Notes on the sum product theorem

Contents

1	The Plünnecke-Ruzsa sumset calculus			
	1.1	Approximate variants	3	
	1.2	Energy	4	
2	The sum-product theorem			
	0.1			
	2.1	Characteristic Zero	6	
		Characteristic Zero Finite fields		

1 The Plünnecke-Ruzsa sumset calculus

Definition 1. If A, B are finite subsets of a semigroup G, A nonempty, define the magnification ratio of A, B to be

$$\mu(A,B) = \min_{\emptyset \neq X \subseteq A} \frac{|XB|}{|X|}.$$

Note that if $\emptyset \neq X \subseteq A$ has $\frac{|XB|}{|B|} = \mu(A, B)$ then $\frac{|XB|}{|B|} = \mu(X, B)$.

Theorem 1 (Petridis). If X, B are finite subsets of a semigroup G, X nonempty satisfying $\frac{|XB|}{|X|} = \mu(X, B)$, then for all finite subsets C of G such that |cX| = |X| for all $c \in C$, we have

$$|CXB| \le \frac{|CX||XB|}{|X|}.$$

Proof. Induct on |C|. If C is empty we are done, so suppose $C = C' \cup \{c\}, c \notin C'$. Letting $Y = \{x \in X \mid cx \in C'X\}$, we have

$$\begin{aligned} |CXB| &\leq |C'XB| + |c(XB \setminus YB)| \\ &\leq \frac{|C'X||XB|}{|X|} + |XB| - |YB| \\ &\leq \frac{(|CX| - |X| + |Y|)|XB|}{|X|} + |XB| - \mu(X,B)|Y| \\ &= \frac{|CX||XB|}{|X|}. \end{aligned}$$

Theorem 2 (Ruzsa triangle inequality). If X, Y, Z are finite subsets of a group G, then $|X||YZ| \le |YX^{-1}||XZ|$.

Theorem 3 (Ruzsa covering lemma). If A, B are finite subsets of a group G and A is nonempty, then there is a set $S \subseteq B$ with $|S| \le \mu(A, B)$ and $B \subseteq A^{-1}AS$.

Proof. Let $\emptyset \neq X \subseteq A$ be such that $\frac{|XB|}{|X|} = \mu(A, B)$. Take S to be a maximal subset of B such that Xs, Xs' are disjoint for every pair of distinct elements $s, s' \in S$. Then $|X||S| = |XS| \leq |XB|$ and $B \subseteq X^{-1}XS \subseteq A^{-1}AS$.

Lemma 1 (Plünnecke tensor power trick). If A, B are finite subsets of a semigroup G, A', B' are finite subsets of a semigroup G', and A, A' are nonempty, then

$$\mu(A \times A', B \times B') = \mu(A, B)\mu(A', B').$$

Theorem 4 (Plünnecke-Ruzsa sumset inequality). If $A, B_1, ..., B_h$ are finite subsets of an abelian semigroup G with A nonempty, such that for all $b \in (h-1)(B_1 \cup \cdots \cup B_h)$ we have |A + b| = |A|, then

$$\mu(A, B_1 + \dots + B_h) \le \frac{|A + B_1|}{|A|} \cdots \frac{|A + B_h|}{|A|}.$$

In particular, if A is cancellative we have $|B_1 + \dots + B_h| \leq \frac{|A+B_1|}{|A|} \cdots \frac{|A+B_h|}{|A|} |A|$.

Proof. Write $\alpha_i = \frac{|A+B_i|}{|A|}$. Choose a large integer n such that $\frac{n}{\alpha_i}$ is an integer for all i, and set $n_i = \frac{n}{\alpha_i}$. By adding copies of \mathbb{N} to G, we can assume there exist $T_1, \ldots, T_h \subseteq G$ with $|T_i| = n_i$ such that all sums

 $y + t_1 + \dots + t_h$, $y \in A + B_1 + \dots + B_h$, $\forall 1 \le i \le h$ $t_i \in T_i$

are distinct. Set $B = \bigcup_i (B_i + T_i)$. We have

$$|A+B| \le \sum_{i} |A+B_i||T_i| = \sum_{i} n_i \alpha_i |A|,$$

so $\mu(A, B) \leq \sum_{i} n_i \alpha_i = hn$. Let $\emptyset \neq X \subseteq A$ be such that $\frac{|X+B|}{|X|} = \mu(A, B)$. Applying Theorem 1 h times, we see that $|X + hB| \leq \mu(A, B)^h |X| \leq (hn)^h |X|$. Thus,

$$n_1 \cdots n_h |X + B_1 + \dots + B_h| = |X + B_1 + \dots + B_h + T_1 + \dots + T_h| \le |X + hB| \le (hn)^h |X|,$$

 \mathbf{SO}

$$\mu(A, B_1 + \dots + B_h) \le \frac{(hn)^h}{n_1 \cdots n_h} = h^h \alpha_1 \cdots \alpha_h$$

Applying the tensor power trick (Lemma 1), we have

$$\mu(A, B_1 + \dots + B_h)^k = \mu(\times^k A, \times^k B_1 + \dots + \times^k B_h) \le h^h \alpha_1^k \cdots \alpha_h^k,$$

and taking k to infinity finishes the proof.

Proposition 1 (Bourgain). Let $A_1, ..., A_h, B_1, ..., B_h, C_1, ..., C_h$ be finite subsets of an abelian group G such that for each $i A_i \cap C_i$ is nonempty. Then

$$|B_1 + \dots + B_h| \le \frac{|B_1 + C_1|}{|A_1 \cap C_1|} \cdots \frac{|B_h + C_h|}{|A_h \cap C_h|} |A_1 + \dots + A_h|.$$

1.1 Approximate variants

Lemma 2. If A, B are finite subsets of an abelian group G, then there exist $x \in B - A, y \in A + B$ such that

$$|B \cap (A+x)| \ge \frac{|A||B|}{|A+B|},$$
$$|B \cap (-A+y)| \ge \frac{|A||B|}{|A+B|}.$$

Proof. By Cauchy-Schwarz, we have

$$\#\{(a, b, a', b') \in A \times B \times A \times B \mid a + b = a' + b'\} \ge \frac{|A|^2 |B|^2}{|A + B|}.$$

By the pigeonhole principle we can find an x of the form b - a' and a y of the form a + b with the required properties.

Theorem 5 (Approximate covering lemma). If A, B are finite subsets of an abelian group G with A nonempty, then for any $m \ge 1$ there are sets $S_+ \subseteq B - A$, $S_- \subseteq A + B$ such that

$$|B \cap (A + S_+)| \ge (1 - 1/m)|B|,$$

$$|B \cap (-A + S_-)| \ge (1 - 1/m)|B|,$$

and

$$|S_+|, |S_-| < \log(m)\mu(A, B) + 1.$$

Proof. Assume WLOG that $\mu(A, B) = \frac{|A+B|}{|A|}$. Iteratively apply Lemma 2 and use the inequality $-\log(1 - \frac{|A|}{|A+B|}) \ge \frac{|A|}{|A+B|}$.

