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Clone-minimal algebras

I A reduct of A is an algebra with the same underlying set as A
and basic operations a subset of the terms of A. A reduct of
A is proper if it is not term equivalent to A, and nontrivial if
at least one operation is not a projection.

I An algebra A will be called clone-minimal if it has no
nontrivial proper reduct.

I Proposition

Every nontrivial finite algebra A has a reduct which is
clone-minimal. Any clone-minimal algebra A generates a variety in
which all nontrivial members are clone-minimal.
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Clone-minimal algebras which are Taylor

Theorem (Z.)

Suppose A is a finite algebra which is both clone-minimal and
Taylor. Then one of the following is true:

1. A is the idempotent reduct of a vector space over Fp for some
prime p,

2. A is a minimal majority algebra, or

3. A is a minimal spiral.



Spirals

I Definition
An algebra A = (A, f ) is a spiral if f is binary, idempotent,
commutative, and for any a, b ∈ A either {a, b} is a two element
subalgebra of A, or SgA{a, b} has a surjective map to the free
semilattice on two generators.

I If A is a spiral of size at least three and A = SgA{a, b}, then
setting S = A \ {a, b} the definition implies that S
binary-absorbs A and f (a, b) ∈ S .

I Any 2-semilattice is a minimal spiral.
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Figure : A minimal spiral which is not a 2-semilattice.



Proving the classification theorem

I Let A be a finite clone-minimal algebra which is also Taylor.

I Step 0: A is idempotent, since otherwise A has a nontrivial
unary term ϕ, which generates a nontrivial non-Taylor clone.

I Step 1: Suppose there is some B ∈ HSP(A) which has a
Mal’cev term m, that is, a term satisfying
mB(x , y , y) = mB(y , y , x) = x for all x , y ∈ B.

I Then m(x , y , y) ≈ m(y , y , x) ≈ x in the variety generated by
A: if not, then m(x , y , y) or m(y , y , x) would generate a
nontrivial proper reduct.
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Proving the classification theorem: Mal’cev case

I Suppose that f , g are two n-ary terms of A with

f B(x1, ..., xn) = gB(x1, ..., xn)

for all x1, ..., xn ∈ B.

I Then we must have

m(y , f (x1, ..., xn), g(x1, ..., xn)) ≈ y

in the variety generated by A, since otherwise the left hand
side generates a nontrivial proper reduct.

I Thus we have
g ≈ m(f , f , g) ≈ f ,

so A and B generate the same variety. In particular, if B is the
idempotent reduct of a vector space over Fp, then so is A.
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Proving the classification theorem: bounded width case

I Step 2: Now suppose there is no affine B ∈ HSP(A).

I Theorem (Larose, Valeriote, Zádori; Bulatov; Barto, Kozik)

If A is a finite idempotent algebra such that there is no affine
B ∈ HS(A), then A has bounded width.

I Theorem (Jovanović, Marković, McKenzie, Moore)

If A is a finite idempotent algebra of bounded width, then A has
terms f3, g satisfying the identities

f3(x , y , y) ≈ f3(x , x , y) ≈ f3(x , y , x)

≈ g(x , x , y) ≈ g(x , y , x) ≈ g(y , x , x).
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If A is a finite idempotent algebra of bounded width, then A has
terms f3, g satisfying the identities

f3(x , y , y) ≈ f3(x , x , y) ≈ f3(x , y , x)

≈ g(x , x , y) ≈ g(x , y , x) ≈ g(y , x , x).



Proving the classification theorem: bounded width case

I Step 2: Now suppose there is no affine B ∈ HSP(A).

I Theorem (Larose, Valeriote, Zádori; Bulatov; Barto, Kozik)

If A is a finite idempotent algebra such that there is no affine
B ∈ HS(A), then A has bounded width.
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Proving the classification theorem: bounded width case

I Theorem (Z.)

If A is a finite idempotent algebra of bounded width, then A has
terms f , g satisfying the identities

f (x , y) ≈ f (f (x , y), f (y , x))

≈ g(x , x , y) ≈ g(x , y , x) ≈ g(y , x , x).

I Take terms f 1
3 , g

1 from the previous theorem. Define f i
3 , g

i by

f i+1
3 (x , y , z) = f i

3 (f3(x , y , z), f3(y , z , x), f3(z , x , y)),

g i+1(x , y , z) = g i (f3(x , y , z), f3(y , z , x), f3(z , x , y)),

and choose N ≥ 1 such that f N
3 ≈ f 2N

3 . Then take g = gN .
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Proving the classification theorem: bounded width case
I From the equations

f (x , y) ≈ f (f (x , y), f (y , x))

≈ g(x , x , y) ≈ g(x , y , x) ≈ g(y , x , x),

we see that for any a, b ∈ A, either f (a, b) = f (b, a) or
{f (a, b), f (b, a)} is a majority subalgebra of A.

I If f is a projection, it must be first projection, and in this case
g is a majority operation on A.

I Otherwise, f is nontrivial. If there was any majority algebra
B ∈ HSP(A), then f B would be a projection.

I Thus, if A is not a majority algebra, then there is no majority
algebra B ∈ HSP(A), and so we must have

f (x , y) ≈ f (y , x).
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Proving the classification theorem: spiral case

I Step 3: Now we assume that A = (A, f ) with f binary,
idempotent, and commutative, such that A has bounded
width.

I By clone-minimality, if (a, a) ∈ SgA2{(a, b), (b, a)}, then we
must have f (a, b) = f (b, a) = a and {a, b} is a semilattice.

