Notes on the sum product theorem

Contents

1 The Plünnecke-Ruzsa sumset calculus 1
1.1 Approximate variants 3
1.2 Energy 4
2 The sum-product theorem 6
2.1 Characteristic Zero 6
2.2 Finite fields 8
2.3 General rings 15

1 The Plünnecke-Ruzsa sumset calculus

Definition 1. If A, B are finite subsets of a semigroup G, A nonempty, define the magnification ratio of A, B to be

$$
\mu(A, B)=\min _{\emptyset \neq X \subseteq A} \frac{|X B|}{|X|} .
$$

Note that if $\emptyset \neq X \subseteq A$ has $\frac{|X B|}{|B|}=\mu(A, B)$ then $\frac{|X B|}{|B|}=\mu(X, B)$.
Theorem 1 (Petridis). If X, B are finite subsets of a semigroup G, X nonempty satisfying $\frac{|X B|}{|X|}=$ $\mu(X, B)$, then for all finite subsets C of G such that $|c X|=|X|$ for all $c \in C$, we have

$$
|C X B| \leq \frac{|C X||X B|}{|X|} .
$$

Proof. Induct on $|C|$. If C is empty we are done, so suppose $C=C^{\prime} \cup\{c\}, c \notin C^{\prime}$. Letting $Y=\left\{x \in X \mid c x \in C^{\prime} X\right\}$, we have

$$
\begin{aligned}
|C X B| & \leq\left|C^{\prime} X B\right|+|c(X B \backslash Y B)| \\
& \leq \frac{\left|C^{\prime} X\right||X B|}{|X|}+|X B|-|Y B| \\
& \leq \frac{(|C X|-|X|+|Y|)|X B|}{|X|}+|X B|-\mu(X, B)|Y| \\
& =\frac{|C X||X B|}{|X|} .
\end{aligned}
$$

Theorem 2 (Ruzsa triangle inequality). If X, Y, Z are finite subsets of a group G, then $|X||Y Z| \leq$ $\left|Y X^{-1}\right||X Z|$.

Theorem 3 (Ruzsa covering lemma). If A, B are finite subsets of a group G and A is nonempty, then there is a set $S \subseteq B$ with $|S| \leq \mu(A, B)$ and $B \subseteq A^{-1} A S$.
Proof. Let $\emptyset \neq X \subseteq A$ be such that $\frac{|X B|}{|X|}=\mu(A, B)$. Take S to be a maximal subset of B such that $X s, X s^{\prime}$ are disjoint for every pair of distinct elements $s, s^{\prime} \in S$. Then $|X||S|=|X S| \leq|X B|$ and $B \subseteq X^{-1} X S \subseteq A^{-1} A S$.

Lemma 1 (Plünnecke tensor power trick). If A, B are finite subsets of a semigroup $G, A^{\prime}, B^{\prime}$ are finite subsets of a semigroup G^{\prime}, and A, A^{\prime} are nonempty, then

$$
\mu\left(A \times A^{\prime}, B \times B^{\prime}\right)=\mu(A, B) \mu\left(A^{\prime}, B^{\prime}\right)
$$

Theorem 4 (Plünnecke-Ruzsa sumset inequality). If A, B_{1}, \ldots, B_{h} are finite subsets of an abelian semigroup G with A nonempty, such that for all $b \in(h-1)\left(B_{1} \cup \cdots \cup B_{h}\right)$ we have $|A+b|=|A|$, then

$$
\mu\left(A, B_{1}+\cdots+B_{h}\right) \leq \frac{\left|A+B_{1}\right|}{|A|} \cdots \frac{\left|A+B_{h}\right|}{|A|} .
$$

In particular, if A is cancellative we have $\left|B_{1}+\cdots+B_{h}\right| \leq \frac{\left|A+B_{1}\right|}{|A|} \cdots \frac{\left|A+B_{h}\right|}{|A|}|A|$.
Proof. Write $\alpha_{i}=\frac{\left|A+B_{i}\right|}{|A|}$. Choose a large integer n such that $\frac{n}{\alpha_{i}}$ is an integer for all i, and set $n_{i}=\frac{n}{\alpha_{i}}$. By adding copies of \mathbb{N} to G, we can assume there exist $T_{1}, \ldots, T_{h} \subseteq G$ with $\left|T_{i}\right|=n_{i}$ such that all sums

$$
y+t_{1}+\cdots+t_{h}, \quad y \in A+B_{1}+\cdots+B_{h}, \quad \forall 1 \leq i \leq h \quad t_{i} \in T_{i}
$$

are distinct. Set $B=\bigcup_{i}\left(B_{i}+T_{i}\right)$. We have

$$
|A+B| \leq \sum_{i}\left|A+B_{i}\right|\left|T_{i}\right|=\sum_{i} n_{i} \alpha_{i}|A|,
$$

so $\mu(A, B) \leq \sum_{i} n_{i} \alpha_{i}=h n$. Let $\emptyset \neq X \subseteq A$ be such that $\frac{|X+B|}{|X|}=\mu(A, B)$. Applying Theorem 1 h times, we see that $|X+h B| \leq \mu(A, B)^{h}|X| \leq(h n)^{h}|X|$. Thus,

$$
n_{1} \cdots n_{h}\left|X+B_{1}+\cdots+B_{h}\right|=\left|X+B_{1}+\cdots+B_{h}+T_{1}+\cdots+T_{h}\right| \leq|X+h B| \leq(h n)^{h}|X|,
$$

so

$$
\mu\left(A, B_{1}+\cdots+B_{h}\right) \leq \frac{(h n)^{h}}{n_{1} \cdots n_{h}}=h^{h} \alpha_{1} \cdots \alpha_{h} .
$$

Applying the tensor power trick (Lemma 11), we have

$$
\mu\left(A, B_{1}+\cdots+B_{h}\right)^{k}=\mu\left(\times^{k} A, \times^{k} B_{1}+\cdots+\times^{k} B_{h}\right) \leq h^{h} \alpha_{1}^{k} \cdots \alpha_{h}^{k},
$$

and taking k to infinity finishes the proof.
Proposition 1 (Bourgain). Let $A_{1}, \ldots, A_{h}, B_{1}, \ldots, B_{h}, C_{1}, \ldots, C_{h}$ be finite subsets of an abelian group G such that for each $i A_{i} \cap C_{i}$ is nonempty. Then

$$
\left|B_{1}+\cdots+B_{h}\right| \leq \frac{\left|B_{1}+C_{1}\right|}{\left|A_{1} \cap C_{1}\right|} \cdots \frac{\left|B_{h}+C_{h}\right|}{\left|A_{h} \cap C_{h}\right|}\left|A_{1}+\cdots+A_{h}\right| .
$$

1.1 Approximate variants

Lemma 2. If A, B are finite subsets of an abelian group G, then there exist $x \in B-A, y \in A+B$ such that

$$
\begin{aligned}
|B \cap(A+x)| & \geq \frac{|A||B|}{|A+B|}, \\
|B \cap(-A+y)| & \geq \frac{|A||B|}{|A+B|} .
\end{aligned}
$$

Proof. By Cauchy-Schwarz, we have

$$
\#\left\{\left(a, b, a^{\prime}, b^{\prime}\right) \in A \times B \times A \times B \mid a+b=a^{\prime}+b^{\prime}\right\} \geq \frac{|A|^{2}|B|^{2}}{|A+B|}
$$

By the pigeonhole principle we can find an x of the form $b-a^{\prime}$ and a y of the form $a+b$ with the required properties.

Theorem 5 (Approximate covering lemma). If A, B are finite subsets of an abelian group G with A nonempty, then for any $m \geq 1$ there are sets $S_{+} \subseteq B-A, S_{-} \subseteq A+B$ such that

$$
\begin{aligned}
\left|B \cap\left(A+S_{+}\right)\right| & \geq(1-1 / m)|B|, \\
\left|B \cap\left(-A+S_{-}\right)\right| & \geq(1-1 / m)|B|,
\end{aligned}
$$

and

$$
\left|S_{+}\right|,\left|S_{-}\right|<\log (m) \mu(A, B)+1 .
$$

Proof. Assume WLOG that $\mu(A, B)=\frac{|A+B|}{|A|}$. Iteratively apply Lemma 2 and use the inequality $-\log \left(1-\frac{|A|}{|A+B|}\right) \geq \frac{|A|}{|A+B|}$.

