Zarathustra Brady

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Clone-minimal algebras

A reduct of A is an algebra with the same underlying set as A and basic operations a subset of the terms of A. A reduct of A is proper if it is not term equivalent to A, and nontrivial if at least one operation is not a projection.

Clone-minimal algebras

A reduct of A is an algebra with the same underlying set as A and basic operations a subset of the terms of A. A reduct of A is proper if it is not term equivalent to A, and nontrivial if at least one operation is not a projection.

► An algebra A will be called *clone-minimal* if it has no nontrivial proper reduct.

Clone-minimal algebras

- A reduct of A is an algebra with the same underlying set as A and basic operations a subset of the terms of A. A reduct of A is proper if it is not term equivalent to A, and nontrivial if at least one operation is not a projection.
- ► An algebra A will be called *clone-minimal* if it has no nontrivial proper reduct.

Proposition

Every nontrivial finite algebra \mathbb{A} has a reduct which is clone-minimal. Any clone-minimal algebra \mathbb{A} generates a variety in which all nontrivial members are clone-minimal.

Clone-minimal algebras which are Taylor

Theorem (Z.)

Suppose \mathbb{A} is a finite algebra which is both clone-minimal and Taylor. Then one of the following is true:

1. A is the idempotent reduct of a vector space over \mathbb{F}_p for some prime p,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 2. A is a minimal majority algebra, or
- 3. A is a minimal spiral.

Definition

An algebra $\mathbb{A} = (A, f)$ is a *spiral* if f is binary, idempotent, commutative, and for any $a, b \in \mathbb{A}$ either $\{a, b\}$ is a two element subalgebra of \mathbb{A} , or $Sg_{\mathbb{A}}\{a, b\}$ has a surjective map to the free semilattice on two generators.

Definition

An algebra $\mathbb{A} = (A, f)$ is a *spiral* if f is binary, idempotent, commutative, and for any $a, b \in \mathbb{A}$ either $\{a, b\}$ is a two element subalgebra of \mathbb{A} , or $Sg_{\mathbb{A}}\{a, b\}$ has a surjective map to the free semilattice on two generators.

If A is a spiral of size at least three and A = Sg_A{a, b}, then setting S = A \ {a, b} the definition implies that S binary-absorbs A and f(a, b) ∈ S.

Definition

An algebra $\mathbb{A} = (A, f)$ is a *spiral* if f is binary, idempotent, commutative, and for any $a, b \in \mathbb{A}$ either $\{a, b\}$ is a two element subalgebra of \mathbb{A} , or $Sg_{\mathbb{A}}\{a, b\}$ has a surjective map to the free semilattice on two generators.

If A is a spiral of size at least three and A = Sg_A{a, b}, then setting S = A \ {a, b} the definition implies that S binary-absorbs A and f(a, b) ∈ S.

Any 2-semilattice is a minimal spiral.

My first spiral

æ

- ∢ ≣ →

(日)、

Figure : A minimal spiral which is not a 2-semilattice.

• Let \mathbb{A} be a finite clone-minimal algebra which is also Taylor.

・ロト・日本・モト・モート ヨー うへで

- Let \mathbb{A} be a finite clone-minimal algebra which is also Taylor.
- Step 0: A is idempotent, since otherwise A has a nontrivial unary term φ, which generates a nontrivial non-Taylor clone.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ Let A be a finite clone-minimal algebra which is also Taylor.
- Step 0: A is idempotent, since otherwise A has a nontrivial unary term φ, which generates a nontrivial non-Taylor clone.
- Step 1: Suppose there is some B ∈ HSP(A) which has a Mal'cev term m, that is, a term satisfying m^B(x, y, y) = m^B(y, y, x) = x for all x, y ∈ B.

- ▶ Let A be a finite clone-minimal algebra which is also Taylor.
- Step 0: A is idempotent, since otherwise A has a nontrivial unary term φ, which generates a nontrivial non-Taylor clone.
- Step 1: Suppose there is some B ∈ HSP(A) which has a Mal'cev term m, that is, a term satisfying m^B(x, y, y) = m^B(y, y, x) = x for all x, y ∈ B.
- ► Then m(x, y, y) ≈ m(y, y, x) ≈ x in the variety generated by A: if not, then m(x, y, y) or m(y, y, x) would generate a nontrivial proper reduct.