Theorem 6 (Approximate Plünnecke-Ruzsa). If $A, B_1, ..., B_h$ are finite subsets of an abelian semigroup G with A nonempty, such that for all $b \in (h-1)(B_1 \cup \cdots \cup B_h)$ we have |A + b| = |A|, then for any $m \ge 1$ there is a set $X \subseteq A$ with

$$|X| > (1 - 1/m)|A|$$

and

$$|X + B_1 + \dots + B_h| \le \frac{hm^{h-1} - 1}{h-1} \frac{|A + B_1|}{|A|} \cdots \frac{|A + B_h|}{|A|} |X|.$$

Proof. We'll show that in fact we can find such X with

$$|X + B_1 + \dots + B_h| \le \left(m^h |X| - \left(m^h - \frac{hm^{h-1} - 1}{h-1}\right)|A|\right) \frac{|A + B_1|}{|A|} \cdots \frac{|A + B_h|}{|A|}.$$

Suppose for contradiction that there is some $m \ge 1$ for which we can not find such an X. Let n be the infimum of all such m. Since A only has finitely many subsets, we can find a set $\emptyset \ne Y \subseteq A$ with $|Y| \ge (1 - 1/n)|A|$ and

$$|Y + B_1 + \dots + B_h| \le \left(n^h |Y| - \left(n^h - \frac{hn^{h-1} - 1}{h-1}\right)|A|\right) \frac{|A + B_1|}{|A|} \cdots \frac{|A + B_h|}{|A|}.$$

Note that if |Y| > (1 - 1/n)|A| then the derivative of the right hand side of the above with respect to n is positive, so by the definition of n we must have |Y| = (1 - 1/n)|A| for any set Y as above.

By the Plünnecke-Ruzsa inequality (Theorem 4), we have

$$\mu(A \setminus Y, B_1 + \dots + B_h) \le \frac{|A + B_1|}{|A \setminus Y|} \cdots \frac{|A + B_h|}{|A \setminus Y|} \le n^h \frac{|A + B_1|}{|A|} \cdots \frac{|A + B_h|}{|A|},$$

so there is some $\emptyset \neq X' \subseteq A \setminus Y$ such that

$$|X' + B_1 + \dots + B_h| \le n^h \frac{|A + B_1|}{|A|} \cdots \frac{|A + B_h|}{|A|} |X'|.$$

Taking $Y' = Y \cup X'$, we have

$$|Y' + B_1 + \dots + B_h| \le |Y + B_1 + \dots + B_h| + |X' + B_1 + \dots + B_h|$$

$$\le \left(n^h |Y| + n^h |X'| - \left(n^h - \frac{hn^{h-1} - 1}{h - 1}\right) |A|\right) \frac{|A + B_1|}{|A|} \cdots \frac{|A + B_h|}{|A|}$$

$$= \left(n^h |Y'| - \left(n^h - \frac{hn^{h-1} - 1}{h - 1}\right) |A|\right) \frac{|A + B_1|}{|A|} \cdots \frac{|A + B_h|}{|A|},$$

but |Y'| > (1 - 1/n)|A|, a contradiction.

Theorem 7 (Ruzsa). If A, B, C are finite subsets of a semigroup G with A nonempty, such that for any $b \in B, c \in C$ we have |cA| = |Ab| = |A|, then for any $m \ge 1$ there is a set $X \subseteq A$ with

$$|X| > (1 - 1/m)|A|$$

and

$$|CXB| \le (2m-1)\frac{|CA|}{|A|}\frac{|AB|}{|A|}|X|.$$

Proof. Since left multiplication by C commutes with right multiplication by B, we can make an auxiliary abelian semigroup G' out of disjoint copies of $A, B, C, CA, AB, B \times C, CAB, \{0\}$ in an obvious way. Now apply Theorem 6 to G'.

1.2 Energy

Definition 2. If A, B are finite subsets of a semigroup, define their *energy* to be

$$E(A, B) = \#\{(a, b, c, d) \in A \times B \times A \times B \mid ab = cd\}.$$

When A = B, we abbreviate this by E(A).

Proposition 2 (Cauchy-Schwarz). If A, B are finite nonempty subsets of a semigroup, then

$$E(A, B) \ge \frac{|A|^2|B|^2}{|AB|}.$$

Definition 3. If A, B are finite subsets of an abelian group G and $x \in G$, set

$$(A * B)(x) = \#\{(a, b) \in A \times B \mid a + b = x\},\$$

$$(A \circ B)(x) = \#\{(a, b) \in A \times B \mid b - a = x\}.$$

Lemma 3 (Sanders, Schoen). If A is a finite nonempty subset of an abelian group, $0 \le \alpha < 1$, and $c \ge 0$, then there is a set $X \subseteq A$ with $|X| > \alpha \frac{E(A)}{|A|^2}$ and

$$\#\left\{(x,y) \in X \times X \mid (A \circ A)(x-y) > c\frac{E(A)}{|A|^2}\right\} \ge \left(1 - \frac{c}{1-\alpha}\right)|X|^2.$$

Proof. We will choose $X = A \cap (A + d)$ for some $d \in A - A$. We have

$$\sum_{(A \circ A)(d) \le \alpha \frac{E(A)}{|A|^2}} (A \circ A)(d)^2 \le \alpha \frac{E(A)}{|A|^2} \sum_d (A \circ A)(d) = \alpha E(A),$$

 \mathbf{SO}

$$\sum_{(A \circ A)(d) > \alpha \frac{E(A)}{|A|^2}} (A \circ A)(d)^2 \ge (1 - \alpha)E(A).$$

Setting

$$S = \left\{ (a,b) \in A \times A \mid (A \circ A)(a-b) \le c \frac{E(A)}{|A|^2} \right\}.$$

we have

$$\sum_{d} \#\{(a,b) \in S \mid a,b \in A+d\} = \sum_{(a,b) \in S} (A \circ A)(a-b) \le c \frac{E(A)}{|A|^2} |S| \le c E(A).$$

Thus

$$\sum_{(A \circ A)(d) > \alpha \frac{E(A)}{|A|^2}} (1 - \alpha) \# \{ (a, b) \in S \mid a, b \in A + d \} - c(A \circ A)(d)^2 \le 0,$$

so there must be some d with $(A \circ A)(d) > \alpha \frac{E(A)}{|A|^2}$ and

$$(1 - \alpha) \# \{ (a, b) \in S \mid a, b \in A + d \} - c(A \circ A)(d)^2 \le 0.$$

Taking $X = A \cap (A + d)$ for this d, we have $|X| = (A \circ A)(d)$ and

$$\#\left\{(x,y)\in X\times X\mid (A\circ A)(x-y)>c\frac{E(A)}{|A|^2}\right\}=|X|^2-\#\{(a,b)\in S\mid a,b\in A+d\}.$$

Theorem 8 (Balog, Gowers, Schoen, Szemerédi). If A is a finite nonempty subset of an abelian group, then there is a set $A' \subseteq A$ with $|A'| > \frac{E(A)}{6|A|^2}$ and

$$|A' - A'| < 486 \frac{|A|^{10}}{E(A)^3}.$$

Proof. Take $\alpha = \frac{1}{2}, c = \frac{1}{9}$ in Lemma 3 to find a set $X \subseteq A$ with $|X| > \frac{E(A)}{2|A|^2}$ and

$$\#\left\{(x,y)\in X\times X\mid (A\circ A)(x-y)>\frac{E(A)}{9|A|^2}\right\}\geq \frac{7}{9}|X|^2.$$

Make a graph \mathcal{H} with vertex set X, having an edge between x and y exactly when $(A \circ A)(x - y) > \frac{E(A)}{9|A|^2}$. Letting A' be the set of vertices in \mathcal{H} having degree greater than $\frac{2}{3}|X|$, we see that $|A'| \ge \frac{|X|}{3} > \frac{E(A)}{6|A|^2}$. For any $a, b \in A'$, we can find more than $\frac{1}{3}|X|$ vertices $x \in X$ connected to both a, b in \mathcal{H} , and for each such x we can write

$$a - b = (a - x) - (b - x),$$

and we can write the right hand side in the form $(a_1 - a_2) - (a_3 - a_4)$ with $a_1, a_2, a_3, a_4 \in A$, $a_1 - a_2 = a - x$, in at least $\frac{E(A)^2}{81|A|^4}$ different ways. Thus we have

$$|A' - A'| \cdot \frac{1}{3} |X| \cdot \frac{E(A)^2}{81|A|^4} < |A|^4,$$
$$|A' - A'| < 486 \frac{|A|^{10}}{E(A)^3}.$$

 \mathbf{SO}

2 The sum-product theorem

2.1 Characteristic Zero

Definition 4. For any distinct points $a, b \in \mathbb{R}^n$, set

$$D(a,b) = \left\{ p \in \mathbb{R}^n \mid \angle pab \le \frac{\pi}{6}, \angle pba \le \frac{\pi}{6} \right\}.$$

Lemma 4. For any four points $a, b, c, d \in \mathbb{R}^n$ with $a \neq b, c \neq d, \{a, b\} \neq \{c, d\}$, if all of the inequalities

$$|ab| \le |bc|, |ab| \le |bd|, |cd| \le |ad|, |cd| \le |bd|$$

hold then the interiors of D(a, b) and D(c, d) do not intersect.

