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CSPs and relational structures

I If A = (A,R1, ...,Rn) is a finite relational structure, we get an
associated Constraint Satisfaction Problem, CSP(A).

I An instance X = (X ,C1, ...,Cn) of CSP(A) is a relational
structure with the same signature as A.

I The elements x ∈ X are called the variables of the instance X.

I The elements c = (x1, ..., xk) ∈ Ci are called the constraints
of the instance X.

I A solution to the instance X of CSP(A) is a homomorphism
a : X→ A.

I If c = (x1, ..., xk) ∈ Ci is a constraint, then a solution a must
satisfy (a(x1), ..., a(xk)) ∈ Ri .
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Approximate solutions

I An approximate solution to the instance X is an arbitrary map
a : X → A.

I The value of the approximate solution a is the fraction of the
constraints which are satisfied by a:∑

i #{(x1, ..., xk ) ∈ Ci | (a(x1), ..., a(xk)) ∈ Ri}∑
i |Ci |

.

I The value of the instance X is the maximum value of any
approximate solution a : X → A.

I An approximate solution with value 1 is the same thing as an
ordinary solution.
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Robustly solvable CSPs

Definition
We say that CSP(A) is robustly solvable if there is a function
f : [0, 1]→ [0, 1] such that:

I when X is an instance of value 1− ε, we can algorithmically find an
approximate solution a : X → A of value 1− f (ε) in polynomial
time,

I limε→0 f (ε) = 0.

I The main barrier to being robustly solvable is the ability to
simulate affine CSPs.

Theorem (Håstad)

If A = (Z/p, {x + y = z}, ..., {x + y = z + p − 1}), then it is
NP-hard to find an approximate solution a : X → A of value 1

p + ε,
even if the instance X is promised to have value 1− ε.
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Characterization of robustly solvable CSPs

I We say that a relational structure A has bounded width if
CSP(A) can be solved by a local consistency algorithm.

Theorem (Conjectured by Guruswami and Zhou, proved by
Barto and Kozik)
If P 6= NP, the following are equivalent:

I CSP(A) is robustly solvable,

I A has bounded width,

I CSP(A) can be robustly solved via the standard semidefinite
programming relaxation.

I Furthermore, Barto and Kozik’s algorithm has

f (ε)� log log(1/ε)

log(1/ε)
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Bounded width

I For any finite relational structure A, the computational
complexity of CSP(A) is controlled by the set of
polymorphisms Pol(A).

Theorem (Bulatov, Barto, Kozik)
If A is a finite core relational structure, and if A = (A,Pol(A)) is
the corresponding algebraic structure, then TFAE:

I CSP(A) can be solved by a local consistency algorithm,

I The variety Var(A) generated by A contains no nontrivial
quasi-affine algebras,

I Var(A) is congruence meet-semidistributive,

I every cycle-consistent instance of CSP(A) has a solution.
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The Linear Programming Relaxation

I For any finite set S , let ∆(S) be the collection of probability
distributions on S .

I We think of ∆(S) as the convex hull of the one-hot vectors
(0, ..., 0, 1, 0, ..., 0) in RS .

Definition
A fractional solution to an instance X of CSP(A) is the following:

I a map a : X → ∆(A), together with

I a collection of maps ri : Ci → ∆(Ri ), such that

I for each constraint c = (x1, ..., xk ) ∈ Ci , and for each j ≤ k, the
distribution a(xj ) is the jth marginal probability distribution of ri (c).

I We can define approximate fractional solutions similarly, with
ri : Ci → ∆(Ak) instead of ri : Ci → ∆(Ri ).
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Rounding schemes for the Linear Programming relaxation

I An LP rounding scheme is just a map

s : ∆(A)→ A.

I We say that the LP rounding scheme s solves CSP(A) if for
every instance X, and for every fractional solution

a : X → ∆(A), ri : Ci → ∆(Ri ),

the map
s ◦ a : X → A

defines a homomorphism X→ A.
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Example of an LP rounding scheme

I Consider the relational structure

A = ({−1, 0,+1}, {x = −y}, {x + y + z ≥ 1}).

I CSP(A) is solved by the LP rounding scheme s given by

s(p−1, p0, p+1) =


+1 p+1 > p−1,

0 p+1 = p−1,

−1 p+1 < p−1.

I For every n, the symmetric function sn given by

sn(x1, ..., xn) =


+1

∑
i xi > 0,

0
∑

i xi = 0,

−1
∑

i xi < 0

is a polymorphism of A.



Example of an LP rounding scheme

I Consider the relational structure

A = ({−1, 0,+1}, {x = −y}, {x + y + z ≥ 1}).

