
SYMMETRIC FEWNOMIAL INEQUALITIES AND HIGHER ORDER
CONVEXITY

ZARATHUSTRA BRADY

Abstract. We prove a difficult symmetric fewnomial inequality by proving a more
general inequality which applies to all functions with nonnegative fourth derivative.

1. Introduction

We start by introducing a convenient shorthand.

Definition 1.1. For x, y, z > 0 and α, β, γ ∈ R, let

[α, β, γ] :=
∑
sym

xαyβzγ.

More generally, if f is any function and x, y, z, α, β, γ ∈ R, let

{α, β, γ}f :=
∑
sym

f(αx+ βy + γz).

Note that the variables x, y, z are suppressed in this notation.

A special case of Muirhead’s inequality states that if (a, b, c), (p, q, r) ∈ R3 satisfy
a ≥ b ≥ c and p ≥ q ≥ r, then the inequality

[a, b, c] ≥ [p, q, r]

holds for all positive x, y, z if and only if we have

a ≥ p,

a+ b ≥ p+ q,

a+ b+ c = p+ q + r,

and in this case we have the more general inequality

{a, b, c}f ≥ {p, q, r}f
for every convex function f .

From the fewnomial point of view, this tells us that the differences [a, b, c] − [p, q, r]
should be viewed as having the same level of complexity as quadratic polynomials, despite
the “fewnomial degree” (that is, the number of monomials minus 1) of such a difference
being 11 in the general case. Thus it seems reasonable to conjecture that symmetric
fewnomials, such as

k∑
i=1

wi[ai, bi, ci],

for ai, bi, ci, wi ∈ R, should have similar properties to polynomials of degree k.
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In particular, we may conjecture that symmetric fewnomial inequalities of the form

[a1, b1, c1] + [a2, b2, c2] ≥ [a3, b3, c3] + [a4, b4, c4]

are true if they have equality to the fourth order at some point and if they are true in
limiting cases, since the same is true for fourth degree polynomial inequalities in a single
variable. To simplify things, we’ll restrict to the case of homogeneous inequalities with
total degree 0 which have fourth order equality at the point (x, y, z) = (1, 1, 1).

In order to simplify things for ourselves further we will impose an additional symmetry:
we will require our inequality to be invariant under replacing all variables with their
inverses. It is not too hard to see that the most interesting such inequality should have
the form

[a+ b, 0,−a− b] + [c, 0,−c] ≥ [a+ b,−b,−a] + [a, b,−a− b],
with a2 + b2 = c2 in order to make the second derivatives of the two sides match at
(x, y, z) = (1, 1, 1). Our main result is a proof of this inequality.

Theorem 1.1. For a, b, c ≥ 0 with a2 + b2 = c2 we have

[a+ b, 0,−a− b] + [c, 0,−c] ≥ [a+ b,−b,−a] + [a, b,−a− b].
More generally, for f any function with nonnegative fourth derivative we have

{a+ b, 0,−a− b}f + {c, 0,−c}f ≥ {a+ b,−b,−a}f + {a, b,−a− b}f .

2. Reduction

We wish to show that for x, y, z arbitrary, a2 + b2 = c2, a, b, c ≥ 0, and f a function
with f (4) ≥ 0, we have

{a+ b, 0,−a− b}f + {c, 0,−c}f ≥ {a+ b,−b,−a}f + {a, b,−a− b}f .
Because of the sign symmetry, we can assume that f(x) = f(−x), by replacing f(x) by
f(x) + f(−x) if necessary.

Note that by rescaling and rearranging, we can assume without loss of generality that
b = 1 and a ≥ 1. Next, if we replace x, y, z with y−z, z−x, x−y, then the above becomes

{a+ 1, 0, 0}f + {
√
a2 + 1, 0, 0}f ≥ {−a, 1, 0}f + {a,−1, 0}f ,

with the restriction that x + y + z = 0 and that f(x) = f(−x). By changing signs and
rearranging we assume that x ≥ y ≥ 0 ≥ z. By continuity we can assume that y > 0, and
then by rescaling that y = 1, so z = −x− 1.

Thus, if we set

Df (a, x) :=f((a+ 1)(x+ 1)) + f(c(x+ 1)) + f((a+ 1)x)

+ f(cx) + f(a+ 1) + f(c)

− f(ax+ x+ a)− f(ax+ x+ 1)− f(ax+ a+ 1)

− f(ax− 1)− f(x+ a+ 1)− f(x− a),

where c =
√
a2 + 1, then we need to show that Df (a, x) ≥ 0 for a, x ≥ 1.

We can assume without loss of generality that f is of the form f(x) = (x−t)3++(−x−t)3+
for some t ≥ 0, since every even function with nonnegative fourth derivative can be written
as a limit of linear combinations of such functions plus a quadratic.

Set
rk(a, x, t) = Dfk,t(a, x),

where fk,t(x) = (x− t)k+ + (−x− t)k+. Then we just need to show that r3(a, x, t) ≥ 0 for
a, x ≥ 1, t ≥ 0.
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Note that ∂
∂t
rk(a, x, t) = −krk−1(a, x, t), and that for k = 0, 1, 2, 3 we have rk(a, x,∞) =

0.