Proof. If $|ab| + |cd| \leq |bd|$, then since D(a, b) is contained in the sphere of radius |ab| around b and D(c, d) is contained in the sphere of radius |cd| around d, their interiors can't intersect. Otherwise, we can find a point $x \in \mathbb{R}^n$ such that |bx| = |ab|, |dx| = |cd|. Since |ab|, |cd| are assumed to be at most |bd|, bd is the longest edge of triangle bdx, so we must have $\angle bxd \geq \frac{\pi}{3}$. Thus we can find some point m on the line segment bd with $\angle mxb \geq \frac{\pi}{6}$ and $\angle mxd \geq \frac{\pi}{6}$. Since a is outside the sphere of radius |cd| = |dx| centered at d, we have $\angle abm \geq \angle xbm$, and similarly $\angle cdm \geq \angle xdm$. Thus, if we rotate the ray mx around the line bd we get a cone which separates the interior of D(a, b) from the interior of D(c, d).

Corollary 1 (Gilbert, Pollak). Let P be a finite set of points in \mathbb{R}^n , and let T be a minimum spanning tree on P. For any distinct edges $\{a,b\}, \{c,d\}$ of T, the interiors of D(a,b) and D(c,d) do not intersect.

Proof. Since T is a tree, there is a unique path in T connecting the edge $\{a, b\}$ to the edge $\{c, d\}$. We may assume without loss of generality that this path connects a to c without passing through b or d. Then if we replace edge $\{a, b\}$ with either $\{b, c\}$ or $\{b, d\}$ we again get a spanning tree, so by minimality we must have $|ab| \leq |bc|, |bd|$. Similarly we have $|cd| \leq |ad|, |bd|$. Now apply Lemma 4.

Proposition 3. Suppose $a, b, c, d \in \mathbb{H}^{\times}$ are nonzero quaternions with $\angle b0d \leq \frac{\pi}{6}$. Then (a+c)(b+c) $d)^{-1}$ is in the interior of $D(ab^{-1}, cd^{-1})$.

Proof. Writing b = md, we have

$$(a+c)(b+d)^{-1} = (a+c)d^{-1}(m+1)^{-1} = ab^{-1} + (cd^{-1} - ab^{-1})(m+1)^{-1},$$

so it's enough to check that if $\angle m01 \leq \frac{\pi}{6}$ then $(m+1)^{-1}$ is in the interior of D(0,1). Since $\angle (m+1)10 \geq \frac{5\pi}{6}$, we have $\angle 1(m+1)^{-1}0 \geq \frac{5\pi}{6}$, so $(m+1)^{-1}$ is in the interior of D(0,1) by the fact that the angles of a triangle sum to π .

Theorem 9 (Konyagin, Rudnev, Solymosi). Suppose $A \subseteq \mathbb{H}^{\times}$ is a finite set of nonzero quaternions such that for any $a, b \in A$ we have $\angle a0b \leq \frac{\pi}{6}$. Then

$$|A + A|^2 |AA| \ge \frac{|A|^4 - |A||AA|}{\log \frac{|AA|^2}{|A|} + \gamma}$$

where γ is the Euler-Mascheroni constant.

Proof. By Cauchy-Schwarz, we have

$$\#\{(a,b,c,d) \in A \times A \times A \times A \mid ab = cd\} \ge \frac{|A|^4}{|AA|}.$$

Write $m(x) = \#\{(a, c) \in A \times A \mid c^{-1}a = x\}, n(x) = \#\{(b, d) \in A \times A \mid db^{-1} = x\}$. By Cauchy-Schwarz again, we have

$$\sum_{x} m(x)^{2} \sum_{y} n(y)^{2} \ge \left(\sum_{x} m(x)n(x)\right)^{2} \ge \frac{|A|^{8}}{|AA|^{2}}.$$

Thus we may assume without loss of generality that

$$\sum_{x} n(x)^2 \ge \frac{|A|^4}{|AA|},$$

since otherwise we may replace A by \overline{A} . Choose a numbering $x_1, ..., x_{|AA^{-1}|}$ of the elements of AA^{-1} such that $n(x_1) \ge n(x_2) \ge \cdots$. Choose $1 \le k \le |AA^{-1}|$ such that $(k-1)n(x_k)^2$ is maximized. Then by choice of k we have

$$\frac{|A|^4}{|AA|} \le \sum_{i=1}^{|AA^{-1}|} n(x_i)^2 \le |A| + (k-1)n(x_k)^2 \sum_{i=2}^{|AA^{-1}|} \frac{1}{i-1},$$
$$(k-1)n(x_k)^2 \ge \frac{|A|^4 - |A||AA|}{2^4},$$

 \mathbf{SO}

$$(k-1)n(x_k)^2 \ge \frac{|A|^4 - |A||AA|}{H_{|AA^{-1}|-1}|AA|}$$

where $H_n = \sum_{i=1}^n \frac{1}{i}$ denotes the *n*th harmonic number. Note that by the Ruzsa triangle inequality 2 we have $|AA^{-1}| \leq \frac{|AA|^2}{|A|}$, so

$$H_{|AA^{-1}|-1} \le \log \frac{|AA|^2}{|A|} + \gamma.$$

Let T be a minimum spanning tree on $\{x_1, ..., x_k\}$. For any edge $\{x_i, x_j\}$ in T, if $a, b, c, d \in A$ have $ab^{-1} = x_i$ and $cd^{-1} = x_j$, then by Proposition 3 the ratio $(a + c)(b + d)^{-1}$ will be in the interior of $D(ab^{-1}, cd^{-1})$. Thus by Corollary 1 we have an injection

$$\{(\{x_i, x_j\}, a, b, c, d) \in T \times A \times A \times A \times A | ab^{-1} = x_i, cd^{-1} = x_j\} \hookrightarrow (A+A) \times (A+A),$$

taking $(\{x_i, x_j\}, a, b, c, d)$ to (a + c, b + d). Since T has k - 1 edges and $n(x_i) \ge n(x_k)$ for $1 \le i \le k$, we have

$$|A+A|^2 \ge (k-1)n(x_k)^2 \ge \frac{|A|^4 - |A||AA|}{H_{|AA^{-1}|-1}|AA|}.$$

2.2 Finite fields

Lemma 5. If $A, B \subseteq \mathbb{F}_q$, $G \subseteq \mathbb{F}_q^{\times}$, then there is some $\xi \in G$ with

$$|A + \xi B| \ge \frac{|A||B||G|}{|A||B| + |G|}$$

Proof. Define a function $f: G \mapsto \mathbb{N}$ by

$$f(\xi) = \#\{(a, b, a', b') \in A \times B \times A \times B \mid a + \xi b = a' + \xi b'\}$$