Theorem 6 (Approximate Plünnecke-Ruzsa). If A, B_{1}, \ldots, B_{h} are finite subsets of an abelian semigroup G with A nonempty, such that for all $b \in(h-1)\left(B_{1} \cup \cdots \cup B_{h}\right)$ we have $|A+b|=|A|$, then for any $m \geq 1$ there is a set $X \subseteq A$ with

$$
|X|>(1-1 / m)|A|
$$

and

$$
\left|X+B_{1}+\cdots+B_{h}\right| \leq \frac{h m^{h-1}-1}{h-1} \frac{\left|A+B_{1}\right|}{|A|} \cdots \frac{\left|A+B_{h}\right|}{|A|}|X| .
$$

Proof. We'll show that in fact we can find such X with

$$
\left|X+B_{1}+\cdots+B_{h}\right| \leq\left(m^{h}|X|-\left(m^{h}-\frac{h m^{h-1}-1}{h-1}\right)|A|\right) \frac{\left|A+B_{1}\right|}{|A|} \cdots \frac{\left|A+B_{h}\right|}{|A|} .
$$

Suppose for contradiction that there is some $m \geq 1$ for which we can not find such an X. Let n be the infimum of all such m. Since A only has finitely many subsets, we can find a set $\emptyset \neq Y \subseteq A$ with $|Y| \geq(1-1 / n)|A|$ and

$$
\left|Y+B_{1}+\cdots+B_{h}\right| \leq\left(n^{h}|Y|-\left(n^{h}-\frac{h n^{h-1}-1}{h-1}\right)|A|\right) \frac{\left|A+B_{1}\right|}{|A|} \cdots \frac{\left|A+B_{h}\right|}{|A|} .
$$

Note that if $|Y|>(1-1 / n)|A|$ then the derivative of the right hand side of the above with respect to n is positive, so by the definition of n we must have $|Y|=(1-1 / n)|A|$ for any set Y as above.

By the Plünnecke-Ruzsa inequality (Theorem 4), we have

$$
\mu\left(A \backslash Y, B_{1}+\cdots+B_{h}\right) \leq \frac{\left|A+B_{1}\right|}{|A \backslash Y|} \cdots \frac{\left|A+B_{h}\right|}{|A \backslash Y|} \leq n^{h} \frac{\left|A+B_{1}\right|}{|A|} \cdots \frac{\left|A+B_{h}\right|}{|A|},
$$

so there is some $\emptyset \neq X^{\prime} \subseteq A \backslash Y$ such that

$$
\left|X^{\prime}+B_{1}+\cdots+B_{h}\right| \leq n^{h} \frac{\left|A+B_{1}\right|}{|A|} \cdots \frac{\left|A+B_{h}\right|}{|A|}\left|X^{\prime}\right| .
$$

Taking $Y^{\prime}=Y \cup X^{\prime}$, we have

$$
\begin{aligned}
\left|Y^{\prime}+B_{1}+\cdots+B_{h}\right| & \leq\left|Y+B_{1}+\cdots+B_{h}\right|+\left|X^{\prime}+B_{1}+\cdots+B_{h}\right| \\
& \leq\left(n^{h}|Y|+n^{h}\left|X^{\prime}\right|-\left(n^{h}-\frac{h n^{h-1}-1}{h-1}\right)|A|\right) \frac{\left|A+B_{1}\right|}{|A|} \cdots \frac{\left|A+B_{h}\right|}{|A|} \\
& =\left(n^{h}\left|Y^{\prime}\right|-\left(n^{h}-\frac{h n^{h-1}-1}{h-1}\right)|A|\right) \frac{\left|A+B_{1}\right|}{|A|} \cdots \frac{\left|A+B_{h}\right|}{|A|},
\end{aligned}
$$

but $\left|Y^{\prime}\right|>(1-1 / n)|A|$, a contradiction.
Theorem 7 (Ruzsa). If A, B, C are finite subsets of a semigroup G with A nonempty, such that for any $b \in B, c \in C$ we have $|c A|=|A b|=|A|$, then for any $m \geq 1$ there is a set $X \subseteq A$ with

$$
|X|>(1-1 / m)|A|
$$

and

$$
|C X B| \leq(2 m-1) \frac{|C A|}{|A|} \frac{|A B|}{|A|}|X| .
$$

Proof. Since left multiplication by C commutes with right multiplication by B, we can make an auxiliary abelian semigroup G^{\prime} out of disjoint copies of $A, B, C, C A, A B, B \times C, C A B,\{0\}$ in an obvious way. Now apply Theorem 6 to G^{\prime}.

1.2 Energy

Definition 2. If A, B are finite subsets of a semigroup, define their energy to be

$$
E(A, B)=\#\{(a, b, c, d) \in A \times B \times A \times B \mid a b=c d\} .
$$

When $A=B$, we abbreviate this by $E(A)$.
Proposition 2 (Cauchy-Schwarz). If A, B are finite nonempty subsets of a semigroup, then

$$
E(A, B) \geq \frac{|A|^{2}|B|^{2}}{|A B|}
$$

Definition 3. If A, B are finite subsets of an abelian group G and $x \in G$, set

$$
\begin{aligned}
& (A * B)(x)=\#\{(a, b) \in A \times B \mid a+b=x\}, \\
& (A \circ B)(x)=\#\{(a, b) \in A \times B \mid b-a=x\} .
\end{aligned}
$$

Lemma 3 (Sanders, Schoen). If A is a finite nonempty subset of an abelian group, $0 \leq \alpha<1$, and $c \geq 0$, then there is a set $X \subseteq A$ with $|X|>\alpha \frac{E(A)}{|A|^{2}}$ and

$$
\#\left\{(x, y) \in X \times X \left\lvert\,(A \circ A)(x-y)>c \frac{E(A)}{|A|^{2}}\right.\right\} \geq\left(1-\frac{c}{1-\alpha}\right)|X|^{2} .
$$

Proof. We will choose $X=A \cap(A+d)$ for some $d \in A-A$. We have

$$
\sum_{(A \circ A)(d) \leq \alpha \frac{E(A)}{|A|^{2}}}(A \circ A)(d)^{2} \leq \alpha \frac{E(A)}{|A|^{2}} \sum_{d}(A \circ A)(d)=\alpha E(A),
$$

so

$$
\sum_{(A \circ A)(d)>\alpha \frac{E(A)}{|A|^{2}}}(A \circ A)(d)^{2} \geq(1-\alpha) E(A) .
$$

Setting

$$
S=\left\{(a, b) \in A \times A \left\lvert\,(A \circ A)(a-b) \leq c \frac{E(A)}{|A|^{2}}\right.\right\},
$$

we have

$$
\sum_{d} \#\{(a, b) \in S \mid a, b \in A+d\}=\sum_{(a, b) \in S}(A \circ A)(a-b) \leq c \frac{E(A)}{|A|^{2}}|S| \leq c E(A)
$$

Thus

$$
\sum_{(A \circ A)(d)>\alpha \frac{E(A)}{|A|^{2}}}(1-\alpha) \#\{(a, b) \in S \mid a, b \in A+d\}-c(A \circ A)(d)^{2} \leq 0,
$$

so there must be some d with $(A \circ A)(d)>\alpha \frac{E(A)}{|A|^{2}}$ and

$$
(1-\alpha) \#\{(a, b) \in S \mid a, b \in A+d\}-c(A \circ A)(d)^{2} \leq 0 .
$$

Taking $X=A \cap(A+d)$ for this d, we have $|X|=(A \circ A)(d)$ and

$$
\#\left\{(x, y) \in X \times X \left\lvert\,(A \circ A)(x-y)>c \frac{E(A)}{|A|^{2}}\right.\right\}=|X|^{2}-\#\{(a, b) \in S \mid a, b \in A+d\} .
$$

Theorem 8 (Balog, Gowers, Schoen, Szemerédi). If A is a finite nonempty subset of an abelian group, then there is a set $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right|>\frac{E(A)}{6|A|^{2}}$ and

$$
\left|A^{\prime}-A^{\prime}\right|<486 \frac{|A|^{10}}{E(A)^{3}}
$$

Proof. Take $\alpha=\frac{1}{2}, c=\frac{1}{9}$ in Lemma 3 to find a set $X \subseteq A$ with $|X|>\frac{E(A)}{2|A|^{2}}$ and

$$
\#\left\{(x, y) \in X \times X \left\lvert\,(A \circ A)(x-y)>\frac{E(A)}{9|A|^{2}}\right.\right\} \geq \frac{7}{9}|X|^{2} .
$$

