Rounding rules and vague solutions to bounded width CSPs

Zarathustra Brady

CSPs and relational structures

- If $\mathbf{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ is a finite relational structure, we get an associated Constraint Satisfaction Problem, $\operatorname{CSP}(\mathbf{A})$.

CSPs and relational structures

- If $\mathbf{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ is a finite relational structure, we get an associated Constraint Satisfaction Problem, $\operatorname{CSP}(\mathbf{A})$.
- An instance $\mathbf{X}=\left(X, C_{1}, \ldots, C_{n}\right)$ of $\operatorname{CSP}(\mathbf{A})$ is a relational structure with the same signature as \mathbf{A}.

CSPs and relational structures

- If $\mathbf{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ is a finite relational structure, we get an associated Constraint Satisfaction Problem, $\operatorname{CSP}(\mathbf{A})$.
- An instance $\mathbf{X}=\left(X, C_{1}, \ldots, C_{n}\right)$ of $\operatorname{CSP}(\mathbf{A})$ is a relational structure with the same signature as \mathbf{A}.
- The elements $x \in X$ are called the variables of the instance \mathbf{X}.

CSPs and relational structures

- If $\mathbf{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ is a finite relational structure, we get an associated Constraint Satisfaction Problem, $\operatorname{CSP}(\mathbf{A})$.
- An instance $\mathbf{X}=\left(X, C_{1}, \ldots, C_{n}\right)$ of $\operatorname{CSP}(\mathbf{A})$ is a relational structure with the same signature as \mathbf{A}.
- The elements $x \in X$ are called the variables of the instance \mathbf{X}.
- The elements $c=\left(x_{1}, \ldots, x_{k}\right) \in C_{i}$ are called the constraints of the instance \mathbf{X}.

CSPs and relational structures

- If $\mathbf{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ is a finite relational structure, we get an associated Constraint Satisfaction Problem, $\operatorname{CSP}(\mathbf{A})$.
- An instance $\mathbf{X}=\left(X, C_{1}, \ldots, C_{n}\right)$ of $\operatorname{CSP}(\mathbf{A})$ is a relational structure with the same signature as \mathbf{A}.
- The elements $x \in X$ are called the variables of the instance \mathbf{X}.
- The elements $c=\left(x_{1}, \ldots, x_{k}\right) \in C_{i}$ are called the constraints of the instance \mathbf{X}.
- A solution to the instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ is a homomorphism $a: \mathbf{X} \rightarrow \mathbf{A}$.

CSPs and relational structures

- If $\mathbf{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ is a finite relational structure, we get an associated Constraint Satisfaction Problem, $\operatorname{CSP}(\mathbf{A})$.
- An instance $\mathbf{X}=\left(X, C_{1}, \ldots, C_{n}\right)$ of $\operatorname{CSP}(\mathbf{A})$ is a relational structure with the same signature as \mathbf{A}.
- The elements $x \in X$ are called the variables of the instance \mathbf{X}.
- The elements $c=\left(x_{1}, \ldots, x_{k}\right) \in C_{i}$ are called the constraints of the instance \mathbf{X}.
- A solution to the instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ is a homomorphism $a: \mathbf{X} \rightarrow \mathbf{A}$.
- If $c=\left(x_{1}, \ldots, x_{k}\right) \in C_{i}$ is a constraint, then a solution a must satisfy $\left(a\left(x_{1}\right), \ldots, a\left(x_{k}\right)\right) \in R_{i}$.

Approximate solutions

- An approximate solution to the instance \mathbf{X} is an arbitrary map a : $X \rightarrow A$.

Approximate solutions

- An approximate solution to the instance \mathbf{X} is an arbitrary map $a: X \rightarrow A$.
- The value of the approximate solution a is the fraction of the constraints which are satisfied by a :

$$
\frac{\sum_{i} \#\left\{\left(x_{1}, \ldots, x_{k}\right) \in C_{i} \mid\left(a\left(x_{1}\right), \ldots, a\left(x_{k}\right)\right) \in R_{i}\right\}}{\sum_{i}\left|C_{i}\right|}
$$

Approximate solutions

- An approximate solution to the instance \mathbf{X} is an arbitrary map $a: X \rightarrow A$.
- The value of the approximate solution a is the fraction of the constraints which are satisfied by a :

$$
\frac{\sum_{i} \#\left\{\left(x_{1}, \ldots, x_{k}\right) \in C_{i} \mid\left(a\left(x_{1}\right), \ldots, a\left(x_{k}\right)\right) \in R_{i}\right\}}{\sum_{i}\left|C_{i}\right|}
$$

- The value of the instance \mathbf{X} is the maximum value of any approximate solution $a: X \rightarrow A$.

Approximate solutions

- An approximate solution to the instance \mathbf{X} is an arbitrary map $a: X \rightarrow A$.
- The value of the approximate solution a is the fraction of the constraints which are satisfied by a :

$$
\frac{\sum_{i} \#\left\{\left(x_{1}, \ldots, x_{k}\right) \in C_{i} \mid\left(a\left(x_{1}\right), \ldots, a\left(x_{k}\right)\right) \in R_{i}\right\}}{\sum_{i}\left|C_{i}\right|}
$$

- The value of the instance \mathbf{X} is the maximum value of any approximate solution $a: X \rightarrow A$.
- An approximate solution with value 1 is the same thing as an ordinary solution.

Robustly solvable CSPs

Definition

We say that $\operatorname{CSP}(\mathbf{A})$ is robustly solvable if there is a function $f:[0,1] \rightarrow[0,1]$ such that:

Robustly solvable CSPs

Definition
We say that $\operatorname{CSP}(\mathbf{A})$ is robustly solvable if there is a function $f:[0,1] \rightarrow[0,1]$ such that:

- when \mathbf{X} is an instance of value $1-\epsilon$, we can algorithmically find an approximate solution $a: X \rightarrow A$ of value $1-f(\epsilon)$ in polynomial time,

Robustly solvable CSPs

Definition
We say that $\operatorname{CSP}(\mathbf{A})$ is robustly solvable if there is a function $f:[0,1] \rightarrow[0,1]$ such that:

- when \mathbf{X} is an instance of value $1-\epsilon$, we can algorithmically find an approximate solution $a: X \rightarrow A$ of value $1-f(\epsilon)$ in polynomial time,
- $\lim _{\epsilon \rightarrow 0} f(\epsilon)=0$.

Robustly solvable CSPs

Definition
We say that $\operatorname{CSP}(\mathbf{A})$ is robustly solvable if there is a function $f:[0,1] \rightarrow[0,1]$ such that:

- when \mathbf{X} is an instance of value $1-\epsilon$, we can algorithmically find an approximate solution $a: X \rightarrow A$ of value $1-f(\epsilon)$ in polynomial time,
- $\lim _{\epsilon \rightarrow 0} f(\epsilon)=0$.
- The main barrier to being robustly solvable is the ability to simulate affine CSPs.

Robustly solvable CSPs

Definition

We say that $\operatorname{CSP}(\mathbf{A})$ is robustly solvable if there is a function $f:[0,1] \rightarrow[0,1]$ such that:

- when \mathbf{X} is an instance of value $1-\epsilon$, we can algorithmically find an approximate solution $a: X \rightarrow A$ of value $1-f(\epsilon)$ in polynomial time,
- $\lim _{\epsilon \rightarrow 0} f(\epsilon)=0$.
- The main barrier to being robustly solvable is the ability to simulate affine CSPs.

