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1 The Plünnecke-Ruzsa sumset calculus

Definition 1. If A,B are finite subsets of a semigroup G, A nonempty, define the magnification
ratio of A,B to be

µ(A,B) = min
∅6=X⊆A

|XB|
|X|

.

Note that if ∅ 6= X ⊆ A has |XB||B| = µ(A,B) then |XB||B| = µ(X,B).

Theorem 1 (Petridis). If X,B are finite subsets of a semigroup G, X nonempty satisfying |XB||X| =

µ(X,B), then for all finite subsets C of G such that |cX| = |X| for all c ∈ C, we have

|CXB| ≤ |CX||XB|
|X|

.

Proof. Induct on |C|. If C is empty we are done, so suppose C = C ′ ∪ {c}, c 6∈ C ′. Letting
Y = {x ∈ X | cx ∈ C ′X}, we have

|CXB| ≤ |C ′XB|+ |c(XB \ Y B)|

≤ |C
′X||XB|
|X|

+ |XB| − |Y B|

≤ (|CX| − |X|+ |Y |)|XB|
|X|

+ |XB| − µ(X,B)|Y |

=
|CX||XB|
|X|

.
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Theorem 2 (Ruzsa triangle inequality). If X,Y, Z are finite subsets of a group G, then |X||Y Z| ≤
|Y X−1||XZ|.

Theorem 3 (Ruzsa covering lemma). If A,B are finite subsets of a group G and A is nonempty,
then there is a set S ⊆ B with |S| ≤ µ(A,B) and B ⊆ A−1AS.

Proof. Let ∅ 6= X ⊆ A be such that |XB||X| = µ(A,B). Take S to be a maximal subset of B such

that Xs,Xs′ are disjoint for every pair of distinct elements s, s′ ∈ S. Then |X||S| = |XS| ≤ |XB|
and B ⊆ X−1XS ⊆ A−1AS.

Lemma 1 (Plünnecke tensor power trick). If A,B are finite subsets of a semigroup G, A′, B′ are
finite subsets of a semigroup G′, and A,A′ are nonempty, then

µ(A×A′, B ×B′) = µ(A,B)µ(A′, B′).

Theorem 4 (Plünnecke-Ruzsa sumset inequality). If A,B1, ..., Bh are finite subsets of an abelian
semigroup G with A nonempty, such that for all b ∈ (h− 1)(B1 ∪ · · · ∪Bh) we have |A+ b| = |A|,
then

µ(A,B1 + · · ·+Bh) ≤ |A+B1|
|A|

· · · |A+Bh|
|A|

.

In particular, if A is cancellative we have |B1 + · · ·+Bh| ≤ |A+B1|
|A| · · ·

|A+Bh|
|A| |A|.

Proof. Write αi = |A+Bi|
|A| . Choose a large integer n such that n

αi
is an integer for all i, and set

ni = n
αi

. By adding copies of N to G, we can assume there exist T1, ..., Th ⊆ G with |Ti| = ni such
that all sums

y + t1 + · · ·+ th, y ∈ A+B1 + · · ·+Bh, ∀1 ≤ i ≤ h ti ∈ Ti
are distinct. Set B =

⋃
i(Bi + Ti). We have

|A+B| ≤
∑
i

|A+Bi||Ti| =
∑
i

niαi|A|,

so µ(A,B) ≤
∑

i niαi = hn. Let ∅ 6= X ⊆ A be such that |X+B|
|X| = µ(A,B). Applying Theorem 1

h times, we see that |X + hB| ≤ µ(A,B)h|X| ≤ (hn)h|X|. Thus,

n1 · · ·nh|X +B1 + · · ·+Bh| = |X +B1 + · · ·+Bh + T1 + · · ·+ Th| ≤ |X + hB| ≤ (hn)h|X|,

so

µ(A,B1 + · · ·+Bh) ≤ (hn)h

n1 · · ·nh
= hhα1 · · ·αh.

Applying the tensor power trick (Lemma 1), we have

µ(A,B1 + · · ·+Bh)k = µ(×kA,×kB1 + · · ·+×kBh) ≤ hhαk1 · · ·αkh,

and taking k to infinity finishes the proof.

Proposition 1 (Bourgain). Let A1, ..., Ah, B1, ..., Bh, C1, ..., Ch be finite subsets of an abelian group
G such that for each i Ai ∩ Ci is nonempty. Then

|B1 + · · ·+Bh| ≤
|B1 + C1|
|A1 ∩ C1|

· · · |Bh + Ch|
|Ah ∩ Ch|

|A1 + · · ·+Ah|.
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1.1 Approximate variants

Lemma 2. If A,B are finite subsets of an abelian group G, then there exist x ∈ B −A, y ∈ A+B
such that

|B ∩ (A+ x)| ≥ |A||B|
|A+B|

,

|B ∩ (−A+ y)| ≥ |A||B|
|A+B|

.

Proof. By Cauchy-Schwarz, we have

#{(a, b, a′, b′) ∈ A×B ×A×B | a+ b = a′ + b′} ≥ |A|
2|B|2

|A+B|
.

By the pigeonhole principle we can find an x of the form b− a′ and a y of the form a+ b with the
required properties.

Theorem 5 (Approximate covering lemma). If A,B are finite subsets of an abelian group G with
A nonempty, then for any m ≥ 1 there are sets S+ ⊆ B −A, S− ⊆ A+B such that

|B ∩ (A+ S+)| ≥ (1− 1/m)|B|,
|B ∩ (−A+ S−)| ≥ (1− 1/m)|B|,

and
|S+|, |S−| < log(m)µ(A,B) + 1.

Proof. Assume WLOG that µ(A,B) = |A+B|
|A| . Iteratively apply Lemma 2 and use the inequality

− log(1− |A|
|A+B|) ≥

|A|
|A+B| .

