Rounding rules and vague solutions to bounded width CSPs

Zarathustra Brady

(ロ)、(型)、(E)、(E)、 E) の(()

▶ If $\mathbf{A} = (A, R_1, ..., R_n)$ is a finite relational structure, we get an associated Constraint Satisfaction Problem, CSP(\mathbf{A}).

▶ If $\mathbf{A} = (A, R_1, ..., R_n)$ is a finite relational structure, we get an associated Constraint Satisfaction Problem, CSP(\mathbf{A}).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An instance $\mathbf{X} = (X, C_1, ..., C_n)$ of CSP(A) is a relational structure with the same signature as A.

▶ If $\mathbf{A} = (A, R_1, ..., R_n)$ is a finite relational structure, we get an associated Constraint Satisfaction Problem, CSP(\mathbf{A}).

- An instance $\mathbf{X} = (X, C_1, ..., C_n)$ of CSP(A) is a relational structure with the same signature as A.
- The elements $x \in X$ are called the *variables* of the instance **X**.

▶ If $\mathbf{A} = (A, R_1, ..., R_n)$ is a finite relational structure, we get an associated Constraint Satisfaction Problem, CSP(\mathbf{A}).

An instance X = (X, C₁, ..., C_n) of CSP(A) is a relational structure with the same signature as A.

► The elements x ∈ X are called the variables of the instance X.

► The elements c = (x₁,...,x_k) ∈ C_i are called the *constraints* of the instance X.

▶ If $\mathbf{A} = (A, R_1, ..., R_n)$ is a finite relational structure, we get an associated Constraint Satisfaction Problem, CSP(\mathbf{A}).

An instance X = (X, C₁, ..., C_n) of CSP(A) is a relational structure with the same signature as A.

- The elements $x \in X$ are called the *variables* of the instance **X**.
- ► The elements c = (x₁,...,x_k) ∈ C_i are called the *constraints* of the instance X.
- A solution to the instance X of CSP(A) is a homomorphism a : X → A.

▶ If $\mathbf{A} = (A, R_1, ..., R_n)$ is a finite relational structure, we get an associated Constraint Satisfaction Problem, CSP(\mathbf{A}).

An instance X = (X, C₁, ..., C_n) of CSP(A) is a relational structure with the same signature as A.

- The elements $x \in X$ are called the *variables* of the instance **X**.
- ► The elements c = (x₁,...,x_k) ∈ C_i are called the *constraints* of the instance X.
- A solution to the instance X of CSP(A) is a homomorphism a : X → A.
- If c = (x₁,...,x_k) ∈ C_i is a constraint, then a solution a must satisfy (a(x₁),...,a(x_k)) ∈ R_i.

An approximate solution to the instance X is an arbitrary map a : X → A.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- An approximate solution to the instance X is an arbitrary map a : X → A.
- The value of the approximate solution a is the fraction of the constraints which are satisfied by a:

$$\frac{\sum_{i} \#\{(x_1, ..., x_k) \in C_i \mid (a(x_1), ..., a(x_k)) \in R_i\}}{\sum_{i} |C_i|}$$

- An approximate solution to the instance X is an arbitrary map a : X → A.
- The value of the approximate solution a is the fraction of the constraints which are satisfied by a:

$$\frac{\sum_{i} \#\{(x_1, ..., x_k) \in C_i \mid (a(x_1), ..., a(x_k)) \in R_i\}}{\sum_{i} |C_i|}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► The value of the instance **X** is the maximum value of any approximate solution $a: X \rightarrow A$.

- An approximate solution to the instance X is an arbitrary map a : X → A.
- The value of the approximate solution a is the fraction of the constraints which are satisfied by a:

$$\frac{\sum_{i} \#\{(x_1, ..., x_k) \in C_i \mid (a(x_1), ..., a(x_k)) \in R_i\}}{\sum_{i} |C_i|}$$

- ► The value of the instance **X** is the maximum value of any approximate solution $a: X \rightarrow A$.
- An approximate solution with value 1 is the same thing as an ordinary solution.

Definition We say that CSP(**A**) is *robustly solvable* if there is a function $f : [0,1] \rightarrow [0,1]$ such that:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Definition

We say that CSP(**A**) is *robustly solvable* if there is a function $f : [0,1] \rightarrow [0,1]$ such that:

▶ when **X** is an instance of value $1 - \epsilon$, we can algorithmically find an approximate solution $a: X \to A$ of value $1 - f(\epsilon)$ in polynomial time,

Definition

We say that CSP(**A**) is *robustly solvable* if there is a function $f : [0,1] \rightarrow [0,1]$ such that:

▶ when **X** is an instance of value $1 - \epsilon$, we can algorithmically find an approximate solution $a: X \to A$ of value $1 - f(\epsilon)$ in polynomial time,

$$\blacktriangleright \lim_{\epsilon \to 0} f(\epsilon) = 0.$$

Definition

We say that CSP(**A**) is *robustly solvable* if there is a function $f : [0,1] \rightarrow [0,1]$ such that:

▶ when **X** is an instance of value $1 - \epsilon$, we can algorithmically find an approximate solution $a: X \to A$ of value $1 - f(\epsilon)$ in polynomial time,

The main barrier to being robustly solvable is the ability to simulate affine CSPs.

Definition

We say that CSP(**A**) is *robustly solvable* if there is a function $f : [0,1] \rightarrow [0,1]$ such that:

▶ when **X** is an instance of value $1 - \epsilon$, we can algorithmically find an approximate solution $a: X \to A$ of value $1 - f(\epsilon)$ in polynomial time,

The main barrier to being robustly solvable is the ability to simulate *affine* CSPs.

