NEW UPPER AND LOWER BOUND SIFTING ITERATIONS

ZARATHUSTRA BRADY

1. Introduction

Let A be a (possibly weighted) set of whole numbers, and for each positive integer d set $A_{d}=$ $\{a \in A, d \mid a\}$. Suppose that κ, z, y are such that for every squarefree integer d, all of whose prime factors are less than z, we have

$$
\begin{equation*}
\left|\left|A_{d}\right|-\kappa^{\omega(d)} \frac{y}{d}\right| \leq 1 \tag{1}
\end{equation*}
$$

In particular, we have $y-1 \leq|A| \leq y+1$. We want to estimate the quantity

$$
\mathcal{S}(A, z)=|\{a \in A, \forall p<z(a, p)=1\}| .
$$

Suppose now that $y=z^{s}, s$ a constant, y, z going to infinity. Define sifting functions $f_{\kappa}(s), F_{\kappa}(s)$ by

$$
(1+o(1)) f_{\kappa}(s) y \prod_{p<z}\left(1-\frac{\kappa}{p}\right) \leq \mathcal{S}(A, z) \leq(1+o(1)) F_{\kappa}(s) y \prod_{p<z}\left(1-\frac{\kappa}{p}\right),
$$

with $f_{\kappa}(s)$ as large as possible (resp. $F_{\kappa}(s)$ as small as possible) given that the above inequality holds for all choices of A satisfying (1). Selberg [3] has shown (in a much more general context) that the functions $f_{\kappa}(s), F_{\kappa}(s)$ are continuous, monotone, and computable for $s>1$, and that they tend to 1 exponentially as s goes to infinity.

Let $\beta=\beta(\kappa)$ be the infimum of s such that $f_{\kappa}(s)>0$. Selberg 3] has shown that we have

$$
\frac{\kappa}{e^{\left(1-\frac{1}{\kappa}\right)^{2}}}<\beta<2 \kappa+0.4454,
$$

where the first inequality applies for all $\kappa \geq 1$ and the second applies for κ sufficiently large. Further, when $\kappa=1$ we have $\beta(1)=2$. Our main goal is to get good estimates for $\beta(\kappa)$ when κ is slightly greater than 1 .

When $\kappa \leq 1$, the best known sieves arise from the identity

$$
\mathcal{S}(A, z)=|A|-\sum_{p<z} \mathcal{S}\left(A_{p}, p\right)
$$

p running over primes. This identity leads to the inequalities

$$
\begin{aligned}
& s^{\kappa} f_{\kappa}(s) \geq s^{\kappa}-\kappa \int_{t>s} t^{\kappa-1}\left(F_{\kappa}(t-1)-1\right) d t \\
& s^{\kappa} F_{\kappa}(s) \leq s^{\kappa}+\kappa \int_{t>s} t^{\kappa-1}\left(1-f_{\kappa}(t-1)\right) d t
\end{aligned}
$$

The use of these inequalities to produce new bounds on f_{κ}, F_{κ} from known bounds is known as Buchstab iteration (reference?). Infinite iteration of Buchstab's inequalities leads to what is known as the β-sieve.

The current state of the art for κ slightly greater than 1 is due to Diamond, Halberstam, and Richert 11. Their method runs as follows. From Selberg's upper bound sieve, we have

$$
F_{\kappa}(s) \leq \frac{1}{\sigma_{\kappa}(s)},
$$

where $\sigma_{\kappa}(s)$ solves the differential-difference equation

$$
\begin{cases}s^{-\kappa} \sigma_{\kappa}(s)=\frac{1}{(2 e \gamma)^{\kappa} \Gamma(\kappa+1)} & 0<s \leq 2, \\ \frac{d}{d s}\left(s^{-\kappa} \sigma_{\kappa}(s)\right)=-\kappa s^{-\kappa-1} \sigma(s-2) & 2 \leq s .\end{cases}
$$

Using this as our starting point, we iterate Buchstab's inequalities infinitely to obtain upper and lower bounds $f_{\kappa}^{D}, F_{\kappa}^{D}$ satisfying

$$
\begin{array}{rlrl}
F_{\kappa}^{D}(s) & =\frac{1}{\sigma_{\kappa}(s)} & 0<s & \leq \alpha_{\kappa}^{D}, \\
\frac{d}{d s}\left(s^{\kappa} F_{\kappa}^{D}(s)\right) & =\kappa s^{\kappa-1} f_{\kappa}^{D}(s-1) & s & \geq \alpha_{\kappa}^{D}, \\
f_{\kappa}^{D}(s) & =0 & 0<s & \leq \beta_{\kappa}^{D}, \\
\frac{d}{d s}\left(s^{\kappa} f_{\kappa}^{D}(s)\right) & =\kappa s^{\kappa-1} F_{\kappa}^{D}(s-1) & s & \geq \beta_{\kappa}^{D},
\end{array}
$$

for some $\alpha_{\kappa}^{D} \geq \beta_{\kappa}^{D}$.
In this note we'll describe variations on Buchstab's inequalities which allow us to slightly improve upon the functions $f_{\kappa}^{D}, F_{\kappa}^{D}$ above.