Make a graph \mathcal{H} with vertex set X, having an edge between x and y exactly when $(A \circ A)(x-$ $y)>\frac{E(A)}{9|A|^{2}}$. Letting A^{\prime} be the set of vertices in \mathcal{H} having degree greater than $\frac{2}{3}|X|$, we see that $\left|A^{\prime}\right| \geq \frac{|X|}{3}>\frac{E(A)}{6|A|^{2}}$. For any $a, b \in A^{\prime}$, we can find more than $\frac{1}{3}|X|$ vertices $x \in X$ connected to both a, b in \mathcal{H}, and for each such x we can write

$$
a-b=(a-x)-(b-x),
$$

and we can write the right hand side in the form $\left(a_{1}-a_{2}\right)-\left(a_{3}-a_{4}\right)$ with $a_{1}, a_{2}, a_{3}, a_{4} \in A$, $a_{1}-a_{2}=a-x$, in at least $\frac{E(A)^{2}}{81|A|^{4}}$ different ways. Thus we have

$$
\left|A^{\prime}-A^{\prime}\right| \cdot \frac{1}{3}|X| \cdot \frac{E(A)^{2}}{81|A|^{4}}<|A|^{4}
$$

so

$$
\left|A^{\prime}-A^{\prime}\right|<486 \frac{|A|^{10}}{E(A)^{3}}
$$

2 The sum-product theorem

2.1 Characteristic Zero

Definition 4. For any distinct points $a, b \in \mathbb{R}^{n}$, set

$$
D(a, b)=\left\{p \in \mathbb{R}^{n} \left\lvert\, \angle p a b \leq \frac{\pi}{6}\right., \angle p b a \leq \frac{\pi}{6}\right\} .
$$

Lemma 4. For any four points $a, b, c, d \in \mathbb{R}^{n}$ with $a \neq b, c \neq d,\{a, b\} \neq\{c, d\}$, if all of the inequalities

$$
|a b| \leq|b c|, \quad|a b| \leq|b d|, \quad|c d| \leq|a d|, \quad|c d| \leq|b d|
$$

hold then the interiors of $D(a, b)$ and $D(c, d)$ do not intersect.
Proof. If $|a b|+|c d| \leq|b d|$, then since $D(a, b)$ is contained in the sphere of radius $|a b|$ around b and $D(c, d)$ is contained in the sphere of radius $|c d|$ around d, their interiors can't intersect. Otherwise, we can find a point $x \in \mathbb{R}^{n}$ such that $|b x|=|a b|,|d x|=|c d|$. Since $|a b|,|c d|$ are assumed to be at most $|b d|, b d$ is the longest edge of triangle $b d x$, so we must have $\angle b x d \geq \frac{\pi}{3}$. Thus we can find some point m on the line segment $b d$ with $\angle m x b \geq \frac{\pi}{6}$ and $\angle m x d \geq \frac{\pi}{6}$. Since a is outside the sphere of radius $|c d|=|d x|$ centered at d, we have $\angle a b m \geq \angle x b m$, and similarly $\angle c d m \geq \angle x d m$. Thus, if we rotate the ray $m x$ around the line $b d$ we get a cone which separates the interior of $D(a, b)$ from the interior of $D(c, d)$.

Corollary 1 (Gilbert, Pollak). Let P be a finite set of points in \mathbb{R}^{n}, and let T be a minimum spanning tree on P. For any distinct edges $\{a, b\},\{c, d\}$ of T, the interiors of $D(a, b)$ and $D(c, d)$ do not intersect.

Proof. Since T is a tree, there is a unique path in T connecting the edge $\{a, b\}$ to the edge $\{c, d\}$. We may assume without loss of generality that this path connects a to c without passing through b or d. Then if we replace edge $\{a, b\}$ with either $\{b, c\}$ or $\{b, d\}$ we again get a spanning tree, so by minimality we must have $|a b| \leq|b c|,|b d|$. Similarly we have $|c d| \leq|a d|,|b d|$. Now apply Lemma 4.

Proposition 3. Suppose $a, b, c, d \in \mathbb{H}^{\times}$are nonzero quaternions with $\angle b 0 d \leq \frac{\pi}{6}$. Then $(a+c)(b+$ $d)^{-1}$ is in the interior of $D\left(a b^{-1}, c d^{-1}\right)$.

Proof. Writing $b=m d$, we have

$$
(a+c)(b+d)^{-1}=(a+c) d^{-1}(m+1)^{-1}=a b^{-1}+\left(c d^{-1}-a b^{-1}\right)(m+1)^{-1}
$$

so it's enough to check that if $\angle m 01 \leq \frac{\pi}{6}$ then $(m+1)^{-1}$ is in the interior of $D(0,1)$. Since $\angle(m+1) 10 \geq \frac{5 \pi}{6}$, we have $\angle 1(m+1)^{-1} 0 \geq \frac{5 \pi}{6}$, so $(m+1)^{-1}$ is in the interior of $D(0,1)$ by the fact that the angles of a triangle sum to π.

Theorem 9 (Konyagin, Rudnev, Solymosi). Suppose $A \subseteq \mathbb{H}^{\times}$is a finite set of nonzero quaternions such that for any $a, b \in A$ we have $\angle a 0 b \leq \frac{\pi}{6}$. Then

$$
|A+A|^{2}|A A| \geq \frac{|A|^{4}-|A||A A|}{\log \frac{|A A|^{2}}{|A|}+\gamma}
$$

where γ is the Euler-Mascheroni constant.
Proof. By Cauchy-Schwarz, we have

$$
\#\{(a, b, c, d) \in A \times A \times A \times A \mid a b=c d\} \geq \frac{|A|^{4}}{|A A|}
$$

Write $m(x)=\#\left\{(a, c) \in A \times A \mid c^{-1} a=x\right\}, n(x)=\#\left\{(b, d) \in A \times A \mid d b^{-1}=x\right\}$. By CauchySchwarz again, we have

$$
\sum_{x} m(x)^{2} \sum_{y} n(y)^{2} \geq\left(\sum_{x} m(x) n(x)\right)^{2} \geq \frac{|A|^{8}}{|A A|^{2}}
$$

Thus we may assume without loss of generality that

$$
\sum_{x} n(x)^{2} \geq \frac{|A|^{4}}{|A A|}
$$

since otherwise we may replace A by \bar{A}. Choose a numbering $x_{1}, \ldots, x_{\left|A A^{-1}\right|}$ of the elements of $A A^{-1}$ such that $n\left(x_{1}\right) \geq n\left(x_{2}\right) \geq \cdots$. Choose $1 \leq k \leq\left|A A^{-1}\right|$ such that $(k-1) n\left(x_{k}\right)^{2}$ is maximized. Then by choice of k we have

$$
\frac{|A|^{4}}{|A A|} \leq \sum_{i=1}^{\left|A A^{-1}\right|} n\left(x_{i}\right)^{2} \leq|A|+(k-1) n\left(x_{k}\right)^{2} \sum_{i=2}^{\left|A A^{-1}\right|} \frac{1}{i-1}
$$

SO

$$
(k-1) n\left(x_{k}\right)^{2} \geq \frac{|A|^{4}-|A||A A|}{H_{\left|A A^{-1}\right|-1}|A A|}
$$

where $H_{n}=\sum_{i=1}^{n} \frac{1}{i}$ denotes the nth harmonic number. Note that by the Ruzsa triangle inequality 2 we have $\left|A A^{-1}\right| \leq \frac{|A A|^{2}}{|A|}$, so

$$
H_{\left|A A^{-1}\right|-1} \leq \log \frac{|A A|^{2}}{|A|}+\gamma
$$

Let T be a minimum spanning tree on $\left\{x_{1}, \ldots, x_{k}\right\}$. For any edge $\left\{x_{i}, x_{j}\right\}$ in T, if $a, b, c, d \in A$ have $a b^{-1}=x_{i}$ and $c d^{-1}=x_{j}$, then by Proposition 3 the ratio $(a+c)(b+d)^{-1}$ will be in the interior of $D\left(a b^{-1}, c d^{-1}\right)$. Thus by Corollary 1 we have an injection

$$
\left\{\left(\left\{x_{i}, x_{j}\right\}, a, b, c, d\right) \in T \times A \times A \times A \times A \mid a b^{-1}=x_{i}, c d^{-1}=x_{j}\right\} \hookrightarrow(A+A) \times(A+A),
$$

taking $\left(\left\{x_{i}, x_{j}\right\}, a, b, c, d\right)$ to $(a+c, b+d)$. Since T has $k-1$ edges and $n\left(x_{i}\right) \geq n\left(x_{k}\right)$ for $1 \leq i \leq k$, we have

$$
|A+A|^{2} \geq(k-1) n\left(x_{k}\right)^{2} \geq \frac{|A|^{4}-|A||A A|}{H_{\left|A A^{-1}\right|-1}|A A|}
$$