3. Argument

Throughout this section we will maintain the following notation. The letters a, x will
always denote real numbers ≥ 1, the letter c will always mean

√
a2 + 1, and for t ≥ 0 and

k ∈ N the expression rk(a, x, t) will always be given by

rk(a, x, t) = ((a+ 1)(x+ 1)− t)k+ + (c(x+ 1)− t)k+ + ((a+ 1)x− t)k+
+ (cx− t)k+ + (a+ 1− t)k+ + (c− t)k+ − (ax+ x+ a− t)k+
− (ax+ x+ 1− t)k+ − (ax+ a+ 1− t)k+ − (ax− 1− t)k+
− (x+ a+ 1− t)k+ − (x− a− t)k+ − (a− x− t)k+.

Our goal is to prove that r3(a, x, t) ≥ 0 for a, x ≥ 1 and t ≥ 0. The general approach is

to use the fact that ∂2

∂t2
r3(a, x, t) = 6r1(a, x, t) to determine where r3(a, x, t) is convex or

concave (in t), taking full advantage of the fact that r1(a, x, t) is piecewise linear in both
x and t.

Lemma 3.1. For a, x ≥ 1 we always have

r3(a, x, 0) ≥ 0.

If we assume furthermore that

x ≤ c

a+ 1− c
,

then we also have
r1(a, x, 0) ≥ 0.

Proof. We have

r3(a, x, 0) = (a+ 1)3(x+ 1)3 + c3(x+ 1)3 + (a+ 1)3x3 + c3x3 + (a+ 1)3 + c3 − ((a+ 1)x+ a)3

− ((a+ 1)x+ 1)3 − (ax+ a+ 1)3 − (ax− 1)3 − (x+ a+ 1)3 − |x− a|3

= (x+ 1)((c3 − a3)(2x2 + x+ 2)− (6a+ 3)x)− 2(x− a)3+.

Noting that c3 ≥ a3 + 6
5
a+ 3

5
, which follows from

(a2 + 1)3 −
(
a3 +

6

5
a+

3

5

)2

=
3

5
a2(a− 1)2 +

16

25
(a− 1)2 +

8

25
a2 − 4

25
a ≥ 0,

we see that

r3(a, x, 0) ≥ 6

5
(2a+ 1)(x+ 1)(x− 1)2 − 2(x− a)3+ ≥ 0.

For the second claim, we have

r1(a, x, 0) = (a+ 1)(x+ 1) + c(x+ 1) + (a+ 1)x+ cx+ (a+ 1) + c− ((a+ 1)x+ a)

− ((a+ 1)x+ 1)− (ax+ a+ 1)− (ax− 1)− (x+ a+ 1)− |x− a|
= 2(x+ 1)c− (2ax+ x+ a+ |x− a|).

If x ≤ a, this becomes

r1(a, x, 0) = 2((x+ 1)c− (x+ 1)a) ≥ 0.

Finally, if a ≤ x ≤ c
a+1−c , then

r1(a, x, 0) = 2(c− (a+ 1− c)x) ≥ 0. �
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Lemma 3.2. If a ≥
√

3, then we have

2a+ 2− c
2c− a− 1

≤ 2c− a− 1

2a+ 1− 2c
≤ c

a+ 1− c
≤ a+ 1 ≤ c+ a− 1,

and we have equality when a =
√

3. When 1 ≤ a ≤
√

3, the outer inequality is reversed.

Proof. For the first inequality, we have

(2c− a− 1)2 − (2a+ 2− c)(2a+ 1− 2c) = (c− 2)(2a− c− 1) ≥ 0.

For the second inequality, we have

c(2a+ 1− 2c)− (2c− a− 1)(a+ 1− c) = (c− 2)(c− a) ≥ 0.

The third inequality follows from

(a+ 1)(a+ 1− c)− c = (c− 2)(c− a) ≥ 0,

and the last inequality is immediate.
Finally, when 1 ≤ a ≤

√
3, we have

(2a+ 2− c)− (c+ a− 1)(2c− a− 1) = (2− c)(c+ a) ≥ 0. �

Lemma 3.3. If we assume that

2a+ 2− c
2c− a− 1

≤ x ≤ c+ a− 1,

then

r2(a, x, cx) ≥ x.

Proof. Note that in this case we have a ≥
√

3 and

(c− 1)x ≥ (c− 1)
2a+ 2− c
2c− a− 1

= a+ 1 +
c− 2

2c− a− 1
≥ a+ 1,

and

(c− a)x ≤ 1 + a− c < a+ 1.