Theorem (Håstad)
If $\mathbf{A}=(\mathbb{Z} / p,\{x+y=z\}, \ldots,\{x+y=z+p-1\})$, then it is NP-hard to find an approximate solution $a: X \rightarrow A$ of value $\frac{1}{p}+\epsilon$, even if the instance \mathbf{X} is promised to have value $1-\epsilon$.

Characterization of robustly solvable CSPs

- We say that a relational structure \mathbf{A} has bounded width if $\operatorname{CSP}(\mathbf{A})$ can be solved by a local consistency algorithm.

Characterization of robustly solvable CSPs

- We say that a relational structure \mathbf{A} has bounded width if $\operatorname{CSP}(\mathbf{A})$ can be solved by a local consistency algorithm.

Theorem (Conjectured by Guruswami and Zhou, proved by Barto and Kozik) If $P \neq N$, the following are equivalent:

Characterization of robustly solvable CSPs

- We say that a relational structure \mathbf{A} has bounded width if $\operatorname{CSP}(\mathbf{A})$ can be solved by a local consistency algorithm.

Theorem (Conjectured by Guruswami and Zhou, proved by Barto and Kozik) If $P \neq N P$, the following are equivalent:

- $\operatorname{CSP}(\mathbf{A})$ is robustly solvable,

Characterization of robustly solvable CSPs

- We say that a relational structure \mathbf{A} has bounded width if $\operatorname{CSP}(\mathbf{A})$ can be solved by a local consistency algorithm.

Theorem (Conjectured by Guruswami and Zhou, proved by Barto and Kozik) If $P \neq N P$, the following are equivalent:

- $\operatorname{CSP}(\mathbf{A})$ is robustly solvable,
- A has bounded width,

Characterization of robustly solvable CSPs

- We say that a relational structure \mathbf{A} has bounded width if $\operatorname{CSP}(\mathbf{A})$ can be solved by a local consistency algorithm.

Theorem (Conjectured by Guruswami and Zhou, proved by Barto and Kozik) If $P \neq N$, the following are equivalent:

- $\operatorname{CSP}(\mathbf{A})$ is robustly solvable,
- A has bounded width,
- $\operatorname{CSP}(\mathbf{A})$ can be robustly solved via the standard semidefinite programming relaxation.

Characterization of robustly solvable CSPs

- We say that a relational structure \mathbf{A} has bounded width if $\operatorname{CSP}(\mathbf{A})$ can be solved by a local consistency algorithm.

Theorem (Conjectured by Guruswami and Zhou, proved by Barto and Kozik) If $P \neq N P$, the following are equivalent:

- $\operatorname{CSP}(\mathbf{A})$ is robustly solvable,
- A has bounded width,
- $\operatorname{CSP}(\mathbf{A})$ can be robustly solved via the standard semidefinite programming relaxation.
- Furthermore, Barto and Kozik's algorithm has

$$
f(\epsilon) \ll \frac{\log \log (1 / \epsilon)}{\log (1 / \epsilon)} .
$$

Bounded width

- For any finite relational structure \mathbf{A}, the computational complexity of $\operatorname{CSP}(\mathbf{A})$ is controlled by the set of polymorphisms $\operatorname{Pol}(\mathbf{A})$.

Bounded width

- For any finite relational structure \mathbf{A}, the computational complexity of $\operatorname{CSP}(\mathbf{A})$ is controlled by the set of polymorphisms $\operatorname{Pol}(\mathbf{A})$.

Theorem (Bulatov, Barto, Kozik)
If \mathbf{A} is a finite core relational structure, and if $\mathbb{A}=(A, \operatorname{Pol}(\mathbf{A}))$ is the corresponding algebraic structure, then TFAE:

Bounded width

- For any finite relational structure \mathbf{A}, the computational complexity of $\operatorname{CSP}(\mathbf{A})$ is controlled by the set of polymorphisms $\operatorname{Pol}(\mathbf{A})$.

Theorem (Bulatov, Barto, Kozik)
If \mathbf{A} is a finite core relational structure, and if $\mathbb{A}=(A, \operatorname{Pol}(\mathbf{A}))$ is the corresponding algebraic structure, then TFAE:

- $\operatorname{CSP}(\mathbf{A})$ can be solved by a local consistency algorithm,

Bounded width

- For any finite relational structure \mathbf{A}, the computational complexity of $\operatorname{CSP}(\mathbf{A})$ is controlled by the set of polymorphisms $\operatorname{Pol}(\mathbf{A})$.

Theorem (Bulatov, Barto, Kozik)
If \mathbf{A} is a finite core relational structure, and if $\mathbb{A}=(A, \operatorname{Pol}(\mathbf{A}))$ is the corresponding algebraic structure, then TFAE:

- $\operatorname{CSP}(\mathbf{A})$ can be solved by a local consistency algorithm,
- The variety $\operatorname{Var}(\mathbb{A})$ generated by \mathbb{A} contains no nontrivial quasi-affine algebras,

Bounded width

- For any finite relational structure \mathbf{A}, the computational complexity of $\operatorname{CSP}(\mathbf{A})$ is controlled by the set of polymorphisms $\operatorname{Pol}(\mathbf{A})$.

Theorem (Bulatov, Barto, Kozik)
If \mathbf{A} is a finite core relational structure, and if $\mathbb{A}=(A, \operatorname{Pol}(\mathbf{A}))$ is the corresponding algebraic structure, then TFAE:

- $\operatorname{CSP}(\mathbf{A})$ can be solved by a local consistency algorithm,
- The variety $\operatorname{Var}(\mathbb{A})$ generated by \mathbb{A} contains no nontrivial quasi-affine algebras,
- $\operatorname{Var}(\mathbb{A})$ is congruence meet-semidistributive,

Bounded width

- For any finite relational structure \mathbf{A}, the computational complexity of $\operatorname{CSP}(\mathbf{A})$ is controlled by the set of polymorphisms $\operatorname{Pol}(\mathbf{A})$.

Theorem (Bulatov, Barto, Kozik)
If \mathbf{A} is a finite core relational structure, and if $\mathbb{A}=(A, \operatorname{Pol}(\mathbf{A}))$ is the corresponding algebraic structure, then TFAE:

- $\operatorname{CSP}(\mathbf{A})$ can be solved by a local consistency algorithm,
- The variety $\operatorname{Var}(\mathbb{A})$ generated by \mathbb{A} contains no nontrivial quasi-affine algebras,
- $\operatorname{Var}(\mathbb{A})$ is congruence meet-semidistributive,
- every cycle-consistent instance of $\operatorname{CSP}(\mathbf{A})$ has a solution.

The Linear Programming Relaxation

- For any finite set S, let $\Delta(S)$ be the collection of probability distributions on S.

The Linear Programming Relaxation

- For any finite set S, let $\Delta(S)$ be the collection of probability distributions on S.
- We think of $\Delta(S)$ as the convex hull of the one-hot vectors $(0, \ldots, 0,1,0, \ldots, 0)$ in \mathbb{R}^{S}.

The Linear Programming Relaxation

- For any finite set S, let $\Delta(S)$ be the collection of probability distributions on S.
- We think of $\Delta(S)$ as the convex hull of the one-hot vectors $(0, \ldots, 0,1,0, \ldots, 0)$ in \mathbb{R}^{S}.