Theorem 6 (Approximate Plünnecke-Ruzsa). If A,B1, ..., Bh are finite subsets of an abelian semi-
group G with A nonempty, such that for all b ∈ (h− 1)(B1 ∪ · · · ∪Bh) we have |A+ b| = |A|, then
for any m ≥ 1 there is a set X ⊆ A with

|X| > (1− 1/m)|A|

and

|X +B1 + · · ·+Bh| ≤
hmh−1 − 1

h− 1

|A+B1|
|A|

· · · |A+Bh|
|A|

|X|.

Proof. We’ll show that in fact we can find such X with

|X +B1 + · · ·+Bh| ≤
(
mh|X| −

(
mh − hmh−1 − 1

h− 1

)
|A|
)
|A+B1|
|A|

· · · |A+Bh|
|A|

.

Suppose for contradiction that there is some m ≥ 1 for which we can not find such an X. Let n be
the infimum of all such m. Since A only has finitely many subsets, we can find a set ∅ 6= Y ⊆ A
with |Y | ≥ (1− 1/n)|A| and

|Y +B1 + · · ·+Bh| ≤
(
nh|Y | −

(
nh − hnh−1 − 1

h− 1

)
|A|
)
|A+B1|
|A|

· · · |A+Bh|
|A|

.
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Note that if |Y | > (1− 1/n)|A| then the derivative of the right hand side of the above with respect
to n is positive, so by the definition of n we must have |Y | = (1− 1/n)|A| for any set Y as above.

By the Plünnecke-Ruzsa inequality (Theorem 4), we have

µ(A \ Y,B1 + · · ·+Bh) ≤ |A+B1|
|A \ Y |

· · · |A+Bh|
|A \ Y |

≤ nh |A+B1|
|A|

· · · |A+Bh|
|A|

,

so there is some ∅ 6= X ′ ⊆ A \ Y such that

|X ′ +B1 + · · ·+Bh| ≤ nh
|A+B1|
|A|

· · · |A+Bh|
|A|

|X ′|.

Taking Y ′ = Y ∪X ′, we have

|Y ′ +B1 + · · ·+Bh| ≤ |Y +B1 + · · ·+Bh|+ |X ′ +B1 + · · ·+Bh|

≤
(
nh|Y |+ nh|X ′| −

(
nh − hnh−1 − 1

h− 1

)
|A|
)
|A+B1|
|A|

· · · |A+Bh|
|A|

=

(
nh|Y ′| −

(
nh − hnh−1 − 1

h− 1

)
|A|
)
|A+B1|
|A|

· · · |A+Bh|
|A|

,

but |Y ′| > (1− 1/n)|A|, a contradiction.

Theorem 7 (Ruzsa). If A,B,C are finite subsets of a semigroup G with A nonempty, such that
for any b ∈ B, c ∈ C we have |cA| = |Ab| = |A|, then for any m ≥ 1 there is a set X ⊆ A with

|X| > (1− 1/m)|A|

and

|CXB| ≤ (2m− 1)
|CA|
|A|
|AB|
|A|
|X|.

Proof. Since left multiplication by C commutes with right multiplication by B, we can make an
auxiliary abelian semigroup G′ out of disjoint copies of A,B,C,CA,AB,B × C,CAB, {0} in an
obvious way. Now apply Theorem 6 to G′.

1.2 Energy

Definition 2. If A,B are finite subsets of a semigroup, define their energy to be

E(A,B) = #{(a, b, c, d) ∈ A×B ×A×B | ab = cd}.

When A = B, we abbreviate this by E(A).

Proposition 2 (Cauchy-Schwarz). If A,B are finite nonempty subsets of a semigroup, then

E(A,B) ≥ |A|
2|B|2

|AB|
.

Definition 3. If A,B are finite subsets of an abelian group G and x ∈ G, set

(A ∗B)(x) = #{(a, b) ∈ A×B | a+ b = x},
(A ◦B)(x) = #{(a, b) ∈ A×B | b− a = x}.
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Lemma 3 (Sanders, Schoen). If A is a finite nonempty subset of an abelian group, 0 ≤ α < 1, and

c ≥ 0, then there is a set X ⊆ A with |X| > αE(A)
|A|2 and

#

{
(x, y) ∈ X ×X | (A ◦A)(x− y) > c

E(A)

|A|2

}
≥
(

1− c

1− α

)
|X|2.

Proof. We will choose X = A ∩ (A+ d) for some d ∈ A−A. We have∑
(A◦A)(d)≤αE(A)

|A|2

(A ◦A)(d)2 ≤ αE(A)

|A|2
∑
d

(A ◦A)(d) = αE(A),

so ∑
(A◦A)(d)>αE(A)

|A|2

(A ◦A)(d)2 ≥ (1− α)E(A).

Setting

S =

{
(a, b) ∈ A×A | (A ◦A)(a− b) ≤ cE(A)

|A|2

}
,

we have ∑
d

#{(a, b) ∈ S | a, b ∈ A+ d} =
∑

(a,b)∈S

(A ◦A)(a− b) ≤ cE(A)

|A|2
|S| ≤ cE(A).

Thus ∑
(A◦A)(d)>αE(A)

|A|2

(1− α)#{(a, b) ∈ S | a, b ∈ A+ d} − c(A ◦A)(d)2 ≤ 0,

so there must be some d with (A ◦A)(d) > αE(A)
|A|2 and

(1− α)#{(a, b) ∈ S | a, b ∈ A+ d} − c(A ◦A)(d)2 ≤ 0.

Taking X = A ∩ (A+ d) for this d, we have |X| = (A ◦A)(d) and

#

{
(x, y) ∈ X ×X | (A ◦A)(x− y) > c

E(A)

|A|2

}
= |X|2 −#{(a, b) ∈ S | a, b ∈ A+ d}.

Theorem 8 (Balog, Gowers, Schoen, Szemerédi). If A is a finite nonempty subset of an abelian

group, then there is a set A′ ⊆ A with |A′| > E(A)
6|A|2 and

|A′ −A′| < 486
|A|10

E(A)3
.