2.2 Finite fields

Lemma 5. If $A, B \subseteq \mathbb{F}_{q}, G \subseteq \mathbb{F}_{q}^{\times}$, then there is some $\xi \in G$ with

$$
|A+\xi B| \geq \frac{|A||B||G|}{|A||B|+|G|}
$$

Proof. Define a function $f: G \mapsto \mathbb{N}$ by

$$
f(\xi)=\#\left\{\left(a, b, a^{\prime}, b^{\prime}\right) \in A \times B \times A \times B \mid a+\xi b=a^{\prime}+\xi b^{\prime}\right\} .
$$

We have

$$
\sum_{\xi \in G} f(\xi) \leq|A|^{2}|B|^{2}+|A||B||G|,
$$

so there must be some $\xi \in G$ with $f(\xi) \leq \frac{|A|^{2}|B|^{2}}{|G|}+|A||B|$. By Cauchy-Schwarz, we have

$$
|A+\xi B| \geq \frac{|A|^{2}|B|^{2}}{f(\xi)} \geq \frac{|A||B||G|}{|A||B|+|G|} .
$$

Theorem 10 (Bourgain, Garaev, Katz, Li, Shen, ...). If p is prime and $A \subseteq \mathbb{F}_{p}$ then

$$
\begin{aligned}
|A+A|^{9}|A A|^{4} & \geq \frac{|A|^{14}}{256} \min \left(1, \frac{p}{|A|^{2}}\right) \\
|A+A|^{8}|A A|^{4} & \geq \frac{|A|^{13}}{2^{23}} \min \left(1, \frac{3^{7} p}{|A|^{2}}\right)
\end{aligned}
$$

Proof. We'll prove the second bound (for the first bound, take $X=A$ and $Z=W=Y$ instead of using the approximate variations on the sumset calculus). By the approximate Plünnecke-Ruzsa theorem (Theorem 6), we can find $X \subseteq A$ with $|X| \geq \frac{3}{4}|A|$ and

$$
|X+A+A+A| \leq 24 \frac{|A+A|^{3}}{|A|^{3}}|X| .
$$

By the Cauchy-Schwarz inequality, we have

$$
\sum_{x \in X, a \in A}|x A \cap X a| \geq \frac{|X|^{2}|A|^{2}}{|X A|}
$$

so by the pigeonhole principle there is some $a_{0} \in A$ with

$$
\sum_{x \in X}\left|x A \cap X a_{0}\right| \geq \frac{|X|^{2}|A|}{|X A|}
$$

Let $X=\left\{x_{1}, \ldots, x_{|X|}\right\}$, set $n_{i}=\left|x_{i} A \cap X a_{0}\right|$, and suppose WLOG that $n_{1} \geq \cdots \geq n_{|X|}$. Choose k maximizing the quantity $k^{3 / 4} n_{k}$, set $Y=\left\{x_{1}, \ldots, x_{k}\right\}$, and set $N=n_{k}$. We have

$$
\frac{|X|^{2}|A|}{|X A|} \leq \sum_{i=1}^{|X|} n_{i} \leq \sum_{i=1}^{|X|} i^{-3 / 4} k^{3 / 4} n_{k}<4|X|^{1 / 4}|Y|^{3 / 4} N
$$

so

$$
|Y|^{3} N^{4} \geq \frac{|X|^{7}|A|^{4}}{256|X A|^{4}}
$$

For any $y \in Y$ we have $\left|y A \cap X a_{0}\right| \geq N$, so by Ruzsa's triangle inequality (Theorem 2) we have

$$
\left|y A-X a_{0}\right| \leq \frac{\left|y A+y A \cap X a_{0}\right|\left|y A \cap X a_{0}+X a_{0}\right|}{\left|y A \cap X a_{0}\right|} \leq \frac{|y(A+A)|\left|(X+X) a_{0}\right|}{N} \leq \frac{|A+A|^{2}}{N},
$$

and similarly by Plünnecke-Ruzsa (Theorem (4) we have

$$
\left|y A+X a_{0}\right| \leq \frac{\left|y A \cap X a_{0}+y A\right|\left|y A \cap X a_{0}+X a_{0}\right|}{\left|y A \cap X a_{0}\right|} \leq \frac{|A+A|^{2}}{N} .
$$

There are now two cases.
Case 1: If $\frac{Y-Y}{(Y-Y) \backslash\{0\}}=\mathbb{F}_{p}$, then by Lemma 5 we can find $\xi \in \mathbb{F}_{p}^{\times}$such that $|A+\xi A| \geq$ $\frac{1}{2} \min \left(|A|^{2}, p\right)$. Write $\xi=\frac{c-d}{a-b}$ with $a, b, c, d \in Y$. By Plünnecke-Ruzsa, we have

$$
|(a-b) A+(c-d) A| \leq|a A-b A+c A-d A| \leq \frac{\left|X a_{0}+a A\right|\left|X a_{0}-b A\right|\left|X a_{0}+c A\right|\left|X a_{0}-d A\right|}{\left|X a_{0}\right|^{3}},
$$

so

$$
|A+A|^{8} \geq \frac{|A|^{2}|X|^{3} N^{4}}{2} \min \left(1, \frac{p}{|A|^{2}}\right) .
$$

Since $|X|^{3} N^{4} \geq|Y|^{3} N^{4} \geq \frac{|X|^{7}|A|^{4}}{256|A A|^{4}}$ and $|X| \geq \frac{3}{4}|A|$, we have

$$
\begin{aligned}
|A+A|^{8}|A A|^{4} & \geq \frac{|X|^{7}|A|^{6}}{2^{9}} \min \left(1, \frac{p}{|A|^{2}}\right) \\
& \geq \frac{3^{7}|A|^{13}}{2^{23}} \min \left(1, \frac{p}{|A|^{2}}\right) .
\end{aligned}
$$

Case 2: If $\frac{Y-Y}{(Y-Y) \backslash\{0\}} \neq \mathbb{F}_{p}$, then we can find $\xi \in\left(\frac{Y-Y}{(Y-Y) \backslash\{0\}}+1\right) \backslash \frac{Y-Y}{(Y-Y) \backslash\{0\}}$. Writing $\xi=$ $\frac{c-d}{a-b}+1$ with $a, b, c, d \in Y$, we see that for any $Z, W \subseteq Y$ have

$$
|Z||W|=|Z+\xi W| \leq|(a-b) Z+(a-b) W+(c-d) W| .
$$

In particular, if $\emptyset \neq Z^{\prime} \subseteq Z$ is chosen such that $\mu((a-b) Z,(a-b) W+(c-d) W)=\frac{\left|(a-b) Z^{\prime}+(a-b) W+(c-d) W\right|}{\left|Z^{\prime}\right|}$, then by Plünnecke-Ruzsa we have

$$
\left|Z^{\prime}\right||W| \leq\left|(a-b) Z^{\prime}+(a-b) W+(c-d) W\right| \leq \frac{|Z+W|}{|Z|} \frac{|(a-b) Z+(c-d) W|}{|Z|}\left|Z^{\prime}\right|,
$$

so

$$
|Z|^{2}|W| \leq|A+A||(a-b) Z+(c-d) W| .
$$

Applying the approximate covering lemma (Lemma 5) to $a A \cap X a_{0}, a Y$, we find a set S with $|S|<3 \frac{|A+A|}{N}$ such that

$$
\left|a Y \cap\left(X a_{0}+a S\right)\right| \geq \frac{6}{7}|Y| .
$$

Let $Y^{\prime}=Y \cap\left(a^{-1} X a_{0}+S\right)$. Applying it again, we find a set S^{\prime} with $\left|S^{\prime}\right|<3 \frac{|A+A|}{N}$ such that

$$
b Y^{\prime} \cap\left(-X a_{0}+b S^{\prime}\right) \geq \frac{6}{7}\left|Y^{\prime}\right|,
$$

and let $Z=Y^{\prime} \cap\left(-b^{-1} X a_{0}+S\right)$. Similarly, find sets $W \subseteq Y, S^{\prime \prime}, S^{\prime \prime \prime}$ such that $|W| \geq \frac{6^{2}}{7^{2}}|Y|$, $c W \subseteq X a_{0}+c S^{\prime \prime}, d W \subseteq-X a_{0}+d S^{\prime \prime \prime},\left|S^{\prime \prime}\right|,\left|S^{\prime \prime \prime}\right| \leq 3 \frac{|A+A|}{N}$. We have

$$
\begin{aligned}
|(a-b) Z+(c-d) W| & \leq|a Z-b Z+c W-d W| \\
& \leq|S|\left|S^{\prime}\right|\left|S^{\prime \prime}\right|\left|S^{\prime \prime \prime}\right|\left|X a_{0}+X a_{0}+X a_{0}+X a_{0}\right| \\
& \leq 3^{4} \frac{|A+A|^{4}}{N^{4}} \cdot 24 \frac{|A+A|^{3}}{|A|^{3}}|X|,
\end{aligned}
$$

so

$$
|X||A+A|^{8} \geq \frac{24|A|^{3}|Y|^{3} N^{4}}{7^{6}}
$$

By the inequalities $|X| \geq \frac{3}{4}|A|$ and $|Y|^{3} N^{4} \geq \frac{|X|^{\mid}|A|^{4}}{256|A A|^{4}}$ we have

$$
\begin{aligned}
|A+A|^{8}|A A|^{4} & \geq \frac{3|X|^{6}|A|^{7}}{2^{5} \cdot 7^{6}} \\
& \geq \frac{3^{7}|A|^{13}}{2^{17} \cdot 7^{6}} \\
& \geq \frac{|A|^{13}}{2^{23}} .
\end{aligned}
$$