I We want to show that A has a two-element semilattice
subalgebra.
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Proving there is a semilattice subalgebra

I Lemma
Suppose that A = (A, f ) with f binary, idempotent, commutative,
and suppose that A has no proper subalgebras. If
(a, a) 6∈ SgA2{(a, b), (b, a)} for all a 6= b ∈ A, then A is affine.

I Let R = SgA2{(a, b), (b, a)}. If R had any forks, then we’d
get either (a, a) ∈ R or (b, b) ∈ R, so R is the graph of an
isomorphism ιa,b.

I Since (f (a, b), f (a, b)) ∈ R, ιa,b fixes f (a, b).

I Aut(A) is transitive, no nonidentity element of Aut(A) fixes
more than one point, and ∀a, b ∈ A there is ιa,b ∈ Aut(A) of
order two which swaps a, b and has one fixed point.

I So Aut(A) is a Frobenius group, and the Frobenius
complement is an odd order abelian group.
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Semilattice Iteration Lemma

I Lemma (Bulatov)

Let t be a binary idempotent term of a finite algebra. Then there
exists a nontrivially defined binary term s ∈ Clo(t) which satisfies
the identities

s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y).

I For any term t, let t1 = t and t i+1(x , y) = t(x , t i (x , y)). Set

t∞(x , y) = lim
n→∞

tn!(x , y).

I Define u(x , y) by

u(x , y) = t∞(x , t∞(y , x)).

I Now take s(x , y) = u∞(x , y).
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Theorem of the cube

I Suppose that s satisfies the identities

s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y).

Define a directed graph with an edge from a to b whenever
s(a, b) = b. Note that there is an edge from a to b if and
only if {a, b} is closed under s, and s acts like the semilattice
operation directed from a to b on {a, b}.

I Theorem (Bulatov)

If R ⊆ A× B × C is closed under s, A,B,C are finite and strongly
connected, and π1,2R = A× B, π1,3R = A× C , π2,3R = B × C ,
then R = A× B × C .

I The proof is a generalization of the 2-semilattice case.
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Back to classification theorem (spiral case)

I Recall A = (A, f ) is a clone-minimal algebra of bounded
width, and f is idempotent and commutative.

I Apply semilattice iteration lemma to f to get s satisfying

s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y).

Since A has a two element semilattice subalgebra, s is
nontrivial, so f ∈ Clo(s).

I Define a directed graph GA on A where edges correspond to
two element semilattice subalgebras.

I For any a, b, either s(a, b) = a or (a, s(a, b)) ∈ G.
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Since A has a two element semilattice subalgebra, s is
nontrivial, so f ∈ Clo(s).

I Define a directed graph GA on A where edges correspond to
two element semilattice subalgebras.
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Proving the classification theorem: spiral case

I Since f ∈ Clo(s) and x → s(x , y), there is either a directed
path from x to f (x , y) or a directed path from y to f (x , y).
Since f (x , y) ≈ f (y , x), both directed paths exist.

I So GA is connected. Moreover, for every algebra B ∈ HSP(A),
GB has a unique maximal strongly connected component SB,
and SB is a binary absorbing subalgebra of B.

I Let p(x , y) be in the maximal strongly connected component
of the free algebra on two generators. Since f ∈ Clo(p),
f (a, b) is in the maximal strongly connected component of
Sg{a, b} for any a, b.
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Proving the classification theorem: spiral case

I Now assume A = SgA{a, b} with |A| > 2, and let S be the
maximal strongly connected component of GA, so
A = S ∪ {a, b}.

I Lemma
In this case, S ∩ {a, b} = ∅, so A has a surjective map to the free
semilattice on two generators.

I We’ll prove this using the Absorption Theorem.

Theorem (Barto, Kozik)

Suppose A,B are finite algebras in a Taylor variety and R is a
linked subdirect product of A and B. Then either R = A× B or
one of A,B has a proper absorbing subalgebra.

I A strongly connected algebra has no proper absorbing
subalgebras.
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Wrapping up the spiral case

I Case 1: Suppose {a, b} ⊂ S .

I Since every quotient of A is strongly connected, we may
assume A is simple.

I Let R = SgA2{(a, b), (b, a)}. If R is linked, then by the
Absorption Theorem we have R = A× A, so (b, b) ∈ R.

I If R is not linked, R must be the graph of an isomorphism
which swaps a and b. Now consider

B = SgA3{(a, a, b), (a, b, a), (b, a, a)}.

Have πi ,jB = A× A for all i , j , so B = A3 by the theorem of
the cube. If m witnesses the fact that (b, b, b) ∈ B, then m
restricts to a minority operation on {a, b}.
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Wrapping up the spiral case

I Case 2: Suppose a 6∈ S but b ∈ S .

I May assume that no nontrivial congruence of S extends to a
nontrivial congruence of A.

I Let R = SgA2{(a, b), (b, a)} ∩ S2. Our assumption implies R
must either be linked or the graph of an automorphism of S .

I If R linked, then by the Absorption Theorem have (b, b) ∈ R.

I Otherwise, R is the graph of an automorphism ι : S → S . For
any x ∈ S , have

(f (a, x), f (b, ι(x))) ∈ R,
(f (ι(b), x), f (b, ι(x))) ∈ R,

so we must have f (a, x) = f (ι(b), x) for all x ∈ S . But then b
and ι(b) generate S .
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Converse directions

I Proposition

Every nontrivial idempotent reduct of a vector space over a finite
field has a Mal’cev term.

I Proposition

Every operation in a majority algebra is either a projection or a
near-unanimity operation. In particular, every nontrivial reduct of a
majority algebra has a majority term.

I Proposition

Every nontrivial reduct of a finite spiral is a bounded width algebra
having no majority subalgebras. In particular, every nontrivial
reduct of a finite spiral has a spiral term.
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Thank you for your attention.