Proof. Take α = 1
2 , c = 1

9 in Lemma 3 to find a set X ⊆ A with |X| > E(A)
2|A|2 and

#

{
(x, y) ∈ X ×X | (A ◦A)(x− y) >

E(A)

9|A|2

}
≥ 7

9
|X|2.
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Make a graph H with vertex set X, having an edge between x and y exactly when (A ◦ A)(x −
y) > E(A)

9|A|2 . Letting A′ be the set of vertices in H having degree greater than 2
3 |X|, we see that

|A′| ≥ |X|3 > E(A)
6|A|2 . For any a, b ∈ A′, we can find more than 1

3 |X| vertices x ∈ X connected to both

a, b in H, and for each such x we can write

a− b = (a− x)− (b− x),

and we can write the right hand side in the form (a1 − a2) − (a3 − a4) with a1, a2, a3, a4 ∈ A,

a1 − a2 = a− x, in at least E(A)2

81|A|4 different ways. Thus we have

|A′ −A′| · 1

3
|X| · E(A)2

81|A|4
< |A|4,

so

|A′ −A′| < 486
|A|10

E(A)3
.

2 The sum-product theorem

2.1 Characteristic Zero

Definition 4. For any distinct points a, b ∈ Rn, set

D(a, b) =
{
p ∈ Rn | ∠pab ≤ π

6
,∠pba ≤ π

6

}
.

Lemma 4. For any four points a, b, c, d ∈ Rn with a 6= b, c 6= d, {a, b} 6= {c, d}, if all of the
inequalities

|ab| ≤ |bc|, |ab| ≤ |bd|, |cd| ≤ |ad|, |cd| ≤ |bd|

hold then the interiors of D(a, b) and D(c, d) do not intersect.

Proof. If |ab|+ |cd| ≤ |bd|, then since D(a, b) is contained in the sphere of radius |ab| around b and
D(c, d) is contained in the sphere of radius |cd| around d, their interiors can’t intersect. Otherwise,
we can find a point x ∈ Rn such that |bx| = |ab|, |dx| = |cd|. Since |ab|, |cd| are assumed to be at
most |bd|, bd is the longest edge of triangle bdx, so we must have ∠bxd ≥ π

3 . Thus we can find some
point m on the line segment bd with ∠mxb ≥ π

6 and ∠mxd ≥ π
6 . Since a is outside the sphere of

radius |cd| = |dx| centered at d, we have ∠abm ≥ ∠xbm, and similarly ∠cdm ≥ ∠xdm. Thus, if
we rotate the ray mx around the line bd we get a cone which separates the interior of D(a, b) from
the interior of D(c, d).

Corollary 1 (Gilbert, Pollak). Let P be a finite set of points in Rn, and let T be a minimum
spanning tree on P . For any distinct edges {a, b}, {c, d} of T , the interiors of D(a, b) and D(c, d)
do not intersect.

Proof. Since T is a tree, there is a unique path in T connecting the edge {a, b} to the edge {c, d}.
We may assume without loss of generality that this path connects a to c without passing through
b or d. Then if we replace edge {a, b} with either {b, c} or {b, d} we again get a spanning tree, so
by minimality we must have |ab| ≤ |bc|, |bd|. Similarly we have |cd| ≤ |ad|, |bd|. Now apply Lemma
4.
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Proposition 3. Suppose a, b, c, d ∈ H× are nonzero quaternions with ∠b0d ≤ π
6 . Then (a+ c)(b+

d)−1 is in the interior of D(ab−1, cd−1).

Proof. Writing b = md, we have

(a+ c)(b+ d)−1 = (a+ c)d−1(m+ 1)−1 = ab−1 + (cd−1 − ab−1)(m+ 1)−1,

so it’s enough to check that if ∠m01 ≤ π
6 then (m + 1)−1 is in the interior of D(0, 1). Since

∠(m + 1)10 ≥ 5π
6 , we have ∠1(m + 1)−10 ≥ 5π

6 , so (m + 1)−1 is in the interior of D(0, 1) by the
fact that the angles of a triangle sum to π.

Theorem 9 (Konyagin, Rudnev, Solymosi). Suppose A ⊆ H× is a finite set of nonzero quaternions
such that for any a, b ∈ A we have ∠a0b ≤ π

6 . Then

|A+A|2|AA| ≥ |A|
4 − |A||AA|

log |AA|
2

|A| + γ
,

where γ is the Euler-Mascheroni constant.

Proof. By Cauchy-Schwarz, we have

#{(a, b, c, d) ∈ A×A×A×A | ab = cd} ≥ |A|
4

|AA|
.

Write m(x) = #{(a, c) ∈ A × A | c−1a = x}, n(x) = #{(b, d) ∈ A × A | db−1 = x}. By Cauchy-
Schwarz again, we have ∑

x

m(x)2
∑
y

n(y)2 ≥
(∑

x

m(x)n(x)
)2
≥ |A|8

|AA|2
.

Thus we may assume without loss of generality that∑
x

n(x)2 ≥ |A|
4

|AA|
,

since otherwise we may replace A by Ā. Choose a numbering x1, ..., x|AA−1| of the elements of AA−1

such that n(x1) ≥ n(x2) ≥ · · · . Choose 1 ≤ k ≤ |AA−1| such that (k − 1)n(xk)
2 is maximized.

Then by choice of k we have

|A|4

|AA|
≤
|AA−1|∑
i=1

n(xi)
2 ≤ |A|+ (k − 1)n(xk)

2

|AA−1|∑
i=2

1

i− 1
,

so

(k − 1)n(xk)
2 ≥ |A|

4 − |A||AA|
H|AA−1|−1|AA|

,

where Hn =
∑n

i=1
1
i denotes the nth harmonic number. Note that by the Ruzsa triangle inequality

2 we have |AA−1| ≤ |AA|
2

|A| , so

H|AA−1|−1 ≤ log
|AA|2

|A|
+ γ.
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Let T be a minimum spanning tree on {x1, ..., xk}. For any edge {xi, xj} in T , if a, b, c, d ∈ A have
ab−1 = xi and cd−1 = xj , then by Proposition 3 the ratio (a+ c)(b+ d)−1 will be in the interior of
D(ab−1, cd−1). Thus by Corollary 1 we have an injection

{({xi, xj}, a, b, c, d) ∈ T ×A×A×A×A | ab−1 = xi, cd
−1 = xj} ↪→ (A+A)× (A+A),

taking ({xi, xj}, a, b, c, d) to (a+ c, b+ d). Since T has k− 1 edges and n(xi) ≥ n(xk) for 1 ≤ i ≤ k,
we have

|A+A|2 ≥ (k − 1)n(xk)
2 ≥ |A|

4 − |A||AA|
H|AA−1|−1|AA|

.

