Spirals

Zarathustra Brady

Clone-minimal algebras

- A reduct of \mathbb{A} is an algebra with the same underlying set as \mathbb{A} and basic operations a subset of the terms of \mathbb{A}. A reduct of \mathbb{A} is proper if it is not term equivalent to \mathbb{A}, and nontrivial if at least one operation is not a projection.

Clone-minimal algebras

- A reduct of \mathbb{A} is an algebra with the same underlying set as \mathbb{A} and basic operations a subset of the terms of \mathbb{A}. A reduct of \mathbb{A} is proper if it is not term equivalent to \mathbb{A}, and nontrivial if at least one operation is not a projection.
- An algebra \mathbb{A} will be called clone-minimal if it has no nontrivial proper reduct.

Clone-minimal algebras

- A reduct of \mathbb{A} is an algebra with the same underlying set as \mathbb{A} and basic operations a subset of the terms of \mathbb{A}. A reduct of \mathbb{A} is proper if it is not term equivalent to \mathbb{A}, and nontrivial if at least one operation is not a projection.
- An algebra \mathbb{A} will be called clone-minimal if it has no nontrivial proper reduct.
- Proposition

Every nontrivial finite algebra \mathbb{A} has a reduct which is clone-minimal. Any clone-minimal algebra \mathbb{A} generates a variety in which all nontrivial members are clone-minimal.

Clone-minimal algebras which are Taylor

Theorem (Z.)
Suppose \mathbb{A} is a finite algebra which is both clone-minimal and Taylor. Then one of the following is true:

1. \mathbb{A} is the idempotent reduct of a vector space over \mathbb{F}_{p} for some prime p,
2. \mathbb{A} is a minimal majority algebra, or
3. \mathbb{A} is a minimal spiral.

Spirals

- Definition

An algebra $\mathbb{A}=(A, f)$ is a spiral if f is binary, idempotent, commutative, and for any $a, b \in \mathbb{A}$ either $\{a, b\}$ is a two element subalgebra of \mathbb{A}, or $\operatorname{Sg}_{\mathbb{A}}\{a, b\}$ has a surjective map to the free semilattice on two generators.

Spirals

- Definition

An algebra $\mathbb{A}=(A, f)$ is a spiral if f is binary, idempotent, commutative, and for any $a, b \in \mathbb{A}$ either $\{a, b\}$ is a two element subalgebra of \mathbb{A}, or $\operatorname{Sg}_{\mathbb{A}}\{a, b\}$ has a surjective map to the free semilattice on two generators.

- If \mathbb{A} is a spiral of size at least three and $\mathbb{A}=\operatorname{Sg}_{\mathbb{A}}\{a, b\}$, then setting $S=\mathbb{A} \backslash\{a, b\}$ the definition implies that S binary-absorbs \mathbb{A} and $f(a, b) \in S$.

Spirals

- Definition

An algebra $\mathbb{A}=(A, f)$ is a spiral if f is binary, idempotent, commutative, and for any $a, b \in \mathbb{A}$ either $\{a, b\}$ is a two element subalgebra of \mathbb{A}, or $\operatorname{Sg}_{\mathbb{A}}\{a, b\}$ has a surjective map to the free semilattice on two generators.

- If \mathbb{A} is a spiral of size at least three and $\mathbb{A}=\operatorname{Sg}_{\mathbb{A}}\{a, b\}$, then setting $S=\mathbb{A} \backslash\{a, b\}$ the definition implies that S binary-absorbs \mathbb{A} and $f(a, b) \in S$.
- Any 2 -semilattice is a minimal spiral.

My first spiral

	a	b	c	d	e	f
a	a	c	e	d	e	d
b	c	b	c	c	f	f
c	e	c	c	c	e	c
d	d	c	c	d	d	d
e	e	f	e	d	e	f
f	d	f	c	d	f	f

Figure: A minimal spiral which is not a 2 -semilattice.

Proving the classification theorem

- Let \mathbb{A} be a finite clone-minimal algebra which is also Taylor.