2. The new iterations

Theorem 1. For any $w \leq z$, we have

$$
\mathcal{S}(A, z) \leq \mathcal{S}(A, w)-\frac{2}{3} \sum_{w \leq p<z} \mathcal{S}\left(A_{p}, w\right)+\frac{1}{3} \sum_{w \leq q<p<z} \mathcal{S}\left(A_{p q}, w\right)
$$

where p, q run over primes.
Proof. Let $a \in A$. We need to show that the number of times a is counted on the left hand side of the above is at least the number of times a is counted on the right. If a has any prime factors below w, then both quantities are clearly zero, so assume that a is has no prime factors below w. Suppose a has exactly k prime factors between w and z. If $k=0$ then both sides count a once. Thus we just need to check that for any integer $k \geq 1$ we have

$$
0 \leq 1-\frac{2}{3} k+\frac{1}{3}\binom{k}{2}
$$

which follows from the identity

$$
1-\frac{2}{3} k+\frac{1}{3}\binom{k}{2}=\left(1-\frac{k}{2}\right)\left(1-\frac{k}{3}\right) .
$$

Corollary 1. For any real $t \geq s \geq 2$, we have

$$
s^{\kappa} F_{\kappa}(s) \leq t^{\kappa} F_{\kappa}(t)-\frac{2}{3} \kappa \int_{\frac{1}{t}<x<\frac{1}{s}} t^{\kappa} f_{\kappa}(t(1-x)) \frac{d x}{x}+\frac{1}{3} \kappa^{2} \iint_{\frac{1}{t}<y<x<\frac{1}{s}} t^{\kappa} F_{\kappa}(t(1-x-y)) \frac{d x}{x} \frac{d y}{y} .
$$

Remark 1. The optimal w in Theorem 1 above appears to be $w=\frac{y}{z^{\beta}}$, which corresponds to taking $t=\frac{s}{s-\beta}$. Thus this upper bound iteration tends to be useful only for $2 \leq s \leq \beta+1$.

Theorem 2. For any $w \leq z^{2}$, we have

$$
\begin{aligned}
& \mathcal{S}(A, z) \geq \mathcal{S}(A, \sqrt{w})-\sum_{\sqrt{w} \leq p<z} \mathcal{S}\left(A_{p}, \frac{w}{p}\right)+\frac{5}{6} \sum_{\frac{w}{p} \leq q<p<z} \mathcal{S}\left(A_{p q}, \frac{w}{p}\right) \\
&-\frac{2}{3} \sum_{\frac{w}{p} \leq r<q<p<z}^{q r<w}< \\
& \mathcal{S}\left(A_{p q r}, \frac{w}{p}\right)-\frac{1}{2} \sum_{\frac{w}{q} \leq r<q<p<z} \mathcal{S}\left(A_{p q r}, \frac{w}{p}\right),
\end{aligned}
$$

where p, q, r run over primes.
Proof. Let $a \in A$. First suppose that a has no prime factors below \sqrt{w}, and has exactly k prime factors between \sqrt{w} and z. If k is 0 , then both sides count a once. Otherwise, we need to check that for an integer $k \geq 1$ we have

$$
0 \geq 1-k+\frac{5}{6}\binom{k}{2}-\frac{1}{2}\binom{k}{3}
$$

and this follows from the identity

$$
1-k+\frac{5}{6}\binom{k}{2}-\frac{1}{2}\binom{k}{3}=(1-k)\left(1-\frac{k}{3}\right)\left(1-\frac{k}{4}\right) .
$$

Now suppose that a has smallest prime factor $s<\sqrt{w}$. We group together all of the summands on the right hand side with a common $p, p \mid a$. In order for any such summand to be nonzero, we must have $s \geq \frac{w}{p}$, or equivalently $p \geq \frac{w}{s}$. Suppose that a has exactly k prime factors strictly below p. Then the number of times a is counted in such summands is at most

$$
-1+\frac{5}{6} k-\frac{1}{2}\binom{k}{2}=-\left(1-\frac{3 k}{4}\right)\left(1-\frac{k}{3}\right),
$$

and this is at most 0 unless $k=2$. Thus the only bad case occurs when p is the third smallest prime factor of a, q is the second smallest prime factor of a, and $r=s$ is the smallest prime factor of a. If $q r<w$, then the contribution from these summands is just

$$
-1+\frac{5}{6} \cdot 2-\frac{2}{3}=0
$$

so the bad case only occurs when $q r \geq w$. But then since $q \geq \frac{w}{r}=\frac{w}{s}$, we can combine this bad group of summands with the group of summands where p is replaced by q, and the total number of times a is counted in the two groups becomes

$$
\left(-1+\frac{5}{6} \cdot 2-\frac{1}{2}\right)+\left(-1+\frac{5}{6}\right)=\frac{1}{6}-\frac{1}{6}=0 .
$$