2.2 Finite fields

Lemma 5. If A,B ⊆ Fq, G ⊆ F×q , then there is some ξ ∈ G with

|A+ ξB| ≥ |A||B||G|
|A||B|+ |G|

.

Proof. Define a function f : G 7→ N by

f(ξ) = #{(a, b, a′, b′) ∈ A×B ×A×B | a+ ξb = a′ + ξb′}.

We have ∑
ξ∈G

f(ξ) ≤ |A|2|B|2 + |A||B||G|,

so there must be some ξ ∈ G with f(ξ) ≤ |A|
2|B|2
|G| + |A||B|. By Cauchy-Schwarz, we have

|A+ ξB| ≥ |A|
2|B|2

f(ξ)
≥ |A||B||G|
|A||B|+ |G|

.

Theorem 10 (Bourgain, Garaev, Katz, Li, Shen, ...). If p is prime and A ⊆ Fp then

|A+A|9|AA|4 ≥ |A|
14

256
min

(
1,

p

|A|2

)
,

|A+A|8|AA|4 ≥ |A|
13

223
min

(
1,

37p

|A|2

)
.

Proof. We’ll prove the second bound (for the first bound, take X = A and Z = W = Y instead of
using the approximate variations on the sumset calculus). By the approximate Plünnecke-Ruzsa
theorem (Theorem 6), we can find X ⊆ A with |X| ≥ 3

4 |A| and

|X +A+A+A| ≤ 24
|A+A|3

|A|3
|X|.

By the Cauchy-Schwarz inequality, we have∑
x∈X,a∈A

|xA ∩Xa| ≥ |X|
2|A|2

|XA|
,
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so by the pigeonhole principle there is some a0 ∈ A with∑
x∈X
|xA ∩Xa0| ≥

|X|2|A|
|XA|

.

Let X = {x1, ..., x|X|}, set ni = |xiA ∩Xa0|, and suppose WLOG that n1 ≥ · · · ≥ n|X|. Choose k

maximizing the quantity k3/4nk, set Y = {x1, ..., xk}, and set N = nk. We have

|X|2|A|
|XA|

≤
|X|∑
i=1

ni ≤
|X|∑
i=1

i−3/4k3/4nk < 4|X|1/4|Y |3/4N,

so

|Y |3N4 ≥ |X|
7|A|4

256|XA|4
.

For any y ∈ Y we have |yA ∩Xa0| ≥ N , so by Ruzsa’s triangle inequality (Theorem 2) we have

|yA−Xa0| ≤
|yA+ yA ∩Xa0||yA ∩Xa0 +Xa0|

|yA ∩Xa0|
≤ |y(A+A)||(X +X)a0|

N
≤ |A+A|2

N
,

and similarly by Plünnecke-Ruzsa (Theorem 4) we have

|yA+Xa0| ≤
|yA ∩Xa0 + yA||yA ∩Xa0 +Xa0|

|yA ∩Xa0|
≤ |A+A|2

N
.

There are now two cases.
Case 1: If Y−Y

(Y−Y )\{0} = Fp, then by Lemma 5 we can find ξ ∈ F×p such that |A + ξA| ≥
1
2 min(|A|2, p). Write ξ = c−d

a−b with a, b, c, d ∈ Y . By Plünnecke-Ruzsa, we have

|(a− b)A+ (c− d)A| ≤ |aA− bA+ cA− dA| ≤ |Xa0 + aA||Xa0 − bA||Xa0 + cA||Xa0 − dA|
|Xa0|3

,

so

|A+A|8 ≥ |A|
2|X|3N4

2
min

(
1,

p

|A|2

)
.

Since |X|3N4 ≥ |Y |3N4 ≥ |X|7|A|4
256|AA|4 and |X| ≥ 3

4 |A|, we have

|A+A|8|AA|4 ≥ |X|
7|A|6

29
min

(
1,

p

|A|2

)
≥ 37|A|13

223
min

(
1,

p

|A|2

)
.

Case 2: If Y−Y
(Y−Y )\{0} 6= Fp, then we can find ξ ∈

(
Y−Y

(Y−Y )\{0} + 1
)
\ Y−Y

(Y−Y )\{0} . Writing ξ =
c−d
a−b + 1 with a, b, c, d ∈ Y , we see that for any Z,W ⊆ Y have

|Z||W | = |Z + ξW | ≤ |(a− b)Z + (a− b)W + (c− d)W |.

9



In particular, if ∅ 6= Z ′ ⊆ Z is chosen such that µ((a−b)Z, (a−b)W+(c−d)W ) = |(a−b)Z′+(a−b)W+(c−d)W |
|Z′| ,

then by Plünnecke-Ruzsa we have

|Z ′||W | ≤ |(a− b)Z ′ + (a− b)W + (c− d)W | ≤ |Z +W |
|Z|

|(a− b)Z + (c− d)W |
|Z|

|Z ′|,

so
|Z|2|W | ≤ |A+A||(a− b)Z + (c− d)W |.

Applying the approximate covering lemma (Lemma 5) to aA ∩ Xa0, aY , we find a set S with

|S| < 3 |A+A|N such that

|aY ∩ (Xa0 + aS)| ≥ 6

7
|Y |.