Proving the classification theorem

- Let \mathbb{A} be a finite clone-minimal algebra which is also Taylor.
- Step 0: \mathbb{A} is idempotent, since otherwise \mathbb{A} has a nontrivial unary term φ, which generates a nontrivial non-Taylor clone.

Proving the classification theorem

- Let \mathbb{A} be a finite clone-minimal algebra which is also Taylor.
- Step 0: \mathbb{A} is idempotent, since otherwise \mathbb{A} has a nontrivial unary term φ, which generates a nontrivial non-Taylor clone.
- Step 1: Suppose there is some $\mathbb{B} \in \operatorname{HSP}(\mathbb{A})$ which has a Mal'cev term m, that is, a term satisfying $m^{\mathbb{B}}(x, y, y)=m^{\mathbb{B}}(y, y, x)=x$ for all $x, y \in \mathbb{B}$.

Proving the classification theorem

- Let \mathbb{A} be a finite clone-minimal algebra which is also Taylor.
- Step $0: \mathbb{A}$ is idempotent, since otherwise \mathbb{A} has a nontrivial unary term φ, which generates a nontrivial non-Taylor clone.
- Step 1: Suppose there is some $\mathbb{B} \in \operatorname{HSP}(\mathbb{A})$ which has a Mal'cev term m, that is, a term satisfying $m^{\mathbb{B}}(x, y, y)=m^{\mathbb{B}}(y, y, x)=x$ for all $x, y \in \mathbb{B}$.
- Then $m(x, y, y) \approx m(y, y, x) \approx x$ in the variety generated by \mathbb{A} : if not, then $m(x, y, y)$ or $m(y, y, x)$ would generate a nontrivial proper reduct.

Proving the classification theorem: Mal'cev case

- Suppose that f, g are two n-ary terms of \mathbb{A} with

$$
f^{\mathbb{B}}\left(x_{1}, \ldots, x_{n}\right)=g^{\mathbb{B}}\left(x_{1}, \ldots, x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{B}$.

Proving the classification theorem: Mal'cev case

- Suppose that f, g are two n-ary terms of \mathbb{A} with

$$
f^{\mathbb{B}}\left(x_{1}, \ldots, x_{n}\right)=g^{\mathbb{B}}\left(x_{1}, \ldots, x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{B}$.

- Then we must have

$$
m\left(y, f\left(x_{1}, \ldots, x_{n}\right), g\left(x_{1}, \ldots, x_{n}\right)\right) \approx y
$$

in the variety generated by \mathbb{A}, since otherwise the left hand side generates a nontrivial proper reduct.

Proving the classification theorem: Mal'cev case

- Suppose that f, g are two n-ary terms of \mathbb{A} with

$$
f^{\mathbb{B}}\left(x_{1}, \ldots, x_{n}\right)=g^{\mathbb{B}}\left(x_{1}, \ldots, x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{B}$.

- Then we must have

$$
m\left(y, f\left(x_{1}, \ldots, x_{n}\right), g\left(x_{1}, \ldots, x_{n}\right)\right) \approx y
$$

in the variety generated by \mathbb{A}, since otherwise the left hand side generates a nontrivial proper reduct.

- Thus we have

$$
g \approx m(f, f, g) \approx f
$$

so \mathbb{A} and \mathbb{B} generate the same variety. In particular, if \mathbb{B} is the idempotent reduct of a vector space over \mathbb{F}_{p}, then so is \mathbb{A}.

Proving the classification theorem: bounded width case

- Step 2: Now suppose there is no affine $\mathbb{B} \in H S P(\mathbb{A})$.

Proving the classification theorem: bounded width case

- Step 2: Now suppose there is no affine $\mathbb{B} \in H S P(\mathbb{A})$.
- Theorem (Larose, Valeriote, Zádori; Bulatov; Barto, Kozik) If \mathbb{A} is a finite idempotent algebra such that there is no affine $\mathbb{B} \in H S(\mathbb{A})$, then \mathbb{A} has bounded width.

