B}+p)$.
- Pick a "maximal" strongly connected component \mathcal{C} of some subdigraph of the implication digraph.

Step 1

- For Step 1, everyone uses the same main idea.
- Define an implication digraph, where:
- vertices are pairs (x, \mathbb{B}) s.t. $\mathbb{B} \subsetneq \mathbb{A}_{x}$, and
- for every step p from x to y, we have a directed edge from (x, \mathbb{B}) to $(y, \mathbb{B}+p)$.
- Pick a "maximal" strongly connected component \mathcal{C} of some subdigraph of the implication digraph.
- By ubiquity and propagation, we can restrict to the subdigraph of (x, \mathbb{B}) such that $\mathbb{B} \prec \mathbb{A}_{x}, \mathbb{B} \neq \mathbb{A}_{x}$.

Step 1

- For Step 1, everyone uses the same main idea.
- Define an implication digraph, where:
- vertices are pairs (x, \mathbb{B}) s.t. $\mathbb{B} \subsetneq \mathbb{A}_{x}$, and
- for every step p from x to y, we have a directed edge from (x, \mathbb{B}) to $(y, \mathbb{B}+p)$.
- Pick a "maximal" strongly connected component \mathcal{C} of some subdigraph of the implication digraph.
- By ubiquity and propagation, we can restrict to the subdigraph of (x, \mathbb{B}) such that $\mathbb{B} \prec \mathbb{A}_{x}, \mathbb{B} \neq \mathbb{A}_{x}$.
- We now try to restrict \mathbb{A}_{x} to \mathbb{B} for every (x, \mathbb{B}) in our maximal strongly connected component \mathcal{C}.

Step 1, continued

- Possible problem: there could be multiple $\mathbb{B} s$ with $(x, \mathbb{B}) \in \mathcal{C}$.

Step 1, continued

- Possible problem: there could be multiple $\mathbb{B} s$ with $(x, \mathbb{B}) \in \mathcal{C}$.
- If (x, \mathbb{B}) and (x, \mathbb{C}) are both in \mathcal{C}, then there are p, q s.t.

$$
\mathbb{B}+p=\mathbb{C}, \quad \mathbb{C}+q=\mathbb{B}
$$

Step 1, continued

- Possible problem: there could be multiple $\mathbb{B} s$ with $(x, \mathbb{B}) \in \mathcal{C}$.
- If (x, \mathbb{B}) and (x, \mathbb{C}) are both in \mathcal{C}, then there are p, q s.t.

$$
\mathbb{B}+p=\mathbb{C}, \quad \mathbb{C}+q=\mathbb{B}
$$

- In this case, stable consistency guarantees that

$$
\mathbb{B} \cap \mathbb{C}=\mathbb{B} \cap(\mathbb{B}+p) \neq \emptyset
$$

Step 1, continued

- Possible problem: there could be multiple $\mathbb{B} s$ with $(x, \mathbb{B}) \in \mathcal{C}$.
- If (x, \mathbb{B}) and (x, \mathbb{C}) are both in \mathcal{C}, then there are p, q s.t.

$$
\mathbb{B}+p=\mathbb{C}, \quad \mathbb{C}+q=\mathbb{B}
$$

- In this case, stable consistency guarantees that

$$
\mathbb{B} \cap \mathbb{C}=\mathbb{B} \cap(\mathbb{B}+p) \neq \emptyset
$$

- By the stronger version of the Helly axiom, we then have

$$
\bigcap_{(x, \mathbb{B}) \in \mathcal{C}} \mathbb{B} \neq \emptyset
$$

Step 1, continued

- Possible problem: there could be multiple \mathbb{B} s with $(x, \mathbb{B}) \in \mathcal{C}$.
- If (x, \mathbb{B}) and (x, \mathbb{C}) are both in \mathcal{C}, then there are p, q s.t.

$$
\mathbb{B}+p=\mathbb{C}, \quad \mathbb{C}+q=\mathbb{B}
$$

- In this case, stable consistency guarantees that

$$
\mathbb{B} \cap \mathbb{C}=\mathbb{B} \cap(\mathbb{B}+p) \neq \emptyset
$$

- By the stronger version of the Helly axiom, we then have

$$
\bigcap_{(x, \mathbb{B}) \in \mathcal{C}} \mathbb{B} \neq \emptyset
$$

- Looks good so far, but is this strong enough to guarantee arc-consistency?

Step 1, completed

- Suppose that restricting \mathbb{A}_{x} to \mathbb{B} and enforcing arc-consistency causes a contradiction.