Let Y ′ = Y ∩ (a−1Xa0 + S). Applying it again, we find a set S′ with |S′| < 3 |A+A|N such that

bY ′ ∩ (−Xa0 + bS′) ≥ 6

7
|Y ′|,

and let Z = Y ′ ∩ (−b−1Xa0 + S). Similarly, find sets W ⊆ Y, S′′, S′′′ such that |W | ≥ 62

72
|Y |,

cW ⊆ Xa0 + cS′′, dW ⊆ −Xa0 + dS′′′, |S′′|, |S′′′| ≤ 3 |A+A|N . We have

|(a− b)Z + (c− d)W | ≤ |aZ − bZ + cW − dW |
≤ |S||S′||S′′||S′′′||Xa0 +Xa0 +Xa0 +Xa0|

≤ 34
|A+A|4

N4
· 24
|A+A|3

|A|3
|X|,

so

|X||A+A|8 ≥ 24|A|3|Y |3N4

76
.

By the inequalities |X| ≥ 3
4 |A| and |Y |3N4 ≥ |X|7|A|4

256|AA|4 we have

|A+A|8|AA|4 ≥ 3|X|6|A|7

25 · 76

≥ 37|A|13

217 · 76

≥ |A|
13

223
.

Theorem 11 (Garaev). Let q be a prime power. If A,B ⊆ Fq, C ⊆ F×q , then

|A+B||AC| ≥ min

(
|A|q

2
,
|A|2|B||C|

4q

)
.

Proof. Let
J = {(x, b, c, y) ∈ (A+B)×B × C ×AC | x = b+ yc−1}.

10



We have an injection A × B × C ↪→ J given by (a, b, c) 7→ (a + b, b, c, ac), so |J | ≥ |A||B||C|. Let
φ0, ..., φq−1 be the additive characters of Fq, φ0 the trivial character. We have

|J | = 1

q

q−1∑
n=0

∑
x∈A+B

∑
b∈B

∑
c∈C

∑
y∈AC

φn(b− x+ yc−1)

≤ |A+B||B||C||AC|
q

+
1

q

q−1∑
n=1

∣∣∣∣∣ ∑
x∈A+B

φn(x)

∣∣∣∣∣
∣∣∣∣∣∑
b∈B

φn(b)

∣∣∣∣∣∑
c∈C

∣∣∣∣∣ ∑
y∈AC

φn(yc−1)

∣∣∣∣∣.
By Cauchy-Schwarz, for n 6= 0 we have∑

c∈C

∣∣∣∣∣ ∑
y∈AC

φn(yc−1)

∣∣∣∣∣
2

≤ |C|
∑
d∈Fq

∣∣∣∣∣ ∑
y∈AC

φn(dy)

∣∣∣∣∣
2

= q|C||AC|,

and applying Cauchy-Schwarz one more time we have

1

q

q−1∑
n=1

∣∣∣∣∣ ∑
x∈A+B

φn(x)

∣∣∣∣∣
∣∣∣∣∣∑
b∈B

φn(b)

∣∣∣∣∣∑
c∈C

∣∣∣∣∣ ∑
y∈AC

φn(yc−1)

∣∣∣∣∣ ≤
√
q|C||AC|
q

q−1∑
n=1

∣∣∣∣∣ ∑
x∈A+B

φn(x)

∣∣∣∣∣
∣∣∣∣∣∑
b∈B

φn(b)

∣∣∣∣∣
≤
√
q|A+B||B||C||AC|.

Thus

|A||B||C| ≤ |A+B||B||C||AC|
q

+
√
q|A+B||B||C||AC|.

A much better sum-product bound was recently obtained by Rudnev, using a three-dimensional
variant of the Szemerédi-Trotter theorem due to Kollár. The proof is sketched below.

Lemma 6 (Kollár). Let L be a set of m distinct lines in P3.

1) There exists a surface S of degree at most
√

6m− 2 which contains L.

2) For any irreducible surface U of degree g ≤
√

6m there exists a surface T of degree at most
6m
g which contains L and does not contain U .

Proposition 4 (Kollár). For i = 1, ..., n−1 let Hi be a hypersurface in Pn of degree ai, and suppose
their intersection B = H1 ∩ · · · ∩Hn−1 is 1-dimensional. Let C ⊆ B be a reduced subcurve. Then
the arithmetic genus of C satisfies

pa(C) ≤ pa(B) = 1 +
1

2

(∑
i

ai − n− 1

)∏
i

ai.

Proof. By induction on n together with the Kodaira vanishing theorem for Pn, one can show that
h0(B,OB) = 1, so pa(B) = h1(B,OB) − h0(B,OB) + 1 = h1(B,OB). If J is the ideal sheaf of C
on B, we have

0→ J → OB → OC → 0,

11



so by the long exact sequence of cohomology we have

H1(B,OB)→ H1(C,OC)→ H2(B, J),

and H2(B, J) = 0 since B is 1-dimensional. Thus

pa(C) = h1(C,OC)− h0(C,OC) + 1 ≤ h1(B,OB) = pa(B).

The formula for pa(B) follows by directly computing the Hilbert polynomial of B.

Proposition 5 (Kollár). Let S, T ⊆ P3 be surfaces of degrees a, b with no common components,
and let C be a reduced curve contained in S ∩ T . For a point p ∈ C let r(p) be the multiplicity of
C at p.

1) C has at most ab components.

2)
∑

p∈C r(p)− 1 ≤ ab
2 (a+ b− 2).

Following Rudnev, we give a concrete description of Plücker coordinates for lines in P3.

Definition 5. For a line L in P3 containing points [q0 : q1 : q2 : q3], [u0 : u1 : u2 : u3], set

Pij = qiuj − qjui,

and define the Plücker coordinates of L to be [P01 : P02 : P03 : P23 : P31 : P12]. Writing this as
[ω : ν], if q0 = u0 = 1 and we set q = (q1, q2, q3), u = (u1, u2, u3) then ω = u− q, ν = q × ω. Define
the Klein quadric K to be the 4-dimensional hypersurface

K = {[ω : ν] ∈ P5 | ω · ν = 0}.

Proposition 6. Two lines with Plücker coordinates [ω : ν], [ω′ : ν ′] intersect if and only if

ω · ν ′ + ω′ · ν = 0,

and this occurs if and only if the line connecting [ω : ν], [ω′ : ν ′] is contained in K. Every plane
contained in K is either an α-plane, corresponding to the set of lines through a specific point in P3,
or a β-plane, corresponding to the set of lines contained in a specific plane in P3. Any two α-planes
meet in a point, any two β-planes meet in a point, and an α-plane and a β-plane meet in a line
if and only if the point corresponding to the α-plane is contained in the plane corresponding to the
β-plane.