Suppose that f, g are two *n*-ary terms of \mathbb{A} with

$$f^{\mathbb{B}}(x_1,...,x_n) = g^{\mathbb{B}}(x_1,...,x_n)$$

・ロト・日本・モート モー うへぐ

for all $x_1, ..., x_n \in \mathbb{B}$.

• Suppose that f, g are two *n*-ary terms of \mathbb{A} with

$$f^{\mathbb{B}}(x_1,...,x_n) = g^{\mathbb{B}}(x_1,...,x_n)$$

for all $x_1, ..., x_n \in \mathbb{B}$.

Then we must have

$$m(y, f(x_1, ..., x_n), g(x_1, ..., x_n)) \approx y$$

in the variety generated by \mathbb{A} , since otherwise the left hand side generates a nontrivial proper reduct.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Suppose that f, g are two *n*-ary terms of \mathbb{A} with

$$f^{\mathbb{B}}(x_1,...,x_n) = g^{\mathbb{B}}(x_1,...,x_n)$$

for all $x_1, ..., x_n \in \mathbb{B}$.

Then we must have

$$m(y, f(x_1, ..., x_n), g(x_1, ..., x_n)) \approx y$$

in the variety generated by \mathbb{A} , since otherwise the left hand side generates a nontrivial proper reduct.

Thus we have

$$g \approx m(f, f, g) \approx f$$
,

so \mathbb{A} and \mathbb{B} generate the same variety. In particular, if \mathbb{B} is the idempotent reduct of a vector space over \mathbb{F}_p , then so is \mathbb{A} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Step 2: Now suppose there is no affine $\mathbb{B} \in HSP(\mathbb{A})$.

・ロト・日本・モト・モート ヨー うへで

Step 2: Now suppose there is no affine $\mathbb{B} \in HSP(\mathbb{A})$.

► Theorem (Larose, Valeriote, Zádori; Bulatov; Barto, Kozik) If A is a finite idempotent algebra such that there is no affine B ∈ HS(A), then A has bounded width.

Step 2: Now suppose there is no affine $\mathbb{B} \in HSP(\mathbb{A})$.

- ► Theorem (Larose, Valeriote, Zádori; Bulatov; Barto, Kozik) If A is a finite idempotent algebra such that there is no affine B ∈ HS(A), then A has bounded width.
- ► Theorem (Jovanović, Marković, McKenzie, Moore) If A is a finite idempotent algebra of bounded width, then A has terms f₃, g satisfying the identities

$$f_3(x, y, y) \approx f_3(x, x, y) \approx f_3(x, y, x)$$

 $\approx g(x, x, y) \approx g(x, y, x) \approx g(y, x, x).$

► Theorem (Z.)

If $\mathbb A$ is a finite idempotent algebra of bounded width, then $\mathbb A$ has terms f,g satisfying the identities

$$f(x,y) \approx f(f(x,y), f(y,x))$$

$$\approx g(x,x,y) \approx g(x,y,x) \approx g(y,x,x).$$

► Theorem (Z.)

If \mathbb{A} is a finite idempotent algebra of bounded width, then \mathbb{A} has terms f, g satisfying the identities

$$f(x,y) \approx f(f(x,y), f(y,x))$$

$$\approx g(x,x,y) \approx g(x,y,x) \approx g(y,x,x).$$

▶ Take terms f_3^1, g^1 from the previous theorem. Define f_3^i, g^i by

$$f_3^{i+1}(x, y, z) = f_3^i(f_3(x, y, z), f_3(y, z, x), f_3(z, x, y)),$$

$$g^{i+1}(x, y, z) = g^i(f_3(x, y, z), f_3(y, z, x), f_3(z, x, y)),$$

and choose $N \ge 1$ such that $f_3^N \approx f_3^{2N}$. Then take $g = g^N$.

From the equations

$$f(x,y) \approx f(f(x,y), f(y,x))$$

$$\approx g(x,x,y) \approx g(x,y,x) \approx g(y,x,x),$$

we see that for any $a, b \in \mathbb{A}$, either f(a, b) = f(b, a) or $\{f(a, b), f(b, a)\}$ is a majority subalgebra of \mathbb{A} .

From the equations

$$f(x,y) \approx f(f(x,y), f(y,x))$$

$$\approx g(x,x,y) \approx g(x,y,x) \approx g(y,x,x),$$

we see that for any $a, b \in \mathbb{A}$, either f(a, b) = f(b, a) or $\{f(a, b), f(b, a)\}$ is a majority subalgebra of \mathbb{A} .