Definition
A fractional solution to an instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ is the following:

The Linear Programming Relaxation

- For any finite set S, let $\Delta(S)$ be the collection of probability distributions on S.
- We think of $\Delta(S)$ as the convex hull of the one-hot vectors $(0, \ldots, 0,1,0, \ldots, 0)$ in \mathbb{R}^{S}.

Definition
A fractional solution to an instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ is the following:

- a map a : $X \rightarrow \Delta(A)$, together with

The Linear Programming Relaxation

- For any finite set S, let $\Delta(S)$ be the collection of probability distributions on S.
- We think of $\Delta(S)$ as the convex hull of the one-hot vectors $(0, \ldots, 0,1,0, \ldots, 0)$ in \mathbb{R}^{S}.

Definition
A fractional solution to an instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ is the following:

- a map a : $X \rightarrow \Delta(A)$, together with
- a collection of maps $r_{i}: C_{i} \rightarrow \Delta\left(R_{i}\right)$, such that

The Linear Programming Relaxation

- For any finite set S, let $\Delta(S)$ be the collection of probability distributions on S.
- We think of $\Delta(S)$ as the convex hull of the one-hot vectors $(0, \ldots, 0,1,0, \ldots, 0)$ in \mathbb{R}^{S}.

Definition
A fractional solution to an instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ is the following:

- a map a : $X \rightarrow \Delta(A)$, together with
- a collection of maps $r_{i}: C_{i} \rightarrow \Delta\left(R_{i}\right)$, such that
- for each constraint $c=\left(x_{1}, \ldots, x_{k}\right) \in C_{i}$, and for each $j \leq k$, the distribution $a\left(x_{j}\right)$ is the j th marginal probability distribution of $r_{i}(c)$.

The Linear Programming Relaxation

- For any finite set S, let $\Delta(S)$ be the collection of probability distributions on S.
- We think of $\Delta(S)$ as the convex hull of the one-hot vectors $(0, \ldots, 0,1,0, \ldots, 0)$ in \mathbb{R}^{S}.

Definition

A fractional solution to an instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ is the following:

- a map a : $X \rightarrow \Delta(A)$, together with
- a collection of maps $r_{i}: C_{i} \rightarrow \Delta\left(R_{i}\right)$, such that
- for each constraint $c=\left(x_{1}, \ldots, x_{k}\right) \in C_{i}$, and for each $j \leq k$, the distribution $a\left(x_{j}\right)$ is the j th marginal probability distribution of $r_{i}(c)$.
- We can define approximate fractional solutions similarly, with $r_{i}: C_{i} \rightarrow \Delta\left(A^{k}\right)$ instead of $r_{i}: C_{i} \rightarrow \Delta\left(R_{i}\right)$.

Rounding schemes for the Linear Programming relaxation

- An LP rounding scheme is just a map

$$
s: \Delta(A) \rightarrow A
$$

Rounding schemes for the Linear Programming relaxation

- An LP rounding scheme is just a map

$$
s: \Delta(A) \rightarrow A .
$$

- We say that the LP rounding scheme s solves $\operatorname{CSP}(\mathbf{A})$ if for every instance \mathbf{X}, and for every fractional solution

$$
a: X \rightarrow \Delta(A), \quad r_{i}: C_{i} \rightarrow \Delta\left(R_{i}\right)
$$

the map

$$
\text { soa }: X \rightarrow A
$$

defines a homomorphism $\mathbf{X} \rightarrow \mathbf{A}$.

Example of an LP rounding scheme

- Consider the relational structure

$$
\mathbf{A}=(\{-1,0,+1\},\{x=-y\},\{x+y+z \geq 1\})
$$

Example of an LP rounding scheme

- Consider the relational structure

$$
\mathbf{A}=(\{-1,0,+1\},\{x=-y\},\{x+y+z \geq 1\})
$$

- $\operatorname{CSP}(\mathbf{A})$ is solved by the LP rounding scheme s given by

$$
s\left(p_{-1}, p_{0}, p_{+1}\right)= \begin{cases}+1 & p_{+1}>p_{-1} \\ 0 & p_{+1}=p_{-1} \\ -1 & p_{+1}<p_{-1}\end{cases}
$$

Example of an LP rounding scheme

- Consider the relational structure

$$
\mathbf{A}=(\{-1,0,+1\},\{x=-y\},\{x+y+z \geq 1\})
$$

- $\operatorname{CSP}(\mathbf{A})$ is solved by the LP rounding scheme s given by

$$
s\left(p_{-1}, p_{0}, p_{+1}\right)= \begin{cases}+1 & p_{+1}>p_{-1} \\ 0 & p_{+1}=p_{-1} \\ -1 & p_{+1}<p_{-1}\end{cases}
$$

- For every n, the symmetric function s_{n} given by

$$
s_{n}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}+1 & \sum_{i} x_{i}>0, \\ 0 & \sum_{i} x_{i}=0, \\ -1 & \sum_{i} x_{i}<0\end{cases}
$$

is a polymorphism of \mathbf{A}.

Characterization of LP rounding schemes

Theorem (Kun, O'Donnell, Tamaki, Yoshida, Zhou)
For a finite relational structure A, TFAE:

Characterization of LP rounding schemes

Theorem (Kun, O'Donnell, Tamaki, Yoshida, Zhou)
For a finite relational structure A, TFAE:

- $\operatorname{CSP}(\mathbf{A})$ is solved by some $L P$ rounding scheme s,

Characterization of LP rounding schemes

Theorem (Kun, O'Donnell, Tamaki, Yoshida, Zhou)
For a finite relational structure A, TFAE:

- $\operatorname{CSP}(\mathbf{A})$ is solved by some $L P$ rounding scheme s,
- for every n, there is a symmetric n-ary polymorphism $s_{n} \in \operatorname{Pol}(\mathbf{A})$.

Characterization of LP rounding schemes

Theorem (Kun, O'Donnell, Tamaki, Yoshida, Zhou)
For a finite relational structure A, TFAE:

- $\operatorname{CSP}(\mathbf{A})$ is solved by some $L P$ rounding scheme s,
- for every n, there is a symmetric n-ary polymorphism $s_{n} \in \operatorname{Pol}(\mathbf{A})$.
- An LP rounding scheme is a collection of polymorphisms $s_{n} \in \operatorname{Pol}(\mathbf{A})$ that satisfy certain height 1 identities (asserting symmetry).

Characterization of LP rounding schemes

Theorem (Kun, O'Donnell, Tamaki, Yoshida, Zhou)
For a finite relational structure A, TFAE:

- $\operatorname{CSP}(\mathbf{A})$ is solved by some $L P$ rounding scheme s,
- for every n, there is a symmetric n-ary polymorphism $s_{n} \in \operatorname{Pol}(\mathbf{A})$.
- An LP rounding scheme is a collection of polymorphisms $s_{n} \in \operatorname{Pol}(\mathbf{A})$ that satisfy certain height 1 identities (asserting symmetry).
- Unfortunately, not every bounded width CSP has an LP rounding scheme:

$$
2-\mathrm{SAT}=(\{0,1\},\{x \neq y\},\{x \geq y\})
$$

has no binary symmetric polymorphism.