Theorem 11 (Garaev). Let q be a prime power. If $A, B \subseteq \mathbb{F}_{q}, C \subseteq \mathbb{F}_{q}^{\times}$, then

$$
|A+B||A C| \geq \min \left(\frac{|A| q}{2}, \frac{|A|^{2}|B||C|}{4 q}\right) .
$$

Proof. Let

$$
J=\left\{(x, b, c, y) \in(A+B) \times B \times C \times A C \mid x=b+y c^{-1}\right\} .
$$

We have an injection $A \times B \times C \hookrightarrow J$ given by $(a, b, c) \mapsto(a+b, b, c, a c)$, so $|J| \geq|A||B||C|$. Let $\phi_{0}, \ldots, \phi_{q-1}$ be the additive characters of \mathbb{F}_{q}, ϕ_{0} the trivial character. We have

$$
\begin{aligned}
|J| & =\frac{1}{q} \sum_{n=0}^{q-1} \sum_{x \in A+B} \sum_{b \in B} \sum_{c \in C} \sum_{y \in A C} \phi_{n}\left(b-x+y c^{-1}\right) \\
& \leq \frac{|A+B||B||C||A C|}{q}+\frac{1}{q} \sum_{n=1}^{q-1}\left|\sum_{x \in A+B} \phi_{n}(x)\right|\left|\sum_{b \in B} \phi_{n}(b)\right| \sum_{c \in C}\left|\sum_{y \in A C} \phi_{n}\left(y c^{-1}\right)\right| .
\end{aligned}
$$

By Cauchy-Schwarz, for $n \neq 0$ we have

$$
\begin{aligned}
\left(\sum_{c \in C}\left|\sum_{y \in A C} \phi_{n}\left(y c^{-1}\right)\right|\right)^{2} & \leq|C| \sum_{d \in \mathbb{F}_{q}}\left|\sum_{y \in A C} \phi_{n}(d y)\right|^{2} \\
& =q|C||A C|
\end{aligned}
$$

and applying Cauchy-Schwarz one more time we have

$$
\begin{aligned}
\frac{1}{q} \sum_{n=1}^{q-1}\left|\sum_{x \in A+B} \phi_{n}(x)\right|\left|\sum_{b \in B} \phi_{n}(b)\right| \sum_{c \in C}\left|\sum_{y \in A C} \phi_{n}\left(y c^{-1}\right)\right| & \leq \frac{\sqrt{q|C||A C|}}{q} \sum_{n=1}^{q-1}\left|\sum_{x \in A+B} \phi_{n}(x)\right|\left|\sum_{b \in B} \phi_{n}(b)\right| \\
& \leq \sqrt{q|A+B||B||C||A C|} .
\end{aligned}
$$

Thus

$$
|A||B||C| \leq \frac{|A+B||B||C||A C|}{q}+\sqrt{q|A+B||B||C||A C|} .
$$

A much better sum-product bound was recently obtained by Rudnev, using a three-dimensional variant of the Szemerédi-Trotter theorem due to Kollár. The proof is sketched below.

Lemma 6 (Kollár). Let \mathcal{L} be a set of m distinct lines in \mathbb{P}^{3}.

1) There exists a surface S of degree at most $\sqrt{6 m}-2$ which contains \mathcal{L}.
2) For any irreducible surface U of degree $g \leq \sqrt{6 m}$ there exists a surface T of degree at most $\frac{6 m}{g}$ which contains \mathcal{L} and does not contain U.
Proposition 4 (Kollár). For $i=1, \ldots, n-1$ let H_{i} be a hypersurface in \mathbb{P}^{n} of degree a_{i}, and suppose their intersection $B=H_{1} \cap \cdots \cap H_{n-1}$ is 1-dimensional. Let $C \subseteq B$ be a reduced subcurve. Then the arithmetic genus of C satisfies

$$
p_{a}(C) \leq p_{a}(B)=1+\frac{1}{2}\left(\sum_{i} a_{i}-n-1\right) \prod_{i} a_{i} .
$$

Proof. By induction on n together with the Kodaira vanishing theorem for \mathbb{P}^{n}, one can show that $h^{0}\left(B, \mathcal{O}_{B}\right)=1$, so $p_{a}(B)=h^{1}\left(B, \mathcal{O}_{B}\right)-h^{0}\left(B, \mathcal{O}_{B}\right)+1=h^{1}\left(B, \mathcal{O}_{B}\right)$. If J is the ideal sheaf of C on B, we have

$$
0 \rightarrow J \rightarrow \mathcal{O}_{B} \rightarrow \mathcal{O}_{C} \rightarrow 0
$$

so by the long exact sequence of cohomology we have

$$
H^{1}\left(B, \mathcal{O}_{B}\right) \rightarrow H^{1}\left(C, \mathcal{O}_{C}\right) \rightarrow H^{2}(B, J)
$$

and $H^{2}(B, J)=0$ since B is 1-dimensional. Thus

$$
p_{a}(C)=h^{1}\left(C, \mathcal{O}_{C}\right)-h^{0}\left(C, \mathcal{O}_{C}\right)+1 \leq h^{1}\left(B, \mathcal{O}_{B}\right)=p_{a}(B) .
$$

The formula for $p_{a}(B)$ follows by directly computing the Hilbert polynomial of B.
Proposition 5 (Kollár). Let $S, T \subseteq \mathbb{P}^{3}$ be surfaces of degrees a, b with no common components, and let C be a reduced curve contained in $S \cap T$. For a point $p \in C$ let $r(p)$ be the multiplicity of C at p.

1) C has at most ab components.
2) $\sum_{p \in C} r(p)-1 \leq \frac{a b}{2}(a+b-2)$.

Following Rudnev, we give a concrete description of Plücker coordinates for lines in \mathbb{P}^{3}.
Definition 5. For a line L in \mathbb{P}^{3} containing points $\left[q_{0}: q_{1}: q_{2}: q_{3}\right]$, $\left[u_{0}: u_{1}: u_{2}: u_{3}\right]$, set

$$
P_{i j}=q_{i} u_{j}-q_{j} u_{i},
$$

and define the Plücker coordinates of L to be $\left[P_{01}: P_{02}: P_{03}: P_{23}: P_{31}: P_{12}\right]$. Writing this as [$\omega: \nu$], if $q_{0}=u_{0}=1$ and we set $q=\left(q_{1}, q_{2}, q_{3}\right), u=\left(u_{1}, u_{2}, u_{3}\right)$ then $\omega=u-q, \nu=q \times \omega$. Define the Klein quadric \mathcal{K} to be the 4 -dimensional hypersurface

$$
\mathcal{K}=\left\{[\omega: \nu] \in \mathbb{P}^{5} \mid \omega \cdot \nu=0\right\} .
$$

Proposition 6. Two lines with Plücker coordinates $[\omega: \nu],\left[\omega^{\prime}: \nu^{\prime}\right]$ intersect if and only if

$$
\omega \cdot \nu^{\prime}+\omega^{\prime} \cdot \nu=0,
$$

and this occurs if and only if the line connecting $[\omega: \nu],\left[\omega^{\prime}: \nu^{\prime}\right]$ is contained in \mathcal{K}. Every plane contained in \mathcal{K} is either an α-plane, corresponding to the set of lines through a specific point in \mathbb{P}^{3}, or a β-plane, corresponding to the set of lines contained in a specific plane in \mathbb{P}^{3}. Any two α-planes meet in a point, any two β-planes meet in a point, and an α-plane and a β-plane meet in a line if and only if the point corresponding to the α-plane is contained in the plane corresponding to the β-plane.

Definition 6. A ruling Γ of a surface $S \subset \mathbb{P}^{3}$ is a closed curve $\Gamma \subset \mathcal{K}$ such that each point of Γ corresponds to a line contained in S. The degree of a ruling Γ is defined to be its degree as a curve in \mathbb{P}^{5}. A line contained in S which is not contained in any ruling of S is called special.
Proposition 7. For any three skew lines $L_{1}, L_{2}, L_{3} \subset \mathbb{P}^{3}$, the union of the collection of all lines which intersect all three of L_{1}, L_{2}, L_{3} is a smooth quadric surface S. Conversely, every smooth quadric surface S has two irreducible rulings Γ_{1}, Γ_{2} of degree 2.