If f is a projection, it must be first projection, and in this case g is a majority operation on A.

From the equations

$$f(x,y) \approx f(f(x,y), f(y,x))$$

$$\approx g(x,x,y) \approx g(x,y,x) \approx g(y,x,x),$$

we see that for any $a, b \in \mathbb{A}$, either f(a, b) = f(b, a) or $\{f(a, b), f(b, a)\}$ is a majority subalgebra of \mathbb{A} .

- If f is a projection, it must be first projection, and in this case g is a majority operation on A.

From the equations

$$f(x,y) \approx f(f(x,y), f(y,x))$$

$$\approx g(x,x,y) \approx g(x,y,x) \approx g(y,x,x),$$

we see that for any $a, b \in \mathbb{A}$, either f(a, b) = f(b, a) or $\{f(a, b), f(b, a)\}$ is a majority subalgebra of \mathbb{A} .

- If f is a projection, it must be first projection, and in this case g is a majority operation on A.
- ► Otherwise, f is nontrivial. If there was any majority algebra B ∈ HSP(A), then f^B would be a projection.
- ► Thus, if A is not a majority algebra, then there is no majority algebra B ∈ HSP(A), and so we must have

$$f(x,y) \approx f(y,x).$$

Step 3: Now we assume that A = (A, f) with f binary, idempotent, and commutative, such that A has bounded width.

- Step 3: Now we assume that A = (A, f) with f binary, idempotent, and commutative, such that A has bounded width.
- By clone-minimality, if (a, a) ∈ Sg_{A²}{(a, b), (b, a)}, then we must have f(a, b) = f(b, a) = a and {a, b} is a semilattice.

- Step 3: Now we assume that A = (A, f) with f binary, idempotent, and commutative, such that A has bounded width.
- By clone-minimality, if (a, a) ∈ Sg_{A²}{(a, b), (b, a)}, then we must have f(a, b) = f(b, a) = a and {a, b} is a semilattice.

► We want to show that A has a two-element semilattice subalgebra.

Lemma

Suppose that $\mathbb{A} = (A, f)$ with f binary, idempotent, commutative, and suppose that \mathbb{A} has no proper subalgebras. If $(a, a) \notin Sg_{\mathbb{A}^2}\{(a, b), (b, a)\}$ for all $a \neq b \in \mathbb{A}$, then \mathbb{A} is affine.

Lemma

Suppose that $\mathbb{A} = (A, f)$ with f binary, idempotent, commutative, and suppose that \mathbb{A} has no proper subalgebras. If $(a, a) \notin Sg_{\mathbb{A}^2}\{(a, b), (b, a)\}$ for all $a \neq b \in \mathbb{A}$, then \mathbb{A} is affine.

Let ℝ = Sg_{A²}{(a, b), (b, a)}. If ℝ had any forks, then we'd get either (a, a) ∈ ℝ or (b, b) ∈ ℝ, so ℝ is the graph of an isomorphism ι_{a,b}.

Lemma

Suppose that $\mathbb{A} = (A, f)$ with f binary, idempotent, commutative, and suppose that \mathbb{A} has no proper subalgebras. If $(a, a) \notin Sg_{\mathbb{A}^2}\{(a, b), (b, a)\}$ for all $a \neq b \in \mathbb{A}$, then \mathbb{A} is affine.

Let ℝ = Sg_{A²}{(a, b), (b, a)}. If ℝ had any forks, then we'd get either (a, a) ∈ ℝ or (b, b) ∈ ℝ, so ℝ is the graph of an isomorphism ι_{a,b}.

Since $(f(a, b), f(a, b)) \in \mathbb{R}$, $\iota_{a,b}$ fixes f(a, b).

Lemma

Suppose that $\mathbb{A} = (A, f)$ with f binary, idempotent, commutative, and suppose that \mathbb{A} has no proper subalgebras. If $(a, a) \notin Sg_{\mathbb{A}^2}\{(a, b), (b, a)\}$ for all $a \neq b \in \mathbb{A}$, then \mathbb{A} is affine.