Step 1, completed

- Suppose that restricting \mathbb{A}_{x} to \mathbb{B} and enforcing arc-consistency causes a contradiction.
- Then we can find a proof tree which witnesses this.

Step 1, completed

- Suppose that restricting \mathbb{A}_{x} to \mathbb{B} and enforcing arc-consistency causes a contradiction.
- Then we can find a proof tree which witnesses this.
- Consider this proof tree as an instance of $\operatorname{CSP}(\mathcal{V})$ (a subinstance of the "universal cover" of our original instance).

Step 1, completed

- Suppose that restricting \mathbb{A}_{x} to \mathbb{B} and enforcing arc-consistency causes a contradiction.
- Then we can find a proof tree which witnesses this.
- Consider this proof tree as an instance of $\operatorname{CSP}(\mathcal{V})$ (a subinstance of the "universal cover" of our original instance).
- Let \mathbb{R} be the set of solutions to this tree instance, where we don't restrict \mathbb{A}_{x} to \mathbb{B}.

Step 1, completed

- Suppose that restricting \mathbb{A}_{x} to \mathbb{B} and enforcing arc-consistency causes a contradiction.
- Then we can find a proof tree which witnesses this.
- Consider this proof tree as an instance of $\operatorname{CSP}(\mathcal{V})$ (a subinstance of the "universal cover" of our original instance).
- Let \mathbb{R} be the set of solutions to this tree instance, where we don't restrict \mathbb{A}_{x} to \mathbb{B}.
- \mathbb{R} is subdirect in the product of the variable domains by arc-consistency.

Step 1, completed

- Suppose that restricting \mathbb{A}_{x} to \mathbb{B} and enforcing arc-consistency causes a contradiction.
- Then we can find a proof tree which witnesses this.
- Consider this proof tree as an instance of $\operatorname{CSP}(\mathcal{V})$ (a subinstance of the "universal cover" of our original instance).
- Let \mathbb{R} be the set of solutions to this tree instance, where we don't restrict \mathbb{A}_{x} to \mathbb{B}.
- \mathbb{R} is subdirect in the product of the variable domains by arc-consistency.
- Any pair of copies of \mathbb{A}_{x} can be simultaneously restricted to \mathbb{B} by stable consistency (and maximality of \mathcal{C}).

Step 1, completed

- Suppose that restricting \mathbb{A}_{x} to \mathbb{B} and enforcing arc-consistency causes a contradiction.
- Then we can find a proof tree which witnesses this.
- Consider this proof tree as an instance of $\operatorname{CSP}(\mathcal{V})$ (a subinstance of the "universal cover" of our original instance).
- Let \mathbb{R} be the set of solutions to this tree instance, where we don't restrict \mathbb{A}_{x} to \mathbb{B}.
- \mathbb{R} is subdirect in the product of the variable domains by arc-consistency.
- Any pair of copies of \mathbb{A}_{x} can be simultaneously restricted to \mathbb{B} by stable consistency (and maximality of \mathcal{C}).
- By the Helly axiom, we can restrict all copies of \mathbb{A}_{x} to \mathbb{B} simultaneously.

Step 2

- For Step 2, let + be addition of paths in the original instance, and let $+{ }^{\prime}$ be addition of paths in the reduced instance, and let \mathbb{A}_{x}^{\prime} be the reduced variable domains.

Step 2

- For Step 2, let + be addition of paths in the original instance, and let $+{ }^{\prime}$ be addition of paths in the reduced instance, and let \mathbb{A}_{x}^{\prime} be the reduced variable domains.
- We just need to show that

$$
\mathbb{B} \cap(\mathbb{B}+p) \neq \emptyset \quad \Longrightarrow \quad \mathbb{B} \cap\left(\mathbb{B}+^{\prime} p\right) \neq \emptyset
$$

for $\mathbb{B} \prec \mathbb{A}_{x}^{\prime}$.

Step 2

- For Step 2, let + be addition of paths in the original instance, and let $+{ }^{\prime}$ be addition of paths in the reduced instance, and let \mathbb{A}_{x}^{\prime} be the reduced variable domains.
- We just need to show that

$$
\mathbb{B} \cap(\mathbb{B}+p) \neq \emptyset \quad \Longrightarrow \quad \mathbb{B} \cap\left(\mathbb{B}+^{\prime} p\right) \neq \emptyset
$$

for $\mathbb{B} \prec \mathbb{A}_{x}^{\prime}$.