Theorem (Håstad)

If $\mathbf{A} = (\mathbb{Z}/p, \{x + y = z\}, ..., \{x + y = z + p - 1\})$, then it is NP-hard to find an approximate solution $a : X \to A$ of value $\frac{1}{p} + \epsilon$, even if the instance \mathbf{X} is promised to have value $1 - \epsilon$.

We say that a relational structure A has bounded width if CSP(A) can be solved by a local consistency algorithm.

- We say that a relational structure A has bounded width if CSP(A) can be solved by a local consistency algorithm.
- Theorem (Conjectured by Guruswami and Zhou, proved by Barto and Kozik)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

If $P \neq NP$, the following are equivalent:

- We say that a relational structure A has bounded width if CSP(A) can be solved by a local consistency algorithm.
- Theorem (Conjectured by Guruswami and Zhou, proved by Barto and Kozik)

- If $P \neq NP$, the following are equivalent:
 - CSP(A) is robustly solvable,

- We say that a relational structure A has bounded width if CSP(A) can be solved by a local consistency algorithm.
- Theorem (Conjectured by Guruswami and Zhou, proved by Barto and Kozik)

- If $P \neq NP$, the following are equivalent:
 - CSP(A) is robustly solvable,
 - A has bounded width,

- We say that a relational structure A has bounded width if CSP(A) can be solved by a local consistency algorithm.
- Theorem (Conjectured by Guruswami and Zhou, proved by Barto and Kozik)
- If $P \neq NP$, the following are equivalent:
 - CSP(A) is robustly solvable,
 - A has bounded width,
 - CSP(A) can be robustly solved via the standard semidefinite programming relaxation.

- We say that a relational structure A has bounded width if CSP(A) can be solved by a local consistency algorithm.
- Theorem (Conjectured by Guruswami and Zhou, proved by Barto and Kozik)
- If $P \neq NP$, the following are equivalent:
 - CSP(A) is robustly solvable,
 - ▶ A has bounded width,
 - CSP(A) can be robustly solved via the standard semidefinite programming relaxation.
 - Furthermore, Barto and Kozik's algorithm has

$$f(\epsilon) \ll rac{\log\log(1/\epsilon)}{\log(1/\epsilon)}$$

For any finite relational structure A, the computational complexity of CSP(A) is controlled by the set of polymorphisms Pol(A).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

For any finite relational structure A, the computational complexity of CSP(A) is controlled by the set of polymorphisms Pol(A).

Theorem (Bulatov, Barto, Kozik)

If **A** is a finite core relational structure, and if $\mathbb{A} = (A, Pol(\mathbf{A}))$ is the corresponding algebraic structure, then TFAE:

For any finite relational structure A, the computational complexity of CSP(A) is controlled by the set of polymorphisms Pol(A).

Theorem (Bulatov, Barto, Kozik)

If **A** is a finite core relational structure, and if $\mathbb{A} = (A, Pol(\mathbf{A}))$ is the corresponding algebraic structure, then TFAE:

CSP(A) can be solved by a local consistency algorithm,

For any finite relational structure A, the computational complexity of CSP(A) is controlled by the set of polymorphisms Pol(A).

Theorem (Bulatov, Barto, Kozik)

If **A** is a finite core relational structure, and if $\mathbb{A} = (A, Pol(\mathbf{A}))$ is the corresponding algebraic structure, then TFAE:

- CSP(A) can be solved by a local consistency algorithm,
- The variety Var(A) generated by A contains no nontrivial quasi-affine algebras,

For any finite relational structure A, the computational complexity of CSP(A) is controlled by the set of polymorphisms Pol(A).

Theorem (Bulatov, Barto, Kozik)

If **A** is a finite core relational structure, and if $\mathbb{A} = (A, Pol(\mathbf{A}))$ is the corresponding algebraic structure, then TFAE:

- CSP(A) can be solved by a local consistency algorithm,
- The variety Var(A) generated by A contains no nontrivial quasi-affine algebras,
- Var(A) is congruence meet-semidistributive,

For any finite relational structure A, the computational complexity of CSP(A) is controlled by the set of polymorphisms Pol(A).

Theorem (Bulatov, Barto, Kozik)

If **A** is a finite core relational structure, and if $\mathbb{A} = (A, Pol(\mathbf{A}))$ is the corresponding algebraic structure, then TFAE:

- CSP(A) can be solved by a local consistency algorithm,
- The variety Var(A) generated by A contains no nontrivial quasi-affine algebras,
- Var(A) is congruence meet-semidistributive,
- every cycle-consistent instance of CSP(A) has a solution.

For any finite set S, let Δ(S) be the collection of probability distributions on S.

- For any finite set S, let Δ(S) be the collection of probability distributions on S.
- We think of Δ(S) as the convex hull of the one-hot vectors (0,...,0,1,0,...,0) in ℝ^S.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- For any finite set S, let Δ(S) be the collection of probability distributions on S.
- We think of Δ(S) as the convex hull of the one-hot vectors (0,...,0,1,0,...,0) in ℝ^S.

Definition

A fractional solution to an instance X of CSP(A) is the following:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- For any finite set S, let Δ(S) be the collection of probability distributions on S.
- We think of Δ(S) as the convex hull of the one-hot vectors (0,...,0,1,0,...,0) in ℝ^S.

Definition A *fractional solution* to an instance **X** of CSP(**A**) is the following:

▶ a map $a: X \to \Delta(A)$, together with

- For any finite set S, let Δ(S) be the collection of probability distributions on S.
- We think of Δ(S) as the convex hull of the one-hot vectors (0,...,0,1,0,...,0) in ℝ^S.

Definition

A fractional solution to an instance X of CSP(A) is the following:

- ▶ a map $a: X \to \Delta(A)$, together with
- ▶ a collection of maps $r_i : C_i \rightarrow \Delta(R_i)$, such that

- For any finite set S, let Δ(S) be the collection of probability distributions on S.
- We think of Δ(S) as the convex hull of the one-hot vectors (0,...,0,1,0,...,0) in R^S.