Definition 6. A ruling Γ of a surface S ⊂ P3 is a closed curve Γ ⊂ K such that each point of Γ
corresponds to a line contained in S. The degree of a ruling Γ is defined to be its degree as a curve
in P5. A line contained in S which is not contained in any ruling of S is called special.

Proposition 7. For any three skew lines L1, L2, L3 ⊂ P3, the union of the collection of all lines
which intersect all three of L1, L2, L3 is a smooth quadric surface S. Conversely, every smooth
quadric surface S has two irreducible rulings Γ1,Γ2 of degree 2.

Corollary 2. Every irreducible ruled surface S is either a plane, a cone, a smooth quadric surface,
or else has a unique ruling and contains at most two special lines which do not intersect each other.
If S is not a plane, the degree d of an irreducible ruling is equal to the degree of S. Any nonspecial
line intersects at most d− 2 other nonspecial lines.

12



Theorem 12 (Cayley, Monge, Salmon, Voloch). Let S ⊂ P3 be a surface of degree d, with d < p if
the characteristic is p. If S has no ruled components, then there is a surface T of degree 11d− 24
such that S and T have no components in common, and every line contained in S is contained in
S ∩ T .

Sketch. The surface T is defined by the equation cutting out those points p of S for which there
exists a line which is triply tangent to S at p (such a p is called a flecnodal point). The equation for
T can be computed explicitly using resultants. Next, one shows that if a component of S consists
entirely of flecnodal points, then that component must be ruled.

Theorem 13 (Kollár). Let L be a collection of m distinct lines in Pn such that for any three
distinct lines L1, L2, L3 ∈ L the number of lines from L intersecting all three of L1, L2, L3 is at
most

√
m. If the characteristic is p, suppose that m < 11

6 p
2. Then the total number of intersection

points between lines in L is at most(√
6

2
+

(36− 1
2)
√

6
√

11

)
m

3
2 <
√

754m
3
2 .

Proof. By choosing a generic projection to P3, we may assume without loss of generality that n = 3.
We may also assume that m ≥ 754. Find a surface S of degree d ≤

√
6m − 2 containing L, and

assume that the degree of S is minimal. Choose an ordering S1, ... of the irreducible components
of S such that, letting Li = {l ∈ L | l ⊂ Si \ (S1 ∪ · · · ∪ Si−1)}, we have |Li|

degSi
nonincreasing in i.

Write mi = |Li|, di = degSi. The number of intersections between lines contained in different sets
Li,Lj is at most ∑

j<i

midj ≤
∑
j<i

midj +mjdi
2

=
md−

∑
imidi

2
.

If Si is a cone, then there is at most 1 intersection point between lines in Li (the cone point). If
Si is a plane, then any two lines in Si intersect, so by assumption mi ≤

√
m, and the number of

intersection points between lines in Li is at most

mi(mi − 1)

2
≤ (mi − 1)

√
m

2
.

If Si is a smooth quadric surface, then either one of the rulings on Si contains at most two lines from
Li or by assumption both rulings contain at most

√
m lines from Li, so the number of intersection

points between lines in Li is at most

max

(
mi − 1, 2(mi − 2),

mi
√
m

2

)
≤ mi

√
m

2
.

If Si is ruled of degree at least 3, then since there are at most two special lines in Si and since
nonspecial lines meet at most di−2 other nonspecial lines, the number of intersection points between
lines in Li is at most

mi(di − 2 + 2) + 2mi

2
=
midi

2
+mi.

If Si is not ruled, then by Lemma 6 and Theorem 12 we can find a surface T of degree at most
min

(
11di − 24, 6mi

di

)
which contains Li but not Si (note that if we take deg T = 11di − 24 then

13



di ≤
√

6
11m < p). Thus by Proposition 5 the number of intersections between lines in Li is at most

min

(
di(11di − 24)

2
(12di − 26), 3mi

(
di +

6mi

di
− 2
))
≤ midi

2
+

(36− 1
2)
√

6
√

11
m

3
2
i .

Putting everything together, we see that the total number of intersection points between lines in
L is at most

md

2
+
∑
i

(36− 1
2)
√

6
√

11
mi

√
m ≤

(√
6

2
+

(36− 1
2)
√

6
√

11

)
m

3
2 .

Corollary 3 (Rudnev). Suppose we have n points and n planes in P3 such that no more than
√
n

points lie on any line and no more than
√
n planes all contain a common line. Assume further that

if the characteristic is p we have n ≤ 11
12p

2. Then the number of point-plane incidences is at most√
6032n

3
2 .

Proof. Taking Plücker coordinates, we get a collection of n α-planes and n β-planes, and every
incidence between a point and a plane becomes a pair of an α-plane and a β-plane which intersect
in a line. Intersecting the configuration with a general hyperplane which does not contain the
intersection of any two α-planes or the intersection of any two β-planes, we get a configuration of
2n lines in P4. Call a line coming from an α-plane an α-line, and similarly define β-lines. Any
two α-lines do not intersect, any two β-lines do not intersect, and intersections between α-lines
and β-lines correspond to point-plane incidences. For any two α-lines, any β-line intersecting
them corresponds to a plane containing the line through the corresponding points, so at most

√
n

lines from the configuration intersect any pair of α-lines. Similarly, at most
√
n lines from the

configuration intersecting any pair of β-lines. Thus we can apply Theorem 13 to see that the
number of incidences is at most √

754(2n)
3
2 =
√

6032n
3
2 .

Theorem 14 (Roche-Newton, Rudnev, Shkredov). If A is a finite subset of the nonzero elements
of a field with characteristic p satisfying |A|2|AA| ≤ 11

12p
2, then

|A+A|2|AA|3 ≥ |A|
6

6032
.