We have

$$\sum_{\xi \in G} f(\xi) \le |A|^2 |B|^2 + |A||B||G|,$$

so there must be some $\xi \in G$ with $f(\xi) \leq \frac{|A|^2|B|^2}{|G|} + |A||B|$. By Cauchy-Schwarz, we have

$$|A + \xi B| \ge \frac{|A|^2 |B|^2}{f(\xi)} \ge \frac{|A||B||G|}{|A||B| + |G|}.$$

Theorem 10 (Bourgain, Garaev, Katz, Li, Shen, ...). If p is prime and $A \subseteq \mathbb{F}_p$ then

$$|A + A|^{9} |AA|^{4} \ge \frac{|A|^{14}}{256} \min\left(1, \frac{p}{|A|^{2}}\right),$$
$$|A + A|^{8} |AA|^{4} \ge \frac{|A|^{13}}{2^{23}} \min\left(1, \frac{3^{7}p}{|A|^{2}}\right).$$

Proof. We'll prove the second bound (for the first bound, take X = A and Z = W = Y instead of using the approximate variations on the sumset calculus). By the approximate Plünnecke-Ruzsa theorem (Theorem 6), we can find $X \subseteq A$ with $|X| \ge \frac{3}{4}|A|$ and

$$|X + A + A + A| \le 24 \frac{|A + A|^3}{|A|^3} |X|.$$

By the Cauchy-Schwarz inequality, we have

$$\sum_{x \in X, a \in A} |xA \cap Xa| \ge \frac{|X|^2 |A|^2}{|XA|},$$

so by the pigeonhole principle there is some $a_0 \in A$ with

$$\sum_{x \in X} |xA \cap Xa_0| \ge \frac{|X|^2 |A|}{|XA|}.$$

Let $X = \{x_1, ..., x_{|X|}\}$, set $n_i = |x_i A \cap X a_0|$, and suppose WLOG that $n_1 \ge \cdots \ge n_{|X|}$. Choose k maximizing the quantity $k^{3/4}n_k$, set $Y = \{x_1, ..., x_k\}$, and set $N = n_k$. We have

$$\frac{|X|^2|A|}{|XA|} \le \sum_{i=1}^{|X|} n_i \le \sum_{i=1}^{|X|} i^{-3/4} k^{3/4} n_k < 4|X|^{1/4} |Y|^{3/4} N,$$

 \mathbf{SO}

$$|Y|^3 N^4 \ge \frac{|X|^7 |A|^4}{256 |XA|^4}.$$

For any $y \in Y$ we have $|yA \cap Xa_0| \ge N$, so by Ruzsa's triangle inequality (Theorem 2) we have

$$|yA - Xa_0| \le \frac{|yA + yA \cap Xa_0||yA \cap Xa_0 + Xa_0|}{|yA \cap Xa_0|} \le \frac{|y(A + A)||(X + X)a_0|}{N} \le \frac{|A + A|^2}{N},$$

and similarly by Plünnecke-Ruzsa (Theorem 4) we have

$$|yA + Xa_0| \le \frac{|yA \cap Xa_0 + yA||yA \cap Xa_0 + Xa_0|}{|yA \cap Xa_0|} \le \frac{|A + A|^2}{N}.$$

There are now two cases.

Case 1: If $\frac{Y-Y}{(Y-Y)\setminus\{0\}} = \mathbb{F}_p$, then by Lemma 5 we can find $\xi \in \mathbb{F}_p^{\times}$ such that $|A + \xi A| \geq \frac{1}{2}\min(|A|^2, p)$. Write $\xi = \frac{c-d}{a-b}$ with $a, b, c, d \in Y$. By Plünnecke-Ruzsa, we have

$$|(a-b)A + (c-d)A| \le |aA - bA + cA - dA| \le \frac{|Xa_0 + aA||Xa_0 - bA||Xa_0 + cA||Xa_0 - dA|}{|Xa_0|^3}$$

 \mathbf{SO}

$$|A+A|^8 \ge \frac{|A|^2|X|^3N^4}{2}\min\left(1,\frac{p}{|A|^2}\right).$$

Since $|X|^3 N^4 \ge |Y|^3 N^4 \ge \frac{|X|^7 |A|^4}{256 |AA|^4}$ and $|X| \ge \frac{3}{4} |A|$, we have

$$|A + A|^8 |AA|^4 \ge \frac{|X|^7 |A|^6}{2^9} \min\left(1, \frac{p}{|A|^2}\right)$$
$$\ge \frac{3^7 |A|^{13}}{2^{23}} \min\left(1, \frac{p}{|A|^2}\right).$$

Case 2: If $\frac{Y-Y}{(Y-Y)\setminus\{0\}} \neq \mathbb{F}_p$, then we can find $\xi \in \left(\frac{Y-Y}{(Y-Y)\setminus\{0\}} + 1\right) \setminus \frac{Y-Y}{(Y-Y)\setminus\{0\}}$. Writing $\xi = \frac{c-d}{a-b} + 1$ with $a, b, c, d \in Y$, we see that for any $Z, W \subseteq Y$ have

$$|Z||W| = |Z + \xi W| \le |(a - b)Z + (a - b)W + (c - d)W|.$$

In particular, if $\emptyset \neq Z' \subseteq Z$ is chosen such that $\mu((a-b)Z, (a-b)W + (c-d)W) = \frac{|(a-b)Z' + (a-b)W + (c-d)W|}{|Z'|}$, then by Plünnecke-Ruzsa we have

$$|Z'||W| \le |(a-b)Z' + (a-b)W + (c-d)W| \le \frac{|Z+W|}{|Z|} \frac{|(a-b)Z + (c-d)W|}{|Z|} |Z'|,$$

 \mathbf{SO}

$$|Z|^{2}|W| \le |A + A||(a - b)Z + (c - d)W|.$$

Applying the approximate covering lemma (Lemma 5) to $aA \cap Xa_0$, aY, we find a set S with $|S| < 3\frac{|A+A|}{N}$ such that

$$|aY \cap (Xa_0 + aS)| \ge \frac{6}{7}|Y|.$$

Let $Y' = Y \cap (a^{-1}Xa_0 + S)$. Applying it again, we find a set S' with $|S'| < 3\frac{|A+A|}{N}$ such that

$$bY' \cap (-Xa_0 + bS') \ge \frac{6}{7}|Y'|,$$

and let $Z = Y' \cap (-b^{-1}Xa_0 + S)$. Similarly, find sets $W \subseteq Y, S'', S'''$ such that $|W| \ge \frac{6^2}{7^2}|Y|$, $cW \subseteq Xa_0 + cS'', dW \subseteq -Xa_0 + dS''', |S''|, |S'''| \le 3\frac{|A+A|}{N}$. We have

$$\begin{aligned} |(a-b)Z + (c-d)W| &\leq |aZ - bZ + cW - dW| \\ &\leq |S||S'||S''||S'''||Xa_0 + Xa_0 + Xa_0 + Xa_0| \\ &\leq 3^4 \frac{|A+A|^4}{N^4} \cdot 24 \frac{|A+A|^3}{|A|^3} |X|, \end{aligned}$$

 \mathbf{SO}

$$|X||A + A|^8 \ge \frac{24|A|^3|Y|^3N^4}{7^6}$$

By the inequalities $|X| \geq \frac{3}{4} |A|$ and $|Y|^3 N^4 \geq \frac{|X|^7 |A|^4}{256 |AA|^4}$ we have

$$\begin{split} |A+A|^8 |AA|^4 &\geq \frac{3|X|^6 |A|^7}{2^5 \cdot 7^6} \\ &\geq \frac{3^7 |A|^{13}}{2^{17} \cdot 7^6} \\ &\geq \frac{|A|^{13}}{2^{23}}. \end{split}$$