Definition

A fractional solution to an instance X of CSP(A) is the following:

- ▶ a map $a: X \to \Delta(A)$, together with
- ▶ a collection of maps $r_i : C_i \to \Delta(R_i)$, such that
- For each constraint c = (x₁,...,x_k) ∈ C_i, and for each j ≤ k, the distribution a(x_j) is the jth marginal probability distribution of r_i(c).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- For any finite set S, let Δ(S) be the collection of probability distributions on S.
- We think of Δ(S) as the convex hull of the one-hot vectors (0,...,0,1,0,...,0) in R^S.

Definition

A fractional solution to an instance X of CSP(A) is the following:

- ▶ a map $a: X \to \Delta(A)$, together with
- ▶ a collection of maps $r_i : C_i \to \Delta(R_i)$, such that
- For each constraint c = (x₁,...,x_k) ∈ C_i, and for each j ≤ k, the distribution a(x_j) is the jth marginal probability distribution of r_i(c).
- We can define *approximate fractional solutions* similarly, with $r_i : C_i \to \Delta(A^k)$ instead of $r_i : C_i \to \Delta(R_i)$.

(日)((1))

Rounding schemes for the Linear Programming relaxation

An LP rounding scheme is just a map

 $s: \Delta(A) \to A.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Rounding schemes for the Linear Programming relaxation

An LP rounding scheme is just a map

$$s: \Delta(A) \to A.$$

We say that the LP rounding scheme s solves CSP(A) if for every instance X, and for every fractional solution

$$a: X \to \Delta(A), \quad r_i: C_i \to \Delta(R_i),$$

the map

$$s \circ a : X \to A$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

defines a homomorphism $X \rightarrow A$.

Example of an LP rounding scheme

Consider the relational structure

$$\mathbf{A} = (\{-1, 0, +1\}, \{x = -y\}, \{x + y + z \ge 1\}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example of an LP rounding scheme

Consider the relational structure

$$\mathbf{A} = (\{-1, 0, +1\}, \{x = -y\}, \{x + y + z \ge 1\}).$$

CSP(A) is solved by the LP rounding scheme s given by

$$s(p_{-1},p_0,p_{+1}) = egin{cases} +1 & p_{+1} > p_{-1}, \ 0 & p_{+1} = p_{-1}, \ -1 & p_{+1} < p_{-1}. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example of an LP rounding scheme

Consider the relational structure

$$\mathbf{A} = (\{-1, 0, +1\}, \{x = -y\}, \{x + y + z \ge 1\}).$$

CSP(A) is solved by the LP rounding scheme s given by

$$egin{aligned} s(p_{-1},p_0,p_{+1}) = egin{cases} +1 & p_{+1} > p_{-1}, \ 0 & p_{+1} = p_{-1}, \ -1 & p_{+1} < p_{-1}. \end{aligned}$$

For every *n*, the symmetric function s_n given by

$$s_n(x_1,...,x_n) = \begin{cases} +1 & \sum_i x_i > 0, \\ 0 & \sum_i x_i = 0, \\ -1 & \sum_i x_i < 0 \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is a polymorphism of **A**.

Theorem (Kun, O'Donnell, Tamaki, Yoshida, Zhou) For a finite relational structure **A**, TFAE:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem (Kun, O'Donnell, Tamaki, Yoshida, Zhou) For a finite relational structure **A**, TFAE:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

CSP(A) is solved by some LP rounding scheme s,

Theorem (Kun, O'Donnell, Tamaki, Yoshida, Zhou) For a finite relational structure **A**, TFAE:

- CSP(A) is solved by some LP rounding scheme s,
- ▶ for every *n*, there is a symmetric *n*-ary polymorphism $s_n \in Pol(\mathbf{A})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Kun, O'Donnell, Tamaki, Yoshida, Zhou) For a finite relational structure **A**, TFAE:

- CSP(A) is solved by some LP rounding scheme s,
- for every *n*, there is a symmetric *n*-ary polymorphism $s_n \in Pol(\mathbf{A})$.
- An LP rounding scheme is a collection of polymorphisms s_n ∈ Pol(A) that satisfy certain height 1 identities (asserting symmetry).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Kun, O'Donnell, Tamaki, Yoshida, Zhou) For a finite relational structure **A**, TFAE:

- CSP(A) is solved by some LP rounding scheme s,
- for every *n*, there is a symmetric *n*-ary polymorphism $s_n \in Pol(\mathbf{A})$.
- An LP rounding scheme is a collection of polymorphisms s_n ∈ Pol(A) that satisfy certain height 1 identities (asserting symmetry).
- Unfortunately, not every bounded width CSP has an LP rounding scheme:

$$2\text{-}\mathsf{SAT} = (\{0,1\}, \{x \neq y\}, \{x \ge y\})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

has no binary symmetric polymorphism.

If p ∈ Δ(A) is a probability distribution over A, then we can define a *total preorder* ≤_p on the powerset P(A):

$$U \preceq_p V \iff \sum_{u \in U} p_u \leq \sum_{v \in V} p_v.$$

If p ∈ Δ(A) is a probability distribution over A, then we can define a *total preorder* ≤_p on the powerset P(A):

$$U \preceq_p V \iff \sum_{u \in U} p_u \leq \sum_{v \in V} p_v.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Total preorders are also known as preference relations.

If p ∈ Δ(A) is a probability distribution over A, then we can define a *total preorder* ≤_p on the powerset P(A):

$$U \preceq_{p} V \quad \Longleftrightarrow \quad \sum_{u \in U} p_{u} \leq \sum_{v \in V} p_{v}.$$

Total preorders are also known as preference relations.

A total preorder ≤ can be decomposed into an equivalence relation ~ on P(A) and a total ordering ≺ on P(A)/~.