Proof. We estimate the number N of solutions to the equation

a+ bcd−1 = e+ fgh−1,

with a, b, c, d, e, f, g, h ∈ A, in two ways. By taking c = d, g = h and applying Cauchy-Schwarz we
see that

N ≥ |A|4

|A+A|
|A|2.

Now to each tuple (a, h, bc) ∈ A × A × AA we associate the point (a, bc, h−1), and to each tuple
(d, e, fg) ∈ A × A × AA we associate the plane {(x, y, z) | x + d−1y = e + fgz}. This gives us a
collection of |A|2|AA| points and |A|2|AA| planes in P3 such that at most |AA| ≤

√
|A|2|AA| points

(respectively planes) lie on any line. By Corollary 3, we see that

√
6032(|A|2|AA|)

3
2 ≥ N ≥ |A|6

|A+A|
.
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By a similar argument, we obtain the following.

Theorem 15 (Roche-Newton, Rudnev, Shkredov). Let A,B,C be finite subsets of a field of char-
acteristic p. If max(|A|, |B|, |C|)2 ≤ |A||B||C| ≤ 11

12p
2, then

|A+BC|2 ≥ |A||B||C|
6032

.

2.3 General rings

Theorem 16 (Katz-Tao Lemma). Let A be a nonempty finite set of non-zero-divisors of a ring R.
There is a subset B ⊆ A such that

|B| ≥ |A|2

4|AA|
and such that for any natural numbers k, l we have

|kBB − lBB| ≤
(

384
|A+A|3|AA|7

|A|10

)k+l
|kA− lA|.

Proof. By Theorem 7 we can find a subset X ⊆ A with |X| ≥ |A|2 and

|AXA| ≤ 3
|AA|2

|A|2
|X|.

By Cauchy-Schwarz we have∑
x∈X

∑
y∈A
|xA ∩Xy| ≥ |X|

2|A|2

|XA|
≥ |X|

2|A|2

|AA|
,

so we can pick some y ∈ A such that∑
x∈X
|xA ∩Xy| ≥ |X|

2|A|
|AA|

.

Setting

B =

{
x ∈ X | |xA ∩Xy| ≥ |X||A|

2|AA|

}
,

we have

|B| ≥ |X||A|
2|AA|

.

We now show by induction on h that if b1, ..., bk ∈ Bh, then

|b1A+ · · ·+ bkA| ≤
(

4|A+A||AA|
|A|2

)hk
|kA|.

Suppose that we have shown this already for h. Letting b1, ..., bk ∈ Bh and x1, ..., xk ∈ B, since the
bis and xis are non-zero-divisors we have

|bixiA+ bixiA| = |A+A|
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and

|bixiA ∩ biAy| = |xiA ∩Ay| ≥
|A|2

4|AA|
,

so by Proposition 1 we have

|b1x1A+ · · ·+ bkxkA| ≤
|A+A|
|x1A ∩Ay|

· · · |A+A|
|xkA ∩Ay|

|b1Ay + · · ·+ bkAy|

≤
(

4|A+A||AA|
|A|2

)(h+1)k

|kA|,

completing the induction. A similar statement with both additions and subtractions can be proved
in the same way.

Now choose an element m ∈ BA such that, setting

C = {(b, a) ∈ B ×A | ba = m},

we have

|C| ≥ |B||A|
|BA|

≥ |A|2

2|AA|2
|X|.

Fixing a representation uv + tw for each sum in BB +BB, we have an injection

(BB +BB)× C × C ↪→ {(c, d, s) | c, d ∈ B3, s ∈ cA+ dA},

sending (uv+ tw, (b, a), (b′, a′)) to (uvb, twb′, (uv+ tw)m). Thus, using |B3| ≤ |AXA| ≤ 3 |AA|
2

|A|2 |X|,
we have

|BB +BB| ≤
(
|B3|
|C|

)2(4|A+A||AA|
|A|2

)6

|A+A|

≤ 62
|AA|8

|A|8
· 46 |A+A|6|AA|6

|A|12
|A+A|

= 3842
|A+A|6|AA|14

|A|20
|A+A|.

By the same argument, for any natural numbers k, l we get

|kBB − lBB| ≤
(

384
|A+A|3|AA|7

|A|10

)k+l
|kA− lA|.

More generally, we even have

|kBh − lBh| ≤
(
|Bh+1|
|C|

(
4|A+A||AA|

|A|2

)h+1)k+l
|kA− lA|.

Theorem 17 (Self-improving property). Let A be a finite subset of a ring R, and let D be a
nonempty subset of A−A. If x is an element of R and r ∈ R∗ is a non-zero-divisor such that

|xA+ rA| < |A|
2

|D|
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then there is an element d ∈ (A−A) \D such that

|xAA+ rAA| ≤ |2AA−AA|
|dA|

|3AA− 2AA|.

If we take D to be the set of zero-divisors of A−A and we assume that D 6= A−A, then we have

|xA+ rA| ≤ |2AA− 2AA|
|A|

|3AA− 3AA|.

Proof. By Cauchy-Schwarz, we have

#{(a, b, a′, b′) ∈ A×A×A×A | xa+ rb = xa′ + rb′} ≥ |A|4

|xA+ rA|
,

so

#{(d, e) ∈ (A−A)× (A−A) | xd = re} ≥ |A|2

|xA+ rA|
> |D|.

Since r is a non-zero-divisor, each pair (d, e) with xd = re corresponds to a different value of d.
Thus we can find d ∈ (A − A) \D with xd ∈ r(A − A). By the Ruzsa covering lemma, there is a
set S ⊆ AA with

|S| ≤ |dA+AA|
|dA|

≤ |2AA−AA|
|dA|

and
AA ⊆ dA− dA+ S.

Thus we have

|xAA+ rAA| ≤ |xdA− xdA+ xS + rAA| ≤ |S||r(3AA− 2AA)| ≤ |2AA−AA|
|dA|

|3AA− 2AA|.

For the last claim, we apply the Ruzsa covering lemma to find S′ ⊆ AA−AA with

AA−AA ⊆ dA− dA+ S′

to get

|xA+rA| ≤ |(xA+rA)(A−A)| ≤ |xdA−xdA+xS′+rA(A−A)| ≤ |2AA− 2AA|
|A|

|3AA−3AA|.