Proving the classification theorem: bounded width case

- Step 2: Now suppose there is no affine $\mathbb{B} \in H S P(\mathbb{A})$.
- Theorem (Larose, Valeriote, Zádori; Bulatov; Barto, Kozik) If \mathbb{A} is a finite idempotent algebra such that there is no affine $\mathbb{B} \in H S(\mathbb{A})$, then \mathbb{A} has bounded width.
- Theorem (Jovanović, Marković, McKenzie, Moore) If \mathbb{A} is a finite idempotent algebra of bounded width, then \mathbb{A} has terms f_{3}, g satisfying the identities

$$
\begin{aligned}
& f_{3}(x, y, y) \\
\approx & f_{3}(x, x, y) \approx f_{3}(x, y, x) \\
& g(x, x, y) \approx g(x, y, x) \approx g(y, x, x) .
\end{aligned}
$$

Proving the classification theorem: bounded width case

- Theorem (Z.) If \mathbb{A} is a finite idempotent algebra of bounded width, then \mathbb{A} has terms f, g satisfying the identities

$$
\begin{aligned}
& f(x, y) \approx f(f(x, y), f(y, x)) \\
\approx & g(x, x, y) \approx g(x, y, x) \approx g(y, x, x)
\end{aligned}
$$

Proving the classification theorem: bounded width case

- Theorem (Z.) If \mathbb{A} is a finite idempotent algebra of bounded width, then \mathbb{A} has terms f, g satisfying the identities

$$
\begin{aligned}
& f(x, y) \approx f(f(x, y), f(y, x)) \\
\approx & g(x, x, y) \approx g(x, y, x) \approx g(y, x, x)
\end{aligned}
$$

- Take terms f_{3}^{1}, g^{1} from the previous theorem. Define f_{3}^{i}, g^{i} by

$$
\begin{aligned}
f_{3}^{i+1}(x, y, z) & =f_{3}^{i}\left(f_{3}(x, y, z), f_{3}(y, z, x), f_{3}(z, x, y)\right) \\
g^{i+1}(x, y, z) & =g^{i}\left(f_{3}(x, y, z), f_{3}(y, z, x), f_{3}(z, x, y)\right)
\end{aligned}
$$

and choose $N \geq 1$ such that $f_{3}^{N} \approx f_{3}^{2 N}$. Then take $g=g^{N}$.

Proving the classification theorem: bounded width case

- From the equations

$$
\begin{aligned}
& f(x, y) \approx f(f(x, y), f(y, x)) \\
\approx & g(x, x, y) \approx g(x, y, x) \approx g(y, x, x)
\end{aligned}
$$

we see that for any $a, b \in \mathbb{A}$, either $f(a, b)=f(b, a)$ or $\{f(a, b), f(b, a)\}$ is a majority subalgebra of \mathbb{A}.

Proving the classification theorem: bounded width case

- From the equations

$$
\begin{aligned}
& f(x, y) \approx f(f(x, y), f(y, x)) \\
\approx & g(x, x, y) \approx g(x, y, x) \approx g(y, x, x)
\end{aligned}
$$

we see that for any $a, b \in \mathbb{A}$, either $f(a, b)=f(b, a)$ or $\{f(a, b), f(b, a)\}$ is a majority subalgebra of \mathbb{A}.

- If f is a projection, it must be first projection, and in this case g is a majority operation on \mathbb{A}.

Proving the classification theorem: bounded width case

- From the equations

$$
\begin{aligned}
& f(x, y) \approx f(f(x, y), f(y, x)) \\
\approx & g(x, x, y) \approx g(x, y, x) \approx g(y, x, x)
\end{aligned}
$$

we see that for any $a, b \in \mathbb{A}$, either $f(a, b)=f(b, a)$ or $\{f(a, b), f(b, a)\}$ is a majority subalgebra of \mathbb{A}.

- If f is a projection, it must be first projection, and in this case g is a majority operation on \mathbb{A}.
- Otherwise, f is nontrivial. If there was any majority algebra $\mathbb{B} \in H S P(\mathbb{A})$, then $f^{\mathbb{B}}$ would be a projection.