Corollary 2. Every irreducible ruled surface S is either a plane, a cone, a smooth quadric surface, or else has a unique ruling and contains at most two special lines which do not intersect each other. If S is not a plane, the degree d of an irreducible ruling is equal to the degree of S. Any nonspecial line intersects at most $d-2$ other nonspecial lines.

Theorem 12 (Cayley, Monge, Salmon, Voloch). Let $S \subset \mathbb{P}^{3}$ be a surface of degree d, with $d<p$ if the characteristic is p. If S has no ruled components, then there is a surface T of degree $11 d-24$ such that S and T have no components in common, and every line contained in S is contained in $S \cap T$.

Sketch. The surface T is defined by the equation cutting out those points p of S for which there exists a line which is triply tangent to S at p (such a p is called a flecnodal point). The equation for T can be computed explicitly using resultants. Next, one shows that if a component of S consists entirely of flecnodal points, then that component must be ruled.

Theorem 13 (Kollár). Let \mathcal{L} be a collection of m distinct lines in \mathbb{P}^{n} such that for any three distinct lines $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ the number of lines from \mathcal{L} intersecting all three of L_{1}, L_{2}, L_{3} is at most \sqrt{m}. If the characteristic is p, suppose that $m<\frac{11}{6} p^{2}$. Then the total number of intersection points between lines in \mathcal{L} is at most

$$
\left(\frac{\sqrt{6}}{2}+\frac{\left(36-\frac{1}{2}\right) \sqrt{6}}{\sqrt{11}}\right) m^{\frac{3}{2}}<\sqrt{754} m^{\frac{3}{2}} .
$$

Proof. By choosing a generic projection to \mathbb{P}^{3}, we may assume without loss of generality that $n=3$. We may also assume that $m \geq 754$. Find a surface S of degree $d \leq \sqrt{6 m}-2$ containing \mathcal{L}, and assume that the degree of S is minimal. Choose an ordering S_{1}, \ldots of the irreducible components of S such that, letting $\mathcal{L}_{i}=\left\{l \in \mathcal{L} \mid l \subset S_{i} \backslash\left(S_{1} \cup \cdots \cup S_{i-1}\right)\right\}$, we have $\frac{\left|\mathcal{L}_{i}\right|}{\operatorname{deg} S_{i}}$ nonincreasing in i. Write $m_{i}=\left|\mathcal{L}_{i}\right|, d_{i}=\operatorname{deg} S_{i}$. The number of intersections between lines contained in different sets $\mathcal{L}_{i}, \mathcal{L}_{j}$ is at most

$$
\sum_{j<i} m_{i} d_{j} \leq \sum_{j<i} \frac{m_{i} d_{j}+m_{j} d_{i}}{2}=\frac{m d-\sum_{i} m_{i} d_{i}}{2}
$$

If S_{i} is a cone, then there is at most 1 intersection point between lines in \mathcal{L}_{i} (the cone point). If S_{i} is a plane, then any two lines in S_{i} intersect, so by assumption $m_{i} \leq \sqrt{m}$, and the number of intersection points between lines in \mathcal{L}_{i} is at most

$$
\frac{m_{i}\left(m_{i}-1\right)}{2} \leq \frac{\left(m_{i}-1\right) \sqrt{m}}{2} .
$$

If S_{i} is a smooth quadric surface, then either one of the rulings on S_{i} contains at most two lines from \mathcal{L}_{i} or by assumption both rulings contain at most \sqrt{m} lines from \mathcal{L}_{i}, so the number of intersection points between lines in \mathcal{L}_{i} is at most

$$
\max \left(m_{i}-1,2\left(m_{i}-2\right), \frac{m_{i} \sqrt{m}}{2}\right) \leq \frac{m_{i} \sqrt{m}}{2} .
$$

If S_{i} is ruled of degree at least 3 , then since there are at most two special lines in S_{i} and since nonspecial lines meet at most $d_{i}-2$ other nonspecial lines, the number of intersection points between lines in \mathcal{L}_{i} is at most

$$
\frac{m_{i}\left(d_{i}-2+2\right)+2 m_{i}}{2}=\frac{m_{i} d_{i}}{2}+m_{i} .
$$

If S_{i} is not ruled, then by Lemma 6 and Theorem 12 we can find a surface T of degree at most $\min \left(11 d_{i}-24, \frac{6 m_{i}}{d_{i}}\right)$ which contains \mathcal{L}_{i} but not S_{i} (note that if we take $\operatorname{deg} T=11 d_{i}-24$ then
$\left.d_{i} \leq \sqrt{\frac{6}{11} m}<p\right)$. Thus by Proposition 5 the number of intersections between lines in \mathcal{L}_{i} is at most

$$
\min \left(\frac{d_{i}\left(11 d_{i}-24\right)}{2}\left(12 d_{i}-26\right), 3 m_{i}\left(d_{i}+\frac{6 m_{i}}{d_{i}}-2\right)\right) \leq \frac{m_{i} d_{i}}{2}+\frac{\left(36-\frac{1}{2}\right) \sqrt{6}}{\sqrt{11}} m_{i}^{\frac{3}{2}}
$$

Putting everything together, we see that the total number of intersection points between lines in \mathcal{L} is at most

$$
\frac{m d}{2}+\sum_{i} \frac{\left(36-\frac{1}{2}\right) \sqrt{6}}{\sqrt{11}} m_{i} \sqrt{m} \leq\left(\frac{\sqrt{6}}{2}+\frac{\left(36-\frac{1}{2}\right) \sqrt{6}}{\sqrt{11}}\right) m^{\frac{3}{2}} .
$$

Corollary 3 (Rudnev). Suppose we have n points and n planes in \mathbb{P}^{3} such that no more than \sqrt{n} points lie on any line and no more than \sqrt{n} planes all contain a common line. Assume further that if the characteristic is p we have $n \leq \frac{11}{12} p^{2}$. Then the number of point-plane incidences is at most $\sqrt{6032} n^{\frac{3}{2}}$.

Proof. Taking Plücker coordinates, we get a collection of $n \alpha$-planes and $n \beta$-planes, and every incidence between a point and a plane becomes a pair of an α-plane and a β-plane which intersect in a line. Intersecting the configuration with a general hyperplane which does not contain the intersection of any two α-planes or the intersection of any two β-planes, we get a configuration of $2 n$ lines in \mathbb{P}^{4}. Call a line coming from an α-plane an α-line, and similarly define β-lines. Any two α-lines do not intersect, any two β-lines do not intersect, and intersections between α-lines and β-lines correspond to point-plane incidences. For any two α-lines, any β-line intersecting them corresponds to a plane containing the line through the corresponding points, so at most \sqrt{n} lines from the configuration intersect any pair of α-lines. Similarly, at most \sqrt{n} lines from the configuration intersecting any pair of β-lines. Thus we can apply Theorem 13 to see that the number of incidences is at most

$$
\sqrt{754}(2 n)^{\frac{3}{2}}=\sqrt{6032} n^{\frac{3}{2}} .
$$

Theorem 14 (Roche-Newton, Rudnev, Shkredov). If A is a finite subset of the nonzero elements of a field with characteristic p satisfying $|A|^{2}|A A| \leq \frac{11}{12} p^{2}$, then

$$
|A+A|^{2}|A A|^{3} \geq \frac{|A|^{6}}{6032}
$$

Proof. We estimate the number N of solutions to the equation

$$
a+b c d^{-1}=e+f g h^{-1}
$$

with $a, b, c, d, e, f, g, h \in A$, in two ways. By taking $c=d, g=h$ and applying Cauchy-Schwarz we see that

$$
N \geq \frac{|A|^{4}}{|A+A|}|A|^{2} .
$$

Now to each tuple $(a, h, b c) \in A \times A \times A A$ we associate the point $\left(a, b c, h^{-1}\right)$, and to each tuple $(d, e, f g) \in A \times A \times A A$ we associate the plane $\left\{(x, y, z) \mid x+d^{-1} y=e+f g z\right\}$. This gives us a collection of $|A|^{2}|A A|$ points and $|A|^{2}|A A|$ planes in \mathbb{P}^{3} such that at most $|A A| \leq \sqrt{|A|^{2}|A A|}$ points (respectively planes) lie on any line. By Corollary 3, we see that

$$
\sqrt{6032}\left(|A|^{2}|A A|\right)^{\frac{3}{2}} \geq N \geq \frac{|A|^{6}}{|A+A|}
$$