- Let ℝ = Sg_{A²}{(a, b), (b, a)}. If ℝ had any forks, then we'd get either (a, a) ∈ ℝ or (b, b) ∈ ℝ, so ℝ is the graph of an isomorphism ι_{a,b}.
- Since $(f(a, b), f(a, b)) \in \mathbb{R}$, $\iota_{a,b}$ fixes f(a, b).
- Aut(A) is transitive, no nonidentity element of Aut(A) fixes more than one point, and ∀a, b ∈ A there is ι_{a,b} ∈ Aut(A) of order two which swaps a, b and has one fixed point.

Lemma

Suppose that $\mathbb{A} = (A, f)$ with f binary, idempotent, commutative, and suppose that \mathbb{A} has no proper subalgebras. If $(a, a) \notin Sg_{\mathbb{A}^2}\{(a, b), (b, a)\}$ for all $a \neq b \in \mathbb{A}$, then \mathbb{A} is affine.

- Let ℝ = Sg_{A²}{(a, b), (b, a)}. If ℝ had any forks, then we'd get either (a, a) ∈ ℝ or (b, b) ∈ ℝ, so ℝ is the graph of an isomorphism ι_{a,b}.
- Since $(f(a, b), f(a, b)) \in \mathbb{R}$, $\iota_{a,b}$ fixes f(a, b).
- Aut(A) is transitive, no nonidentity element of Aut(A) fixes more than one point, and ∀a, b ∈ A there is ι_{a,b} ∈ Aut(A) of order two which swaps a, b and has one fixed point.
- So Aut(A) is a Frobenius group, and the Frobenius complement is an odd order abelian group.

Lemma (Bulatov)

Let t be a binary idempotent term of a finite algebra. Then there exists a nontrivially defined binary term $s \in Clo(t)$ which satisfies the identities

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

Lemma (Bulatov)

Let t be a binary idempotent term of a finite algebra. Then there exists a nontrivially defined binary term $s \in Clo(t)$ which satisfies the identities

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

For any term t, let $t^1 = t$ and $t^{i+1}(x, y) = t(x, t^i(x, y))$. Set

$$t^{\infty}(x,y) = \lim_{n \to \infty} t^{n!}(x,y).$$

Lemma (Bulatov)

Let t be a binary idempotent term of a finite algebra. Then there exists a nontrivially defined binary term $s \in Clo(t)$ which satisfies the identities

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

For any term t, let $t^1 = t$ and $t^{i+1}(x, y) = t(x, t^i(x, y))$. Set

$$t^{\infty}(x,y) = \lim_{n \to \infty} t^{n!}(x,y).$$

• Define u(x, y) by

$$u(x,y)=t^{\infty}(x,t^{\infty}(y,x)).$$

Lemma (Bulatov)

Let t be a binary idempotent term of a finite algebra. Then there exists a nontrivially defined binary term $s \in Clo(t)$ which satisfies the identities

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

For any term t, let $t^1 = t$ and $t^{i+1}(x, y) = t(x, t^i(x, y))$. Set

$$t^{\infty}(x,y) = \lim_{n \to \infty} t^{n!}(x,y).$$

Define u(x, y) by

$$u(x,y)=t^{\infty}(x,t^{\infty}(y,x)).$$

• Now take $s(x, y) = u^{\infty}(x, y)$.

Theorem of the cube

Suppose that s satisfies the identities

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

Define a directed graph with an edge from *a* to *b* whenever s(a, b) = b. Note that there is an edge from *a* to *b* if and only if $\{a, b\}$ is closed under *s*, and *s* acts like the semilattice operation directed from *a* to *b* on $\{a, b\}$.

Theorem of the cube

Suppose that s satisfies the identities

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

Define a directed graph with an edge from a to b whenever s(a, b) = b. Note that there is an edge from a to b if and only if $\{a, b\}$ is closed under s, and s acts like the semilattice operation directed from a to b on $\{a, b\}$.

Theorem (Bulatov)

If $R \subseteq A \times B \times C$ is closed under s, A, B, C are finite and strongly connected, and $\pi_{1,2}R = A \times B, \pi_{1,3}R = A \times C, \pi_{2,3}R = B \times C$, then $R = A \times B \times C$.

Theorem of the cube

Suppose that s satisfies the identities

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

Define a directed graph with an edge from *a* to *b* whenever s(a, b) = b. Note that there is an edge from *a* to *b* if and only if $\{a, b\}$ is closed under *s*, and *s* acts like the semilattice operation directed from *a* to *b* on $\{a, b\}$.