If p ∈ Δ(A) is a probability distribution over A, then we can define a *total preorder* ≤_p on the powerset P(A):

$$U \preceq_{p} V \quad \Longleftrightarrow \quad \sum_{u \in U} p_{u} \leq \sum_{v \in V} p_{v}.$$

Total preorders are also known as preference relations.

- A total preorder ≤ can be decomposed into an equivalence relation ~ on P(A) and a total ordering ≺ on P(A)/~.
- Consider the probability distribution $p_0 = p_1 = \frac{1}{2}$ on 2-SAT.

If p ∈ Δ(A) is a probability distribution over A, then we can define a *total preorder* ≤_p on the powerset P(A):

$$U \preceq_{p} V \quad \Longleftrightarrow \quad \sum_{u \in U} p_{u} \leq \sum_{v \in V} p_{v}.$$

Total preorders are also known as preference relations.

- A total preorder ≤ can be decomposed into an equivalence relation ~ on P(A) and a total ordering ≺ on P(A)/~.
- Consider the probability distribution p₀ = p₁ = ¹/₂ on 2-SAT.
 The corresponding preference relation is

$$\emptyset \prec_{p} \{0\} \sim_{p} \{1\} \prec_{p} \{0,1\}.$$

If p ∈ Δ(A) is a probability distribution over A, then we can define a *total preorder* ≤_p on the powerset P(A):

$$U \preceq_{p} V \quad \Longleftrightarrow \quad \sum_{u \in U} p_{u} \leq \sum_{v \in V} p_{v}.$$

Total preorders are also known as preference relations.

- A total preorder ≤ can be decomposed into an equivalence relation ~ on P(A) and a total ordering ≺ on P(A)/~.
- Consider the probability distribution p₀ = p₁ = ¹/₂ on 2-SAT.
 The corresponding preference relation is

$$\emptyset \prec_{p} \{0\} \sim_{p} \{1\} \prec_{p} \{0,1\}.$$

We want to outlaw this sort of preference relation.

Definition

A vague element v of a set S is a preference relation \leq_v on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

A vague element v of a set S is a preference relation \leq_v on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.

Definition

A vague element v of a set S is a preference relation \leq_v on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.
- (Self-duality) If $U \preceq_{v} V$, then $S \setminus V \preceq_{v} S \setminus U$.

Definition

A vague element v of a set S is a preference relation \leq_v on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.
- (Self-duality) If $U \preceq_{v} V$, then $S \setminus V \preceq_{v} S \setminus U$.
- (Support) If $U \sim_{v} S$, then $U \cap V \sim_{v} V$.

Definition

A vague element v of a set S is a preference relation \leq_v on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

- (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.
- (Self-duality) If $U \preceq_{v} V$, then $S \setminus V \preceq_{v} S \setminus U$.
- (Support) If $U \sim_{v} S$, then $U \cap V \sim_{v} V$.

The smallest set U such that $U \sim_v S$ is called the *support* of v.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Definition

A vague element v of a set S is a preference relation \leq_v on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

- (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.
- (Self-duality) If $U \preceq_{v} V$, then $S \setminus V \preceq_{v} S \setminus U$.
- (Support) If $U \sim_{v} S$, then $U \cap V \sim_{v} V$.

The smallest set U such that $U \sim_v S$ is called the *support* of v.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• (Nontriviality) $S \not\sim_v \emptyset$.

Definition

A vague element v of a set S is a preference relation \leq_v on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

- (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.
- (Self-duality) If $U \preceq_{v} V$, then $S \setminus V \preceq_{v} S \setminus U$.
- (Support) If $U \sim_{v} S$, then $U \cap V \sim_{v} V$.

The smallest set U such that $U \sim_v S$ is called the *support* of v.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- (Nontriviality) $S \not\sim_v \emptyset$.
- (Weak Coherence) If $U \sim_{v} V \not\sim_{v} \emptyset$, then $U \cap V \not\sim_{v} \emptyset$.

Definition

A vague element v of a set S is a preference relation \leq_v on $\mathcal{P}(S)$ satisfying the following properties for all $U, V \subseteq S$:

- (Monotonicity) If $U \subseteq V$, then $U \preceq_{v} V$.
- (Self-duality) If $U \preceq_{v} V$, then $S \setminus V \preceq_{v} S \setminus U$.
- (Support) If $U \sim_{v} S$, then $U \cap V \sim_{v} V$.

The smallest set U such that $U \sim_v S$ is called the *support* of v.

- (Nontriviality) $S \not\sim_v \emptyset$.
- (Weak Coherence) If $U \sim_{v} V \not\sim_{v} \emptyset$, then $U \cap V \not\sim_{v} \emptyset$.
- We write $\mathcal{V}(S)$ for the collection of vague elements of a set S.

• The map $S \mapsto \mathcal{V}(S)$ defines a *functor*.

• The map $S \mapsto \mathcal{V}(S)$ defines a *functor*.

▶ If $f: S \to T$ and $v \in \mathcal{V}(S)$, we define $f_*(v) \in \mathcal{V}(T)$ by

$$U \preceq_{f_*(v)} V \iff f^{-1}(U) \preceq_v f^{-1}(V).$$

- The map $S \mapsto \mathcal{V}(S)$ defines a *functor*.
- If $f: S \to T$ and $v \in \mathcal{V}(S)$, we define $f_*(v) \in \mathcal{V}(T)$ by

$$U \preceq_{f_*(v)} V \iff f^{-1}(U) \preceq_v f^{-1}(V).$$

▶ In particular, if $R \subseteq A^k$ is a relation, and $r \in \mathcal{V}(R)$, then we can define the *i*th marginal of *r* to be

$$(\pi_i \circ \iota)_*(r) \in \mathcal{V}(A),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\iota : R \hookrightarrow A^k$ is the inclusion.

