A few fewnomials

1. Prove that for $x \geq 0$, we have

$$
x^{7}+x^{4}+x^{3}+1 \geq 2 x^{6}+2 x .
$$

2. Prove that for $x \geq 0$, we have

$$
x^{\sqrt{2}}+2 \sqrt{2} \geq 2^{\frac{3-\sqrt{2}}{2}} x+2
$$

3. Prove that for all x we have

$$
3 x^{2} e^{x}+4 e^{2} \geq 8 x e^{x} .
$$

4. Prove that for $x \geq 0$, we have

$$
x^{22}+x^{11}+x^{9}+1 \geq x^{21}+x^{15}+x^{4}+x^{2} .
$$

5. Prove that for $x>0$, we have

$$
x^{\sqrt{2}}+2+\frac{1}{x^{\sqrt{2}}} \geq 2 x+\frac{2}{x}
$$

6. Prove that for $x \geq 0$, we have

$$
x^{9}+281 x^{3}+100 \geq 22 x^{6}+360 x^{2} .
$$

7. For $x, y>0$, define their logarithmic mean to be

$$
\mathrm{LM}(x, y)=\frac{x-y}{\ln (x)-\ln (y)},
$$

where $\ln (x)$ is the natural logarithm of x. Prove that

$$
\frac{x+y}{2} \geq \mathrm{LM}(x, y) \geq \sqrt{x y} .
$$

8. Prove that for any $x>0$ we have

$$
x^{66}+x^{29}+x^{26}+\frac{1}{x^{26}}+\frac{1}{x^{29}}+\frac{1}{x^{66}} \geq x^{62}+x^{45}+x^{2}+\frac{1}{x^{2}}+\frac{1}{x^{45}}+\frac{1}{x^{62}} .
$$

9. Prove that if f is differentiable and f^{\prime} is convex, then we have

$$
\begin{aligned}
f(3)+3 f(1) & \geq 3 f(2)+f(0), \text { and } \\
f(6)+f(2)+f(1) & \geq f(5)+f(4)+f(0) .
\end{aligned}
$$

10. (Vasc) Prove that if f is differentiable and f^{\prime} is convex, then for any $x \geq y \geq z$ we have

$$
f(2 x+y)+f(2 y+z)+f(2 z+x) \geq f(2 x+z)+f(2 z+y)+f(2 y+x) .
$$

11. Popoviciu defines the divided differences of a polynomial inductively, as follows:

$$
\begin{aligned}
{[a ; f] } & =f(a), \\
{[a, b ; f] } & =\frac{f(b)-f(a)}{b-a}, \\
{\left[a_{0}, \ldots, a_{n} ; f\right] } & =\frac{\left[a_{1}, \ldots, a_{n} ; f\right]-\left[a_{0}, \ldots, a_{n-1} ; f\right]}{a_{n}-a_{0}} .
\end{aligned}
$$

Prove, by induction on n, that if the nth derivative of f exists and is nonnegative, that for any a_{0}, \ldots, a_{n} we have

$$
\left[a_{0}, \ldots, a_{n} ; f\right] \geq 0
$$

12. Show that $\left[a_{0}, \ldots, a_{n} ; f\right]$ is a symmetric function of a_{0}, \ldots, a_{n}.
13. Let n be an integer which is at least 3 . Suppose f is a function such that for every a_{0}, \ldots, a_{n} we have $\left[a_{0}, \ldots, a_{n} ; f\right] \geq 0$. Show that f is differentiable and that for any b_{0}, \ldots, b_{n-1} we have

$$
\left[b_{0}, \ldots, b_{n-1} ; f^{\prime}\right] \geq 0
$$

14. Suppose that f is a function such that for every integer n and every a_{0}, \ldots, a_{n} we have $\left[a_{0}, \ldots, a_{n} ; f\right] \geq 0$. Prove that

$$
f(2)+4 f(0) \geq 4 f(1) .
$$

15. Prove that if a_{1}, \ldots, a_{9} are real numbers satisfying $\sum_{i=1}^{9} a_{i}=\sum_{i=1}^{9} a_{i}^{3}=0$ and $\sum_{i=1}^{9} a_{i}^{2}=8$, then for any $x>0$ we have

$$
x^{2}+7+\frac{1}{x^{2}} \geq \sum_{i=1}^{9} x^{a_{i}} \geq 4 x+1+\frac{4}{x}
$$

16. Prove that for any $x, y, z>0$ we have

$$
\sum_{s y m} \frac{x^{2}}{y^{2}}+\sum_{s y m} \frac{x^{\sqrt{2}}}{y^{\sqrt{2}}} \geq \sum_{s y m} \frac{x^{2}}{y z}+\sum_{s y m} \frac{x y}{z^{2}} .
$$