I CSP(A) is solved by the LP rounding scheme s given by

s(p−1, p0, p+1) =


+1 p+1 > p−1,

0 p+1 = p−1,

−1 p+1 < p−1.

I For every n, the symmetric function sn given by

sn(x1, ..., xn) =


+1

∑
i xi > 0,

0
∑

i xi = 0,

−1
∑

i xi < 0

is a polymorphism of A.



Example of an LP rounding scheme

I Consider the relational structure

A = ({−1, 0,+1}, {x = −y}, {x + y + z ≥ 1}).

I CSP(A) is solved by the LP rounding scheme s given by

s(p−1, p0, p+1) =


+1 p+1 > p−1,

0 p+1 = p−1,

−1 p+1 < p−1.

I For every n, the symmetric function sn given by

sn(x1, ..., xn) =


+1

∑
i xi > 0,

0
∑

i xi = 0,

−1
∑

i xi < 0

is a polymorphism of A.



Characterization of LP rounding schemes

Theorem (Kun, O’Donnell, Tamaki, Yoshida, Zhou)
For a finite relational structure A, TFAE:

I CSP(A) is solved by some LP rounding scheme s,

I for every n, there is a symmetric n-ary polymorphism sn ∈ Pol(A).

I An LP rounding scheme is a collection of polymorphisms
sn ∈ Pol(A) that satisfy certain height 1 identities (asserting
symmetry).

I Unfortunately, not every bounded width CSP has an LP
rounding scheme:

2-SAT = ({0, 1}, {x 6= y}, {x ≥ y})

has no binary symmetric polymorphism.
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From fractional solutions to preference relations

I If p ∈ ∆(A) is a probability distribution over A, then we can
define a total preorder �p on the powerset P(A):

U �p V ⇐⇒
∑
u∈U

pu ≤
∑
v∈V

pv .

I Total preorders are also known as preference relations.

I A total preorder � can be decomposed into an equivalence
relation ∼ on P(A) and a total ordering ≺ on P(A)/∼.

I Consider the probability distribution p0 = p1 = 1
2 on 2-SAT.

I The corresponding preference relation is

∅ ≺p {0} ∼p {1} ≺p {0, 1}.

I We want to outlaw this sort of preference relation.
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Vague elements

Definition
A vague element v of a set S is a preference relation �v on P(S)
satisfying the following properties for all U,V ⊆ S :

I (Monotonicity) If U ⊆ V , then U �v V .

I (Self-duality) If U �v V , then S \ V �v S \ U.

I (Support) If U ∼v S , then U ∩ V ∼v V .

The smallest set U such that U ∼v S is called the support of v .

I (Nontriviality) S 6∼v ∅.
I (Weak Coherence) If U ∼v V 6∼v ∅, then U ∩ V 6∼v ∅.

I We write V(S) for the collection of vague elements of a set S .
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Marginals of vague elements

I The map S 7→ V(S) defines a functor.

I If f : S → T and v ∈ V(S), we define f∗(v) ∈ V(T ) by

U �f∗(v) V ⇐⇒ f −1(U) �v f −1(V ).

I In particular, if R ⊆ Ak is a relation, and r ∈ V(R), then we
can define the ith marginal of r to be

(πi ◦ ι)∗(r) ∈ V(A),

where ι : R ↪→ Ak is the inclusion.

I Note that ι∗(r) is a vague element of Ak with support
contained in R.
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Vague solutions, take one

I Vague solutions could be defined exactly analogously to
fractional solutions:

Definition
A strong vague solution to an instance X of CSP(A) is the
following:

I a map a : X → V(A), together with

I a collection of maps ri : Ci → V(Ri ), such that

I for each constraint c = (x1, ..., xk ) ∈ Ci , and for each j ≤ k, the
vague element a(xj ) is the jth marginal of ri (c).

I But describing a vague element of Ri sounds very onerous.
We will make a simpler (weaker) definition.
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Vague solutions, take two

Definition
If R ⊆ A1 × · · · × Ak , then a collection of vague elements
vi ∈ V(Ai ) vaguely satisfies the relation R if there exists a preorder
�r on the disjoint union

P(A1) t · · · t P(Ak )

such that

I for each i , the restriction of �r to P(Ai ) is �vi ,

I for each i , j and each U ⊆ Ai , we have

U �r U + πij (R ∩ (S1 × · · · × Sk )),

where the Si are the supports of the vague elements vi .
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Vague rounding schemes

I A vague rounding scheme is just a map

s : V(A)→ A.