By a similar argument, we obtain the following.
Theorem 15 (Roche-Newton, Rudnev, Shkredov). Let A, B, C be finite subsets of a field of characteristic p. If $\max (|A|,|B|,|C|)^{2} \leq|A||B||C| \leq \frac{11}{12} p^{2}$, then

$$
|A+B C|^{2} \geq \frac{|A||B||C|}{6032} .
$$

2.3 General rings

Theorem 16 (Katz-Tao Lemma). Let A be a nonempty finite set of non-zero-divisors of a ring R. There is a subset $B \subseteq A$ such that

$$
|B| \geq \frac{|A|^{2}}{4|A A|}
$$

and such that for any natural numbers k, l we have

$$
|k B B-l B B| \leq\left(384 \frac{|A+A|^{3}|A A|^{7}}{|A|^{10}}\right)^{k+l}|k A-l A| .
$$

Proof. By Theorem 7 we can find a subset $X \subseteq A$ with $|X| \geq \frac{|A|}{2}$ and

$$
|A X A| \leq 3 \frac{|A A|^{2}}{|A|^{2}}|X|
$$

By Cauchy-Schwarz we have

$$
\sum_{x \in X} \sum_{y \in A}|x A \cap X y| \geq \frac{|X|^{2}|A|^{2}}{|X A|} \geq \frac{|X|^{2}|A|^{2}}{|A A|}
$$

so we can pick some $y \in A$ such that

$$
\sum_{x \in X}|x A \cap X y| \geq \frac{|X|^{2}|A|}{|A A|} .
$$

Setting

$$
B=\left\{x \in X| | x A \cap X y \left\lvert\, \geq \frac{|X||A|}{2|A A|}\right.\right\},
$$

we have

$$
|B| \geq \frac{|X||A|}{2|A A|}
$$

We now show by induction on h that if $b_{1}, \ldots, b_{k} \in B^{h}$, then

$$
\left|b_{1} A+\cdots+b_{k} A\right| \leq\left(\frac{4|A+A||A A|}{|A|^{2}}\right)^{h k}|k A| .
$$

Suppose that we have shown this already for h. Letting $b_{1}, \ldots, b_{k} \in B^{h}$ and $x_{1}, \ldots, x_{k} \in B$, since the $b_{i} \mathrm{~S}$ and $x_{i} \mathrm{~S}$ are non-zero-divisors we have

$$
\left|b_{i} x_{i} A+b_{i} x_{i} A\right|=|A+A|
$$

and

$$
\left|b_{i} x_{i} A \cap b_{i} A y\right|=\left|x_{i} A \cap A y\right| \geq \frac{|A|^{2}}{4|A A|},
$$

so by Proposition 1 we have

$$
\begin{aligned}
\left|b_{1} x_{1} A+\cdots+b_{k} x_{k} A\right| & \leq \frac{|A+A|}{\left|x_{1} A \cap A y\right|} \cdots \frac{|A+A|}{\left|x_{k} A \cap A y\right|}\left|b_{1} A y+\cdots+b_{k} A y\right| \\
& \leq\left(\frac{4|A+A||A A|}{|A|^{2}}\right)^{(h+1) k}|k A|,
\end{aligned}
$$

completing the induction. A similar statement with both additions and subtractions can be proved in the same way.

Now choose an element $m \in B A$ such that, setting

$$
C=\{(b, a) \in B \times A \mid b a=m\},
$$

we have

$$
|C| \geq \frac{|B||A|}{|B A|} \geq \frac{|A|^{2}}{2|A A|^{2}}|X| .
$$

Fixing a representation $u v+t w$ for each sum in $B B+B B$, we have an injection

$$
(B B+B B) \times C \times C \hookrightarrow\left\{(c, d, s) \mid c, d \in B^{3}, s \in c A+d A\right\}
$$

sending $\left(u v+t w,(b, a),\left(b^{\prime}, a^{\prime}\right)\right)$ to $\left(u v b, t w b^{\prime},(u v+t w) m\right)$. Thus, using $\left|B^{3}\right| \leq|A X A| \leq 3 \frac{|A A|^{2}}{|A|^{2}}|X|$, we have

$$
\begin{aligned}
|B B+B B| & \leq\left(\frac{\left|B^{3}\right|}{|C|}\right)^{2}\left(\frac{4|A+A||A A|}{|A|^{2}}\right)^{6}|A+A| \\
& \leq 6^{2} \frac{|A A|^{8}}{|A|^{8}} \cdot 4^{6} \frac{|A+A|^{6}|A A|^{6}}{\mid A 1^{12}}|A+A| \\
& =384^{2} \frac{|A+A|^{6}|A A|^{14}}{|A|^{20}}|A+A| .
\end{aligned}
$$

By the same argument, for any natural numbers k, l we get

$$
|k B B-l B B| \leq\left(384 \frac{|A+A|^{3}|A A|^{7}}{|A|^{10}}\right)^{k+l}|k A-l A| .
$$

More generally, we even have

$$
\left|k B^{h}-l B^{h}\right| \leq\left(\frac{\left|B^{h+1}\right|}{|C|}\left(\frac{4|A+A||A A|}{|A|^{2}}\right)^{h+1}\right)^{k+l}|k A-l A| .
$$

Theorem 17 (Self-improving property). Let A be a finite subset of a ring R, and let D be a nonempty subset of $A-A$. If x is an element of R and $r \in R^{*}$ is a non-zero-divisor such that

$$
|x A+r A|<\frac{|A|^{2}}{|D|}
$$

then there is an element $d \in(A-A) \backslash D$ such that

$$
|x A A+r A A| \leq \frac{|2 A A-A A|}{|d A|}|3 A A-2 A A|
$$

If we take D to be the set of zero-divisors of $A-A$ and we assume that $D \neq A-A$, then we have

$$
|x A+r A| \leq \frac{|2 A A-2 A A|}{|A|}|3 A A-3 A A|
$$

Proof. By Cauchy-Schwarz, we have

$$
\#\left\{\left(a, b, a^{\prime}, b^{\prime}\right) \in A \times A \times A \times A \mid x a+r b=x a^{\prime}+r b^{\prime}\right\} \geq \frac{|A|^{4}}{|x A+r A|}
$$

so

$$
\#\{(d, e) \in(A-A) \times(A-A) \mid x d=r e\} \geq \frac{|A|^{2}}{|x A+r A|}>|D|
$$

Since r is a non-zero-divisor, each pair (d, e) with $x d=r e$ corresponds to a different value of d. Thus we can find $d \in(A-A) \backslash D$ with $x d \in r(A-A)$. By the Ruzsa covering lemma, there is a set $S \subseteq A A$ with

$$
|S| \leq \frac{|d A+A A|}{|d A|} \leq \frac{|2 A A-A A|}{|d A|}
$$

and

$$
A A \subseteq d A-d A+S
$$

Thus we have

$$
|x A A+r A A| \leq|x d A-x d A+x S+r A A| \leq|S||r(3 A A-2 A A)| \leq \frac{|2 A A-A A|}{|d A|}|3 A A-2 A A|
$$

For the last claim, we apply the Ruzsa covering lemma to find $S^{\prime} \subseteq A A-A A$ with

$$
A A-A A \subseteq d A-d A+S^{\prime}
$$

to get

$$
|x A+r A| \leq|(x A+r A)(A-A)| \leq\left|x d A-x d A+x S^{\prime}+r A(A-A)\right| \leq \frac{|2 A A-2 A A|}{|A|}|3 A A-3 A A|
$$

From here on, we take A to be a subset of a ring R such that $A-A$ contains a non-zero-divisor, and we let D be the set of zero-divisors in $A-A$. For any $r \in R$, we define the set S_{r} to be

$$
S_{r}=\left\{x \in R| | x A+r A \left\lvert\,<\frac{|A|^{2}}{|D|}\right.\right\}
$$

Proposition 8. $|A-A|,|A+A| \leq|2 A A-2 A A|$.
Proposition 9. If $r \in R^{*}$ then $\left|S_{r}\right|<|A-A|^{2}$. If we also have

$$
|D| \leq \frac{|A|^{3}}{2|2 A A-2 A A||3 A A-3 A A|}
$$

then

$$
\left|S_{r}\right|<\frac{2|A-A|^{2}|2 A A-2 A A||3 A A-3 A A|}{|A|^{3}}
$$

Proof. Let $x \in S_{r}$. By the same argument as in Theorem 17, we have
$\#\{(d, e) \in((A-A) \backslash D) \times(A-A) \mid x d=r e\} \geq \frac{|A|^{2}}{|x A+r A|}-|D| \geq \frac{|A|^{3}}{|2 A A-2 A A||3 A A-3 A A|}-|D|$.
Since for each $(d, e) \in((A-A) \backslash D) \times(A-A)$ there is at most one x such that $x d=r e$, we see that

$$
\left|S_{r}\right| \leq \frac{(|A-A|-|D|)|A-A|}{\frac{|A|^{3}}{|2 A A-2 A A||3 A A-3 A A|}-|D|} .
$$