Corollary 2. For any real $s \geq t$ with $2 t \geq s \geq 3$, we have

$$
\begin{aligned}
s^{\kappa} f_{\kappa}(s) \geq & (2 t)^{\kappa} f_{\kappa}(2 t)-\kappa \int_{\frac{1}{2 t}<x<\frac{1}{s}} \frac{1}{\left(\frac{1}{t}-x\right)^{\kappa}} F_{\kappa}\left(\frac{1-x}{\frac{1}{t}-x}\right) \frac{d x}{x} \\
& +\frac{5}{6} \kappa^{2} \iint_{\frac{1}{t}-x<y<x<\frac{1}{s}} \frac{1}{\left(\frac{1}{t}-x\right)^{\kappa}} f_{\kappa}\left(\frac{1-x-y}{\frac{1}{t}-x}\right) \frac{d x}{x} \frac{d y}{y} \\
& -\frac{2}{3} \kappa^{3} \iiint_{\frac{1}{t}-x<z<y<x<\frac{1}{s}} \frac{1}{\left(\frac{1}{t}-x\right)^{\kappa}} F_{\kappa}\left(\frac{1-x-y-z}{\frac{1}{t}-x}\right) \frac{d x}{x} \frac{d y}{y} \frac{d z}{z} \\
& +\frac{1}{6} \kappa^{3} \iiint_{\frac{1}{t}-y<z<y<x<\frac{1}{s}} \frac{1}{\left(\frac{1}{t}-x\right)^{\kappa}} F_{\kappa}\left(\frac{1-x-y-z}{\frac{1}{t}-x}\right) \frac{d x}{x} \frac{d y}{y} \frac{d z}{z} .
\end{aligned}
$$

Remark 2. As with Theorem 1, it seems that the optimal w in Theorem 2 is $w=\frac{y}{z^{\beta}}$, corresponding to $t=\frac{s}{s-\beta}$. Thus this lower bound iteration tends to be useful only when $\beta+1 \leq s \leq \beta+2$.

3. Two miracles at $\kappa=1$

When $\kappa=1$, the β-sieve produces the optimal functions $f(s)=f_{1}(s), F(s)=F_{1}(s)$ (see Selberg [3]). Furthermore, we have the more precise error terms

$$
f(s) \frac{y}{e^{\gamma} \log (z)}-(c+o(1)) h(s) \frac{y}{\log (z)^{2}} \leq \mathcal{S}(A, z) \leq F(s) \frac{y}{e^{\gamma} \log (z)}+(c+o(1)) H(s) \frac{y}{\log (z)^{2}},
$$

where c is a computable constant (in fact a more precise result can be found in Iwaniec [2]). The functions f, F, h, H are given by

$$
\begin{array}{rlrl}
F(s) & =\frac{2 e^{\gamma}}{s} & 1 \leq s & \leq 3 \\
\frac{d}{d s}(s F(s)) & =f(s-1) & s \geq 3 \\
f(s) & =\frac{2 e^{\gamma} \log (s-1)}{s} & 2 \leq s \leq 4 \\
\frac{d}{d s}(s f(s)) & =F(s-1) \\
H(s) & =\frac{1}{s^{2}} & s \geq 2 \\
\frac{d}{d s}\left(s^{2} H(s)\right) & =-s h(s-1) \\
h(s) & =\frac{1}{s^{2}}\left(1+\frac{1}{s-1}-\log (s-1)\right) & 1 \leq s \leq 3 \\
\frac{d}{d s}\left(s^{2} h(s)\right) & =-s H(s-1) & 2 \leq s \leq 4 \\
& s \geq 2
\end{array}
$$

It's natural to ask what happens to these functions when we apply the new upper and lower bound iterations to them.

Theorem 3. If $\kappa=1, \frac{5}{2} \leq s \leq 3$, and $t=\frac{s}{s-2}$, then the two sides of the inequality in Corollary 1 are precisely equal, that is

$$
s F(s)=t F(t)-\frac{2}{3} \int_{\frac{1}{t}<x<\frac{1}{s}} t f(t(1-x)) \frac{d x}{x}+\frac{1}{3} \iint_{\frac{1}{t}<y<x<\frac{1}{s}} t F(t(1-x-y)) \frac{d x}{x} \frac{d y}{y} .
$$

Furthermore, in this case even the error terms match up:

$$
s^{2} H(s)=t^{2} H(t)+\frac{2}{3} \int_{\frac{1}{t}<x<\frac{1}{s}} t^{2} h(t(1-x)) \frac{d x}{x}+\frac{1}{3} \iint_{\frac{1}{t}<y<x<\frac{1}{s}} t^{2} H(t(1-x-y)) \frac{d x}{x} \frac{d y}{y} .
$$