I We say that the vague rounding scheme s solves CSP(A) if
for every instance X, and for every vague solution

a : X → V(A)

such that (a(x1), ..., a(xk )) vaguely satisfies Ri for each
constraint c = (x1, ..., xk) ∈ Ci , the map

s ◦ a : X → A

defines a homomorphism X→ A.
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Main result

Theorem (Z.)
For a finite relational structure A, TFAE:

I A has bounded width,

I there is a vague rounding scheme s : V(A)→ A which solves
CSP(A),

I for every n, and for every vague element v ∈ V({1, ..., n}), there is
an n-ary polymorphism sv ∈ Pol(A), such that for all

f : {1, ..., n} → {1, ...,m}

the height 1 identity

sv (xf (1), ...., xf (n)) ≈ sf∗(v)(x1, ..., xm)

is satisfied.
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Multisorted CSPs
I In order to prove this result, it is more convenient to work in

the framework of multisorted CSPs.

I Let A = (A,Pol(A)) be the algebraic structure corresponding
to A.

I We let each variable x ∈ X have a different domain Ax , with
Ax an arbitrary finite algebra in Var(A).

I A constraint c now consists of a tuple (x1, ..., xk ) of variables,
together with a constraint relation

R ≤ Ax1 × · · · × Axk
.

I A solution is a map x 7→ ax such that for each constraint c as
above, we have

(ax1 , ..., axk
) ∈ R.



Multisorted CSPs
I In order to prove this result, it is more convenient to work in

the framework of multisorted CSPs.

I Let A = (A,Pol(A)) be the algebraic structure corresponding
to A.

I We let each variable x ∈ X have a different domain Ax , with
Ax an arbitrary finite algebra in Var(A).

I A constraint c now consists of a tuple (x1, ..., xk ) of variables,
together with a constraint relation

R ≤ Ax1 × · · · × Axk
.

I A solution is a map x 7→ ax such that for each constraint c as
above, we have

(ax1 , ..., axk
) ∈ R.



Multisorted CSPs
I In order to prove this result, it is more convenient to work in

the framework of multisorted CSPs.

I Let A = (A,Pol(A)) be the algebraic structure corresponding
to A.

I We let each variable x ∈ X have a different domain Ax , with
Ax an arbitrary finite algebra in Var(A).

I A constraint c now consists of a tuple (x1, ..., xk ) of variables,
together with a constraint relation

R ≤ Ax1 × · · · × Axk
.

I A solution is a map x 7→ ax such that for each constraint c as
above, we have

(ax1 , ..., axk
) ∈ R.



Multisorted CSPs
I In order to prove this result, it is more convenient to work in

the framework of multisorted CSPs.

I Let A = (A,Pol(A)) be the algebraic structure corresponding
to A.

I We let each variable x ∈ X have a different domain Ax , with
Ax an arbitrary finite algebra in Var(A).

I A constraint c now consists of a tuple (x1, ..., xk ) of variables,
together with a constraint relation

R ≤ Ax1 × · · · × Axk
.

I A solution is a map x 7→ ax such that for each constraint c as
above, we have

(ax1 , ..., axk
) ∈ R.



Multisorted CSPs
I In order to prove this result, it is more convenient to work in

the framework of multisorted CSPs.

I Let A = (A,Pol(A)) be the algebraic structure corresponding
to A.

I We let each variable x ∈ X have a different domain Ax , with
Ax an arbitrary finite algebra in Var(A).

I A constraint c now consists of a tuple (x1, ..., xk ) of variables,
together with a constraint relation

R ≤ Ax1 × · · · × Axk
.

I A solution is a map x 7→ ax such that for each constraint c as
above, we have

(ax1 , ..., axk
) ∈ R.



Paths

I A step from y to z is a constraint

((x1, ..., xk ),R)

and a pair i , j such that xi = y and xj = z .

R

Ay Az

πy πz

I A path is a sequence of steps where the endpoints match up.

I We use additive notation for combining paths: p + q means
“first follow p, then q”.
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Propagating information along paths

I If B ⊆ Ay and p is a step from y to z through a relation R,
we write

B + p = B + πyz (R) = πz (π−1y (B) ∩ R) ⊆ Az .

I This encodes the implication: “if ay ∈ B, then az ∈ B + p”.

I Extend this notation to paths in the obvious way:

B + (p1 + p2) = (B + p1) + p2, etc.

I If B ≤ Ay is a subalgebra, then B + p ≤ Az is also a
subalgebra.
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Consistency

I An instance is arc-consistent if for all paths p from x to y , we
have

Ax + p = Ay .