Theorem 11 (Garaev). Let q be a prime power. If $A, B \subseteq \mathbb{F}_q, C \subseteq \mathbb{F}_q^{\times}$, then

$$|A + B||AC| \ge \min\left(\frac{|A|q}{2}, \frac{|A|^2|B||C|}{4q}\right).$$

Proof. Let

$$J = \{(x, b, c, y) \in (A + B) \times B \times C \times AC \mid x = b + yc^{-1}\}.$$

We have an injection $A \times B \times C \hookrightarrow J$ given by $(a, b, c) \mapsto (a + b, b, c, ac)$, so $|J| \ge |A||B||C|$. Let $\phi_0, ..., \phi_{q-1}$ be the additive characters of \mathbb{F}_q , ϕ_0 the trivial character. We have

$$\begin{aligned} |J| &= \frac{1}{q} \sum_{n=0}^{q-1} \sum_{x \in A+B} \sum_{b \in B} \sum_{c \in C} \sum_{y \in AC} \phi_n(b-x+yc^{-1}) \\ &\leq \frac{|A+B||B||C||AC|}{q} + \frac{1}{q} \sum_{n=1}^{q-1} \left| \sum_{x \in A+B} \phi_n(x) \right| \left| \sum_{b \in B} \phi_n(b) \right| \sum_{c \in C} \left| \sum_{y \in AC} \phi_n(yc^{-1}) \right|. \end{aligned}$$

By Cauchy-Schwarz, for $n \neq 0$ we have

$$\left(\sum_{c\in C} \left|\sum_{y\in AC} \phi_n(yc^{-1})\right|\right)^2 \le |C| \sum_{d\in \mathbb{F}_q} \left|\sum_{y\in AC} \phi_n(dy)\right|^2$$
$$= q|C||AC|,$$

and applying Cauchy-Schwarz one more time we have

$$\frac{1}{q} \sum_{n=1}^{q-1} \left| \sum_{x \in A+B} \phi_n(x) \right| \left| \sum_{b \in B} \phi_n(b) \right| \sum_{c \in C} \left| \sum_{y \in AC} \phi_n(yc^{-1}) \right| \le \frac{\sqrt{q|C||AC|}}{q} \sum_{n=1}^{q-1} \left| \sum_{x \in A+B} \phi_n(x) \right| \left| \sum_{b \in B} \phi_n(b) \right| \le \sqrt{q|A+B||B||C||AC|}.$$

Thus

$$|A||B||C| \le \frac{|A+B||B||C||AC|}{q} + \sqrt{q|A+B||B||C||AC|}.$$

A much better sum-product bound was recently obtained by Rudnev, using a three-dimensional variant of the Szemerédi-Trotter theorem due to Kollár. The proof is sketched below.

Lemma 6 (Kollár). Let \mathcal{L} be a set of m distinct lines in \mathbb{P}^3 .

- 1) There exists a surface S of degree at most $\sqrt{6m} 2$ which contains \mathcal{L} .
- 2) For any irreducible surface U of degree $g \leq \sqrt{6m}$ there exists a surface T of degree at most $\frac{6m}{q}$ which contains \mathcal{L} and does not contain U.

Proposition 4 (Kollár). For i = 1, ..., n-1 let H_i be a hypersurface in \mathbb{P}^n of degree a_i , and suppose their intersection $B = H_1 \cap \cdots \cap H_{n-1}$ is 1-dimensional. Let $C \subseteq B$ be a reduced subcurve. Then the arithmetic genus of C satisfies

$$p_a(C) \le p_a(B) = 1 + \frac{1}{2} \left(\sum_i a_i - n - 1 \right) \prod_i a_i.$$

Proof. By induction on n together with the Kodaira vanishing theorem for \mathbb{P}^n , one can show that $h^0(B, \mathcal{O}_B) = 1$, so $p_a(B) = h^1(B, \mathcal{O}_B) - h^0(B, \mathcal{O}_B) + 1 = h^1(B, \mathcal{O}_B)$. If J is the ideal sheaf of C on B, we have

$$0 \to J \to \mathcal{O}_B \to \mathcal{O}_C \to 0,$$

so by the long exact sequence of cohomology we have

$$H^1(B, \mathcal{O}_B) \to H^1(C, \mathcal{O}_C) \to H^2(B, J),$$

and $H^2(B, J) = 0$ since B is 1-dimensional. Thus

$$p_a(C) = h^1(C, \mathcal{O}_C) - h^0(C, \mathcal{O}_C) + 1 \le h^1(B, \mathcal{O}_B) = p_a(B).$$

The formula for $p_a(B)$ follows by directly computing the Hilbert polynomial of B.

Proposition 5 (Kollár). Let $S, T \subseteq \mathbb{P}^3$ be surfaces of degrees a, b with no common components, and let C be a reduced curve contained in $S \cap T$. For a point $p \in C$ let r(p) be the multiplicity of C at p.

- 1) C has at most ab components.
- 2) $\sum_{p \in C} r(p) 1 \leq \frac{ab}{2}(a+b-2).$

Following Rudnev, we give a concrete description of Plücker coordinates for lines in \mathbb{P}^3 .

Definition 5. For a line L in \mathbb{P}^3 containing points $[q_0:q_1:q_2:q_3], [u_0:u_1:u_2:u_3]$, set

$$P_{ij} = q_i u_j - q_j u_i,$$

and define the Plücker coordinates of L to be $[P_{01} : P_{02} : P_{03} : P_{23} : P_{31} : P_{12}]$. Writing this as $[\omega : \nu]$, if $q_0 = u_0 = 1$ and we set $q = (q_1, q_2, q_3), u = (u_1, u_2, u_3)$ then $\omega = u - q, \nu = q \times \omega$. Define the Klein quadric \mathcal{K} to be the 4-dimensional hypersurface

$$\mathcal{K} = \{ [\omega : \nu] \in \mathbb{P}^5 \mid \omega \cdot \nu = 0 \}.$$

Proposition 6. Two lines with Plücker coordinates $[\omega : \nu], [\omega' : \nu']$ intersect if and only if

$$\omega \cdot \nu' + \omega' \cdot \nu = 0,$$

and this occurs if and only if the line connecting $[\omega : \nu], [\omega' : \nu']$ is contained in \mathcal{K} . Every plane contained in \mathcal{K} is either an α -plane, corresponding to the set of lines through a specific point in \mathbb{P}^3 , or a β -plane, corresponding to the set of lines contained in a specific plane in \mathbb{P}^3 . Any two α -planes meet in a point, any two β -planes meet in a point, and an α -plane and a β -plane meet in a line if and only if the point corresponding to the α -plane is contained in the plane corresponding to the β -plane.

Definition 6. A ruling Γ of a surface $S \subset \mathbb{P}^3$ is a closed curve $\Gamma \subset \mathcal{K}$ such that each point of Γ corresponds to a line contained in S. The *degree* of a ruling Γ is defined to be its degree as a curve in \mathbb{P}^5 . A line contained in S which is not contained in any ruling of S is called *special*.

Proposition 7. For any three skew lines $L_1, L_2, L_3 \subset \mathbb{P}^3$, the union of the collection of all lines which intersect all three of L_1, L_2, L_3 is a smooth quadric surface S. Conversely, every smooth quadric surface S has two irreducible rulings Γ_1, Γ_2 of degree 2.

Corollary 2. Every irreducible ruled surface S is either a plane, a cone, a smooth quadric surface, or else has a unique ruling and contains at most two special lines which do not intersect each other. If S is not a plane, the degree d of an irreducible ruling is equal to the degree of S. Any nonspecial line intersects at most d - 2 other nonspecial lines.