Thus,

r2(a, x, cx) = ((a+ 1)(x+ 1)− cx)2+ + (c(x+ 1)− cx)2+ + ((a+ 1)x− cx)2+

+ (cx− cx)2+ + (a+ 1− cx)2+ + (c− cx)2+ − ((a+ 1)x+ a− cx)2+

− ((a+ 1)x+ 1− cx)2+ − (ax+ a+ 1− cx)2+ − (ax− 1− cx)2+

− (x+ a+ 1− cx)2+ − (x− a− cx)2+ − (a− x− cx)2+

= ((a+ 1− c)x+ a+ 1)2 + c2 + (a+ 1− c)2x2 − ((a+ 1− c)x+ a)2

− ((a+ 1− c)x+ 1)2 − (a+ 1− (c− a)x)2

= (−(c− a)x+ 2(a+ 1))(c− a)x

≥ (c+ a+ 1)(c− a)x

≥ x. �
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Lemma 3.4. If a, x ≥ 1, then we have

r1(a, x, (a+ 1)x+ a+ 1) = 0,

r1(a, x, (a+ 1)x+ a) = 1,

r1(a, x, (a+ 1)x+ 1) > 0,

r1(a, x, ax+ a+ 1) ≥ 0,

r1(a, x, a+ 1) < 0,

r1(a, x, c) ≤ 0.

Proof. The first two are immediate. For the third, note

r1(a, x, (a+ 1)x+ 1) = a+ (−(a+ 1− c)x+ c− 1)+ − (a− 1)− (a− x)+

= 1 + (−(a+ 1− c)x+ c− 1)+ − (a− x)+.

If x > a− 1, then this is obviously positive. If x ≤ a− 1, then

r1(a, x, (a+ 1)x+ 1) = 1 + (−(a+ 1− c)x+ c− 1)− (a− x)

= (c− a)(x+ 1) > 0.

For the fourth, we have

r1(a, x, ax+ a+ 1) = x+ ((c− a)x− (a+ 1− c))+ + (x− (a+ 1))+

+ ((c− a)x− (a+ 1))+ − (x− 1)− (x− a)+

≥ 1 + (x− (a+ 1))+ − (x− a)+ ≥ 0.

For the fifth,

r1(a, x, a+ 1) = (a+ 1)x+ (cx− (a+ 1− c)) + ((a+ 1)x− (a+ 1)) + (cx− (a+ 1))+

− ((a+ 1)x− 1)− ((a+ 1)x− a)− ax− (ax− (a+ 2))+ − x− (x− (2a+ 1))+

= − (a+ 1− c)(x+ 1) + (cx− (a+ 1))+ − (ax− (a+ 2))+ − (x− (2a+ 1))+.

This is maximized when x is either 1 or a+2
a

. If x = a+2
a

, then it becomes

−(a+ 1− c)2a+ 2

a
+

(
c
a+ 2

a
− (a+ 1)

)
= −1

a

(
3a2 + 5a+ 2− (3a+ 4)c

)
< 0,

where the last inequality follows from

(3a2 + 5a+ 2)2 − (3a+ 4)2(a2 + 1) = 6a3 + 12a2 − 4a− 12 > 0.

Finally,

r1(a, x, c) = ((a+ 1)x+ a+ 1− c) + cx+ ((a+ 1)x− c) + (cx− c) + (a+ 1− c)
− ((a+ 1)x+ a− c)− ((a+ 1)x+ 1− c)− (ax+ a+ 1− c)− (ax− (c+ 1))+

− (x+ a+ 1− c)− (x− (a+ c))+

= (2c− a− 1)x− (a+ 1)− (ax− (c+ 1))+ − (x− (a+ c))+.

This is maximized when x = c+1
a

, so it’s at most

(2c− a− 1)
c+ 1

a
− (a+ 1) = −1

a
(c− a+ 1)(a− 1) ≤ 0. �
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Lemma 3.5. For a, x ≥ 1, we have

r1(a, x, cx+ c) < 0

if and only if
2c− a− 1

2a+ 1− 2c
< x < c+ a− 1.

Proof.

r1(a, x, cx+ c) = ((a+ 1− c)x+ a+ 1− c) + ((a+ 1− c)x− c)+ − ((a+ 1− c)x− (c− a))

− ((a+ 1− c)x− (c− 1))+ − (−(c− a)x+ a+ 1− c)+ − (−(c− 1)x+ a+ 1− c)+
= 1 + ((a+ 1− c)x− c)+ − ((a+ 1− c)x− (c− 1))+

− (−(c− a)x+ a+ 1− c)+ − (−(c− 1)x+ a+ 1− c)+.
This is certainly nonnegative if (c− a)x ≥ a+ 1− c, or equivalently if x ≥ c+ a− 1, since
then the last two terms are 0. If c

a+1−c < x < c + a − 1, then all terms except possibly
the last will be nonzero and r1(a, x, cx+ c) will be negative.

Note that

3c− 2(a+ 1) =
c2 + 4(a− 1)2

3c+ 2(a+ 1)
> 0.

Thus, when (a+1−c)x ≤ (c−1) or (c−1)x ≤ (a+1−c), r1(a, x, cx+c) is a nondecreasing
function of x, and when x = 1,

r1(a, 1, 2c) = 2(c− a)− 2(a+ 2− 2c)+ > 0.

When a >
√

3, both a+1−c
c−1 and c−1

a+1−c are less than 2c−a−1
2a+1−2c .