I Arc-consistency is equivalent to: for all constraint relations R,
the projections πi : R→ Axi are surjective.

I An instance is cycle-consistent if for all paths p from x to x ,
and for all a ∈ Ax , we have

a ∈ {a}+ p.

I Beginner Sudoku players start by establishing arc-consistency,
then they move on to establishing cycle-consistency.
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Weaker consistency!

I I call an instance weakly consistent if it satisfies:

(P1) arc-consistency, and

(W) A + p + q = A implies A ∩ (A + p) 6= ∅.

I I will use this result, from a previous AAA conference:

Theorem (Z.)

If Var(A) is SD(∧), then every weakly consistent instance of
CSP(Varfin(A)) has a solution.
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Connection to vague solutions

Proposition

If an instance X of a multisorted CSP is weakly consistent, then it
has a vague solution

x 7→ ax ∈ V(Ax )

such that each ax has support equal to Ax .

I Define a preorder � on
⊔

x P(Ax ) by (x ,A) � (y ,B) if there
is some path p from x to y such that A + p ⊆ B.

I Extend � to a total preorder �′ without changing the
associated equivalence relation ∼.

I Let �ax be the restriction of �′ to P(Ax ).
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From a vague solution to a weakly consistent instance

I Now suppose that we have a vague solution

x 7→ ax ∈ V(Ax ).

This doesn’t necessarily mean that our instance X is weakly
consistent.

I We will produce a weakly consistent instance X∗a which has
many copies of each variable and relation from X, in order to
apply Ramsey’s Theorem.

I The trick is to exploit the fact that everything is stated in
terms of total preorders.
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Compatibility between vague elements and functions

I If f : P(A)→ N and v ∈ V(A), we say f is compatible with v
if

U �v V ⇐⇒ f (U) ≤ f (V ).

I Note that f is determined by v and im(f ) ⊆ N.

I If f : P(A1) t · · · t P(Ak )→ N, and if R ⊆ A1 × · · · × Ak , we
say f is compatible with R if

f (U) ≤ f (U + πij (R))

for all i , j ≤ k and all U ⊆ Ai .
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Constructing the weakly consistent instance

I X∗a is constructed as follows:

I For x ∈ X and f : P(Ax )→ N compatible with ax , we
introduce a variable (x , f ) of X∗a with domain Ax .

I For c = ((x1, ..., xk),R) and compatible
f : P(Ax1) t · · · t P(Axk

)→ N, we introduce the constraint((
(x1, f |P(Ax1 )

), ..., (xk , f |P(Axk
))
)
,R
)

of X∗a.

I By construction, if there is a path p from (x , f ) to (x , f ) in
X∗a, and if A ⊆ Ax , then

f (A) ≤ f (A + p), so A �ax A + p.
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Applying Ramsey’s Theorem

I Let s be a solution to the weakly consistent instance X∗a.

I By Ramsey’s Theorem, there is an infinite subset S ⊆ N such
that for each x ∈ X there is some ŝx with

s(x ,f ) = ŝx

for all (x , f ) ∈ X∗a with im(f ) ⊆ S .

I If ax1 , ..., axk
vaguely satisfy the relation R, then there is some

compatible f : P(Ax1) t · · · t P(Axk
)→ S , so

(ŝx1 , ..., ŝxk
) = (s(x1,f |P(Ax1 )

), ..., s(xk ,f |P(Axk
))) ∈ R.

I So ŝ is a solution to X!
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I So ŝ is a solution to X!



Existence of the vague rounding scheme

I To obtain the vague rounding scheme

s : V(A)→ A,

we apply this argument to the “most generic” instance X
which has a vague solution.

I The variables of this X correspond to the elements v of V(A),
with variable domain Av equal to the support of v .

I We impose a constraint ((v1, ..., vk),R) in X whenever
R ≤sd Av1 × · · · × Avk

is vaguely satisfied by v1, ..., vk .
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Back to robust satisfaction

Theorem (Z.)

If the semidefinite programming relaxation of an instance X of
CSP(A) has value 1− ε, then we can algorithmically find a vague
solution to X which vaguely satisfies a 1− f (ε) fraction of the
constraints in polynomial time, where

f (ε)�A
1

log(1/ε)
.

I Once we have the (approx.) vague solution, we apply a vague
rounding scheme to get an actual (approx.) solution.

I This is best possible: we can’t robustly solve HORN-SAT with
f (ε) = o(1/ log(1/ε)) unless the Unique Games Conjecture is
false, by a result of Guruswami and Zhou.
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Thank you for your attention.