Theorem 12 (Cayley, Monge, Salmon, Voloch). Let $S \subset \mathbb{P}^3$ be a surface of degree d, with d < p if the characteristic is p. If S has no ruled components, then there is a surface T of degree 11d - 24 such that S and T have no components in common, and every line contained in S is contained in $S \cap T$.

Sketch. The surface T is defined by the equation cutting out those points p of S for which there exists a line which is triply tangent to S at p (such a p is called a *flecnodal* point). The equation for T can be computed explicitly using resultants. Next, one shows that if a component of S consists entirely of flecnodal points, then that component must be ruled.

Theorem 13 (Kollár). Let \mathcal{L} be a collection of m distinct lines in \mathbb{P}^n such that for any three distinct lines $L_1, L_2, L_3 \in \mathcal{L}$ the number of lines from \mathcal{L} intersecting all three of L_1, L_2, L_3 is at most \sqrt{m} . If the characteristic is p, suppose that $m < \frac{11}{6}p^2$. Then the total number of intersection points between lines in \mathcal{L} is at most

$$\left(\frac{\sqrt{6}}{2} + \frac{(36 - \frac{1}{2})\sqrt{6}}{\sqrt{11}}\right)m^{\frac{3}{2}} < \sqrt{754}m^{\frac{3}{2}}.$$

Proof. By choosing a generic projection to \mathbb{P}^3 , we may assume without loss of generality that n = 3. We may also assume that $m \ge 754$. Find a surface S of degree $d \le \sqrt{6m} - 2$ containing \mathcal{L} , and assume that the degree of S is minimal. Choose an ordering S_1, \ldots of the irreducible components of S such that, letting $\mathcal{L}_i = \{l \in \mathcal{L} \mid l \subset S_i \setminus (S_1 \cup \cdots \cup S_{i-1})\}$, we have $\frac{|\mathcal{L}_i|}{\deg S_i}$ nonincreasing in i. Write $m_i = |\mathcal{L}_i|, d_i = \deg S_i$. The number of intersections between lines contained in different sets $\mathcal{L}_i, \mathcal{L}_j$ is at most

$$\sum_{j \le i} m_i d_j \le \sum_{j \le i} \frac{m_i d_j + m_j d_i}{2} = \frac{md - \sum_i m_i d_i}{2}.$$

If S_i is a cone, then there is at most 1 intersection point between lines in \mathcal{L}_i (the cone point). If S_i is a plane, then any two lines in S_i intersect, so by assumption $m_i \leq \sqrt{m}$, and the number of intersection points between lines in \mathcal{L}_i is at most

$$\frac{m_i(m_i - 1)}{2} \le \frac{(m_i - 1)\sqrt{m}}{2}$$

If S_i is a smooth quadric surface, then either one of the rulings on S_i contains at most two lines from \mathcal{L}_i or by assumption both rulings contain at most \sqrt{m} lines from \mathcal{L}_i , so the number of intersection points between lines in \mathcal{L}_i is at most

$$\max\left(m_i - 1, 2(m_i - 2), \frac{m_i\sqrt{m}}{2}\right) \le \frac{m_i\sqrt{m}}{2}.$$

If S_i is ruled of degree at least 3, then since there are at most two special lines in S_i and since nonspecial lines meet at most d_i-2 other nonspecial lines, the number of intersection points between lines in \mathcal{L}_i is at most

$$\frac{m_i(d_i - 2 + 2) + 2m_i}{2} = \frac{m_i d_i}{2} + m_i.$$

If S_i is not ruled, then by Lemma 6 and Theorem 12 we can find a surface T of degree at most $\min\left(11d_i - 24, \frac{6m_i}{d_i}\right)$ which contains \mathcal{L}_i but not S_i (note that if we take deg $T = 11d_i - 24$ then

 $d_i \leq \sqrt{\frac{6}{11}m} < p$). Thus by Proposition 5 the number of intersections between lines in \mathcal{L}_i is at most

$$\min\left(\frac{d_i(11d_i-24)}{2}(12d_i-26), 3m_i\left(d_i+\frac{6m_i}{d_i}-2\right)\right) \le \frac{m_id_i}{2} + \frac{(36-\frac{1}{2})\sqrt{6}}{\sqrt{11}}m_i^{\frac{3}{2}}$$

Putting everything together, we see that the total number of intersection points between lines in \mathcal{L} is at most

$$\frac{md}{2} + \sum_{i} \frac{(36 - \frac{1}{2})\sqrt{6}}{\sqrt{11}} m_i \sqrt{m} \le \left(\frac{\sqrt{6}}{2} + \frac{(36 - \frac{1}{2})\sqrt{6}}{\sqrt{11}}\right) m^{\frac{3}{2}}.$$

Corollary 3 (Rudnev). Suppose we have n points and n planes in \mathbb{P}^3 such that no more than \sqrt{n} points lie on any line and no more than \sqrt{n} planes all contain a common line. Assume further that if the characteristic is p we have $n \leq \frac{11}{12}p^2$. Then the number of point-plane incidences is at most $\sqrt{6032n^{\frac{3}{2}}}$.

Proof. Taking Plücker coordinates, we get a collection of n α -planes and n β -planes, and every incidence between a point and a plane becomes a pair of an α -plane and a β -plane which intersect in a line. Intersecting the configuration with a general hyperplane which does not contain the intersection of any two α -planes or the intersection of any two β -planes, we get a configuration of 2n lines in \mathbb{P}^4 . Call a line coming from an α -plane an α -line, and similarly define β -lines. Any two α -lines do not intersect, any two β -lines do not intersect, and intersections between α -lines and β -lines correspond to point-plane incidences. For any two α -lines, any β -line intersecting them corresponds to a plane containing the line through the corresponding points, so at most \sqrt{n} lines from the configuration intersect any pair of α -lines. Similarly, at most \sqrt{n} lines from the configuration intersecting any pair of β -lines. Thus we can apply Theorem 13 to see that the number of incidences is at most

$$\sqrt{754}(2n)^{\frac{3}{2}} = \sqrt{6032}n^{\frac{3}{2}}.$$

Theorem 14 (Roche-Newton, Rudnev, Shkredov). If A is a finite subset of the nonzero elements of a field with characteristic p satisfying $|A|^2 |AA| \leq \frac{11}{12}p^2$, then

$$|A + A|^2 |AA|^3 \ge \frac{|A|^6}{6032}$$

Proof. We estimate the number N of solutions to the equation

$$a + bcd^{-1} = e + fgh^{-1},$$

with $a, b, c, d, e, f, g, h \in A$, in two ways. By taking c = d, g = h and applying Cauchy-Schwarz we see that

$$N \ge \frac{|A|^4}{|A+A|} |A|^2.$$

Now to each tuple $(a, h, bc) \in A \times A \times AA$ we associate the point (a, bc, h^{-1}) , and to each tuple $(d, e, fg) \in A \times A \times AA$ we associate the plane $\{(x, y, z) \mid x + d^{-1}y = e + fgz\}$. This gives us a collection of $|A|^2 |AA|$ points and $|A|^2 |AA|$ planes in \mathbb{P}^3 such that at most $|AA| \leq \sqrt{|A|^2 |AA|}$ points (respectively planes) lie on any line. By Corollary 3, we see that

$$\sqrt{6032}(|A|^2|AA|)^{\frac{3}{2}} \ge N \ge \frac{|A|^6}{|A+A|}.$$

By a similar argument, we obtain the following.