From fractional solutions to preference relations

- If $p \in \Delta(A)$ is a probability distribution over A, then we can define a total preorder \preceq_{p} on the powerset $\mathcal{P}(A)$:

$$
U \preceq_{p} V \quad \Longleftrightarrow \quad \sum_{u \in U} p_{U} \leq \sum_{v \in V} p_{v}
$$

From fractional solutions to preference relations

- If $p \in \Delta(A)$ is a probability distribution over A, then we can define a total preorder \preceq_{p} on the powerset $\mathcal{P}(A)$:

$$
U \preceq_{p} V \quad \Longleftrightarrow \quad \sum_{u \in U} p_{u} \leq \sum_{v \in V} p_{v} .
$$

- Total preorders are also known as preference relations.

From fractional solutions to preference relations

- If $p \in \Delta(A)$ is a probability distribution over A, then we can define a total preorder \preceq_{p} on the powerset $\mathcal{P}(A)$:

$$
U \preceq_{p} V \quad \Longleftrightarrow \quad \sum_{u \in U} p_{u} \leq \sum_{v \in V} p_{v} .
$$

- Total preorders are also known as preference relations.
- A total preorder \preceq can be decomposed into an equivalence relation \sim on $\mathcal{P}(A)$ and a total ordering \prec on $\mathcal{P}(A) / \sim$.

From fractional solutions to preference relations

- If $p \in \Delta(A)$ is a probability distribution over A, then we can define a total preorder \preceq_{p} on the powerset $\mathcal{P}(A)$:

$$
U \preceq_{p} V \quad \Longleftrightarrow \quad \sum_{u \in U} p_{u} \leq \sum_{v \in V} p_{v}
$$

- Total preorders are also known as preference relations.
- A total preorder \preceq can be decomposed into an equivalence relation \sim on $\mathcal{P}(A)$ and a total ordering \prec on $\mathcal{P}(A) / \sim$.
- Consider the probability distribution $p_{0}=p_{1}=\frac{1}{2}$ on 2-SAT.

From fractional solutions to preference relations

- If $p \in \Delta(A)$ is a probability distribution over A, then we can define a total preorder \preceq_{p} on the powerset $\mathcal{P}(A)$:

$$
U \preceq_{p} V \quad \Longleftrightarrow \quad \sum_{u \in U} p_{u} \leq \sum_{v \in V} p_{v}
$$

- Total preorders are also known as preference relations.
- A total preorder \preceq can be decomposed into an equivalence relation \sim on $\mathcal{P}(A)$ and a total ordering \prec on $\mathcal{P}(A) / \sim$.
- Consider the probability distribution $p_{0}=p_{1}=\frac{1}{2}$ on 2-SAT.
- The corresponding preference relation is

$$
\emptyset \prec_{p}\{0\} \sim_{p}\{1\} \prec_{p}\{0,1\} .
$$

From fractional solutions to preference relations

- If $p \in \Delta(A)$ is a probability distribution over A, then we can define a total preorder \preceq_{p} on the powerset $\mathcal{P}(A)$:

$$
U \preceq_{p} V \quad \Longleftrightarrow \quad \sum_{u \in U} p_{u} \leq \sum_{v \in V} p_{v}
$$

- Total preorders are also known as preference relations.
- A total preorder \preceq can be decomposed into an equivalence relation \sim on $\mathcal{P}(A)$ and a total ordering \prec on $\mathcal{P}(A) / \sim$.
- Consider the probability distribution $p_{0}=p_{1}=\frac{1}{2}$ on 2-SAT.
- The corresponding preference relation is

$$
\emptyset \prec_{p}\{0\} \sim_{p}\{1\} \prec_{p}\{0,1\} .
$$

- We want to outlaw this sort of preference relation.

Vague elements

Definition
A vague element v of a set S is a preference relation \preceq_{v} on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

Vague elements

Definition
A vague element v of a set S is a preference relation \preceq_{v} on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

- (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.

Vague elements

Definition

A vague element v of a set S is a preference relation \preceq_{v} on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

- (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.
- (Self-duality) If $U \preceq_{v} V$, then $S \backslash V \preceq_{v} S \backslash U$.

Vague elements

Definition

A vague element v of a set S is a preference relation \preceq_{v} on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

- (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.
- (Self-duality) If $U \preceq_{v} V$, then $S \backslash V \preceq_{v} S \backslash U$.
- (Support) If $U \sim_{v} S$, then $U \cap V \sim_{v} V$.

Vague elements

Definition

A vague element v of a set S is a preference relation \preceq_{v} on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

- (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.
- (Self-duality) If $U \preceq_{v} V$, then $S \backslash V \preceq_{v} S \backslash U$.
- (Support) If $U \sim_{v} S$, then $U \cap V \sim_{v} V$.

The smallest set U such that $U \sim_{v} S$ is called the support of v.

Vague elements

Definition

A vague element v of a set S is a preference relation \preceq_{v} on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

- (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.
- (Self-duality) If $U \preceq_{v} V$, then $S \backslash V \preceq_{v} S \backslash U$.
- (Support) If $U \sim_{v} S$, then $U \cap V \sim_{v} V$.

The smallest set U such that $U \sim_{v} S$ is called the support of v.

- (Nontriviality) $S \not \chi_{v} \emptyset$.

Vague elements

Definition

A vague element v of a set S is a preference relation \preceq_{v} on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

- (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.
- (Self-duality) If $U \preceq_{v} V$, then $S \backslash V \preceq_{v} S \backslash U$.
- (Support) If $U \sim_{v} S$, then $U \cap V \sim_{v} V$.

The smallest set U such that $U \sim_{v} S$ is called the support of v.

- (Nontriviality) $S \not \chi_{v} \emptyset$.
- (Weak Coherence) If $U \sim_{v} V \not \chi_{v} \emptyset$, then $U \cap V \not \chi_{v} \emptyset$.

Vague elements

Definition

A vague element v of a set S is a preference relation \preceq_{v} on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

- (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.
- (Self-duality) If $U \preceq_{v} V$, then $S \backslash V \preceq_{v} S \backslash U$.
- (Support) If $U \sim_{v} S$, then $U \cap V \sim_{v} V$.

The smallest set U such that $U \sim_{v} S$ is called the support of v.

- (Nontriviality) $S \not \chi_{v} \emptyset$.
- (Weak Coherence) If $U \sim_{v} V \not \chi_{v} \emptyset$, then $U \cap V \not \chi_{v} \emptyset$.
- We write $\mathcal{V}(S)$ for the collection of vague elements of a set S.

Marginals of vague elements

- The map $S \mapsto \mathcal{V}(S)$ defines a functor.

Marginals of vague elements

- The map $S \mapsto \mathcal{V}(S)$ defines a functor.
- If $f: S \rightarrow T$ and $v \in \mathcal{V}(S)$, we define $f_{*}(v) \in \mathcal{V}(T)$ by

$$
U \preceq_{f_{*}(v)} V \quad \Longleftrightarrow \quad f^{-1}(U) \preceq_{v} f^{-1}(V) .
$$

Marginals of vague elements

- The map $S \mapsto \mathcal{V}(S)$ defines a functor.
- If $f: S \rightarrow T$ and $v \in \mathcal{V}(S)$, we define $f_{*}(v) \in \mathcal{V}(T)$ by

$$
U \preceq_{f_{*}(v)} V \quad \Longleftrightarrow \quad f^{-1}(U) \preceq_{v} f^{-1}(V)
$$

- In particular, if $R \subseteq A^{k}$ is a relation, and $r \in \mathcal{V}(R)$, then we can define the i th marginal of r to be

$$
\left(\pi_{i} \circ \iota\right)_{*}(r) \in \mathcal{V}(A)
$$

where $\iota: R \hookrightarrow A^{k}$ is the inclusion.