- The map $S \mapsto \mathcal{V}(S)$ defines a *functor*.
- If $f: S \to T$ and $v \in \mathcal{V}(S)$, we define $f_*(v) \in \mathcal{V}(T)$ by

$$U \preceq_{f_*(v)} V \iff f^{-1}(U) \preceq_v f^{-1}(V).$$

▶ In particular, if $R \subseteq A^k$ is a relation, and $r \in \mathcal{V}(R)$, then we can define the *i*th marginal of *r* to be

$$(\pi_i \circ \iota)_*(r) \in \mathcal{V}(A),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\iota : R \hookrightarrow A^k$ is the inclusion.

Note that \u03c0_{*}(r) is a vague element of A^k with support contained in R.

Vague solutions could be defined exactly analogously to fractional solutions:

Vague solutions could be defined exactly analogously to fractional solutions:

Definition

A strong vague solution to an instance X of CSP(A) is the following:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Vague solutions could be defined exactly analogously to fractional solutions:

Definition

A strong vague solution to an instance X of CSP(A) is the following:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ a map $a: X \to \mathcal{V}(A)$, together with

Vague solutions could be defined exactly analogously to fractional solutions:

Definition

A strong vague solution to an instance X of CSP(A) is the following:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ a map $a: X \to \mathcal{V}(A)$, together with

▶ a collection of maps $r_i : C_i \rightarrow \mathcal{V}(R_i)$, such that

Vague solutions could be defined exactly analogously to fractional solutions:

Definition

A strong vague solution to an instance X of CSP(A) is the following:

- ▶ a map $a: X \to \mathcal{V}(A)$, together with
- ▶ a collection of maps $r_i : C_i \rightarrow \mathcal{V}(R_i)$, such that
- For each constraint c = (x₁,...,x_k) ∈ C_i, and for each j ≤ k, the vague element a(x_j) is the jth marginal of r_i(c).

Vague solutions could be defined exactly analogously to fractional solutions:

Definition

A strong vague solution to an instance X of CSP(A) is the following:

- a map $a: X \to \mathcal{V}(A)$, together with
- ▶ a collection of maps $r_i : C_i \rightarrow \mathcal{V}(R_i)$, such that
- For each constraint c = (x₁,...,x_k) ∈ C_i, and for each j ≤ k, the vague element a(x_j) is the jth marginal of r_i(c).
- But describing a vague element of R_i sounds very onerous. We will make a simpler (weaker) definition.

Definition

If $R \subseteq A_1 \times \cdots \times A_k$, then a collection of vague elements $v_i \in \mathcal{V}(A_i)$ vaguely satisfies the relation R if there exists a preorder \preceq_r on the disjoint union

 $\mathcal{P}(A_1) \sqcup \cdots \sqcup \mathcal{P}(A_k)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

such that

Definition

If $R \subseteq A_1 \times \cdots \times A_k$, then a collection of vague elements $v_i \in \mathcal{V}(A_i)$ vaguely satisfies the relation R if there exists a preorder \preceq_r on the disjoint union

$$\mathcal{P}(A_1) \sqcup \cdots \sqcup \mathcal{P}(A_k)$$

such that

• for each *i*, the restriction of \leq_r to $\mathcal{P}(A_i)$ is \leq_{v_i} ,

Definition

If $R \subseteq A_1 \times \cdots \times A_k$, then a collection of vague elements $v_i \in \mathcal{V}(A_i)$ vaguely satisfies the relation R if there exists a preorder \preceq_r on the disjoint union

$$\mathcal{P}(A_1) \sqcup \cdots \sqcup \mathcal{P}(A_k)$$

such that

▶ for each *i*, the restriction of \leq_r to $\mathcal{P}(A_i)$ is \leq_{v_i} ,

• for each i, j and each $U \subseteq A_i$, we have

$$U \leq_r U + \pi_{ij}(R \cap (S_1 \times \cdots \times S_k)),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where the S_i are the supports of the vague elements v_i .

Vague rounding schemes

A vague rounding scheme is just a map

$$s:\mathcal{V}(A)\to A.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Vague rounding schemes

A vague rounding scheme is just a map

$$s:\mathcal{V}(A)\to A.$$

We say that the vague rounding scheme s solves CSP(A) if for every instance X, and for every vague solution

$$a: X \to \mathcal{V}(A)$$

such that $(a(x_1), ..., a(x_k))$ vaguely satisfies R_i for each constraint $c = (x_1, ..., x_k) \in C_i$, the map

$$s \circ a : X \to A$$

defines a homomorphism $X \rightarrow A$.

Theorem (Z.) For a finite relational structure **A**, TFAE:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Theorem (Z.) For a finite relational structure **A**, TFAE:

A has bounded width,

Theorem (Z.) For a finite relational structure **A**, TFAE:

- ► A has bounded width,
- ▶ there is a vague rounding scheme $s : \mathcal{V}(A) \to A$ which solves $CSP(\mathbf{A})$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Theorem (Z.) For a finite relational structure **A**, TFAE:

- A has bounded width,
- ▶ there is a vague rounding scheme $s : \mathcal{V}(A) \to A$ which solves $CSP(\mathbf{A})$,
- For every n, and for every vague element v ∈ V({1,..., n}), there is an n-ary polymorphism s_v ∈ Pol(A), such that for all

$$f: \{1, ..., n\} \to \{1, ..., m\}$$

the height 1 identity

$$s_v(x_{f(1)},...,x_{f(n)}) \approx s_{f_*(v)}(x_1,...,x_m)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is satisfied.

In order to prove this result, it is more convenient to work in the framework of *multisorted* CSPs.