Proof. Consider the right hand side of the first claimed equality as a function $\Phi(s, t)$ of s and t. Since $s F(s)=2 e^{\gamma}$ is constant for $s \leq 3$, it's enough to check that $\frac{\partial \Phi}{\partial s}=\frac{\partial \Phi}{\partial t}=0$ when $t=\frac{s}{s-2}$. We have

$$
\frac{\partial \Phi}{\partial s}=\frac{2}{3} \frac{t}{s} f\left(t\left(1-\frac{1}{s}\right)\right)-\frac{1}{3} \int_{\frac{1}{t}<x<\frac{1}{s}} \frac{t}{s} F\left(t\left(1-\frac{1}{s}-x\right)\right) \frac{d x}{x}
$$

and up to a multiple of $\frac{2 e^{\gamma}}{s-1}$ this is equal to

$$
\begin{aligned}
& \frac{2}{3} \log \left(t\left(1-\frac{1}{s}\right)-1\right)-\frac{1}{3}\left(\log \left(t-\frac{s}{s-1}\right)-\log \left(s-\frac{s}{s-1}\right)\right) \\
= & \frac{1}{3} \log \left(t \frac{s-1}{s}-1\right)+\frac{1}{3} \log (s-2),
\end{aligned}
$$

which is indeed 0 when $t=\frac{s}{s-2}$. In order to calculate $\frac{\partial \Phi}{\partial t}$, first note that since $\frac{5}{2} \leq s$ we have $t=\frac{s}{s-2} \leq 5$, so for any $x, y>\frac{1}{t}$ we have $t(1-x-y) \leq t-2 \leq 3$, so

$$
\frac{\partial}{\partial t}(t F(t(1-x-y)))=0 .
$$

Thus we have

$$
\frac{\partial \Phi}{\partial t}=f(t-1)-\frac{2}{3} f(t-1)-\frac{2}{3} \int_{\frac{1}{t}<x<\frac{1}{s}} F(t(1-x)-1) \frac{d x}{x}+\frac{1}{3} \int_{\frac{1}{t}<x<\frac{1}{s}} F(t(1-x)-1) \frac{d x}{x}+0
$$

and up to a multiple of $\frac{2 e^{\gamma}}{t-1}$ this is equal to

$$
\begin{aligned}
& \frac{1}{3} \log (t-2)-\frac{1}{3}\left(\log \left(t-\frac{t}{t-1}\right)-\log \left(s-\frac{t}{t-1}\right)\right) \\
= & \frac{1}{3} \log \left(s \frac{t-1}{t}-1\right)
\end{aligned}
$$

which is also equal to 0 when $t=\frac{s}{s-2}$.
The second claim is left as an involved exercise to the reader (alternatively, one can use the method of proof of the next theorem).

Since the lower bound iteration is much more complicated, we need a better method of checking that it has the linear sieve as a fixed point. For this we use the following weighted sets, introduced by Selberg [3] in order to explain the parity problem: let A^{+}be the weighted set of integers between 1 and y with the weight attached to n given by $1-\lambda(n)$, where $\lambda(n)=(-1)^{\Omega(n)}$, and let A^{-}be similar with the weight of n given by $1+\lambda(n)$. Set

$$
\pi^{ \pm}(y, z)=\mathcal{S}\left(A^{ \pm}, z\right)
$$

These functions are invariant under Buchstab iteration:

$$
\pi^{ \pm}(y, z)=\pi^{ \pm}(y, w)-\sum_{w<p<z} \pi^{\mp}(y / p, p)
$$

and by the prime number theorem, for $1<s<3$ we have

$$
\pi^{+}(y, z)=2(\pi(y)-\pi(z))=\frac{2 e^{\gamma}}{s} \frac{y}{e^{\gamma} \log (z)}+\frac{2}{s^{2}} \frac{y}{\log (z)^{2}}+O\left(\frac{y}{\log (z)^{3}}\right)
$$

so for all $s>1$ we have

$$
\begin{align*}
& \pi^{+}(y, z)=F(s) \frac{y}{e^{\gamma} \log (z)}+2 H(s) \frac{y}{\log (z)^{2}}+O\left(\frac{y}{\log (z)^{3}}\right) \tag{2}\\
& \pi^{-}(y, z)=f(s) \frac{y}{e^{\gamma} \log (z)}-2 h(s) \frac{y}{\log (z)^{2}}+O\left(\frac{y}{\log (z)^{3}}\right) \tag{3}
\end{align*}
$$

Theorem 4. If $\kappa=1, \frac{7}{2} \leq s \leq 4$, and $t=\frac{s}{s-2}$, then the two sides of the inequality in Corollary 2 are equal, that is

$$
\begin{aligned}
s f(s)= & 2 t f(2 t)-\iint_{\frac{1}{2 t}<x<\frac{1}{s}} \frac{1}{\frac{1}{t}-x} F\left(\frac{1-x}{\frac{1}{t}-x}\right) \frac{d x}{x} \\
& +\frac{5}{6} \iint_{\frac{1}{t}-x<y<x<\frac{1}{s}} \frac{1}{\frac{1}{t}-x} f\left(\frac{1-x-y}{\frac{1}{t}-x}\right) \frac{d x}{x} \frac{d y}{y} \\
& -\frac{2}{3} \iiint_{\frac{1}{t}-x<z<y<x<\frac{1}{s}} \frac{1}{\frac{1}{t}-x} F\left(\frac{1-x-y-z}{\frac{1}{t}-x}\right) \frac{d x}{x} \frac{d y}{y} \frac{d z}{z} \\
& +\frac{1}{6} \iiint_{\frac{1}{t}-y<z<y<x<\frac{1}{s}} \frac{1}{\frac{1}{t}-x} F\left(\frac{1-x-y-z}{\frac{1}{t}-x}\right) \frac{d x}{x} \frac{d y}{y} \frac{d z}{z}
\end{aligned}
$$