Thus, the only remaining case is the case where (c−1) < (a+1−c)x, (a+1−c) < (c−1)x,
x < c+ a− 1, x ≤ c

a+1−c . In this case,

r1(a, x, cx+c) = 1−((a+1−c)x−(c−1))−(−(c−a)x+a+1−c) = 2c−a−1−(2a+1−2c)x,

which is less than zero if and only if

x >
2c− a− 1

2a+ 1− 2c
. �

Lemma 3.6. If a, x ≥ 1, then r1(a, x, x+ a+ 1) < 0 if and only if

c

2a− c
< x < min

(
2a+ 2− c
2c− a− 1

, c+ a− 1

)
.

Proof.

r1(a, x, x+ a+ 1) = (ax) + ((c− 1)x− (a+ 1− c))+ + (ax− (a+ 1))+ + ((c− 1)x− (a+ 1))+

− (ax− 1)− (ax− a)− ((a− 1)x)− ((a− 1)x− (a+ 2))+

= − (2a− 1)x+ a+ 1 + ((c− 1)x− (a+ 1− c))+ + (ax− (a+ 1))+

+ ((c− 1)x− (a+ 1))+ − ((a− 1)x− (a+ 2))+.

Note that for x ≤ c
a−c , we have (c− 1)x < a+ 1, since

(2a− c)(a+ 1)− c(c− 1) = (c− a)c+ 2(a− 1) > 0,

so we have

r1(a, x, x+ a+ 1) = − (2a− 1)x+ a+ 1 + ((c− 1)x− (a+ 1− c))+ + (ax− (a+ 1))+

≥ − (2a− c)x+ c ≥ 0.



HIGHER ORDER CONVEXITY 7

Note that if c
2a−c < c+ a− 1, we have a c

2a−c < a+ 1:

(2a− c)(a+ 1)− ac = 2a2 − 2ac+ 2a− c =
4a3 − a2 − 4a− 1

2a2 + 2a+ 2ac+ c

= (a2 − 2a− 1 + ac)
ac− a2 + 2a+ 1

2a2 + 2a+ 2ac+ c

= ((2a− c)(c+ a− 1)− c) ac− a2 + 2a+ 1

2a2 + 2a+ 2ac+ c
> 0.

Furthermore, if x ≥ c
2a−c , then (c− 1)x > a+ 1− c:

c(c− 1)− (2a− c)(a+ 1− c) = 3ac− 2a2 − 2a+ 2 ≥ (a− 1)2 + 1 > 0.

Thus, if c
2a−c < c+a−1 we see that r1(a, x, x+a+1) is zero when x = c

2a−c , and is less than

zero for c
2a−c < x ≤ 1+ 1

a
. For x ≥ 1+ 1

a
, r1(a, x, x+a+1) becomes an increasing function

of x, so we just need to check that it is equal to zero when x = min
(
2a+2−c
2c−a−1 , c+ a− 1

)
.

When x ≥ c+ a− 1, we have (c− a)x ≥ a+ 1− c, so

r1(a, x, x+ a+ 1) = − (2a− c)x+ c+ (ax− (a+ 1))+

+ ((c− 1)x− (a+ 1))+ − ((a− 1)x− (a+ 2))+

≥ (c− a)x− (a+ 1− c) ≥ 0,

with equality when x = c+a−1, a(c+a−1) ≥ a+1, (c−1)(c+a−1) ≤ a+1. Note that
we have a(c+ a− 1) ≥ a+ 1 if and only if c+ a− 1 ≥ c

2a−c , since (2a− c)(c+ a− 1)− c =

a(c+ a− 1)− (a+ 1). We also have (c− 1)(c+ a− 1) ≤ a+ 1 if and only if a ≤
√

3:

a+ 1− (c− 1)(c+ a− 1) = 2a− a2 − 1− ac+ 2c = (a+ c)(2− c).
Finally, assume a ≥

√
3 and x ≥ 2a+2−c

2c−a−1 . Recall that in this case we have (c−1)x ≥ a+1,
so

r1(a, x, x+ a+ 1) = (2c− a− 1)x− (2a+ 2− c)− ((a− 1)x− (a+ 2))+.

Since this is an increasing function of x, we just have to check that equality holds when
x = 2a+2−c

2c−a−1 . Since

(a+ 2)(2c− a− 1)− (a− 1)(2a+ 2− c) = 3(c− a)(a+ 1) > 0,

we have

r1(a,
2a+ 2− c
2c− a− 1

,
2a+ 2− c
2c− a− 1

+ a+ 1) = 0. �

Lemma 3.7. If x, a ≥ 1, then we have r1(a, x, |x− a|) < 0 if and only if

c

a+ 1− c
< x <

(1 + 2a)(a+ c)− 1

2
.