Proving the classification theorem: bounded width case

- From the equations

$$
\begin{aligned}
& f(x, y) \approx f(f(x, y), f(y, x)) \\
\approx & g(x, x, y) \approx g(x, y, x) \approx g(y, x, x)
\end{aligned}
$$

we see that for any $a, b \in \mathbb{A}$, either $f(a, b)=f(b, a)$ or $\{f(a, b), f(b, a)\}$ is a majority subalgebra of \mathbb{A}.

- If f is a projection, it must be first projection, and in this case g is a majority operation on \mathbb{A}.
- Otherwise, f is nontrivial. If there was any majority algebra $\mathbb{B} \in H S P(\mathbb{A})$, then $f^{\mathbb{B}}$ would be a projection.
- Thus, if \mathbb{A} is not a majority algebra, then there is no majority algebra $\mathbb{B} \in \operatorname{HSP}(\mathbb{A})$, and so we must have

$$
f(x, y) \approx f(y, x)
$$

Proving the classification theorem: spiral case

- Step 3: Now we assume that $\mathbb{A}=(A, f)$ with f binary, idempotent, and commutative, such that \mathbb{A} has bounded width.

Proving the classification theorem: spiral case

- Step 3: Now we assume that $\mathbb{A}=(A, f)$ with f binary, idempotent, and commutative, such that \mathbb{A} has bounded width.
- By clone-minimality, if $(a, a) \in \operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$, then we must have $f(a, b)=f(b, a)=a$ and $\{a, b\}$ is a semilattice.

Proving the classification theorem: spiral case

- Step 3: Now we assume that $\mathbb{A}=(A, f)$ with f binary, idempotent, and commutative, such that \mathbb{A} has bounded width.
- By clone-minimality, if $(a, a) \in \operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$, then we must have $f(a, b)=f(b, a)=a$ and $\{a, b\}$ is a semilattice.
- We want to show that \mathbb{A} has a two-element semilattice subalgebra.

Proving there is a semilattice subalgebra

- Lemma

Suppose that $\mathbb{A}=(A, f)$ with f binary, idempotent, commutative, and suppose that \mathbb{A} has no proper subalgebras. If
$(a, a) \notin \operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$ for all $a \neq b \in \mathbb{A}$, then \mathbb{A} is affine.

Proving there is a semilattice subalgebra

- Lemma

Suppose that $\mathbb{A}=(A, f)$ with f binary, idempotent, commutative, and suppose that \mathbb{A} has no proper subalgebras. If
$(a, a) \notin \operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$ for all $a \neq b \in \mathbb{A}$, then \mathbb{A} is affine.

- Let $\mathbb{R}=\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$. If \mathbb{R} had any forks, then we'd get either $(a, a) \in \mathbb{R}$ or $(b, b) \in \mathbb{R}$, so \mathbb{R} is the graph of an isomorphism $\iota_{a, b}$.

Proving there is a semilattice subalgebra

- Lemma

Suppose that $\mathbb{A}=(A, f)$ with f binary, idempotent, commutative, and suppose that \mathbb{A} has no proper subalgebras. If
$(a, a) \notin \operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$ for all $a \neq b \in \mathbb{A}$, then \mathbb{A} is affine.

- Let $\mathbb{R}=\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$. If \mathbb{R} had any forks, then we'd get either $(a, a) \in \mathbb{R}$ or $(b, b) \in \mathbb{R}$, so \mathbb{R} is the graph of an isomorphism $\iota_{a, b}$.
- Since $(f(a, b), f(a, b)) \in \mathbb{R}, \iota_{a, b}$ fixes $f(a, b)$.

Proving there is a semilattice subalgebra

- Lemma

Suppose that $\mathbb{A}=(A, f)$ with f binary, idempotent, commutative, and suppose that \mathbb{A} has no proper subalgebras. If
$(a, a) \notin \operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$ for all $a \neq b \in \mathbb{A}$, then \mathbb{A} is affine.