Furthermore, the error terms are equal as well:

$$
\begin{aligned}
s^{2} h(s)= & (2 t)^{2} h(2 t)+\int_{\frac{1}{2 t}<x<\frac{1}{s}} \frac{1}{\left(\frac{1}{t}-x\right)^{2}} H\left(\frac{1-x}{\frac{1}{t}-x}\right) \frac{d x}{x} \\
& +\frac{5}{6} \iint_{\frac{1}{t}-x<y<x<\frac{1}{s}} \frac{1}{\left(\frac{1}{t}-x\right)^{2}} h\left(\frac{1-x-y}{\frac{1}{t}-x}\right) \frac{d x}{x} \frac{d y}{y} \\
& +\frac{2}{3} \iiint_{\frac{1}{t}-x<z<y<x<\frac{1}{s}} \frac{1}{\left(\frac{1}{t}-x\right)^{2}} H\left(\frac{1-x-y-z}{\frac{1}{t}-x}\right) \frac{d x}{x} \frac{d y}{y} \frac{d z}{z} \\
& -\frac{1}{6} \iiint_{\frac{1}{t}-y<z<y<x<\frac{1}{s}} \frac{1}{\left(\frac{1}{t}-x\right)^{2}} H\left(\frac{1-x-y-z}{\frac{1}{t}-x}\right) \frac{d x}{x} \frac{d y}{y} \frac{d z}{z}
\end{aligned}
$$

Proof. By equations (2), (3), it's enough to check that for constant $\frac{7}{2}<s<4$ and $w=\frac{y}{z^{2}}$ we have

$$
\begin{aligned}
\mathcal{S}\left(A^{-}, z\right)= & \mathcal{S}\left(A^{-}, \sqrt{w}\right)-\sum_{\sqrt{w} \leq p<z} \mathcal{S}\left(A_{p}^{+}, \frac{w}{p}\right)+\frac{5}{6} \sum_{\frac{w}{p} \leq q<p<z} \mathcal{S}\left(A_{p q}^{-}, \frac{w}{p}\right) \\
& -\frac{2}{3} \sum_{\substack{\frac{w}{p} \leq r<q<p<z \\
q r<w}} \mathcal{S}\left(A_{p q r}^{+}, \frac{w}{p}\right)-\frac{1}{2} \sum_{\frac{w}{q} \leq r<q<p<z} \mathcal{S}\left(A_{p q r}^{+}, \frac{w}{p}\right)+O\left(\frac{y}{\log (z)^{3}}\right) .
\end{aligned}
$$

We have the easy inequality $z>\sqrt{w}>y^{3 / 14}$, and for $\sqrt{w}<p<z$ we have $\frac{w}{p}>\frac{w}{z}>y^{1 / 7}$ as well as $p\left(\frac{w}{p}\right)^{5}>\frac{w^{5}}{z^{4}}>y$. Thus if n is a number below y which is counted by either side, then every prime factor of n must be at least $y^{1 / 7}$, and $\Omega(n)$ must be an even number strictly below $\max \left(\frac{14}{3}, 1+5\right)=6$.

We need to estimate the number of n s below y which contribute more to the left and side than the right hand side. Since the number of nonsquarefree n s which can contribute to either side is at most $3 y^{6 / 7}$, we can assume without loss that n is square free. If $n=p q$ with $p>q$ primes, we must have $z>p$ in order for n to contribute more to the left side than the right side. The number of such n is at most $z^{2}<y^{4 / 7}$, so we may assume without loss that n has four distinct prime factors $p>q>r>s$, at least one of which is below z (so n isn't counted on the left hand side at all).

First consider the case $s \geq \sqrt{w}$. Since $n \leq w z^{2}$, we have $z>q$. Then if n has $3 \leq k \leq 4$ prime factors below z, n is counted on the right hand side with multiplicity $1-k+\frac{5}{6} \cdot\binom{k}{2}-\frac{2}{3} \cdot 0-\frac{1}{2} \cdot\binom{k}{3}=$ $(1-k)\left(1-\frac{k}{3}\right)\left(1-\frac{k}{4}\right)=0$, so we get the same contribution to both sides.

Now suppose that $s<\sqrt{w}, r s \geq w$. Since $n \leq w z^{2}$, we have $z>q$. Then if n has $3 \leq k \leq 4$ prime factors below z, n is counted on the right hand side with multiplicity $0-(k-1)+\frac{5}{6} \cdot\binom{k}{2}-\frac{2}{3} \cdot 0-\frac{1}{2} \cdot\binom{k}{3}=$ $(1-k)\left(1-\frac{k}{3}\right)\left(1-\frac{k}{4}\right)=0$, as before.