Proof.

r1(a, x, |x− a|) = ((a+ 1)x+ a+ 1− |x− a|) + (cx+ c− |x− a|) + ((a+ 1)x− |x− a|)
+ (cx− |x− a|) + (a+ 1− |x− a|)+ + (c− |x− a|)+
− ((a+ 1)x+ a− |x− a|)− ((a+ 1)x+ 1− |x− a|)− (ax+ a+ 1− |x− a|)
− (ax− 1− |x− a|)− (x+ a+ 1− |x− a|)

= − (1− 2(c− a))x− (2a+ 1− c) + |x− a|+ (a+ 1− |x− a|)+ + (c− |x− a|)+.
Note that if x ≤ a, then this becomes

r1(a, x, a− x) = 2(c− a)x+ 2(c− a),
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which is clearly positive. If x ≥ a, it becomes

r1(a, x, x− a) = 2(c− a)x− (3a+ 1− c) + (2a+ 1− x)+ + (a+ c− x)+.

If we now assume that x ≤ c
a+1−c , then x ≤ a+ 1, so

r1(a, x, x− a) = −2(a+ 1− c)x+ 2c ≥ 0,

and we have equality when x = c
a+1−c . For a ≤ x ≤ 2a+1, r1(a, x, x−a) is a nonincreasing

function of x (since 2(c− a) < 1), and for x ≥ 2a+ 1 we have

r1(a, x, x− a) = 2(c− a)x− (3a+ 1− c),

which reaches 0 when

x =
3a+ 1− c
2(c− a)

=
(1 + 2a)(a+ c)− 1

2
. �

Lemma 3.8. If x, a ≥ 1 and ax− 1 > 1 + a, then r1(a, x, ax− 1) is negative if and only
if

x <
2a+ 2− c
2c− a− 1

.

Proof. In this case,

r1(a, x, ax− 1) = (x+ a+ 2) + ((c− a)x+ c+ 1) + (x+ 1)

+ ((c− a)x+ 1)− (x+ a+ 1)− (x+ 2)

− (a+ 2)− (−(a− 1)x+ a+ 2)+

= 2(c− a)x+ c− a− (−(a− 1)x+ a+ 2)+.

This is certainly positive if (a− 1)x > a+ 2. We have 2a+2−c
2c−a−1 <

a+2
a−1 , since

(2c− a− 1)(a+ 2)− (2a+ 2− c)(a− 1) = 3(c− a)(a+ 1) > 0.

If (a− 1)x ≤ a+ 2, we have

r1(a, x, ax− 1) = (2c− a− 1)x− (2a+ 2− c),

which is negative exactly when

x <
2a+ 2− c
2c− a− 1

. �

Lemma 3.9. Suppose x, a ≥ 1. If a <
√

3, then we have r1(a, x, (a+ 1)x) < 0 if and only
if

x < max(c+ a− 1,
2a+ 2− c

c
),

and for x ≥ c
a+1−c we have r1(a, x, (a+ 1)x) = 0. If a ≥

√
3, then r1(a, x, (a+ 1)x) < 0 if

and only if x < a+ 1, and for x ≥ a+ 1 we have r1(a, x, (a+ 1)x) = 0.

Proof.

r1(a, x, (a+ 1)x) = a+ 1 + (−(a+ 1− c)x+ c)+ − a− 1− (−x+ a+ 1)+ − (−ax+ a+ 1)+

= (−(a+ 1− c)x+ c)+ − (−x+ a+ 1)+ − (−ax+ a+ 1)+.

The first term is 0 when x ≥ c
a+1−c . When a <

√
3 and x ≤ c+ a− 1, we have

r1(a, x, (a+1)x) ≤ (−(a+1−c)x+c)−(−x+a+1) = (c−a)x−(a+1−c) ≤ (c−a)(c+a−1)−(a+1−c) = 0,
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with equality when x = c+a−1 and a(c+a−1) ≥ a+1. Note that we have a(c+a−1) ≥
a+ 1 exactly when we have c(c+ a− 1) ≥ 2a+ 2− c. Otherwise, for ax < a+ 1 we have

r1(a, x, (a+ 1)x) = cx− (2a+ 2− c),
which is zero when x = 2a+2−c

c
, which is necessarily less than a+1

a
.

When a ≥
√

3, note that for x < a+ 1, the derivative of r1(a, x, (a+ 1)x) with respect
to x is at least c− a, and for x ≥ a+ 1 we have r1(a, x, (a+ 1)x) = 0. �

Lemma 3.10. If x, a ≥ 1 and cx ≥ 1 + a, then r1(a, x, cx) < 0 if and only if

x < max

{
2a+ 2− c
2c− a− 1

, c+ a− 1

}
.

If 2a+2−c
2c−a−1 < x < c+ a− 1, then r1(a, x, cx) > −1.

Proof. In this case, we have

r1(a, x, cx) = ((a+ 1− c)x+ a+ 1) + c+ (a+ 1− c)x− ((a+ 1− c)x+ a)

− ((a+ 1− c)x+ 1)− (−(c− a)x+ a+ 1)+ − (−(c− 1)x+ a+ 1)+

= c− (−(c− a)x+ a+ 1)+ − (−(c− 1)x+ a+ 1)+.

Note that this is an increasing function of x. When a ≥
√

3, x = c + a − 1, we have
−(c− 1)(c+ a− 1) + a+ 1 = −(c− 2)(c+ a) ≤ 0, so

r1(a, x, c(c+ a− 1)) = c− (−(c− a)(c+ a− 1) + a+ 1) = c− c = 0.