Theorem (Bulatov)

If $R \subseteq A \times B \times C$ is closed under s, A, B, C are finite and strongly connected, and $\pi_{1,2}R = A \times B, \pi_{1,3}R = A \times C, \pi_{2,3}R = B \times C$, then $R = A \times B \times C$.

The proof is a generalization of the 2-semilattice case.

► Recall A = (A, f) is a clone-minimal algebra of bounded width, and f is idempotent and commutative.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ► Recall A = (A, f) is a clone-minimal algebra of bounded width, and f is idempotent and commutative.
- Apply semilattice iteration lemma to f to get s satisfying

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

Since \mathbb{A} has a two element semilattice subalgebra, s is nontrivial, so $f \in Clo(s)$.

- ► Recall A = (A, f) is a clone-minimal algebra of bounded width, and f is idempotent and commutative.
- Apply semilattice iteration lemma to f to get s satisfying

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

Since \mathbb{A} has a two element semilattice subalgebra, *s* is nontrivial, so $f \in Clo(s)$.

▶ Define a directed graph G_A on A where edges correspond to two element semilattice subalgebras.

- ► Recall A = (A, f) is a clone-minimal algebra of bounded width, and f is idempotent and commutative.
- Apply semilattice iteration lemma to f to get s satisfying

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

Since \mathbb{A} has a two element semilattice subalgebra, *s* is nontrivial, so $f \in Clo(s)$.

▶ Define a directed graph G_A on A where edges correspond to two element semilattice subalgebras.

For any a, b, either s(a, b) = a or $(a, s(a, b)) \in \mathcal{G}$.

Since f ∈ Clo(s) and x → s(x, y), there is either a directed path from x to f(x, y) or a directed path from y to f(x, y). Since f(x, y) ≈ f(y, x), both directed paths exist.

- Since f ∈ Clo(s) and x → s(x, y), there is either a directed path from x to f(x, y) or a directed path from y to f(x, y). Since f(x, y) ≈ f(y, x), both directed paths exist.
- So G_A is connected. Moreover, for every algebra B ∈ HSP(A), G_B has a unique maximal strongly connected component S_B, and S_B is a binary absorbing subalgebra of B.

(日) (同) (三) (三) (三) (○) (○)

- Since f ∈ Clo(s) and x → s(x, y), there is either a directed path from x to f(x, y) or a directed path from y to f(x, y). Since f(x, y) ≈ f(y, x), both directed paths exist.
- So G_A is connected. Moreover, for every algebra B ∈ HSP(A), G_B has a unique maximal strongly connected component S_B, and S_B is a binary absorbing subalgebra of B.
- Let p(x, y) be in the maximal strongly connected component of the free algebra on two generators. Since f ∈ Clo(p), f(a, b) is in the maximal strongly connected component of Sg{a, b} for any a, b.

Now assume A = Sg_A{a, b} with |A| > 2, and let S be the maximal strongly connected component of G_A, so A = S ∪ {a, b}.

・ロト・日本・モート モー うへぐ

Now assume A = Sg_A{a, b} with |A| > 2, and let S be the maximal strongly connected component of G_A, so A = S ∪ {a, b}.

Lemma

In this case, $S \cap \{a, b\} = \emptyset$, so \mathbb{A} has a surjective map to the free semilattice on two generators.

Now assume A = Sg_A{a, b} with |A| > 2, and let S be the maximal strongly connected component of G_A, so A = S ∪ {a, b}.

Lemma

In this case, $S \cap \{a, b\} = \emptyset$, so \mathbb{A} has a surjective map to the free semilattice on two generators.

▶ We'll prove this using the Absorption Theorem.

Theorem (Barto, Kozik)

Suppose \mathbb{A}, \mathbb{B} are finite algebras in a Taylor variety and \mathbb{R} is a linked subdirect product of \mathbb{A} and \mathbb{B} . Then either $\mathbb{R} = \mathbb{A} \times \mathbb{B}$ or one of \mathbb{A}, \mathbb{B} has a proper absorbing subalgebra.

Now assume A = Sg_A{a, b} with |A| > 2, and let S be the maximal strongly connected component of G_A, so A = S ∪ {a, b}.

Lemma

In this case, $S \cap \{a, b\} = \emptyset$, so \mathbb{A} has a surjective map to the free semilattice on two generators.

▶ We'll prove this using the Absorption Theorem.