Next suppose that $w>r s$ and $p>z$. We must have $z>q>\frac{w}{s}$ in order to get any contribution from n. Then n is counted on the right hand side with multiplicity $0-1+\frac{5}{6} \cdot 2-\frac{2}{3} \cdot 1-\frac{1}{2} \cdot 0=0$, so we get the same contribution from both sides.

Thus any bad n must have $z \geq p>q$ and $w>r s, r>s>y^{1 / 7}$. The number of such n is at most $O\left(\frac{z}{\log (z)} \frac{z}{\log (z)} \frac{w}{\log (w)}\right)=O\left(\frac{y}{\log (z)^{3}}\right)$.

4. Numerical Results when $\kappa=\frac{3}{2}$

When $\kappa=\frac{3}{2}$, we have $\alpha_{\kappa}^{D}=3.9114 \ldots, \beta_{\kappa}^{D}=3.11582 \ldots$ [1]. In particular, we have $\alpha_{\kappa}^{D}<\beta_{\kappa}^{D}+1$, so Corollary 1 can be applied to s in the range $\alpha_{\kappa}^{D}<s<\beta_{\kappa}^{D}+1$ with $t=\frac{s}{s-\beta_{\kappa}^{D}}$. The improvement to the value of $F_{\kappa}(s)$ in this range is nonzero, but very small. Combining this with ordinary Buchstab iteration for the lower bound, one can show that $\beta\left(\frac{3}{2}\right)<3.11570$.

If we apply the iteration from Corollary 2 directly to $F_{\kappa}^{D}, f_{\kappa}^{D}$, then the values of s, t for which the quantity $s^{\kappa} f_{\kappa}(s)$ is improved the most are given by $s \approx 4.85, t \approx 5.52$. This results in the bound $\beta\left(\frac{3}{2}\right)<3.11554$.

Iteratively combining the improvements from Corollaries 1 and 2 , we get $\beta\left(\frac{3}{2}\right)<3.11549$.

5. An infinite sequence of iteration rules

Here we will describe an infinite sequence of iteration rules, one for each $k \geq 1$, generalizing the upper and lower bound iteration rules described so far (which correspond to the cases $k=1$ and $k=2$). We will also prove an optimality result for these iteration rules.

Theorem 5. If $k \geq 1$ and $w \leq z^{k}$, then

$$
\begin{aligned}
(-1)^{k-1} \mathcal{S}(A, z) \leq & (-1)^{k-1} \mathcal{S}\left(A, w^{1 / k}\right)+(-1)^{k-2} \sum_{w^{1 / k \leq p_{1}<z}} \mathcal{S}\left(A_{p_{1}},\left(\frac{w}{p_{1}}\right)^{1 /(k-1)}\right)+\cdots \\
& +\sum_{\left(\frac{w}{p_{1} \cdots p_{k-2}}\right)^{1 / 2} \leq p_{k-1}<\cdots<p_{1}<z} \mathcal{S}\left(A_{p_{1} \cdots p_{k-1}}, \frac{w}{p_{1} \cdots p_{k-1}}\right) \\
& -\left(1-\frac{1}{\binom{k+2}{2}}\right) \sum_{\frac{w}{p_{1} \cdots p_{k-1}} \leq p_{k}<\cdots<p_{1}<z} \mathcal{S}\left(A_{p_{1} \cdots p_{k}}, \frac{w}{p_{1} \cdots p_{k-1}}\right) \\
& +\sum_{\frac{w}{p_{1} \cdots p_{k-1}} \leq p_{k+1}<\cdots<p_{1}<z}\left(1-\frac{\#\left\{i \leq k+1 \mid w p_{i} \leq p_{1} \cdots p_{k+1}\right\}}{\binom{k+2}{2}}\right) \mathcal{S}\left(A_{p_{1} \cdots p_{k+1},}, \frac{w}{p_{1} \cdots p_{k-1}}\right) .
\end{aligned}
$$

Proof. It's enough to prove this when A has just one element, say $A=\{a\}$. We may also assume that a is squarefree, and write $a=q_{1} q_{2} \cdots q_{m}$ with $q_{1}<q_{2}<\cdots<q_{m}$ and the q_{i} s prime. We may assume also that $q_{1}<z$, since otherwise the result is trivial. Thus we just need to prove that the right hand side is at least 0 .

Note that every nonzero summand corresponds to some divisor $d=p_{1} \cdots p_{j}$ of a having j prime factors, $j \leq k+1$. Our strategy is to combine the nonzero summands into small groups according to the combinatorial structure of their prime factors, such that each group of summands has a nonnegative sum.

The first step is to combine the summand corresponding to $d=p_{1} \cdots p_{j}$ with $j \leq k-1$ and $p_{j}=q_{1}$ with the summand corresponding to d / p_{j}, and to note that these two summands exactly cancel each other out. After this step, the only summands that remain are those which have $d=p_{1} \cdots p_{j}$ with $j \geq k-1$ and $p_{k-1}>q_{1}$.