When a <
√

3, we have 2a+2−c
2c−a−1 <

a+1
c−1 , since

(2c− a− 1)(a+ 1)− (2a+ 2− c)(c− 1) = 2− c > 0.

Thus, we have

r1(a, x, c
2a+ 2− c
2c− a− 1

) = c−
(
−(c− a)

2a+ 2− c
2c− a− 1

+ a+ 1

)
−
(
−(c− 1)

2a+ 2− c
2c− a− 1

+ a+ 1

)
= − (2a+ 2− c) + (2c− a− 1)

2a+ 2− c
2c− a− 1

= 0.

Finally, when 2a+2−c
2c−a−1 < x < c+ a− 1, we have (c− 1)x ≥ a+ 1 and (c− a)x ≤ a+ 1, so

r1(a, x, cx) = c− (−(c− a)x+ a+ 1) = (c− a)(x+ 1)− 1 > −1. �

Lemma 3.11. There is no 0 ≤ t1 ≤ t2 ≤ a+ 1 such that r1(a, x, t1) < 0, r1(a, x, t2) > 0.

Proof. Assume that such t1 and t2 exist for the sake of contradiction. For 0 ≤ t ≤ a+ 1,
we have

r1(a, x, t) = ((a+ 1)x+ a+ 1− t) + (cx+ c− t) + ((a+ 1)x− t)
+ (cx− t)+ + (a+ 1− t) + (c− t)+ − ((a+ 1)x+ a− t)
− ((a+ 1)x+ 1− t)− (ax+ a+ 1− t)− (ax− 1− t)+
− (x+ a+ 1− t)− (|x− a| − t)+

= − (a+ 1− c)(x+ 1) + (cx− t)+ + (c− t)+
− (ax− 1− t)+ − (|x− a| − t)+.

Note that this is a nonincreasing function of t when 0 ≤ t ≤ c. Thus we must have
c < t2 ≤ a+1. Recall from Lemma 3.4 that r1(a, x, c) ≤ 0 and r1(a, x, a+1) < 0. The only
interval in which r1(a, x, t) can be an increasing function of t is the interval c ≤ t ≤ x−a,
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if it exists. Thus we may as well assume that t2 = x− a > c, and r1(a, x, x− a) > 0. In
this case, note that in order for us to have r1(a, x, a + 1) < 0, r1(a, x, t) must decrease
somewhere between x− a and a+ 1, so we must have ax− 1 < a+ 1. But then we would
have

x > a+ c =
2a2 + 2ac

2a
≥ a2 + ac+ 1 + c

2a
=

c

a+ 1− c
and

x < 1 +
2

a
< 3 <

3(1 +
√

2)− 1

2
≤ (1 + 2a)(a+ c)− 1

2
,

so by Lemma 3.7 we have r1(a, x, x− a) < 0, a contradiction. �

Lemma 3.12. If |x − a| > a + 1 and r1(a, x, |x − a|) > 0, then ax − 1 > a + 1 and
r1(a, x, ax− 1) > 0, and r1(a, x, x+ a+ 1) ≥ 0 as well.

Proof. Note that in this case, x > 2a + 1 > (1+a+c)c
2a

= c
a+1−c , so by Lemma 3.7, we must

have x > (1+2a)(a+c)−1
2

≥ 2+3
√
2

2
. Since ax− 1 ≥ x− a > a+ 1, by Lemma 3.8 and Lemma

3.6 it is enough to show that 2+3
√
2

2
≥ 2a+2−c

2c−a−1 , which follows from

(2+3
√

2)(2c−a−1)−2(2a+2−c) = 3(2+
√

2)(
√

2c−a−1) = 3(2+
√

2)
(a− 1)2√
2c+ a+ 1

≥ 0.

�

Lemma 3.13. If r1(a, x, cx+ c) > 0 and t ≥ cx+ c, then r1(a, x, t) ≥ 0.

Proof. Since r1(a, x, t) is piecewise linear in t, we just have to check this for t equal to one
of (a+ 1)x+ a+ 1, (a+ 1)x+ a, (a+ 1)x+ 1, ax+ a+ 1, (a+ 1)x, x+ a+ 1. The first
four cases follow from Lemma 3.4.

If t = (a + 1)x, then from t ≥ cx + c we see that x ≥ c
a+1−c . If a ≤

√
3, then by

Lemma 3.9 we have r1(a, x, (a + 1)x) = 0. If a >
√

3 then by Lemma 3.5 we must have
x > c+ a− 1 ≥ a+ 1, so by Lemma 3.9 we again have r1(a, x, (a+ 1)x) = 0.

Finally, if t = x + a + 1, then we must have x ≤ a+1−c
c−1 = c+1−a

a
. By Lemma 3.6, it’s

enough to check that c+1−a
a

> c
2a−c , and this follows from

ac− (c+ 1− a)(2a− c) = (c+ 1− a)(c− a) + a(a− 1) > 0. �

Lemma 3.14. If r1(a, x, (a+ 1)x) > 0 and t ≥ (a+ 1)x, then r1(a, x, t) ≥ 0.