- Let $\mathbb{R}=\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$. If \mathbb{R} had any forks, then we'd get either $(a, a) \in \mathbb{R}$ or $(b, b) \in \mathbb{R}$, so \mathbb{R} is the graph of an isomorphism $\iota_{a, b}$.
- Since $(f(a, b), f(a, b)) \in \mathbb{R}, \iota_{a, b}$ fixes $f(a, b)$.
- $\operatorname{Aut}(\mathbb{A})$ is transitive, no nonidentity element of $\operatorname{Aut}(\mathbb{A})$ fixes more than one point, and $\forall a, b \in \mathbb{A}$ there is $\iota_{a, b} \in \operatorname{Aut}(\mathbb{A})$ of order two which swaps a, b and has one fixed point.

Proving there is a semilattice subalgebra

- Lemma

Suppose that $\mathbb{A}=(A, f)$ with f binary, idempotent, commutative, and suppose that \mathbb{A} has no proper subalgebras. If
$(a, a) \notin \operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$ for all $a \neq b \in \mathbb{A}$, then \mathbb{A} is affine.

- Let $\mathbb{R}=\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$. If \mathbb{R} had any forks, then we'd get either $(a, a) \in \mathbb{R}$ or $(b, b) \in \mathbb{R}$, so \mathbb{R} is the graph of an isomorphism $\iota_{a, b}$.
- Since $(f(a, b), f(a, b)) \in \mathbb{R}, \iota_{a, b}$ fixes $f(a, b)$.
- $\operatorname{Aut}(\mathbb{A})$ is transitive, no nonidentity element of $\operatorname{Aut}(\mathbb{A})$ fixes more than one point, and $\forall a, b \in \mathbb{A}$ there is $\iota_{a, b} \in \operatorname{Aut}(\mathbb{A})$ of order two which swaps a, b and has one fixed point.
- So $\operatorname{Aut}(\mathbb{A})$ is a Frobenius group, and the Frobenius complement is an odd order abelian group.

Semilattice Iteration Lemma

- Lemma (Bulatov)

Let t be a binary idempotent term of a finite algebra. Then there exists a nontrivially defined binary term $s \in \operatorname{Clo}(t)$ which satisfies the identities

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

Semilattice Iteration Lemma

- Lemma (Bulatov)

Let t be a binary idempotent term of a finite algebra. Then there exists a nontrivially defined binary term $s \in \operatorname{Clo}(t)$ which satisfies the identities

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

- For any term t, let $t^{1}=t$ and $t^{i+1}(x, y)=t\left(x, t^{i}(x, y)\right)$. Set

$$
t^{\infty}(x, y)=\lim _{n \rightarrow \infty} t^{n!}(x, y)
$$

Semilattice Iteration Lemma

- Lemma (Bulatov)

Let t be a binary idempotent term of a finite algebra. Then there exists a nontrivially defined binary term $s \in \operatorname{Clo}(t)$ which satisfies the identities

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

- For any term t, let $t^{1}=t$ and $t^{i+1}(x, y)=t\left(x, t^{i}(x, y)\right)$. Set

$$
t^{\infty}(x, y)=\lim _{n \rightarrow \infty} t^{n!}(x, y)
$$

- Define $u(x, y)$ by

$$
u(x, y)=t^{\infty}\left(x, t^{\infty}(y, x)\right)
$$

Semilattice Iteration Lemma

- Lemma (Bulatov)

Let t be a binary idempotent term of a finite algebra. Then there exists a nontrivially defined binary term $s \in \operatorname{Clo}(t)$ which satisfies the identities

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

- For any term t, let $t^{1}=t$ and $t^{i+1}(x, y)=t\left(x, t^{i}(x, y)\right)$. Set

$$
t^{\infty}(x, y)=\lim _{n \rightarrow \infty} t^{n!}(x, y)
$$

- Define $u(x, y)$ by

$$
u(x, y)=t^{\infty}\left(x, t^{\infty}(y, x)\right)
$$

- Now take $s(x, y)=u^{\infty}(x, y)$.

Theorem of the cube

- Suppose that s satisfies the identities

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

Define a directed graph with an edge from a to b whenever $s(a, b)=b$. Note that there is an edge from a to b if and only if $\{a, b\}$ is closed under s, and s acts like the semilattice operation directed from a to b on $\{a, b\}$.