The next step is to group the summands corresponding to $d=p_{1} \cdots p_{j}$ with $j \geq k-1, p_{k-1}=q_{l}$ with $l>1$, and $p_{1} \cdots p_{k-1}$ taking some fixed value P with $w \leq P q_{1}$. If $l=2$, then the total contribution from such d is $\frac{1}{\binom{k+2}{2}}$. If $l=3$, then the total contribution from such d is

$$
1-\left(1-\frac{1}{\binom{k+2}{2}}\right) \cdot 2+\left(1-\frac{\#\left\{p \in\left\{p_{1}, \ldots, p_{k-1}, q_{2}, q_{1}\right\} \mid w p \leq P q_{2} q_{1}\right\}}{\binom{k+2}{2}}\right)=-\frac{\#\left\{i \leq k-1 \mid w p_{i} \leq P q_{2} q_{1}\right\}}{\binom{k+2}{2}} .
$$

If $l=4$, then the total contribution from such d is at least

$$
1-\left(1-\frac{1}{\binom{k+2}{2}}\right) \cdot 3+\left(1-\frac{k+1}{\binom{k+2}{2}}\right) \cdot 3=\frac{\binom{k-1}{2}}{\binom{k+2}{2}} .
$$

Finally, if $l \geq 5$ then the total contribution from such d is easily seen to be positive.
In order to balance out the negative contribution coming from groups corresponding to $P=$ $p_{1} \cdots p_{k-1}, w \leq P q_{1}, p_{k-1}=q_{l}$ with $l=3$, we will assign portions of the positive excess from groups corresponding to $P \mathrm{~s}$ with $l=2$ or $l=4$ to certain corresponding $P \mathrm{~s}$ with $l=3$.

If $P=p_{1} \cdots p_{k-1}, w \leq P q_{1}, p_{k-1}=q_{l}$ with $l=2$ and $m \geq 3$ is minimal such that q_{m} does not divide P, then we group the excess $\frac{1}{\binom{k+2}{2}}$ contribution from this P with the contributions corresponding to $P^{\prime}=P q_{m} / q_{2}$ - note that the least prime factor of P^{\prime} is then necessarily equal to q_{3}.

If $P=p_{1} \cdots p_{k-1}, w \leq P q_{1}, p_{k-1}=q_{l}$ with $l=4$, then we take $\frac{\left(\frac{(k-1)}{\binom{k+2}{2}} \text { of the excess contribution }\right.}{2}$ from this P, and divide it into $k-2$ pieces of sizes $\frac{1}{\binom{k+2}{2}}, \frac{2}{\binom{k+2}{2}}, \ldots, \frac{k-2}{\binom{k+2}{2}}$, and we assign the piece of size $\frac{i}{\binom{k+2}{2}}$ to $P_{i}^{\prime}=P q_{3} / p_{i+1}$ (noting once again that P_{i}^{\prime} has least prime factor equal to q_{3}).

To finish the argument, we just have to show that for $P=p_{1} \cdots p_{k-1}, w \leq P q_{1}, p_{k-1}=q_{l}$ with $l=3$, the total excess contribution that was assigned to P by the process described in the last two paragraphs is at least

$$
\frac{\#\left\{i \leq k-1 \mid w p_{i} \leq P q_{2} q_{1}\right\}}{\binom{k+2}{2}} .
$$

To see this, let $m \geq 4$ be minimal such that q_{m} does not divide P (or let $m=k+2$ if $P q_{2} q_{1}=a$). For any $3 \leq j<m$, if we let $P_{j}^{\prime}=P q_{2} / q_{j}$, then the least prime factor of P_{j}^{\prime} is q_{2}, and as long as $w q_{j} \leq P q_{2} q_{1}$ we have $w \leq P_{j}^{\prime} q_{1}$ and the excess of $\frac{1}{\binom{k+2}{2}}$ corresponding to P_{j}^{\prime} is assigned to P. Additionally (in the case $m<k+2$) we let $P^{\prime}=P q_{m} / q_{3}$, and we see that the least prime factor of P^{\prime} is q_{4}, that $w \leq P q_{1}<P^{\prime} q_{1}$, and that $\frac{k+2-m}{\binom{k+2}{2}}$ of the excess corresponding to P^{\prime} is assigned to P. Together, we see that the amount of excess which was assigned to P is at least

$$
\frac{\#\left\{3 \leq j<m \mid w q_{j} \leq P q_{2} q_{1}\right\}}{\binom{k+2}{2}}+\frac{k+2-m}{\binom{k+2}{2}} \geq \frac{\#\left\{i \leq k-1 \mid w p_{i} \leq P q_{2} q_{1}\right\}}{\binom{k+2}{2}}
$$