Theorem 15 (Roche-Newton, Rudnev, Shkredov). Let A, B, C be finite subsets of a field of characteristic p. If $\max(|A|, |B|, |C|)^2 \leq |A||B||C| \leq \frac{11}{12}p^2$, then

$$|A + BC|^2 \ge \frac{|A||B||C|}{6032}.$$

2.3 General rings

Theorem 16 (Katz-Tao Lemma). Let A be a nonempty finite set of non-zero-divisors of a ring R. There is a subset $B \subseteq A$ such that

$$|B| \ge \frac{|A|^2}{4|AA|}$$

and such that for any natural numbers k, l we have

$$|kBB - lBB| \le \left(384 \frac{|A + A|^3 |AA|^7}{|A|^{10}}\right)^{k+l} |kA - lA|.$$

Proof. By Theorem 7 we can find a subset $X \subseteq A$ with $|X| \ge \frac{|A|}{2}$ and

$$|AXA| \leq 3\frac{|AA|^2}{|A|^2}|X|.$$

By Cauchy-Schwarz we have

$$\sum_{x \in X} \sum_{y \in A} |xA \cap Xy| \ge \frac{|X|^2 |A|^2}{|XA|} \ge \frac{|X|^2 |A|^2}{|AA|},$$

so we can pick some $y \in A$ such that

$$\sum_{x \in X} |xA \cap Xy| \ge \frac{|X|^2 |A|}{|AA|}.$$

Setting

$$B = \left\{ x \in X \mid |xA \cap Xy| \ge \frac{|X||A|}{2|AA|} \right\},\$$

we have

$$|B| \ge \frac{|X||A|}{2|AA|}.$$

We now show by induction on h that if $b_1, ..., b_k \in B^h$, then

$$|b_1A + \dots + b_kA| \le \left(\frac{4|A+A||AA|}{|A|^2}\right)^{hk} |kA|.$$

Suppose that we have shown this already for h. Letting $b_1, ..., b_k \in B^h$ and $x_1, ..., x_k \in B$, since the b_i s and x_i s are non-zero-divisors we have

$$|b_i x_i A + b_i x_i A| = |A + A|$$

and

$$|b_i x_i A \cap b_i A y| = |x_i A \cap A y| \ge \frac{|A|^2}{4|AA|},$$

so by Proposition 1 we have

$$|b_1 x_1 A + \dots + b_k x_k A| \le \frac{|A+A|}{|x_1 A \cap Ay|} \cdots \frac{|A+A|}{|x_k A \cap Ay|} |b_1 Ay + \dots + b_k Ay|$$
$$\le \left(\frac{4|A+A||AA|}{|A|^2}\right)^{(h+1)k} |kA|,$$

completing the induction. A similar statement with both additions and subtractions can be proved in the same way.

Now choose an element $m \in BA$ such that, setting

$$C = \{(b, a) \in B \times A \mid ba = m\},\$$

we have

$$|C| \ge \frac{|B||A|}{|BA|} \ge \frac{|A|^2}{2|AA|^2}|X|.$$

Fixing a representation uv + tw for each sum in BB + BB, we have an injection

$$(BB + BB) \times C \times C \hookrightarrow \{(c, d, s) \mid c, d \in B^3, s \in cA + dA\},\$$

sending (uv + tw, (b, a), (b', a')) to (uvb, twb', (uv + tw)m). Thus, using $|B^3| \le |AXA| \le 3\frac{|AA|^2}{|A|^2}|X|$, we have

$$\begin{split} |BB + BB| &\leq \left(\frac{|B^3|}{|C|}\right)^2 \left(\frac{4|A + A||AA|}{|A|^2}\right)^6 |A + A| \\ &\leq 6^2 \frac{|AA|^8}{|A|^8} \cdot 4^6 \frac{|A + A|^6|AA|^6}{|A|^{12}} |A + A| \\ &= 384^2 \frac{|A + A|^6|AA|^{14}}{|A|^{20}} |A + A|. \end{split}$$

By the same argument, for any natural numbers k, l we get

$$|kBB - lBB| \le \left(384 \frac{|A + A|^3 |AA|^7}{|A|^{10}}\right)^{k+l} |kA - lA|.$$

More generally, we even have

$$|kB^{h} - lB^{h}| \le \left(\frac{|B^{h+1}|}{|C|} \left(\frac{4|A+A||AA|}{|A|^{2}}\right)^{h+1}\right)^{k+l} |kA - lA|.$$

Theorem 17 (Self-improving property). Let A be a finite subset of a ring R, and let D be a nonempty subset of A - A. If x is an element of R and $r \in R^*$ is a non-zero-divisor such that

$$|xA + rA| < \frac{|A|^2}{|D|}$$

then there is an element $d \in (A - A) \setminus D$ such that

$$|xAA + rAA| \le \frac{|2AA - AA|}{|dA|} |3AA - 2AA|.$$

If we take D to be the set of zero-divisors of A - A and we assume that $D \neq A - A$, then we have

$$|xA+rA| \leq \frac{|2AA-2AA|}{|A|}|3AA-3AA|$$

Proof. By Cauchy-Schwarz, we have

$$\#\{(a, b, a', b') \in A \times A \times A \times A \mid xa + rb = xa' + rb'\} \ge \frac{|A|^4}{|xA + rA|}$$

 \mathbf{SO}

$$\#\{(d,e) \in (A-A) \times (A-A) \mid xd = re\} \ge \frac{|A|^2}{|xA + rA|} > |D|.$$

Since r is a non-zero-divisor, each pair (d, e) with xd = re corresponds to a different value of d. Thus we can find $d \in (A - A) \setminus D$ with $xd \in r(A - A)$. By the Ruzsa covering lemma, there is a set $S \subseteq AA$ with

$$|S| \le \frac{|dA + AA|}{|dA|} \le \frac{|2AA - AA|}{|dA|}$$

and

$$AA \subseteq dA - dA + S.$$

Thus we have

$$|xAA + rAA| \le |xdA - xdA + xS + rAA| \le |S||r(3AA - 2AA)| \le \frac{|2AA - AA|}{|dA|}|3AA - 2AA|$$

For the last claim, we apply the Ruzsa covering lemma to find $S' \subseteq AA - AA$ with

$$AA - AA \subseteq dA - dA + S'$$

to get

$$|xA + rA| \le |(xA + rA)(A - A)| \le |xdA - xdA + xS' + rA(A - A)| \le \frac{|2AA - 2AA|}{|A|} |3AA - 3AA|. \ \Box$$

From here on, we take A to be a subset of a ring R such that A - A contains a non-zero-divisor, and we let D be the set of zero-divisors in A - A. For any $r \in R$, we define the set S_r to be

$$S_r = \left\{ x \in R \mid |xA + rA| < \frac{|A|^2}{|D|} \right\}$$

Proposition 8. $|A - A|, |A + A| \leq |2AA - 2AA|.$

Proposition 9. If $r \in \mathbb{R}^*$ then $|S_r| < |A - A|^2$. If we also have

$$|D| \le \frac{|A|^3}{2|2AA - 2AA||3AA - 3AA|},$$

then

$$|S_r| < \frac{2|A - A|^2 |2AA - 2AA| |3AA - 3AA|}{|A|^3}.$$

Proof. Let $x \in S_r$. By the same argument as in Theorem 17, we have

$$\#\{(d,e) \in ((A-A) \setminus D) \times (A-A) \mid xd = re\} \ge \frac{|A|^2}{|xA+rA|} - |D| \ge \frac{|A|^3}{|2AA - 2AA||3AA - 3AA|} - |D|.$$

Since for each $(d, e) \in ((A - A) \setminus D) \times (A - A)$ there is at most one x such that xd = re, we see that

$$|S_r| \le \frac{(|A - A| - |D|)|A - A|}{\frac{|A|^3}{|2AA - 2AA||3AA - 3AA|} - |D|}.$$

Proposition 10. If $r \in R^*$ and

$$|D| < \frac{|A|^6}{|A+A||2AA - 2AA|^2|3AA - 3AA|^2},$$

then S_r is closed under addition (and is therefore an additive group).