- In order to prove this result, it is more convenient to work in the framework of *multisorted* CSPs.
- Let A = (A, Pol(A)) be the algebraic structure corresponding to A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- In order to prove this result, it is more convenient to work in the framework of *multisorted* CSPs.
- Let A = (A, Pol(A)) be the algebraic structure corresponding to A.
- ▶ We let each variable $x \in X$ have a different domain \mathbb{A}_x , with \mathbb{A}_x an arbitrary finite algebra in Var(\mathbb{A}).

- In order to prove this result, it is more convenient to work in the framework of *multisorted* CSPs.
- Let A = (A, Pol(A)) be the algebraic structure corresponding to A.
- ▶ We let each variable $x \in X$ have a different domain \mathbb{A}_x , with \mathbb{A}_x an arbitrary finite algebra in Var(\mathbb{A}).
- A constraint c now consists of a tuple (x₁,..., x_k) of variables, together with a constraint relation

$$\mathbb{R} \leq \mathbb{A}_{x_1} \times \cdots \times \mathbb{A}_{x_k}.$$

- In order to prove this result, it is more convenient to work in the framework of *multisorted* CSPs.
- Let A = (A, Pol(A)) be the algebraic structure corresponding to A.
- ▶ We let each variable $x \in X$ have a different domain \mathbb{A}_x , with \mathbb{A}_x an arbitrary finite algebra in Var(\mathbb{A}).
- A constraint c now consists of a tuple (x₁,..., x_k) of variables, together with a constraint relation

$$\mathbb{R} \leq \mathbb{A}_{x_1} \times \cdots \times \mathbb{A}_{x_k}.$$

A solution is a map x → a_x such that for each constraint c as above, we have

$$(a_{x_1},...,a_{x_k})\in\mathbb{R}.$$

A step from y to z is a constraint

 $((x_1,...,x_k),\mathbb{R})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

and a pair i, j such that $x_i = y$ and $x_j = z$.

A step from y to z is a constraint

 $((x_1,...,x_k),\mathbb{R})$

and a pair i, j such that $x_i = y$ and $x_j = z$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A step from y to z is a constraint

 $((x_1,...,x_k),\mathbb{R})$

and a pair i, j such that $x_i = y$ and $x_j = z$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A path is a sequence of steps where the endpoints match up.

A step from y to z is a constraint

 $((x_1,...,x_k),\mathbb{R})$

and a pair i, j such that $x_i = y$ and $x_j = z$.

A path is a sequence of steps where the endpoints match up.

We use additive notation for combining paths: p + q means "first follow p, then q".

If B ⊆ A_y and p is a step from y to z through a relation ℝ, we write

$$B + p = B + \pi_{yz}(\mathbb{R}) = \pi_z(\pi_y^{-1}(B) \cap \mathbb{R}) \subseteq \mathbb{A}_z.$$

If B ⊆ A_y and p is a step from y to z through a relation ℝ, we write

$$B + p = B + \pi_{yz}(\mathbb{R}) = \pi_z(\pi_y^{-1}(B) \cap \mathbb{R}) \subseteq \mathbb{A}_z.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ This encodes the implication: "if $a_y \in B$, then $a_z \in B + p$ ".

If B ⊆ A_y and p is a step from y to z through a relation ℝ, we write

$$B + p = B + \pi_{yz}(\mathbb{R}) = \pi_z(\pi_y^{-1}(B) \cap \mathbb{R}) \subseteq \mathbb{A}_z.$$

- ▶ This encodes the implication: "if $a_y \in B$, then $a_z \in B + p$ ".
- Extend this notation to paths in the obvious way:

$$B + (p_1 + p_2) = (B + p_1) + p_2$$
, etc.

If B ⊆ A_y and p is a step from y to z through a relation ℝ, we write

$$B + p = B + \pi_{yz}(\mathbb{R}) = \pi_z(\pi_y^{-1}(B) \cap \mathbb{R}) \subseteq \mathbb{A}_z.$$

- ▶ This encodes the implication: "if $a_y \in B$, then $a_z \in B + p$ ".
- Extend this notation to paths in the obvious way:

$$B + (p_1 + p_2) = (B + p_1) + p_2$$
, etc.

If B ≤ A_y is a subalgebra, then B + p ≤ A_z is also a subalgebra.

An instance is *arc-consistent* if for all paths *p* from *x* to *y*, we have

$$\mathbb{A}_x + p = \mathbb{A}_y.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

An instance is *arc-consistent* if for all paths *p* from *x* to *y*, we have

$$\mathbb{A}_x + p = \mathbb{A}_y.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Arc-consistency is equivalent to: for all constraint relations ℝ, the projections π_i : ℝ → A_{xi} are surjective.

An instance is arc-consistent if for all paths p from x to y, we have

$$\mathbb{A}_x + p = \mathbb{A}_y.$$

- Arc-consistency is equivalent to: for all constraint relations ℝ, the projections π_i : ℝ → A_{xi} are surjective.
- An instance is cycle-consistent if for all paths p from x to x, and for all a ∈ A_x, we have

$$a \in \{a\} + p$$
.

An instance is arc-consistent if for all paths p from x to y, we have

$$\mathbb{A}_x + p = \mathbb{A}_y.$$

- Arc-consistency is equivalent to: for all constraint relations ℝ, the projections π_i : ℝ → A_{xi} are surjective.
- An instance is cycle-consistent if for all paths p from x to x, and for all a ∈ A_x, we have

$$a \in \{a\} + p$$
.

Beginner Sudoku players start by establishing arc-consistency, then they move on to establishing cycle-consistency.

Weaker consistency!

I call an instance weakly consistent if it satisfies:
 (P1) arc-consistency, and
 (W) A + p + q = A implies A ∩ (A + p) ≠ Ø.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Weaker consistency!

I call an instance weakly consistent if it satisfies:
 (P1) arc-consistency, and
 (W) A + p + q = A implies A ∩ (A + p) ≠ Ø.