From here on, we take A to be a subset of a ring R such that A−A contains a non-zero-divisor,
and we let D be the set of zero-divisors in A−A. For any r ∈ R, we define the set Sr to be

Sr =

{
x ∈ R | |xA+ rA| < |A|

2

|D|

}
.

Proposition 8. |A−A|, |A+A| ≤ |2AA− 2AA|.

Proposition 9. If r ∈ R∗ then |Sr| < |A−A|2. If we also have

|D| ≤ |A|3

2|2AA− 2AA||3AA− 3AA|
,

then

|Sr| <
2|A−A|2|2AA− 2AA||3AA− 3AA|

|A|3
.
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Proof. Let x ∈ Sr. By the same argument as in Theorem 17, we have

#{(d, e) ∈ ((A−A)\D)×(A−A) | xd = re} ≥ |A|2

|xA+ rA|
−|D| ≥ |A|3

|2AA− 2AA||3AA− 3AA|
−|D|.

Since for each (d, e) ∈ ((A − A) \D) × (A − A) there is at most one x such that xd = re, we see
that

|Sr| ≤
(|A−A| − |D|)|A−A|

|A|3
|2AA−2AA||3AA−3AA| − |D|

.

Proposition 10. If r ∈ R∗ and

|D| < |A|6

|A+A||2AA− 2AA|2|3AA− 3AA|2
,

then Sr is closed under addition (and is therefore an additive group).

Proof. For x, y ∈ Sr, we have

|(x+ y)A+ rA| ≤ |xA+ rA|
|A|

|yA+ rA|
|A|

|A+A| ≤ |A+A||2AA− 2AA|2|3AA− 3AA|2

|A|4
<
|A|2

|D|
.

Proposition 11. If

|D| < |A|8

|A+A||2AA− 2AA|3|3AA− 3AA|3
,

then S1 is closed under multiplication (and is therefore a ring).

Proof. Suppose x, y ∈ S1. Apply the Ruzsa covering lemma to find S ⊆ yA with

|S| ≤ |yA+A|
|A|

and
yA ⊆ A−A+ S.

Then we have

|xyA+A| ≤ |xA− xA+ xS +A| ≤ |A+A||2AA− 2AA|3|3AA− 3AA|3

|A|6
<
|A|2

|D|
.

Proposition 12. If r ∈ R∗, a ∈ (A−A) \D, and

|D| < |A|10

|A+A||2AA− 2AA|4|3AA− 3AA|4
,

then SrSa ⊆ Sra.

Proof. Take x ∈ Sr and y ∈ Sa. We have

|yA+Aa| ≤ |yA+ aA|
|A|

|Aa+ aA|
|A|

|A| ≤ |yA+ aA||2AA− 2AA|
|A|

.
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Take S ⊆ yA with

|S| ≤ |yA+Aa|
|A|

and
yA ⊆ Aa−Aa+ S.

Take S′ ⊆ xA− xA with

|S′| ≤ |xA− xA+ rA|
|A|

≤ |xA+ rA|
|A|

| − xA+ rA|
|A|

|A+A|
|A|

and
xA− xA ⊆ rA− rA+ S′.

Then

|xyA+ raA| ≤ |xAa− xAa+ xS + raA| ≤ |S||rAa− rAa+ S′a+ raA|

≤ |S||S′||Aa−Aa+ aA| ≤ |A+A||2AA− 2AA|4|3AA− 3AA|4

|A|8
<
|A|2

|D|
.

Proposition 13. If r, s ∈ R then sSr ⊆ Ssr.

Proposition 14. If r ∈ R and |D| < |A|2
|A+A| , then r ∈ Sr.

Proposition 15. If r, s ∈ R, then r ∈ Ss ⇐⇒ s ∈ Sr.

Proposition 16. If r, s ∈ R∗, Sr ∩ Ss ∩R∗ 6= ∅, and

|D| < |A|7

|2AA− 2AA|3|3AA− 3AA|3
,

then Sr = Ss.

Proof. Take t ∈ Sr ∩ Ss ∩R∗ and x ∈ Sr. We have

|rA+ sA| ≤ |tA+ rA|
|A|

|tA+ sA|
|A|

|A|.

Then

|xA+ sA| ≤ |xA+ rA|
|A|

|rA+ sA|
|A|

|A| ≤ |2AA− 2AA|3|3AA− 3AA|3

|A|5
<
|A|2

|D|
.

Theorem 18 (Inhomogeneous sum-product theorem). Let R be a ring, A ⊆ R. If

|(A−A) \R∗| < min

(
|A|2

|A+AA|
,

|A|8

2|A+A||2AA− 2AA|3|3AA− 3AA|3

)
,

then there is a subring S ⊆ R such that A ⊆ S and

|S| < 2|A−A|2|2AA− 2AA||3AA− 3AA|
|A|3

.
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Proof. We take S = S1, then A ⊆ S1 by the assumption |AA + A| < |A|2
|D| . Previous propositions

show that S1 is a ring and give the required bound on the size of S1.

Theorem 19 (Homogeneous sum-product theorem with invertible element). If R has a 1, A ⊆ R
has an invertible element a, and

|(A−A) \R∗| ≤ |A|8

2|A+A||2AA− 2AA|3|3AA− 3AA|3
,

then there is a subring S ⊆ R such that

A ⊆ aS = Sa

and

|S| < 2|A−A|2|2AA− 2AA||3AA− 3AA|
|A|3

.

Proof. We take S = S1. As before, we have S1 a ring with the required size bound. We have

|a−1AA+A| = |AA+ aA| ≤ |AA+AA| < |A|
2

|D|

by our assumption, so a−1A ⊆ S, that is, A ⊆ aS. Since SS = S, we have

|aSa−1A+A| ≤ |aSa−1aS + aS| = |aS| ≤ |S| < 2|2AA− 2AA|3|3AA− 3AA|
|A|3

<
|A|2

|D|
,

so aSa−1 ⊆ S. Since S is finite, this implies that aS = Sa.
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