Theorem of the cube

- Suppose that s satisfies the identities

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

Define a directed graph with an edge from a to b whenever $s(a, b)=b$. Note that there is an edge from a to b if and only if $\{a, b\}$ is closed under s, and s acts like the semilattice operation directed from a to b on $\{a, b\}$.

- Theorem (Bulatov)

If $R \subseteq A \times B \times C$ is closed under s, A, B, C are finite and strongly connected, and $\pi_{1,2} R=A \times B, \pi_{1,3} R=A \times C, \pi_{2,3} R=B \times C$, then $R=A \times B \times C$.

Theorem of the cube

- Suppose that s satisfies the identities

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

Define a directed graph with an edge from a to b whenever $s(a, b)=b$. Note that there is an edge from a to b if and only if $\{a, b\}$ is closed under s, and s acts like the semilattice operation directed from a to b on $\{a, b\}$.

- Theorem (Bulatov)

If $R \subseteq A \times B \times C$ is closed under s, A, B, C are finite and strongly connected, and $\pi_{1,2} R=A \times B, \pi_{1,3} R=A \times C, \pi_{2,3} R=B \times C$, then $R=A \times B \times C$.

- The proof is a generalization of the 2-semilattice case.

Back to classification theorem (spiral case)

- Recall $\mathbb{A}=(A, f)$ is a clone-minimal algebra of bounded width, and f is idempotent and commutative.

Back to classification theorem (spiral case)

- Recall $\mathbb{A}=(A, f)$ is a clone-minimal algebra of bounded width, and f is idempotent and commutative.
- Apply semilattice iteration lemma to f to get s satisfying

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

Since \mathbb{A} has a two element semilattice subalgebra, s is nontrivial, so $f \in \operatorname{Clo(s)}$.

Back to classification theorem (spiral case)

- Recall $\mathbb{A}=(A, f)$ is a clone-minimal algebra of bounded width, and f is idempotent and commutative.
- Apply semilattice iteration lemma to f to get s satisfying

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

Since \mathbb{A} has a two element semilattice subalgebra, s is nontrivial, so $f \in \operatorname{Clo}(s)$.

- Define a directed graph $\mathcal{G}_{\mathbb{A}}$ on A where edges correspond to two element semilattice subalgebras.

Back to classification theorem (spiral case)

- Recall $\mathbb{A}=(A, f)$ is a clone-minimal algebra of bounded width, and f is idempotent and commutative.
- Apply semilattice iteration lemma to f to get s satisfying

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

Since \mathbb{A} has a two element semilattice subalgebra, s is nontrivial, so $f \in \operatorname{Clo}(s)$.

- Define a directed graph $\mathcal{G}_{\mathbb{A}}$ on A where edges correspond to two element semilattice subalgebras.
- For any a, b, either $s(a, b)=a$ or $(a, s(a, b)) \in \mathcal{G}$.

Proving the classification theorem: spiral case

- Since $f \in \operatorname{Clo}(s)$ and $x \rightarrow s(x, y)$, there is either a directed path from x to $f(x, y)$ or a directed path from y to $f(x, y)$. Since $f(x, y) \approx f(y, x)$, both directed paths exist.

Proving the classification theorem: spiral case

- Since $f \in \operatorname{Clo}(s)$ and $x \rightarrow s(x, y)$, there is either a directed path from x to $f(x, y)$ or a directed path from y to $f(x, y)$. Since $f(x, y) \approx f(y, x)$, both directed paths exist.
- So $\mathcal{G}_{\mathbb{A}}$ is connected. Moreover, for every algebra $\mathbb{B} \in H S P(\mathbb{A})$, $\mathcal{G}_{\mathbb{B}}$ has a unique maximal strongly connected component $S_{\mathbb{B}}$, and $S_{\mathbb{B}}$ is a binary absorbing subalgebra of \mathbb{B}.