- Unroll the path p (duplicating vertices that occur along it multiple times):

Step 2, continued

- We need to show that there is a solution to the reduced path instance

$$
\begin{array}{cc}
\mathbb{A}_{u}^{\prime} & \mathbb{A}_{v}^{\prime} \\
\uparrow \\
\mathbb{A}_{x}^{\prime} \leftrightarrow \mathbb{R}_{1}^{\prime} \rightarrow \mathbb{A}_{y}^{\prime} \leftrightarrow \mathbb{R}_{2}^{\prime} \rightarrow \mathbb{A}_{z}^{\prime} \leftrightarrow \mathbb{R}_{3}^{\prime} \rightarrow \mathbb{A}_{x}^{\prime} \\
\vdots \\
\mathbb{A}_{w}^{\prime}
\end{array}
$$

where the two copies of x are assigned values in \mathbb{B}.

Step 2, continued

- We need to show that there is a solution to the reduced path instance
 where the two copies of x are assigned values in \mathbb{B}.
- Let \mathbb{R} be the solution set to the original unrolled path instance.

Step 2, continued

- We need to show that there is a solution to the reduced path instance

$$
\begin{array}{cc}
\mathbb{A}_{u}^{\prime} & \mathbb{A}_{v}^{\prime} \\
\uparrow & \mathbb{A}_{x}^{\prime} \leftrightarrow \mathbb{R}_{1}^{\prime} \rightarrow \mathbb{A}_{y}^{\prime} \leftrightarrow \mathbb{R}_{2}^{\prime} \rightarrow \mathbb{A}_{z}^{\prime} \leftrightarrow \mathbb{R}_{3}^{\prime} \rightarrow \mathbb{A}_{x}^{\prime} \\
\downarrow \\
\mathbb{A}_{w}^{\prime}
\end{array}
$$

where the two copies of x are assigned values in \mathbb{B}.

- Let \mathbb{R} be the solution set to the original unrolled path instance.
- Let \mathbb{R}^{\prime} be the solution set to the reduced path instance.

Step 2, continued

- We need to show that there is a solution to the reduced path instance

$$
\begin{array}{cc}
\mathbb{A}_{u}^{\prime} & \mathbb{A}_{v}^{\prime} \\
\uparrow \\
\mathbb{A}_{x}^{\prime} \leftrightarrow \mathbb{R}_{1}^{\prime} \rightarrow \mathbb{A}_{y}^{\prime} \leftrightarrow \mathbb{R}_{2}^{\prime} \rightarrow \mathbb{A}_{z}^{\prime} \leftrightarrow \mathbb{R}_{3}^{\prime} \rightarrow \mathbb{A}_{x}^{\prime} \\
\downarrow \\
\mathbb{A}_{w}^{\prime}
\end{array}
$$

where the two copies of x are assigned values in \mathbb{B}.

- Let \mathbb{R} be the solution set to the original unrolled path instance.
- Let \mathbb{R}^{\prime} be the solution set to the reduced path instance.
- Let \mathbb{S}_{1} be the set of elements of \mathbb{R} where the first copy of x is assigned a value in \mathbb{B}, and similarly define \mathbb{S}_{2}.

Step 2, continued

- We need to show that there is a solution to the reduced path instance

$$
\begin{array}{cc}
\mathbb{A}_{u}^{\prime} & \mathbb{A}_{v}^{\prime} \\
\uparrow & \mathbb{A}_{x}^{\prime} \leftrightarrow \mathbb{R}_{1}^{\prime} \rightarrow \mathbb{A}_{y}^{\prime} \leftrightarrow \mathbb{R}_{2}^{\prime} \rightarrow \mathbb{A}_{z}^{\prime} \leftrightarrow \mathbb{R}_{3}^{\prime} \rightarrow \mathbb{A}_{x}^{\prime} \\
\downarrow \\
\mathbb{A}_{w}^{\prime}
\end{array}
$$

where the two copies of x are assigned values in \mathbb{B}.

- Let \mathbb{R} be the solution set to the original unrolled path instance.
- Let \mathbb{R}^{\prime} be the solution set to the reduced path instance.
- Let \mathbb{S}_{1} be the set of elements of \mathbb{R} where the first copy of x is assigned a value in \mathbb{B}, and similarly define \mathbb{S}_{2}.
- Apply the Helly axiom to $\mathbb{S}_{1}, \mathbb{S}_{2}, \mathbb{R}^{\prime} \prec \mathbb{R}$.

Applications to height one identities

- We can give a new characterization of locally finite $\operatorname{SD}(\wedge)$ varieties:

Theorem (Z.)
If \mathcal{V} is a locally finite variety, then \mathcal{V} is $\mathrm{SD}(\wedge)$ if and only if there is a 4-ary term t which satisfies the identities

$$
t(x, x, y, z) \approx t(y, z, z, x) \approx t(z, x, y, x)
$$

and

$$
t(x, y, x, z) \approx t(x, z, y, x) \approx t(y, z, x, x)
$$

simultaneously.