Marginals of vague elements

- The map $S \mapsto \mathcal{V}(S)$ defines a functor.
- If $f: S \rightarrow T$ and $v \in \mathcal{V}(S)$, we define $f_{*}(v) \in \mathcal{V}(T)$ by

$$
U \preceq_{f_{*}(v)} V \quad \Longleftrightarrow \quad f^{-1}(U) \preceq_{v} f^{-1}(V) .
$$

- In particular, if $R \subseteq A^{k}$ is a relation, and $r \in \mathcal{V}(R)$, then we can define the i th marginal of r to be

$$
\left(\pi_{i} \circ \iota\right)_{*}(r) \in \mathcal{V}(A)
$$

where $\iota: R \hookrightarrow A^{k}$ is the inclusion.

- Note that $\iota_{*}(r)$ is a vague element of A^{k} with support contained in R.

Vague solutions, take one

- Vague solutions could be defined exactly analogously to fractional solutions:

Vague solutions, take one

- Vague solutions could be defined exactly analogously to fractional solutions:

Definition
A strong vague solution to an instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ is the following:

Vague solutions, take one

- Vague solutions could be defined exactly analogously to fractional solutions:

Definition

A strong vague solution to an instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ is the following:

- a map a: $X \rightarrow \mathcal{V}(A)$, together with

Vague solutions, take one

- Vague solutions could be defined exactly analogously to fractional solutions:

Definition

A strong vague solution to an instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ is the following:

- a map a: $X \rightarrow \mathcal{V}(A)$, together with
- a collection of maps $r_{i}: C_{i} \rightarrow \mathcal{V}\left(R_{i}\right)$, such that

Vague solutions, take one

- Vague solutions could be defined exactly analogously to fractional solutions:

Definition

A strong vague solution to an instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ is the following:

- a map a: $X \rightarrow \mathcal{V}(A)$, together with
- a collection of maps $r_{i}: C_{i} \rightarrow \mathcal{V}\left(R_{i}\right)$, such that
- for each constraint $c=\left(x_{1}, \ldots, x_{k}\right) \in C_{i}$, and for each $j \leq k$, the vague element $a\left(x_{j}\right)$ is the j th marginal of $r_{i}(c)$.

Vague solutions, take one

- Vague solutions could be defined exactly analogously to fractional solutions:

Definition

A strong vague solution to an instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ is the following:

- a map a: $X \rightarrow \mathcal{V}(A)$, together with
- a collection of maps $r_{i}: C_{i} \rightarrow \mathcal{V}\left(R_{i}\right)$, such that
- for each constraint $c=\left(x_{1}, \ldots, x_{k}\right) \in C_{i}$, and for each $j \leq k$, the vague element $a\left(x_{j}\right)$ is the j th marginal of $r_{i}(c)$.
- But describing a vague element of R_{i} sounds very onerous. We will make a simpler (weaker) definition.

Vague solutions, take two

Definition

If $R \subseteq A_{1} \times \cdots \times A_{k}$, then a collection of vague elements
$v_{i} \in \mathcal{V}\left(A_{i}\right)$ vaguely satisfies the relation R if there exists a preorder
\preceq_{r} on the disjoint union

$$
\mathcal{P}\left(A_{1}\right) \sqcup \cdots \sqcup \mathcal{P}\left(A_{k}\right)
$$

such that

Vague solutions, take two

Definition

If $R \subseteq A_{1} \times \cdots \times A_{k}$, then a collection of vague elements
$v_{i} \in \mathcal{V}\left(A_{i}\right)$ vaguely satisfies the relation R if there exists a preorder
\preceq_{r} on the disjoint union

$$
\mathcal{P}\left(A_{1}\right) \sqcup \cdots \sqcup \mathcal{P}\left(A_{k}\right)
$$

such that

- for each i, the restriction of \preceq_{r} to $\mathcal{P}\left(A_{i}\right)$ is $\preceq_{v_{i}}$,

Vague solutions, take two

Definition

If $R \subseteq A_{1} \times \cdots \times A_{k}$, then a collection of vague elements
$v_{i} \in \mathcal{V}\left(A_{i}\right)$ vaguely satisfies the relation R if there exists a preorder
\preceq_{r} on the disjoint union

$$
\mathcal{P}\left(A_{1}\right) \sqcup \cdots \sqcup \mathcal{P}\left(A_{k}\right)
$$

such that

- for each i, the restriction of \preceq_{r} to $\mathcal{P}\left(A_{i}\right)$ is $\preceq_{v_{i}}$,
- for each i, j and each $U \subseteq A_{i}$, we have

$$
U \preceq_{r} U+\pi_{i j}\left(R \cap\left(S_{1} \times \cdots \times S_{k}\right)\right)
$$

where the S_{i} are the supports of the vague elements v_{i}.

Vague rounding schemes

- A vague rounding scheme is just a map

$$
s: \mathcal{V}(A) \rightarrow A
$$

Vague rounding schemes

- A vague rounding scheme is just a map

$$
s: \mathcal{V}(A) \rightarrow A
$$

- We say that the vague rounding scheme s solves $\operatorname{CSP}(\mathbf{A})$ if for every instance \mathbf{X}, and for every vague solution

$$
a: X \rightarrow \mathcal{V}(A)
$$

such that ($a\left(x_{1}\right), \ldots, a\left(x_{k}\right)$) vaguely satisfies R_{i} for each constraint $c=\left(x_{1}, \ldots, x_{k}\right) \in C_{i}$, the map

$$
s \circ a: X \rightarrow A
$$

defines a homomorphism $\mathbf{X} \rightarrow \mathbf{A}$.

Main result

Theorem (Z.)
For a finite relational structure A, TFAE:

Main result

Theorem (Z.)
For a finite relational structure A, TFAE:

- A has bounded width,

Main result

Theorem (Z.)
For a finite relational structure A, TFAE:

- A has bounded width,
- there is a vague rounding scheme $s: \mathcal{V}(A) \rightarrow A$ which solves $\operatorname{CSP}(\mathbf{A})$,

Main result

Theorem (Z.)
For a finite relational structure A, TFAE:

- A has bounded width,
- there is a vague rounding scheme $s: \mathcal{V}(A) \rightarrow A$ which solves $\operatorname{CSP}(\mathbf{A})$,
- for every n, and for every vague element $v \in \mathcal{V}(\{1, \ldots, n\})$, there is an n-ary polymorphism $s_{v} \in \operatorname{Pol}(\mathbf{A})$, such that for all

$$
f:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}
$$

the height 1 identity

$$
s_{v}\left(x_{f(1)}, \ldots, x_{f(n)}\right) \approx s_{f_{*}(v)}\left(x_{1}, \ldots, x_{m}\right)
$$

is satisfied.

Multisorted CSPs

- In order to prove this result, it is more convenient to work in the framework of multisorted CSPs.

Multisorted CSPs

- In order to prove this result, it is more convenient to work in the framework of multisorted CSPs.
- Let $\mathbb{A}=(A, \operatorname{Pol}(\mathbf{A}))$ be the algebraic structure corresponding to \mathbf{A}.