Proving the classification theorem: spiral case

- Since $f \in \mathrm{Clo}(s)$ and $x \rightarrow s(x, y)$, there is either a directed path from x to $f(x, y)$ or a directed path from y to $f(x, y)$. Since $f(x, y) \approx f(y, x)$, both directed paths exist.
- So $\mathcal{G}_{\mathbb{A}}$ is connected. Moreover, for every algebra $\mathbb{B} \in H S P(\mathbb{A})$, $\mathcal{G}_{\mathbb{B}}$ has a unique maximal strongly connected component $S_{\mathbb{B}}$, and $S_{\mathbb{B}}$ is a binary absorbing subalgebra of \mathbb{B}.
- Let $p(x, y)$ be in the maximal strongly connected component of the free algebra on two generators. Since $f \in \operatorname{Clo}(p)$, $f(a, b)$ is in the maximal strongly connected component of $\operatorname{Sg}\{a, b\}$ for any a, b.

Proving the classification theorem: spiral case

- Now assume $\mathbb{A}=\operatorname{Sg}_{\mathbb{A}}\{a, b\}$ with $|\mathbb{A}|>2$, and let S be the maximal strongly connected component of $\mathcal{G}_{\mathbb{A}}$, so $\mathbb{A}=S \cup\{a, b\}$.

Proving the classification theorem: spiral case

- Now assume $\mathbb{A}=\operatorname{Sg}_{\mathbb{A}}\{a, b\}$ with $|\mathbb{A}|>2$, and let S be the maximal strongly connected component of $\mathcal{G}_{\mathbb{A}}$, so $\mathbb{A}=S \cup\{a, b\}$.
- Lemma

In this case, $S \cap\{a, b\}=\emptyset$, so \mathbb{A} has a surjective map to the free semilattice on two generators.

Proving the classification theorem: spiral case

- Now assume $\mathbb{A}=\operatorname{Sg}_{\mathbb{A}}\{a, b\}$ with $|\mathbb{A}|>2$, and let S be the maximal strongly connected component of $\mathcal{G}_{\mathbb{A}}$, so

$$
\mathbb{A}=S \cup\{a, b\}
$$

- Lemma

In this case, $S \cap\{a, b\}=\emptyset$, so \mathbb{A} has a surjective map to the free semilattice on two generators.

- We'll prove this using the Absorption Theorem.

Theorem (Barto, Kozik)

Suppose \mathbb{A}, \mathbb{B} are finite algebras in a Taylor variety and \mathbb{R} is a linked subdirect product of \mathbb{A} and \mathbb{B}. Then either $\mathbb{R}=\mathbb{A} \times \mathbb{B}$ or one of \mathbb{A}, \mathbb{B} has a proper absorbing subalgebra.

Proving the classification theorem: spiral case

- Now assume $\mathbb{A}=\operatorname{Sg}_{\mathbb{A}}\{a, b\}$ with $|\mathbb{A}|>2$, and let S be the maximal strongly connected component of $\mathcal{G}_{\mathbb{A}}$, so

$$
\mathbb{A}=S \cup\{a, b\}
$$

- Lemma

In this case, $S \cap\{a, b\}=\emptyset$, so \mathbb{A} has a surjective map to the free semilattice on two generators.

- We'll prove this using the Absorption Theorem.

Theorem (Barto, Kozik)

Suppose \mathbb{A}, \mathbb{B} are finite algebras in a Taylor variety and \mathbb{R} is a linked subdirect product of \mathbb{A} and \mathbb{B}. Then either $\mathbb{R}=\mathbb{A} \times \mathbb{B}$ or one of \mathbb{A}, \mathbb{B} has a proper absorbing subalgebra.

- A strongly connected algebra has no proper absorbing subalgebras.

Wrapping up the spiral case

- Case 1: Suppose $\{a, b\} \subset S$.

Wrapping up the spiral case

- Case 1: Suppose $\{a, b\} \subset S$.
- Since every quotient of \mathbb{A} is strongly connected, we may assume \mathbb{A} is simple.

Wrapping up the spiral case

- Case 1: Suppose $\{a, b\} \subset S$.
- Since every quotient of \mathbb{A} is strongly connected, we may assume \mathbb{A} is simple.
- Let $\mathbb{R}=\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$. If \mathbb{R} is linked, then by the Absorption Theorem we have $\mathbb{R}=\mathbb{A} \times \mathbb{A}$, so $(b, b) \in \mathbb{R}$.