To see that the k th iteration rule is optimal when we set $\kappa=1, w=\frac{y}{z^{2}}$, and $y=z^{s}$ with $k+\frac{3}{2}<s<k+2$, we argue as in Theorem 4 to see that we just need to prove the following bound.
Theorem 6. If $A^{ \pm}$are weighted sets of integers between 1 and y defined as in the discussion before Theorem 4, then for any $k \geq 1$, if $y=z^{s}$ with $k+\frac{3}{2}<s<k+2$ and $w=\frac{y}{z^{2}}$, we have

$$
\begin{aligned}
(-1)^{k-1} \mathcal{S}\left(A^{-k-1}, z\right)= & (-1)^{k-1} \mathcal{S}\left(A^{--^{k-1}}, w^{1 / k}\right)+(-1)^{k-2} \sum_{w^{1 / k} \leq p_{1}<z} \mathcal{S}\left(A_{p_{1}}^{-k-2},\left(\frac{w}{p_{1}}\right)^{1 /(k-1)}\right)+\cdots \\
& +\sum_{\left(\frac{w}{p_{1} \cdots p_{k-2}}\right)^{1 / 2} \leq p_{k-1}<\cdots<p_{1}<z} \mathcal{S}\left(A_{p_{1} \cdots p_{k-1}}^{+}, \frac{w}{p_{1} \cdots p_{k-1}}\right) \\
& -\left(1-\frac{1}{\left(\frac{1}{k+2}\right)}\right) \sum_{\frac{w}{p_{1} \cdots p_{k-1}} \leq p_{k}<\cdots<p_{1}<z} \mathcal{S}\left(A_{p_{1} \cdots p_{k}}^{-}, \frac{w}{p_{1} \cdots p_{k-1}}\right) \\
& +\sum_{\frac{w}{p_{1} \cdots p_{k-1} \leq p_{k+1}<\cdots<p_{1}<z}}\left(1-\frac{\#\left\{i \leq k+1 \mid w p_{i} \leq p_{1} \cdots p_{k+1}\right\}}{\binom{k+2}{2}}\right) \mathcal{S}\left(A_{p_{1} \cdots p_{k+1}}^{+}, \frac{w}{p_{1} \cdots p_{k-1}}\right) \\
& +O\left(\frac{y}{\log (z)^{3}}\right) .
\end{aligned}
$$

Proof. Suppose that $a \leq y$ is counted a different number of times on both sides of the above. Then we necessarily have $\lambda(a)=(-1)^{k}$, and the least prime dividing a is less than z. In order for the contribution of a to the right hand side to be positive, there must be primes $p_{1}>\cdots>p_{k-1}$ dividing a such that $p_{1}<z$ and such that the least prime dividing a is at least $\frac{w}{p_{1} \cdots p_{k-1}}$, so we conclude that any prime dividing a must be at least

$$
\frac{w}{p_{1} \cdots p_{k-1}}>\frac{w}{z^{k-1}}=\frac{y}{z^{k+1}}=z^{s-(k+1)}>\sqrt{z} .
$$

In particular, the number of such a which have a square factor is $O\left(\frac{y}{\sqrt{z}}\right)$, so we may assume without loss that a is square free. If a has at least $k+4$ prime factors, then since a has some collection of
k prime factors whose product is at least w we have $a>w \sqrt{z}^{4}=y$, a contradiction. Thus a has strictly less than $k+4$ prime factors, and since $\lambda(a)=(-1)^{k}$ we see that a has either k or $k+2$ prime factors.

If a has exactly k prime factors, then they must all be less than z in order for the contribution of a to the right hand side to be positive, so $a<z^{k}<\frac{y}{z^{3 / 2}}$, so the number of such a is at most $\frac{y}{z^{3 / 2}}$. Thus we may assume without loss that a has exactly $k+2$ prime factors, at least k of which are less than z.

If two of the prime factors of a are $\geq z$, then the remaining prime factors of a must have product at least w, so $a>w z^{2}=y$, a contradiction. If one of the prime factors of a is $\geq z$ and the remaining $k+1$ prime factors of a are all $<z$, then the total contribution of a to the right hand side is precisely 0 . Thus, we may assume that all of the prime factors of a are less than z.

If every product of k prime factors of a is $\geq w$, then the contribution of a is again precisely 0 . Otherwise, we can write $a=q_{1} \cdots q_{k+2}$ with $\sqrt{z}<q_{1}<\cdots<q_{k+2}, q_{1} \cdots q_{k}<w, q_{k+1}<z$, and $q_{k+2}<z$. Using an upper bound sieve to bound the number of possible values for $q_{1} \cdots q_{k}$ by $O\left(\frac{w}{\log (z)}\right)$, we see that the number of such a is $O\left(\frac{w z^{2}}{\log (z)^{3}}\right)=O\left(\frac{y}{\log (z)^{3}}\right)$.

References

[1] H. Diamond, H. Halberstam, and H.-E. Richert. Combinatorial sieves of dimension exceeding one. J. Number Theory, 28(3):306-346, 1988.
[2] H. Iwaniec. On the error term in the linear sieve. Acta Arith., 19:1-30, 1971.
[3] Atle Selberg. Collected papers. Vol. II. Springer-Verlag, Berlin, 1991. With a foreword by K. Chandrasekharan.
Department of Mathematics, Stanford University, 450 Serra Mall, Bldg. 380, Stanford, CA 943052125

E-mail address: notzeb@stanford.edu