Multisorted CSPs

- In order to prove this result, it is more convenient to work in the framework of multisorted CSPs.
- Let $\mathbb{A}=(A, \operatorname{Pol}(\mathbf{A}))$ be the algebraic structure corresponding to \mathbf{A}.
- We let each variable $x \in X$ have a different domain \mathbb{A}_{x}, with \mathbb{A}_{x} an arbitrary finite algebra in $\operatorname{Var}(\mathbb{A})$.

Multisorted CSPs

- In order to prove this result, it is more convenient to work in the framework of multisorted CSPs.
- Let $\mathbb{A}=(A, \operatorname{Pol}(\mathbf{A}))$ be the algebraic structure corresponding to \mathbf{A}.
- We let each variable $x \in X$ have a different domain \mathbb{A}_{x}, with \mathbb{A}_{x} an arbitrary finite algebra in $\operatorname{Var}(\mathbb{A})$.
- A constraint c now consists of a tuple $\left(x_{1}, \ldots, x_{k}\right)$ of variables, together with a constraint relation

$$
\mathbb{R} \leq \mathbb{A}_{x_{1}} \times \cdots \times \mathbb{A}_{x_{k}}
$$

Multisorted CSPs

- In order to prove this result, it is more convenient to work in the framework of multisorted CSPs.
- Let $\mathbb{A}=(A, \operatorname{Pol}(\mathbf{A}))$ be the algebraic structure corresponding to \mathbf{A}.
- We let each variable $x \in X$ have a different domain \mathbb{A}_{x}, with \mathbb{A}_{x} an arbitrary finite algebra in $\operatorname{Var}(\mathbb{A})$.
- A constraint c now consists of a tuple $\left(x_{1}, \ldots, x_{k}\right)$ of variables, together with a constraint relation

$$
\mathbb{R} \leq \mathbb{A}_{x_{1}} \times \cdots \times \mathbb{A}_{x_{k}}
$$

- A solution is a map $x \mapsto a_{x}$ such that for each constraint c as above, we have

$$
\left(a_{x_{1}}, \ldots, a_{x_{k}}\right) \in \mathbb{R} .
$$

Paths

- A step from y to z is a constraint

$$
\left(\left(x_{1}, \ldots, x_{k}\right), \mathbb{R}\right)
$$

and a pair i, j such that $x_{i}=y$ and $x_{j}=z$.

Paths

- A step from y to z is a constraint

$$
\left(\left(x_{1}, \ldots, x_{k}\right), \mathbb{R}\right)
$$

and a pair i, j such that $x_{i}=y$ and $x_{j}=z$.

Paths

- A step from y to z is a constraint

$$
\left(\left(x_{1}, \ldots, x_{k}\right), \mathbb{R}\right)
$$

and a pair i, j such that $x_{i}=y$ and $x_{j}=z$.

- A path is a sequence of steps where the endpoints match up.

Paths

- A step from y to z is a constraint

$$
\left(\left(x_{1}, \ldots, x_{k}\right), \mathbb{R}\right)
$$

and a pair i, j such that $x_{i}=y$ and $x_{j}=z$.

- A path is a sequence of steps where the endpoints match up.
- We use additive notation for combining paths: $p+q$ means "first follow p, then q ".

Propagating information along paths

- If $B \subseteq \mathbb{A}_{y}$ and p is a step from y to z through a relation \mathbb{R}, we write

$$
B+p=B+\pi_{y z}(\mathbb{R})=\pi_{z}\left(\pi_{y}^{-1}(B) \cap \mathbb{R}\right) \subseteq \mathbb{A}_{z}
$$

Propagating information along paths

- If $B \subseteq \mathbb{A}_{y}$ and p is a step from y to z through a relation \mathbb{R}, we write

$$
B+p=B+\pi_{y z}(\mathbb{R})=\pi_{z}\left(\pi_{y}^{-1}(B) \cap \mathbb{R}\right) \subseteq \mathbb{A}_{z}
$$

- This encodes the implication: "if $a_{y} \in B$, then $a_{z} \in B+p$ ".

Propagating information along paths

- If $B \subseteq \mathbb{A}_{y}$ and p is a step from y to z through a relation \mathbb{R}, we write

$$
B+p=B+\pi_{y z}(\mathbb{R})=\pi_{z}\left(\pi_{y}^{-1}(B) \cap \mathbb{R}\right) \subseteq \mathbb{A}_{z}
$$

- This encodes the implication: "if $a_{y} \in B$, then $a_{z} \in B+p$ ".
- Extend this notation to paths in the obvious way:

$$
B+\left(p_{1}+p_{2}\right)=\left(B+p_{1}\right)+p_{2}, \text { etc. }
$$

Propagating information along paths

- If $B \subseteq \mathbb{A}_{y}$ and p is a step from y to z through a relation \mathbb{R}, we write

$$
B+p=B+\pi_{y z}(\mathbb{R})=\pi_{z}\left(\pi_{y}^{-1}(B) \cap \mathbb{R}\right) \subseteq \mathbb{A}_{z}
$$

- This encodes the implication: "if $a_{y} \in B$, then $a_{z} \in B+p$ ".
- Extend this notation to paths in the obvious way:

$$
B+\left(p_{1}+p_{2}\right)=\left(B+p_{1}\right)+p_{2}, \text { etc. }
$$

- If $\mathbb{B} \leq \mathbb{A}_{y}$ is a subalgebra, then $\mathbb{B}+p \leq \mathbb{A}_{z}$ is also a subalgebra.

Consistency

- An instance is arc-consistent if for all paths p from x to y, we have

$$
\mathbb{A}_{x}+p=\mathbb{A}_{y}
$$

Consistency

- An instance is arc-consistent if for all paths p from x to y, we have

$$
\mathbb{A}_{x}+p=\mathbb{A}_{y}
$$

- Arc-consistency is equivalent to: for all constraint relations \mathbb{R}, the projections $\pi_{i}: \mathbb{R} \rightarrow \mathbb{A}_{x_{i}}$ are surjective.

Consistency

- An instance is arc-consistent if for all paths p from x to y, we have

$$
\mathbb{A}_{x}+p=\mathbb{A}_{y}
$$

- Arc-consistency is equivalent to: for all constraint relations \mathbb{R}, the projections $\pi_{i}: \mathbb{R} \rightarrow \mathbb{A}_{x_{i}}$ are surjective.
- An instance is cycle-consistent if for all paths p from x to x, and for all $a \in \mathbb{A}_{x}$, we have

$$
a \in\{a\}+p
$$

Consistency

- An instance is arc-consistent if for all paths p from x to y, we have

$$
\mathbb{A}_{x}+p=\mathbb{A}_{y}
$$

- Arc-consistency is equivalent to: for all constraint relations \mathbb{R}, the projections $\pi_{i}: \mathbb{R} \rightarrow \mathbb{A}_{x_{i}}$ are surjective.
- An instance is cycle-consistent if for all paths p from x to x, and for all $a \in \mathbb{A}_{x}$, we have

$$
a \in\{a\}+p .
$$

- Beginner Sudoku players start by establishing arc-consistency, then they move on to establishing cycle-consistency.

Weaker consistency!

- I call an instance weakly consistent if it satisfies:
(P1) arc-consistency, and
(W) $A+p+q=A$ implies $A \cap(A+p) \neq \emptyset$.

Weaker consistency!