► I will use this result, from a previous AAA conference: Theorem (Z.) If Var(A) is SD(A), then every weakly consistent instance of CSP(Var_{fin}(A)) has a solution.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposition

If an instance \mathbf{X} of a multisorted CSP is weakly consistent, then it has a vague solution

 $x\mapsto a_x\in\mathcal{V}(\mathbb{A}_x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

such that each a_x has support equal to \mathbb{A}_x .

Proposition

If an instance \mathbf{X} of a multisorted CSP is weakly consistent, then it has a vague solution

$$x\mapsto a_x\in\mathcal{V}(\mathbb{A}_x)$$

such that each a_x has support equal to \mathbb{A}_x .

Define a preorder ≤ on □_x P(A_x) by (x, A) ≤ (y, B) if there is some path p from x to y such that A + p ⊆ B.

Proposition

If an instance \mathbf{X} of a multisorted CSP is weakly consistent, then it has a vague solution

$$x\mapsto a_x\in\mathcal{V}(\mathbb{A}_x)$$

such that each a_x has support equal to \mathbb{A}_x .

Define a preorder ≤ on ⊥_x P(A_x) by (x, A) ≤ (y, B) if there is some path p from x to y such that A + p ⊆ B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Extend ≤ to a total preorder ≤' without changing the associated equivalence relation ~.

Proposition

If an instance \mathbf{X} of a multisorted CSP is weakly consistent, then it has a vague solution

$$x\mapsto a_x\in \mathcal{V}(\mathbb{A}_x)$$

such that each a_x has support equal to \mathbb{A}_x .

Define a preorder ≤ on ⊥_x P(A_x) by (x, A) ≤ (y, B) if there is some path p from x to y such that A + p ⊆ B.

- Extend ≤ to a total preorder ≤' without changing the associated equivalence relation ~.
- Let \leq_{a_x} be the restriction of \leq' to $\mathcal{P}(\mathbb{A}_x)$.

From a vague solution to a weakly consistent instance

Now suppose that we have a vague solution

$$x\mapsto a_x\in \mathcal{V}(\mathbb{A}_x).$$

This doesn't necessarily mean that our instance $\boldsymbol{\mathsf{X}}$ is weakly consistent.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

From a vague solution to a weakly consistent instance

Now suppose that we have a vague solution

```
x\mapsto a_x\in\mathcal{V}(\mathbb{A}_x).
```

This doesn't necessarily mean that our instance $\boldsymbol{\mathsf{X}}$ is weakly consistent.

We will produce a weakly consistent instance X^{*}_a which has many copies of each variable and relation from X, in order to apply Ramsey's Theorem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

From a vague solution to a weakly consistent instance

Now suppose that we have a vague solution

```
x\mapsto a_x\in\mathcal{V}(\mathbb{A}_x).
```

This doesn't necessarily mean that our instance $\boldsymbol{\mathsf{X}}$ is weakly consistent.

- We will produce a weakly consistent instance X^{*}_a which has many copies of each variable and relation from X, in order to apply Ramsey's Theorem.
- The trick is to exploit the fact that everything is stated in terms of *total* preorders.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Compatibility between vague elements and functions

▶ If
$$f : \mathcal{P}(A) \to \mathbb{N}$$
 and $v \in \mathcal{V}(A)$, we say f is *compatible* with v if
 $U \preceq_v V \iff f(U) \leq f(V)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Compatibility between vague elements and functions

• If
$$f : \mathcal{P}(A) \to \mathbb{N}$$
 and $v \in \mathcal{V}(A)$, we say f is *compatible* with v if

$$U \preceq_{v} V \iff f(U) \leq f(V).$$

▶ Note that f is determined by v and $im(f) \subseteq \mathbb{N}$.

Compatibility between vague elements and functions

• If
$$f : \mathcal{P}(A) \to \mathbb{N}$$
 and $v \in \mathcal{V}(A)$, we say f is *compatible* with v if

$$U \preceq_{v} V \iff f(U) \leq f(V).$$

Note that f is determined by v and $im(f) \subseteq \mathbb{N}$.

▶ If $f : \mathcal{P}(A_1) \sqcup \cdots \sqcup \mathcal{P}(A_k) \to \mathbb{N}$, and if $R \subseteq A_1 \times \cdots \times A_k$, we say *f* is *compatible* with *R* if

$$f(U) \leq f(U + \pi_{ij}(R))$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all $i, j \leq k$ and all $U \subseteq A_i$.

Constructing the weakly consistent instance

X^{*}_a is constructed as follows:

Constructing the weakly consistent instance

- \triangleright X^{*}_a is constructed as follows:
- For x ∈ X and f : P(A_x) → N compatible with a_x, we introduce a variable (x, f) of X^{*}_a with domain A_x.

Constructing the weakly consistent instance

For x ∈ X and f : P(A_x) → N compatible with a_x, we introduce a variable (x, f) of X^{*}_a with domain A_x.

▶ For
$$c = ((x_1, ..., x_k), \mathbb{R})$$
 and compatible
 $f : \mathcal{P}(\mathbb{A}_{x_1}) \sqcup \cdots \sqcup \mathcal{P}(\mathbb{A}_{x_k}) \to \mathbb{N}$, we introduce the constraint

$$(((x_1, f|_{\mathcal{P}(\mathcal{A}_{x_1})}), ..., (x_k, f|_{\mathcal{P}(\mathcal{A}_{x_k})})), \mathbb{R})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

of \mathbf{X}_{a}^{*} .

Constructing the weakly consistent instance

For x ∈ X and f : P(A_x) → N compatible with a_x, we introduce a variable (x, f) of X^{*}_a with domain A_x.