Theorem (Barto, Kozik)

Suppose \mathbb{A}, \mathbb{B} are finite algebras in a Taylor variety and \mathbb{R} is a linked subdirect product of \mathbb{A} and \mathbb{B} . Then either $\mathbb{R} = \mathbb{A} \times \mathbb{B}$ or one of \mathbb{A}, \mathbb{B} has a proper absorbing subalgebra.

 A strongly connected algebra has no proper absorbing subalgebras.

Case 1: Suppose {a, b} ⊂ S.

- Case 1: Suppose {a, b} ⊂ S.
- ► Since every quotient of A is strongly connected, we may assume A is simple.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Case 1: Suppose {a, b} ⊂ S.

- Since every quotient of A is strongly connected, we may assume A is simple.
- Let ℝ = Sg_{A²}{(a, b), (b, a)}. If ℝ is linked, then by the Absorption Theorem we have ℝ = A × A, so (b, b) ∈ ℝ.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Case 1: Suppose {a, b} ⊂ S.

- Since every quotient of A is strongly connected, we may assume A is simple.
- Let ℝ = Sg_{A²}{(a, b), (b, a)}. If ℝ is linked, then by the Absorption Theorem we have ℝ = A × A, so (b, b) ∈ ℝ.
- ► If ℝ is not linked, ℝ must be the graph of an isomorphism which swaps a and b. Now consider

$$\mathbb{B} = \mathsf{Sg}_{\mathbb{A}^3}\{(a, a, b), (a, b, a), (b, a, a)\}.$$

Have $\pi_{i,j}\mathbb{B} = \mathbb{A} \times \mathbb{A}$ for all i, j, so $\mathbb{B} = \mathbb{A}^3$ by the theorem of the cube. If m witnesses the fact that $(b, b, b) \in \mathbb{B}$, then m restricts to a minority operation on $\{a, b\}$.

• Case 2: Suppose $a \notin S$ but $b \in S$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

- Case 2: Suppose $a \notin S$ but $b \in S$.
- ► May assume that no nontrivial congruence of S extends to a nontrivial congruence of A.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Case 2: Suppose $a \notin S$ but $b \in S$.
- ► May assume that no nontrivial congruence of S extends to a nontrivial congruence of A.
- Let ℝ = Sg_{A²}{(a, b), (b, a)} ∩ S². Our assumption implies ℝ must either be linked or the graph of an automorphism of S.

- Case 2: Suppose $a \notin S$ but $b \in S$.
- ► May assume that no nontrivial congruence of S extends to a nontrivial congruence of A.
- Let ℝ = Sg_{A²}{(a, b), (b, a)} ∩ S². Our assumption implies ℝ must either be linked or the graph of an automorphism of S.
- ▶ If \mathbb{R} linked, then by the Absorption Theorem have $(b, b) \in \mathbb{R}$.

- Case 2: Suppose $a \notin S$ but $b \in S$.
- May assume that no nontrivial congruence of S extends to a nontrivial congruence of A.
- Let ℝ = Sg_{A²}{(a, b), (b, a)} ∩ S². Our assumption implies ℝ must either be linked or the graph of an automorphism of S.
- ▶ If \mathbb{R} linked, then by the Absorption Theorem have $(b, b) \in \mathbb{R}$.
- Otherwise, ℝ is the graph of an automorphism ι : S → S. For any x ∈ S, have

 $(f(a,x), f(b,\iota(x))) \in \mathbb{R},$ $(f(\iota(b),x), f(b,\iota(x))) \in \mathbb{R},$

so we must have $f(a, x) = f(\iota(b), x)$ for all $x \in S$. But then b and $\iota(b)$ generate S.

Converse directions

Proposition

Every nontrivial idempotent reduct of a vector space over a finite field has a Mal'cev term.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Converse directions

Proposition

Every nontrivial idempotent reduct of a vector space over a finite field has a Mal'cev term.

Proposition

Every operation in a majority algebra is either a projection or a near-unanimity operation. In particular, every nontrivial reduct of a majority algebra has a majority term.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Converse directions

Proposition

Every nontrivial idempotent reduct of a vector space over a finite field has a Mal'cev term.

Proposition

Every operation in a majority algebra is either a projection or a near-unanimity operation. In particular, every nontrivial reduct of a majority algebra has a majority term.

Proposition

Every nontrivial reduct of a finite spiral is a bounded width algebra having no majority subalgebras. In particular, every nontrivial reduct of a finite spiral has a spiral term.

Thank you for your attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