Wrapping up the spiral case

- Case 1: Suppose $\{a, b\} \subset S$.
- Since every quotient of \mathbb{A} is strongly connected, we may assume \mathbb{A} is simple.
- Let $\mathbb{R}=\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$. If \mathbb{R} is linked, then by the Absorption Theorem we have $\mathbb{R}=\mathbb{A} \times \mathbb{A}$, so $(b, b) \in \mathbb{R}$.
- If \mathbb{R} is not linked, \mathbb{R} must be the graph of an isomorphism which swaps a and b. Now consider

$$
\mathbb{B}=\operatorname{Sg}_{\mathbb{A}^{3}}\{(a, a, b),(a, b, a),(b, a, a)\} .
$$

Have $\pi_{i, j} \mathbb{B}=\mathbb{A} \times \mathbb{A}$ for all i, j, so $\mathbb{B}=\mathbb{A}^{3}$ by the theorem of the cube. If m witnesses the fact that $(b, b, b) \in \mathbb{B}$, then m restricts to a minority operation on $\{a, b\}$.

Wrapping up the spiral case

- Case 2: Suppose $a \notin S$ but $b \in S$.

Wrapping up the spiral case

- Case 2: Suppose $a \notin S$ but $b \in S$.
- May assume that no nontrivial congruence of S extends to a nontrivial congruence of \mathbb{A}.

Wrapping up the spiral case

- Case 2: Suppose $a \notin S$ but $b \in S$.
- May assume that no nontrivial congruence of S extends to a nontrivial congruence of \mathbb{A}.
- Let $\mathbb{R}=\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\} \cap S^{2}$. Our assumption implies \mathbb{R} must either be linked or the graph of an automorphism of S.

Wrapping up the spiral case

- Case 2: Suppose $a \notin S$ but $b \in S$.
- May assume that no nontrivial congruence of S extends to a nontrivial congruence of \mathbb{A}.
- Let $\mathbb{R}=\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\} \cap S^{2}$. Our assumption implies \mathbb{R} must either be linked or the graph of an automorphism of S.
- If \mathbb{R} linked, then by the Absorption Theorem have $(b, b) \in \mathbb{R}$.

Wrapping up the spiral case

- Case 2: Suppose $a \notin S$ but $b \in S$.
- May assume that no nontrivial congruence of S extends to a nontrivial congruence of \mathbb{A}.
- Let $\mathbb{R}=\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\} \cap S^{2}$. Our assumption implies \mathbb{R} must either be linked or the graph of an automorphism of S.
- If \mathbb{R} linked, then by the Absorption Theorem have $(b, b) \in \mathbb{R}$.
- Otherwise, \mathbb{R} is the graph of an automorphism $\iota: S \rightarrow S$. For any $x \in S$, have

$$
\begin{aligned}
(f(a, x), f(b, \iota(x))) & \in \mathbb{R}, \\
(f(\iota(b), x), f(b, \iota(x))) & \in \mathbb{R},
\end{aligned}
$$

so we must have $f(a, x)=f(\iota(b), x)$ for all $x \in S$. But then b and $\iota(b)$ generate S.

Converse directions

- Proposition

Every nontrivial idempotent reduct of a vector space over a finite field has a Mal'cev term.

Converse directions

- Proposition

Every nontrivial idempotent reduct of a vector space over a finite field has a Mal'cev term.

- Proposition

Every operation in a majority algebra is either a projection or a near-unanimity operation. In particular, every nontrivial reduct of a majority algebra has a majority term.

Converse directions

- Proposition

Every nontrivial idempotent reduct of a vector space over a finite field has a Mal'cev term.

- Proposition

Every operation in a majority algebra is either a projection or a near-unanimity operation. In particular, every nontrivial reduct of a majority algebra has a majority term.

- Proposition

Every nontrivial reduct of a finite spiral is a bounded width algebra having no majority subalgebras. In particular, every nontrivial reduct of a finite spiral has a spiral term.

Thank you for your attention.