▶ For
$$c = ((x_1, ..., x_k), \mathbb{R})$$
 and compatible
 $f : \mathcal{P}(\mathbb{A}_{x_1}) \sqcup \cdots \sqcup \mathcal{P}(\mathbb{A}_{x_k}) \to \mathbb{N}$, we introduce the constraint

$$\left(\left((x_1,f|_{\mathcal{P}(\mathcal{A}_{x_1})}),...,(x_k,f|_{\mathcal{P}(\mathcal{A}_{x_k})})\right),\mathbb{R}\right)$$

of \mathbf{X}_a^* .

▶ By construction, if there is a path *p* from (x, f) to (x, f) in \mathbf{X}_a^* , and if $A \subseteq \mathbb{A}_x$, then

$$f(A) \leq f(A+p)$$
, so $A \preceq_{a_x} A+p$.

• Let s be a solution to the weakly consistent instance X_a^* .

- Let s be a solution to the weakly consistent instance X^{*}_a.
- ▶ By Ramsey's Theorem, there is an infinite subset $S \subseteq \mathbb{N}$ such that for each $x \in \mathbf{X}$ there is some \hat{s}_x with

$$s_{(x,f)} = \hat{s}_x$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all $(x, f) \in \mathbf{X}_a^*$ with $\operatorname{im}(f) \subseteq S$.

- Let s be a solution to the weakly consistent instance X^{*}_a.
- By Ramsey's Theorem, there is an infinite subset S ⊆ N such that for each x ∈ X there is some ŝ_x with

$$s_{(x,f)} = \hat{s}_x$$

for all $(x, f) \in \mathbf{X}_a^*$ with $\operatorname{im}(f) \subseteq S$.

If a_{x1},..., a_{xk} vaguely satisfy the relation ℝ, then there is some compatible f : P(A_{x1}) ⊔ · · · ⊔ P(A_{xk}) → S, so

$$(\hat{s}_{x_1},...,\hat{s}_{x_k}) = (s_{(x_1,f|_{\mathcal{P}(A_{x_1})})},...,s_{(x_k,f|_{\mathcal{P}(A_{x_k})})}) \in \mathbb{R}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let s be a solution to the weakly consistent instance X^{*}_a.
- By Ramsey's Theorem, there is an infinite subset S ⊆ N such that for each x ∈ X there is some ŝ_x with

$$s_{(x,f)} = \hat{s}_x$$

for all $(x, f) \in \mathbf{X}_a^*$ with $\operatorname{im}(f) \subseteq S$.

If a_{x1},..., a_{xk} vaguely satisfy the relation ℝ, then there is some compatible f : P(A_{x1}) ⊔ · · · ⊔ P(A_{xk}) → S, so

$$(\hat{s}_{x_1},...,\hat{s}_{x_k}) = (s_{(x_1,f|_{\mathcal{P}(A_{x_1})})},...,s_{(x_k,f|_{\mathcal{P}(A_{x_k})})}) \in \mathbb{R}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So ŝ is a solution to X!

Existence of the vague rounding scheme

To obtain the vague rounding scheme

$$s:\mathcal{V}(A)\to A,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

we apply this argument to the "most generic" instance ${\boldsymbol{\mathsf{X}}}$ which has a vague solution.

Existence of the vague rounding scheme

To obtain the vague rounding scheme

 $s:\mathcal{V}(A)\to A,$

we apply this argument to the "most generic" instance ${\boldsymbol{\mathsf{X}}}$ which has a vague solution.

▶ The variables of this **X** correspond to the elements v of $\mathcal{V}(A)$, with variable domain \mathbb{A}_v equal to the support of v.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Existence of the vague rounding scheme

To obtain the vague rounding scheme

 $s:\mathcal{V}(A)\to A,$

we apply this argument to the "most generic" instance ${\boldsymbol{\mathsf{X}}}$ which has a vague solution.

▶ The variables of this **X** correspond to the elements v of $\mathcal{V}(A)$, with variable domain \mathbb{A}_v equal to the support of v.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ We impose a constraint $((v_1, ..., v_k), \mathbb{R})$ in **X** whenever $\mathbb{R} \leq_{sd} \mathbb{A}_{v_1} \times \cdots \times \mathbb{A}_{v_k}$ is vaguely satisfied by $v_1, ..., v_k$.

Back to robust satisfaction

Theorem (Z.)

If the semidefinite programming relaxation of an instance **X** of CSP(**A**) has value $1 - \epsilon$, then we can algorithmically find a vague solution to **X** which vaguely satisfies a $1 - f(\epsilon)$ fraction of the constraints in polynomial time, where

$$f(\epsilon) \ll_{\mathsf{A}} rac{1}{\log(1/\epsilon)}$$

Back to robust satisfaction

Theorem (Z.)

If the semidefinite programming relaxation of an instance **X** of CSP(**A**) has value $1 - \epsilon$, then we can algorithmically find a vague solution to **X** which vaguely satisfies a $1 - f(\epsilon)$ fraction of the constraints in polynomial time, where

$$f(\epsilon) \ll_{\mathbf{A}} rac{1}{\log(1/\epsilon)}.$$

Once we have the (approx.) vague solution, we apply a vague rounding scheme to get an actual (approx.) solution.

- ロ ト - 4 回 ト - 4 □

Back to robust satisfaction

Theorem (Z.)

If the semidefinite programming relaxation of an instance **X** of CSP(**A**) has value $1 - \epsilon$, then we can algorithmically find a vague solution to **X** which vaguely satisfies a $1 - f(\epsilon)$ fraction of the constraints in polynomial time, where

$$f(\epsilon) \ll_{\mathbf{A}} rac{1}{\log(1/\epsilon)}.$$

Once we have the (approx.) vague solution, we apply a vague rounding scheme to get an actual (approx.) solution.

► This is best possible: we can't robustly solve HORN-SAT with $f(\epsilon) = o(1/\log(1/\epsilon))$ unless the Unique Games Conjecture is false, by a result of Guruswami and Zhou.

Thank you for your attention.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