Applications to height one identities

- We can give a new characterization of locally finite $\operatorname{SD}(\wedge)$ varieties:

Theorem (Z.)
If \mathcal{V} is a locally finite variety, then \mathcal{V} is $\mathrm{SD}(\wedge)$ if and only if there is a 4-ary term t which satisfies the identities

$$
t(x, x, y, z) \approx t(y, z, z, x) \approx t(z, x, y, x)
$$

and

$$
t(x, y, x, z) \approx t(x, z, y, x) \approx t(y, z, x, x)
$$

simultaneously.

- This can be proved by combining the weak consistency result with a Ramsey-theoretic argument.

Another height one identity

- A tougher application:

Theorem (Z.)

If \mathcal{V} is a locally finite $\mathrm{SD}(\wedge)$ variety, then \mathcal{V} has a 5-ary "almost cyclic" term c which satisfies the identity

$$
\begin{aligned}
c(x, x, y, z, w) & \approx c(x, y, z, w, x) \\
& \approx c(y, z, w, x, x) \\
& \approx c, x, x, y) \approx c(w, x, x, y, z) .
\end{aligned}
$$

Another height one identity

- A tougher application:

Theorem (Z.)

If \mathcal{V} is a locally finite $\mathrm{SD}(\wedge)$ variety, then \mathcal{V} has a 5-ary "almost cyclic" term c which satisfies the identity

$$
\begin{aligned}
c(x, x, y, z, w) & \approx c(x, y, z, w, x) \\
& \approx c(y, z, w, x, x) \\
& \approx c, x, x, y) \approx c(w, x, x, y, z) .
\end{aligned}
$$

- For this, we need to use the fact that weak consistency implies the existence of a stable solution.

Another height one identity

- A tougher application:

Theorem (Z.)

If \mathcal{V} is a locally finite $\mathrm{SD}(\wedge)$ variety, then \mathcal{V} has a 5-ary "almost cyclic" term c which satisfies the identity

$$
\begin{aligned}
c(x, x, y, z, w) & \approx c(x, y, z, w, x) \approx c(y, z, w, x, x) \\
& \approx c(z, w, x, x, y) \approx c(w, x, x, y, z) .
\end{aligned}
$$

- For this, we need to use the fact that weak consistency implies the existence of a stable solution.
- This easily implies that every algebra in \mathcal{V} of size ≤ 4 has a 5-ary cyclic term!

Questions for the audience

- Can we use weak consistency to improve the robust algorithm for solving bounded width CSPs due to Barto and Kozik?

Questions for the audience

- Can we use weak consistency to improve the robust algorithm for solving bounded width CSPs due to Barto and Kozik?
- We can at least use it to improve the derandomization of the robust algorithm.

Questions for the audience

- Can we use weak consistency to improve the robust algorithm for solving bounded width CSPs due to Barto and Kozik?
- We can at least use it to improve the derandomization of the robust algorithm.
- Is there a "canonical" stability concept?

Questions for the audience

- Can we use weak consistency to improve the robust algorithm for solving bounded width CSPs due to Barto and Kozik?
- We can at least use it to improve the derandomization of the robust algorithm.
- Is there a "canonical" stability concept?
- Does every locally finite $\mathrm{SD}(\wedge)$ variety have a p-ary "almost cyclic" term for every prime p ?

Questions for the audience

- Can we use weak consistency to improve the robust algorithm for solving bounded width CSPs due to Barto and Kozik?
- We can at least use it to improve the derandomization of the robust algorithm.
- Is there a "canonical" stability concept?
- Does every locally finite $\mathrm{SD}(\wedge)$ variety have a p-ary "almost cyclic" term for every prime p ?
- How much do we have to weaken the ubiquity axiom for stability concepts in pseudovarieties which are not $\operatorname{SD}(\wedge)$?

Questions for the audience

- Can we use weak consistency to improve the robust algorithm for solving bounded width CSPs due to Barto and Kozik?
- We can at least use it to improve the derandomization of the robust algorithm.
- Is there a "canonical" stability concept?
- Does every locally finite $\mathrm{SD}(\wedge)$ variety have a p-ary "almost cyclic" term for every prime p ?
- How much do we have to weaken the ubiquity axiom for stability concepts in pseudovarieties which are not $\operatorname{SD}(\wedge)$?
- Are there any CSPs which are solved by the Linear Programming relaxation, but which are not solved by enforcing (P1) and (P2)?

Thank you for your attention.