- I call an instance weakly consistent if it satisfies:
(P1) arc-consistency, and
(W) $A+p+q=A$ implies $A \cap(A+p) \neq \emptyset$.
- I will use this result, from a previous AAA conference:

Theorem (Z.)
If $\operatorname{Var}(\mathbb{A})$ is $\mathrm{SD}(\wedge)$, then every weakly consistent instance of $\operatorname{CSP}\left(\operatorname{Var}_{\text {fin }}(\mathbb{A})\right)$ has a solution.

Connection to vague solutions

Proposition

If an instance \mathbf{X} of a multisorted CSP is weakly consistent, then it has a vague solution

$$
x \mapsto a_{x} \in \mathcal{V}\left(\mathbb{A}_{x}\right)
$$

such that each a_{x} has support equal to \mathbb{A}_{x}.

Connection to vague solutions

Proposition

If an instance \mathbf{X} of a multisorted CSP is weakly consistent, then it has a vague solution

$$
x \mapsto a_{x} \in \mathcal{V}\left(\mathbb{A}_{x}\right)
$$

such that each a_{x} has support equal to \mathbb{A}_{x}.

- Define a preorder \preceq on $\bigsqcup_{x} \mathcal{P}\left(\mathbb{A}_{x}\right)$ by $(x, A) \preceq(y, B)$ if there is some path p from x to y such that $A+p \subseteq B$.

Connection to vague solutions

Proposition

If an instance \mathbf{X} of a multisorted CSP is weakly consistent, then it has a vague solution

$$
x \mapsto a_{x} \in \mathcal{V}\left(\mathbb{A}_{x}\right)
$$

such that each a_{x} has support equal to \mathbb{A}_{x}.

- Define a preorder \preceq on $\bigsqcup_{x} \mathcal{P}\left(\mathbb{A}_{x}\right)$ by $(x, A) \preceq(y, B)$ if there is some path p from x to y such that $A+p \subseteq B$.
- Extend \preceq to a total preorder \preceq^{\prime} without changing the associated equivalence relation \sim.

Connection to vague solutions

Proposition

If an instance \mathbf{X} of a multisorted CSP is weakly consistent, then it has a vague solution

$$
x \mapsto a_{x} \in \mathcal{V}\left(\mathbb{A}_{x}\right)
$$

such that each a_{x} has support equal to \mathbb{A}_{x}.

- Define a preorder \preceq on $\bigsqcup_{x} \mathcal{P}\left(\mathbb{A}_{x}\right)$ by $(x, A) \preceq(y, B)$ if there is some path p from x to y such that $A+p \subseteq B$.
- Extend \preceq to a total preorder \preceq^{\prime} without changing the associated equivalence relation \sim.
- Let $\preceq_{a_{x}}$ be the restriction of \preceq^{\prime} to $\mathcal{P}\left(\mathbb{A}_{x}\right)$.

From a vague solution to a weakly consistent instance

- Now suppose that we have a vague solution

$$
x \mapsto a_{x} \in \mathcal{V}\left(\mathbb{A}_{x}\right)
$$

This doesn't necessarily mean that our instance \mathbf{X} is weakly consistent.

From a vague solution to a weakly consistent instance

- Now suppose that we have a vague solution

$$
x \mapsto a_{x} \in \mathcal{V}\left(\mathbb{A}_{x}\right)
$$

This doesn't necessarily mean that our instance \mathbf{X} is weakly consistent.

- We will produce a weakly consistent instance \mathbf{X}_{a}^{*} which has many copies of each variable and relation from \mathbf{X}, in order to apply Ramsey's Theorem.

From a vague solution to a weakly consistent instance

- Now suppose that we have a vague solution

$$
x \mapsto a_{x} \in \mathcal{V}\left(\mathbb{A}_{x}\right)
$$

This doesn't necessarily mean that our instance \mathbf{X} is weakly consistent.

- We will produce a weakly consistent instance \mathbf{X}_{a}^{*} which has many copies of each variable and relation from \mathbf{X}, in order to apply Ramsey's Theorem.
- The trick is to exploit the fact that everything is stated in terms of total preorders.

Compatibility between vague elements and functions

- If $f: \mathcal{P}(A) \rightarrow \mathbb{N}$ and $v \in \mathcal{V}(A)$, we say f is compatible with v if

$$
U \preceq_{v} V \quad \Longleftrightarrow \quad f(U) \leq f(V) .
$$

Compatibility between vague elements and functions

- If $f: \mathcal{P}(A) \rightarrow \mathbb{N}$ and $v \in \mathcal{V}(A)$, we say f is compatible with v if

$$
U \preceq_{v} V \quad \Longleftrightarrow \quad f(U) \leq f(V) .
$$

- Note that f is determined by v and $\operatorname{im}(f) \subseteq \mathbb{N}$.

Compatibility between vague elements and functions

- If $f: \mathcal{P}(A) \rightarrow \mathbb{N}$ and $v \in \mathcal{V}(A)$, we say f is compatible with v if

$$
U \preceq_{v} V \quad \Longleftrightarrow \quad f(U) \leq f(V) .
$$

- Note that f is determined by v and $\operatorname{im}(f) \subseteq \mathbb{N}$.
- If $f: \mathcal{P}\left(A_{1}\right) \sqcup \cdots \sqcup \mathcal{P}\left(A_{k}\right) \rightarrow \mathbb{N}$, and if $R \subseteq A_{1} \times \cdots \times A_{k}$, we say f is compatible with R if

$$
f(U) \leq f\left(U+\pi_{i j}(R)\right)
$$

for all $i, j \leq k$ and all $U \subseteq A_{i}$.

Constructing the weakly consistent instance

- \mathbf{X}_{a}^{*} is constructed as follows:

Constructing the weakly consistent instance

- \mathbf{X}_{a}^{*} is constructed as follows:
- For $x \in \mathbf{X}$ and $f: \mathcal{P}\left(\mathbb{A}_{x}\right) \rightarrow \mathbb{N}$ compatible with a_{x}, we introduce a variable (x, f) of \mathbf{X}_{a}^{*} with domain \mathbb{A}_{x}.

Constructing the weakly consistent instance

- \mathbf{X}_{a}^{*} is constructed as follows:
- For $x \in \mathbf{X}$ and $f: \mathcal{P}\left(\mathbb{A}_{x}\right) \rightarrow \mathbb{N}$ compatible with a_{x}, we introduce a variable (x, f) of \mathbf{X}_{a}^{*} with domain \mathbb{A}_{x}.
- For $c=\left(\left(x_{1}, \ldots, x_{k}\right), \mathbb{R}\right)$ and compatible $f: \mathcal{P}\left(\mathbb{A}_{x_{1}}\right) \sqcup \cdots \sqcup \mathcal{P}\left(\mathbb{A}_{x_{k}}\right) \rightarrow \mathbb{N}$, we introduce the constraint

$$
\left(\left(\left(x_{1},\left.f\right|_{\mathcal{P}\left(A_{x_{1}}\right)}\right), \ldots,\left(x_{k},\left.f\right|_{\mathcal{P}\left(A_{x_{k}}\right)}\right)\right), \mathbb{R}\right)
$$

of \mathbf{X}_{a}^{*}.