Proof. Similarly to the previous Lemma, we see that it is enough to check this when t is
either cx+ c and x+ a+ 1. Note that if r1(a, x, (a+ 1)x) > 0, then we must have a <

√
3

by Lemma 3.9. Thus if t = cx+c, then r1(a, x, cx+c) ≥ 0 by Lemma 3.5. If t = x+a+1,
then by Lemma 3.9, we must have x > c + a − 1, and by Lemma 3.6 this implies that
r1(a, x, x+ a+ 1) ≥ 0. �

Lemma 3.15. If cx ≥ a+ 1, r1(a, x, cx) > 0, and t ≥ cx, then r1(a, x, t) ≥ 0.

Proof. We just have to check this for t equal to one of cx + c, x + a + 1, (a + 1)x. Note
that by Lemma 3.10 we have x > max

(
2a+2−c
2c−a−1 , c+ a− 1

)
≥ c + a − 1, so by Lemma 3.5

we have r1(a, x, cx + c) ≥ 0 and by Lemma 3.6 we have r1(a, x, x + a + 1) ≥ 0. Finally,
since

max

(
2a+ 2− c
2c− a− 1

, c+ a− 1

)
≥ max

(
c

a+ 1− c
, a+ 1

)
,

we can apply Lemma 3.9 to see that we have r1(a, x, (a+ 1)x) = 0. �
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Lemma 3.16. Suppose r1(a, x, x + a + 1) ≥ 0 and t ≥ x + a + 1. If r1(a, x, t) < 0, then
t > ax− 1 and

2a+ 2− c
2c− a− 1

≤ x ≤ c+ a− 1.

Furthermore, in this case we also have cx ≥ x+ a+ 1.

Proof. First we check that we have r1(a, x, ax− 1) ≥ 0 when ax− 1 ≥ x+ a+ 1, that is,
when x ≥ a+2

a−1 . Since a+2
a−1 >

2a+2−c
2c−a−1 (by the proof of Lemma 3.6), we can apply Lemma

3.8 to conclude that r1(a, x, ax− 1) ≥ 0.
Now we consider the cases t = cx, cx + c, (a + 1)x. If t = cx, then by Lemma 3.10 we

have x < c + a − 1, and from cx ≥ x + a + 1 we see that x ≥ a+1
c−1 ≥

c
2a−c , so by Lemma

3.6 we have x ≥ 2a+2−c
2c−a−1 . If t = cx+ c, then Lemma 3.5 finishes immediately.

The final case is t = (a+ 1)x. In this case we must have x ≥ a+1
a

, and by the proof of

Lemma 3.6 this is at least min
(

c
2a−c , c+ a− 1

)
, so we must have x ≥ min

(
2a+2−c
2c−a−1 , c+ a− 1

)
.

For a ≥
√

3, we conclude from Lemma 3.9 that 2a+2−c
2c−a−1 ≤ x ≤ a + 1 ≤ c + a − 1. For

a <
√

3, we have x ≥ c+ a− 1, so we can apply Lemma 3.9 to see that x < 2a+2−c
c

. But

this is impossible: if 2a+2−c
c

> x ≥ c+ a− 1, then we have x ≥ a+1
a
> 2a+2−c

c
, since

(a+ 1)c− a(2a+ 2− c) = 2ac+ c− 2a2 − 2a =
1 + 4a+ a2 − 4a3

2ac+ c+ 2a2 + 2a

= (2a+ 1− a2 − ac) ac− a2 + 2a+ 1

2ac+ c+ 2a2 + 2a

= ((2a+ 2− c)− c(c+ a− 1))
ac− a2 + 2a+ 1

2ac+ c+ 2a2 + 2a
> 0.

To show that cx ≥ x + a + 1, we note that by Lemma 3.2, 2a+2−c
2c−a−1 ≤ c + a − 1 implies

that a ≥
√

3, and so by the proof of Lemma 3.3 we have (c− 1)x ≥ a+ 1. �

Lemma 3.17. Suppose that ax − 1 ≥ a + 1, r1(a, x, ax − 1) ≥ 0, and t ≥ ax − 1. If
r1(a, x, t) < 0, then we must have t > x+ a+ 1 and

2a+ 2− c
2c− a− 1

≤ x ≤ c+ a− 1.

Proof. Note that by Lemma 3.8, we have x ≥ 2a+2−c
2c−a−1 . By Lemma 3.6, it follows that

r1(a, x, x + a + 1) ≥ 0. It remains to show that if t is any of cx, cx + c, or (a + 1)x,
then t > x + a + 1 and x ≤ c + a − 1. Note that we always have cx > ax − 1 and
cx+ c, (a+ 1)x > cx, so in fact we only have to check this for t = cx.