Proposition 10. If $r \in R^{*}$ and

$$
|D|<\frac{|A|^{6}}{|A+A||2 A A-2 A A|^{2}|3 A A-3 A A|^{2}}
$$

then S_{r} is closed under addition (and is therefore an additive group).
Proof. For $x, y \in S_{r}$, we have

$$
|(x+y) A+r A| \leq \frac{|x A+r A|}{|A|} \frac{|y A+r A|}{|A|}|A+A| \leq \frac{|A+A||2 A A-2 A A|^{2}|3 A A-3 A A|^{2}}{|A|^{4}}<\frac{|A|^{2}}{|D|} .
$$

Proposition 11. If

$$
|D|<\frac{|A|^{8}}{|A+A||2 A A-2 A A|^{3}|3 A A-3 A A|^{3}},
$$

then S_{1} is closed under multiplication (and is therefore a ring).
Proof. Suppose $x, y \in S_{1}$. Apply the Ruzsa covering lemma to find $S \subseteq y A$ with

$$
|S| \leq \frac{|y A+A|}{|A|}
$$

and

$$
y A \subseteq A-A+S
$$

Then we have

$$
|x y A+A| \leq|x A-x A+x S+A| \leq \frac{|A+A||2 A A-2 A A|^{3}|3 A A-3 A A|^{3}}{|A|^{6}}<\frac{|A|^{2}}{|D|}
$$

Proposition 12. If $r \in R^{*}, a \in(A-A) \backslash D$, and

$$
|D|<\frac{|A|^{10}}{|A+A||2 A A-2 A A|^{4}|3 A A-3 A A|^{4}},
$$

then $S_{r} S_{a} \subseteq S_{r a}$.
Proof. Take $x \in S_{r}$ and $y \in S_{a}$. We have

$$
|y A+A a| \leq \frac{|y A+a A|}{|A|} \frac{|A a+a A|}{|A|}|A| \leq \frac{|y A+a A||2 A A-2 A A|}{|A|} .
$$

Take $S \subseteq y A$ with

$$
|S| \leq \frac{|y A+A a|}{|A|}
$$

and

$$
y A \subseteq A a-A a+S
$$

Take $S^{\prime} \subseteq x A-x A$ with

$$
\left|S^{\prime}\right| \leq \frac{|x A-x A+r A|}{|A|} \leq \frac{|x A+r A|}{|A|} \frac{|-x A+r A|}{|A|} \frac{|A+A|}{|A|}
$$

and

$$
x A-x A \subseteq r A-r A+S^{\prime} .
$$

Then

$$
\begin{aligned}
|x y A+r a A| & \leq|x A a-x A a+x S+r a A| \leq|S|\left|r A a-r A a+S^{\prime} a+r a A\right| \\
& \leq|S|\left|S^{\prime}\right||A a-A a+a A| \leq \frac{|A+A||2 A A-2 A A|^{4}|3 A A-3 A A|^{4}}{|A|^{8}}<\frac{|A|^{2}}{|D|}
\end{aligned}
$$

Proposition 13. If $r, s \in R$ then $s S_{r} \subseteq S_{s r}$.
Proposition 14. If $r \in R$ and $|D|<\frac{|A|^{2}}{|A+A|}$, then $r \in S_{r}$.
Proposition 15. If $r, s \in R$, then $r \in S_{s} \Longleftrightarrow s \in S_{r}$.
Proposition 16. If $r, s \in R^{*}, S_{r} \cap S_{s} \cap R^{*} \neq \emptyset$, and

$$
|D|<\frac{|A|^{7}}{|2 A A-2 A A|^{3}|3 A A-3 A A|^{3}},
$$

then $S_{r}=S_{s}$.
Proof. Take $t \in S_{r} \cap S_{s} \cap R^{*}$ and $x \in S_{r}$. We have

$$
|r A+s A| \leq \frac{|t A+r A|}{|A|} \frac{|t A+s A|}{|A|}|A| .
$$

Then

$$
|x A+s A| \leq \frac{|x A+r A|}{|A|} \frac{|r A+s A|}{|A|}|A| \leq \frac{|2 A A-2 A A|^{3}|3 A A-3 A A|^{3}}{|A|^{5}}<\frac{|A|^{2}}{|D|} .
$$

Theorem 18 (Inhomogeneous sum-product theorem). Let R be a ring, $A \subseteq R$. If

$$
\left|(A-A) \backslash R^{*}\right|<\min \left(\frac{|A|^{2}}{|A+A A|}, \frac{|A|^{8}}{2|A+A||2 A A-2 A A|^{3}|3 A A-3 A A|^{3}}\right)
$$

then there is a subring $S \subseteq R$ such that $A \subseteq S$ and

$$
|S|<\frac{2|A-A|^{2}|2 A A-2 A A||3 A A-3 A A|}{|A|^{3}} .
$$

Proof. We take $S=S_{1}$, then $A \subseteq S_{1}$ by the assumption $|A A+A|<\frac{|A|^{2}}{|D|}$. Previous propositions show that S_{1} is a ring and give the required bound on the size of S_{1}.

Theorem 19 (Homogeneous sum-product theorem with invertible element). If R has a $1, A \subseteq R$ has an invertible element a, and

$$
\left|(A-A) \backslash R^{*}\right| \leq \frac{|A|^{8}}{2|A+A||2 A A-2 A A|^{3}|3 A A-3 A A|^{3}},
$$

then there is a subring $S \subseteq R$ such that

$$
A \subseteq a S=S a
$$

and

$$
|S|<\frac{2|A-A|^{2}|2 A A-2 A A||3 A A-3 A A|}{|A|^{3}} .
$$

Proof. We take $S=S_{1}$. As before, we have S_{1} a ring with the required size bound. We have

$$
\left|a^{-1} A A+A\right|=|A A+a A| \leq|A A+A A|<\frac{|A|^{2}}{|D|}
$$

by our assumption, so $a^{-1} A \subseteq S$, that is, $A \subseteq a S$. Since $S S=S$, we have

$$
\left|a S a^{-1} A+A\right| \leq\left|a S a^{-1} a S+a S\right|=|a S| \leq|S|<\frac{2|2 A A-2 A A|^{3}|3 A A-3 A A|}{|A|^{3}}<\frac{|A|^{2}}{|D|},
$$

so $a S a^{-1} \subseteq S$. Since S is finite, this implies that $a S=S a$.

References

[1] J. Bourgain. Exponential sum estimates over subgroups of \mathbb{Z}_{q}^{*}, q arbitrary. J. Anal. Math., 97:317-355, 2005.
[2] M. Z. Garaev. An explicit sum-product estimate in \mathbb{F}_{p}. Int. Math. Res. Not. IMRN, (11):Art. ID rnm035, 11, 2007.
[3] M. Z. Garaev. The sum-product estimate for large subsets of prime fields. Proc. Amer. Math. Soc., 136(8):2735-2739, 2008.
[4] Nets Hawk Katz and Chun-Yen Shen. A slight improvement to Garaev's sum product estimate. Proc. Amer. Math. Soc., 136(7):2499-2504, 2008.
[5] János Kollár. Szemerédi-Trotter-type theorems in dimension 3. Adv. Math., 271:30-61, 2015.
[6] Sergei V. Konyagin and Misha Rudnev. On new sum-product-type estimates. SIAM J. Discrete Math., 27(2):973-990, 2013.
[7] Giorgis Petridis. New proofs of Plünnecke-type estimates for product sets in groups. Combinatorica, 32(6):721-733, 2012.
[8] O. Roche-Newton, M. Rudnev, and I. D. Shkredov. New sum-product type estimates over finite fields. ArXiv e-prints, August 2014.
[9] M. Rudnev. On the number of incidences between planes and points in three dimensions. ArXiv e-prints, July 2014.
[10] Imre Z. Ruzsa. Sumsets and structure. In Combinatorial number theory and additive group theory, Adv. Courses Math. CRM Barcelona, pages 87-210. Birkhäuser Verlag, Basel, 2009.
[11] Tomasz Schoen. New bounds in Balog-Szemerédi-Gowers theorem. Combinatorica, pages 1-7.
[12] József Solymosi. Bounding multiplicative energy by the sumset. Adv. Math., 222(2):402-408, 2009.
[13] Terence Tao. The sum-product phenomenon in arbitrary rings. Contrib. Discrete Math., 4(2):59-82, 2009.