Proof. For $x, y \in S_r$, we have

$$|(x+y)A+rA| \leq \frac{|xA+rA|}{|A|} \frac{|yA+rA|}{|A|} |A+A| \leq \frac{|A+A||2AA-2AA|^2|3AA-3AA|^2}{|A|^4} < \frac{|A|^2}{|D|}. \ \Box$$

Proposition 11. If

$$|D| < \frac{|A|^8}{|A+A||2AA-2AA|^3|3AA-3AA|^3},$$

then S_1 is closed under multiplication (and is therefore a ring).

Proof. Suppose $x, y \in S_1$. Apply the Ruzsa covering lemma to find $S \subseteq yA$ with

$$|S| \le \frac{|yA + A|}{|A|}$$

and

$$yA \subseteq A - A + S.$$

Then we have

$$xyA + A| \le |xA - xA + xS + A| \le \frac{|A + A||2AA - 2AA|^3|3AA - 3AA|^3}{|A|^6} < \frac{|A|^2}{|D|}.$$

Proposition 12. If $r \in R^*$, $a \in (A - A) \setminus D$, and

$$|D| < \frac{|A|^{10}}{|A+A||2AA - 2AA|^4|3AA - 3AA|^4},$$

then $S_r S_a \subseteq S_{ra}$.

Proof. Take $x \in S_r$ and $y \in S_a$. We have

$$|yA + Aa| \le \frac{|yA + aA|}{|A|} \frac{|Aa + aA|}{|A|} |A| \le \frac{|yA + aA||2AA - 2AA|}{|A|}.$$

Take $S \subseteq yA$ with

$$|S| \le \frac{|yA + Aa|}{|A|}$$

and

$$yA \subseteq Aa - Aa + S.$$

Take $S' \subseteq xA - xA$ with

$$|S'| \le \frac{|xA - xA + rA|}{|A|} \le \frac{|xA + rA|}{|A|} \frac{|-xA + rA|}{|A|} \frac{|A + A|}{|A|}$$

and

$$xA - xA \subseteq rA - rA + S'.$$

Then

$$\begin{aligned} xyA + raA| &\leq |xAa - xAa + xS + raA| \leq |S||rAa - rAa + S'a + raA| \\ &\leq |S||S'||Aa - Aa + aA| \leq \frac{|A + A||2AA - 2AA|^4|3AA - 3AA|^4}{|A|^8} < \frac{|A|^2}{|D|}. \end{aligned}$$

Proposition 13. If $r, s \in R$ then $sS_r \subseteq S_{sr}$.

Proposition 14. If $r \in R$ and $|D| < \frac{|A|^2}{|A+A|}$, then $r \in S_r$.

Proposition 15. If $r, s \in R$, then $r \in S_s \iff s \in S_r$.

Proposition 16. If $r, s \in R^*$, $S_r \cap S_s \cap R^* \neq \emptyset$, and

$$|D| < \frac{|A|^7}{|2AA - 2AA|^3|3AA - 3AA|^3},$$

then $S_r = S_s$.

Proof. Take $t \in S_r \cap S_s \cap R^*$ and $x \in S_r$. We have

$$|rA+sA| \leq \frac{|tA+rA|}{|A|} \frac{|tA+sA|}{|A|} |A|$$

Then

$$|xA + sA| \le \frac{|xA + rA|}{|A|} \frac{|rA + sA|}{|A|} |A| \le \frac{|2AA - 2AA|^3 |3AA - 3AA|^3}{|A|^5} < \frac{|A|^2}{|D|}.$$

Theorem 18 (Inhomogeneous sum-product theorem). Let R be a ring, $A \subseteq R$. If

$$|(A - A) \setminus R^*| < \min\left(\frac{|A|^2}{|A + AA|}, \frac{|A|^8}{2|A + A||2AA - 2AA|^3|3AA - 3AA|^3}\right),$$

then there is a subring $S \subseteq R$ such that $A \subseteq S$ and

$$|S| < \frac{2|A - A|^2 |2AA - 2AA| |3AA - 3AA|}{|A|^3}$$

Proof. We take $S = S_1$, then $A \subseteq S_1$ by the assumption $|AA + A| < \frac{|A|^2}{|D|}$. Previous propositions show that S_1 is a ring and give the required bound on the size of S_1 .

Theorem 19 (Homogeneous sum-product theorem with invertible element). If R has a 1, $A \subseteq R$ has an invertible element a, and

$$|(A - A) \setminus R^*| \le \frac{|A|^8}{2|A + A||2AA - 2AA|^3|3AA - 3AA|^3},$$

then there is a subring $S \subseteq R$ such that

$$A \subseteq aS = Sa$$

and

$$|S| < \frac{2|A - A|^2 |2AA - 2AA| |3AA - 3AA|}{|A|^3}$$

Proof. We take $S = S_1$. As before, we have S_1 a ring with the required size bound. We have

$$|a^{-1}AA + A| = |AA + aA| \le |AA + AA| < \frac{|A|^2}{|D|}$$

by our assumption, so $a^{-1}A \subseteq S$, that is, $A \subseteq aS$. Since SS = S, we have

$$|aSa^{-1}A + A| \le |aSa^{-1}aS + aS| = |aS| \le |S| < \frac{2|2AA - 2AA|^3|3AA - 3AA|}{|A|^3} < \frac{|A|^2}{|D|},$$

so $aSa^{-1} \subseteq S$. Since S is finite, this implies that aS = Sa.

References

- [1] J. Bourgain. Exponential sum estimates over subgroups of \mathbb{Z}_q^* , q arbitrary. J. Anal. Math., 97:317–355, 2005.
- [2] M. Z. Garaev. An explicit sum-product estimate in \mathbb{F}_p . Int. Math. Res. Not. IMRN, (11):Art. ID rnm035, 11, 2007.
- [3] M. Z. Garaev. The sum-product estimate for large subsets of prime fields. Proc. Amer. Math. Soc., 136(8):2735-2739, 2008.
- [4] Nets Hawk Katz and Chun-Yen Shen. A slight improvement to Garaev's sum product estimate. *Proc. Amer. Math. Soc.*, 136(7):2499–2504, 2008.
- [5] János Kollár. Szemerédi-Trotter-type theorems in dimension 3. Adv. Math., 271:30–61, 2015.
- [6] Sergei V. Konyagin and Misha Rudnev. On new sum-product-type estimates. SIAM J. Discrete Math., 27(2):973–990, 2013.
- [7] Giorgis Petridis. New proofs of Plünnecke-type estimates for product sets in groups. Combinatorica, 32(6):721-733, 2012.

- [8] O. Roche-Newton, M. Rudnev, and I. D. Shkredov. New sum-product type estimates over finite fields. *ArXiv e-prints*, August 2014.
- [9] M. Rudnev. On the number of incidences between planes and points in three dimensions. ArXiv e-prints, July 2014.
- [10] Imre Z. Ruzsa. Sumsets and structure. In Combinatorial number theory and additive group theory, Adv. Courses Math. CRM Barcelona, pages 87–210. Birkhäuser Verlag, Basel, 2009.
- [11] Tomasz Schoen. New bounds in Balog-Szemerédi-Gowers theorem. Combinatorica, pages 1–7.
- [12] József Solymosi. Bounding multiplicative energy by the sumset. Adv. Math., 222(2):402–408, 2009.
- [13] Terence Tao. The sum-product phenomenon in arbitrary rings. Contrib. Discrete Math., 4(2):59–82, 2009.