When t = cx, then Lemma 3.10 yields x < c + a − 1. Thus a ≥
√

3, so we have
cx > (x+ a+ 1), since (c− 1)2a+2−c

2c−a−1 ≥ a+ 1 (by the proof of Lemma 3.3). �

Lemma 3.18. If t1, t2 are such that a + 1 ≤ t1 ≤ t2 and r1(a, x, t1) > 0, r1(a, x, t2) < 0,
then t1 < cx, t2 > max (x+ a+ 1, ax− 1), and

2a+ 2− c
2c− a− 1

≤ x ≤ c+ a− 1.

Proof. First we assume for contradiction that t1 ≥ cx. Since r1(a, x, t) is piecewise linear
in t, we see that we can assume without loss of generality that t1 and t2 are among
(a+1)x+a+1, (a+1)x+a, (a+1)x+1, ax+a+1, (a+1)x, x+a+1, cx+c, cx. By Lemmas
3.13, 3.15, 3.14, 3.16, we see that t1 can’t be one of (a+ 1)x, x+ a+ 1, cx+ c, cx, and by
Lemma 3.4 we see that t2 can’t be any of (a+1)x+a+1, (a+1)x+a, (a+1)x+1, ax+a+1.
Since t1 < t2, we must have either t1 = ax+ a+ 1 or t1 = (a+ 1)x+ 1, and t2 6= x+ a+ 1.
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If t1 = (a+ 1)x+ 1, then we must have t2 = cx+ c, and x ≤ c−1
a+1−c . By Lemma 3.5 it’s

enough to check that c−1
a+1−c ≤

2c−a−1
2a+1−2c . This follows from

(2c− a− 1)(a+ 1− c)− (2a+ 1− 2c)(c− 1) = (c− a)a ≥ 0.

If t1 = ax+a+1 and t2 = cx, then x ≥ a+1
c−a = (c+a)(a+1). By Lemma 3.10, it’s enough

to check that (c + a)(a + 1) is bigger than both c + a − 1 and 2a+2−c
2c−a−1 . The first of those

is obvious, and the second follows from the fact that (c + a)(a + 1) ≥ 2 + 2
√

2 ≥ 2+3
√
2

2
,

by the proof of Lemma 3.12.
If t1 = ax + a + 1 and t2 = cx + c, then x ≥ a+1−c

c−a = c + a − 1, and we are done by
Lemma 3.5. If t1 = ax+ a+ 1 and t2 = (a+ 1)x, then we have x ≥ a+ 1, so by Lemma
3.9 we are done.

Thus t1 < cx, so we can assume without loss of generality that t1 is one of x− a, ax−
1, x + a + 1. If t1 = x− a, then by Lemma 3.12 we may take t1 = ax− 1 instead. Then
by Lemma 3.16 and Lemma 3.17 we see that t2 ≥ cx and 2a+2−c

2c−a−1 ≤ x ≤ c+ a− 1. �

We are finally ready for the main event.

Theorem 3.19. r3(a, x, t) ≥ 0.

Proof. It is enough to show that there is no 0 ≤ t1 ≤ t2 ≤ t3 such that r2(a, x, t1) > 0,
r2(a, x, t2) < 0, and r2(a, x, t3) > 0: we have r3(a, x, 0) ≥ 0 by Lemma 3.1, and we know
r3(a, x,+∞) = 0, so thinking of r3(a, x, t) as a function of t, if it were ever negative for
some t∗ there would have to be a 0 ≤ t1 ≤ t∗ at which r3 was decreasing, and a t2 ≥ t∗
at which r3 was increasing. Furthermore, we have r2(a, x, (a + 1)x + a + 1 − ε) > 0 for
0 < ε < 1

2
, so if we found t1, t2 we could find t3 as well. So suppose, for the sake of

contradiction, that such t1, t2, t3 existed.
Using a similar argument to the above along with the fact that r2(a, x, 0) = 0, we can

show that there must be s0, s1, s2, s3 such that 0 < s0 < t1 < s1 < t2 < s2 < t3 < s3,
r1(a, x, s0) < 0, r1(a, x, s1) > 0, r1(a, x, s2) < 0, r1(a, x, s3) > 0.

By Lemma 3.11, we have s1 > a + 1. Thus by Lemma 3.18, we have s1 < cx, s2 >
max (x+ a+ 1, ax− 1), and

2a+ 2− c
2c− a− 1

≤ x ≤ c+ a− 1.

Note that the upper bound on s1 implies that we may assume t2 ≤ cx. Now we can apply
Lemma 3.3 to see that we have r2(a, x, cx) ≥ x. Let s∗2 be the infimum of all possible
choices of s2. If s∗2 > cx we have a contradiction. Otherwise, we have

1 ≤ x ≤ r2(a, x, cx) <

∫ cx

s∗2

−2r1(a, x, t)dt,

and r1(a, x, t) is linear and decreasing on the interval s∗2 ≤ t ≤ cx. We have r1(a, x, s
∗
2) = 0,

and by Lemma 3.10 we have r1(a, x, cx) > −1, and we see that the average value of
−2r1(a, x, t) along the interval is less than 1. Finally, we know that ∂

∂t
r1(a, x, t) is a

negative integer along this interval, so the length of the interval is at most 1, and we see∫ cx
s∗2
−2r1(a, x, t)dt < 1, a contradiction. �
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