Constructing the weakly consistent instance

- \mathbf{X}_{a}^{*} is constructed as follows:
- For $x \in \mathbf{X}$ and $f: \mathcal{P}\left(\mathbb{A}_{x}\right) \rightarrow \mathbb{N}$ compatible with a_{x}, we introduce a variable (x, f) of \mathbf{X}_{a}^{*} with domain \mathbb{A}_{x}.
- For $c=\left(\left(x_{1}, \ldots, x_{k}\right), \mathbb{R}\right)$ and compatible $f: \mathcal{P}\left(\mathbb{A}_{x_{1}}\right) \sqcup \cdots \sqcup \mathcal{P}\left(\mathbb{A}_{x_{k}}\right) \rightarrow \mathbb{N}$, we introduce the constraint

$$
\left(\left(\left(x_{1},\left.f\right|_{\mathcal{P}\left(A_{x_{1}}\right)}\right), \ldots,\left(x_{k},\left.f\right|_{\mathcal{P}\left(A_{x_{k}}\right)}\right)\right), \mathbb{R}\right)
$$

of \mathbf{X}_{a}^{*}.

- By construction, if there is a path p from (x, f) to (x, f) in \mathbf{X}_{a}^{*}, and if $A \subseteq \mathbb{A}_{x}$, then

$$
f(A) \leq f(A+p), \quad \text { so } \quad A \preceq_{a_{x}} A+p .
$$

Applying Ramsey's Theorem

- Let s be a solution to the weakly consistent instance \mathbf{X}_{a}^{*}.

Applying Ramsey's Theorem

- Let s be a solution to the weakly consistent instance \mathbf{X}_{a}^{*}.
- By Ramsey's Theorem, there is an infinite subset $S \subseteq \mathbb{N}$ such that for each $x \in \mathbf{X}$ there is some \hat{s}_{x} with

$$
s_{(x, f)}=\hat{s}_{x}
$$

for all $(x, f) \in \mathbf{X}_{a}^{*}$ with $\operatorname{im}(f) \subseteq S$.

Applying Ramsey's Theorem

- Let s be a solution to the weakly consistent instance \mathbf{X}_{a}^{*}.
- By Ramsey's Theorem, there is an infinite subset $S \subseteq \mathbb{N}$ such that for each $x \in \mathbf{X}$ there is some \hat{s}_{x} with

$$
s_{(x, f)}=\hat{s}_{x}
$$

for all $(x, f) \in \mathbf{X}_{a}^{*}$ with $\operatorname{im}(f) \subseteq S$.

- If $a_{x_{1}}, \ldots, a_{x_{k}}$ vaguely satisfy the relation \mathbb{R}, then there is some compatible $f: \mathcal{P}\left(\mathbb{A}_{x_{1}}\right) \sqcup \cdots \sqcup \mathcal{P}\left(\mathbb{A}_{x_{k}}\right) \rightarrow S$, so

$$
\left(\hat{s}_{x_{1}}, \ldots, \hat{s}_{x_{k}}\right)=\left(s_{\left(x_{1},\left.f\right|_{\mathcal{P}\left(A_{x_{1}}\right)}\right)}, \ldots, s_{\left(x_{k},\left.f\right|_{\mathcal{P}\left(A_{x_{k}}\right)}\right)}\right) \in \mathbb{R}
$$

Applying Ramsey's Theorem

- Let s be a solution to the weakly consistent instance \mathbf{X}_{a}^{*}.
- By Ramsey's Theorem, there is an infinite subset $S \subseteq \mathbb{N}$ such that for each $x \in \mathbf{X}$ there is some \hat{s}_{x} with

$$
s_{(x, f)}=\hat{s}_{x}
$$

for all $(x, f) \in \mathbf{X}_{a}^{*}$ with $\operatorname{im}(f) \subseteq S$.

- If $a_{x_{1}}, \ldots, a_{x_{k}}$ vaguely satisfy the relation \mathbb{R}, then there is some compatible $f: \mathcal{P}\left(\mathbb{A}_{x_{1}}\right) \sqcup \cdots \sqcup \mathcal{P}\left(\mathbb{A}_{x_{k}}\right) \rightarrow S$, so

$$
\left(\hat{s}_{x_{1}}, \ldots, \hat{s}_{x_{k}}\right)=\left(s_{\left(x_{1},\left.f\right|_{\mathcal{P}\left(A_{x_{1}}\right)}\right)}, \ldots, s_{\left(x_{k},\left.f\right|_{\mathcal{P}\left(A_{x_{k}}\right)}\right)}\right) \in \mathbb{R}
$$

- So \hat{s} is a solution to X !

Existence of the vague rounding scheme

- To obtain the vague rounding scheme

$$
s: \mathcal{V}(A) \rightarrow A
$$

we apply this argument to the "most generic" instance \mathbf{X} which has a vague solution.

Existence of the vague rounding scheme

- To obtain the vague rounding scheme

$$
s: \mathcal{V}(A) \rightarrow A
$$

we apply this argument to the "most generic" instance \mathbf{X} which has a vague solution.

- The variables of this \mathbf{X} correspond to the elements v of $\mathcal{V}(A)$, with variable domain \mathbb{A}_{v} equal to the support of v.

Existence of the vague rounding scheme

- To obtain the vague rounding scheme

$$
s: \mathcal{V}(A) \rightarrow A
$$

we apply this argument to the "most generic" instance \mathbf{X} which has a vague solution.

- The variables of this \mathbf{X} correspond to the elements v of $\mathcal{V}(A)$, with variable domain \mathbb{A}_{v} equal to the support of v.
- We impose a constraint $\left(\left(v_{1}, \ldots, v_{k}\right), \mathbb{R}\right)$ in \mathbf{X} whenever $\mathbb{R} \leq_{s d} \mathbb{A}_{v_{1}} \times \cdots \times \mathbb{A}_{v_{k}}$ is vaguely satisfied by v_{1}, \ldots, v_{k}.

Back to robust satisfaction

Theorem (Z.)
If the semidefinite programming relaxation of an instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ has value $1-\epsilon$, then we can algorithmically find a vague solution to \mathbf{X} which vaguely satisfies a $1-f(\epsilon)$ fraction of the constraints in polynomial time, where

$$
f(\epsilon) \ll_{\mathbf{A}} \frac{1}{\log (1 / \epsilon)} .
$$

Back to robust satisfaction

Theorem (Z.)
If the semidefinite programming relaxation of an instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ has value $1-\epsilon$, then we can algorithmically find a vague solution to \mathbf{X} which vaguely satisfies a $1-f(\epsilon)$ fraction of the constraints in polynomial time, where

$$
f(\epsilon) \ll \mathbf{A}_{\mathbf{A}} \frac{1}{\log (1 / \epsilon)} .
$$

- Once we have the (approx.) vague solution, we apply a vague rounding scheme to get an actual (approx.) solution.

Back to robust satisfaction

Theorem (Z.)
If the semidefinite programming relaxation of an instance \mathbf{X} of $\operatorname{CSP}(\mathbf{A})$ has value $1-\epsilon$, then we can algorithmically find a vague solution to \mathbf{X} which vaguely satisfies a $1-f(\epsilon)$ fraction of the constraints in polynomial time, where

$$
f(\epsilon) \ll \mathbf{A} \frac{1}{\log (1 / \epsilon)} .
$$

- Once we have the (approx.) vague solution, we apply a vague rounding scheme to get an actual (approx.) solution.
- This is best possible: we can't robustly solve HORN-SAT with $f(\epsilon)=o(1 / \log (1 / \epsilon))$ unless the Unique Games Conjecture is false, by a result of Guruswami and Zhou.

Thank you for your attention.

