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1 Grothendieck Abelian Categories

The material in this section is mostly from the stacks project, specifically [2, Tag 05NM], [2, Tag
079A], and [2, Tag 05AB].

A note: most references are not up front about what type of categories they consider. In this
paper all categories C under consideration will be locally small: for any two objects A,B ∈ Ob(C),
MorC(A,B) is a set. In an additive category, I will write Hom instead of Mor.

Definition 1. An additive locally small category C is a Grothendieck Abelian Category if it has
the following four properties:
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(AB) C is an abelian category. In other words C has kernels and cokernels, and the canonical map
from the coimage to the image is always an isomorphism.

(AB3) AB holds and C has direct sums indexed by arbitrary sets. Note this implies that colimits
over small categories exist (since colimits over small categories can be written as cokernels of
direct sums over sets).

(AB5) AB3 holds and filtered colimits over small categories are exact. (A colimit over a small
category D is filtered if any two objects i, j ∈ Ob(D) have maps to a common object k, if
any two maps i → j, i → j′ can be extended to a commutative diagram with everything
mapping to another object k, and if for any two maps from i to j we can find a map from j
to k coequalizing them. This is meant to be a generalization of a directed set.)

(GEN) C has a generator. A generator is an object U such that for any proper subobject N (M of
any object M , we can find a map U →M that does not factor through N .

Remark 1. Tamme [3] claims that the following is an equivalent reformulation of the AB5 condition:

(AB5’) AB3 holds, and for each directed set of subobjects Ai of an object A of C, and each system
of morphisms ui : Ai → B such that ui is induced from uj if Ai ⊆ Aj , there is a morphism
u : ΣiAi → B inducing the ui. Here ΣiAi is the internal sum of the Ais in A, i.e. ΣiAi =
im(
⊕

iAi → A).

I haven’t worked through the proof of the equivalence, but it probably isn’t too hard.

Example 1. If R is a ring, then the category of R-modules forms a Grothendieck abelian category.
AB5’ is easy to verify, so if we believe Tamme then we only need to find a generator. One such
generator is R, considered as an R-module in the obvious way.

1.1 The size of an object

Definition 2. If M is an object of C, we define |M | to be the cardinality of the smallest set of
subobjects of M containing one subobject from each equivalence class of subobjects, or ∞ if there
is no such set.

Proposition 1. Let C be a Grothendieck abelian category with a generator U . Then for any object
M of C, we have

• |M | ≤ 2HomC(U,M)

• If |M | ≤ κ, then there is an epimorphism
⊕

κ U �M .

Proof. For the second claim, find for every proper subobject N of M a map U →M not factoring
through N . The direct sum of this collection of maps can’t factor through any proper subobject of
M , so it must be an epimorphism.

For the first claim, we just have to check that since U is a generator every subobject N of M
is determined up to equivalence by the set of maps U →M which factor through N . This follows
from the proof of the second claim, applied to N .

We will need the following technical lemma later. Recall that the cofinality of a poset is the
smallest cardinality of a cofinal subset of the poset.
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Lemma 1. Let C be a Grothendieck abelian category, and let M be an object of C. Suppose α is an
ordinal with cofinality greater than |M |, and let {Bβ}β∈α be a directed system such that each map
Bβ → Bγ is an injection for β ⊆ γ. Then any map f : M → lim

−→
Bβ factors through some Bβ.

Proof. By applying AB5 to the exact sequences

0→ Bβ → lim
−→

Bγ → (lim
−→

Bγ)/Bβ → 0,

0→ f−1(Bβ)→M → (lim
−→

Bγ)/Bβ

we have lim
−→

f−1(Bβ) = M . Since each f−1(Bβ) is a subobject of M , we can choose a collection of

at most |M | βis such that each f−1(Bβ) is equivalent to some f−1(Bβi). Since the cofinality of α
is greater than |M |, we can find an upper bound γ ∈ α of all of the βis. Then f−1(Bγ) = M , so f
factors through Bγ .

1.2 Injectives

The next lemma generalizes the fact an abelian group is injective if and only if it is divisible.

Lemma 2. Let C be a Grothendieck abelian category with generator U . Then an object I of C is
injective if and only if we can fill in the dashed arrow in any diagram of the form

M //� _

��

I

U

>>

Proof. We need to show that we can fill in the dashed arrow in any diagram of the form

A //� _

��

I

B

??

By Zorn’s lemma and AB5’, we can assume without loss of generality that there is no larger
subobject A′ of B such that we can find a map A′ → I extending A→ I. Suppose for a contradiction
that A 6= B.

Choose a map ϕ : U → B that does not factor through A, and set M = ϕ−1(ϕ(U) ∩ A). By
assumption we can extend the obvious map M → I to a map U → I. By construction the map
U → I vanishes on ker(U → B), and the induced map ϕ(U)→ I agrees with A→ I on ϕ(U) ∩A.
Thus A→ I extends to a map A+ ϕ(U)→ I, contradicting the choice of A.

Theorem 1 (Grothendieck abelian categories have enough injectives). Let C be a Grothendieck
abelian category. Then there is a functor taking an object M of C to a monomorphism M ↪→ I
from M to an injective object I.
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Proof. Define the functor J by taking J(M) to be the pushout⊕
N⊆U

⊕
Hom(N,M)N

//
� _

��

M� _

��⊕
N⊆U

⊕
Hom(N,M) U

// J(M)

where here N runs over a set of representatives for the subobjects of U , of cardinality |U |.
Now we inductively define a sequence of functors Jα indexed by ordinals. Set J0 = J , set

Jα+1 = J ◦ Jα, and for α a limit ordinal set Jα = lim
−→
β∈α

Jβ.

Pick, once and for all, an α with cofinality greater than |U | (for instance, we can pick α to be the
smallest infinite ordinal with cardinality greater than |U |). Then for any M the map M → Jα(M)
is injective (by Zorn’s lemma and AB5), so we just need to check that Jα(M) is injective to finish.

By Lemma 2, we just need to check that for each subobject N of U we can extend any map
N → Jα(M) to a map U → Jα(M). By Lemma 1, such a map factors through some Jβ(M) for
some β ∈ α, and by the definition of J the map N → Jβ(M) extends to a map U → Jβ+1(M).
Since α is a limit ordinal, we have β + 1 ∈ α as well, so U → Jβ+1(M) → Jα(M) is the desired
extension of N → Jα(M).

2 Grothendieck Spectral Sequence

For this section we will need a few facts about Cartan-Eilenberg resolutions of complexes.

Exercise 1. Let C• be a complex in an abelian category C with enough injectives. Show that we
can find a resolution

0→ C• → I•,0 → I•,1 → · · ·

such that

• each Ii,j is injective,

• if Ci = 0, then Ii,j = 0 for all j,

• each of the sequences

0→ Ci → Ii,0 → Ii,1 → · · ·
0→ Bi(C•)→ Bi(I•,0)→ Bi(I•,1)→ · · ·
0→ Zi(C•)→ Zi(I•,0)→ Zi(I•,1)→ · · ·
0→ H i(C•)→ H i(I•,0)→ H i(I•,1)→ · · ·

is an injective resolution (Bi is the ith coboundary group, and Zi is the ith cocycle group).

Such a resolution is called a Cartan-Eilenberg resolution. Hint: apply the horseshoe lemma to the
exact sequences

0→ Bi(C•)→ Zi(C•)→ H i(C•)→ 0

and
0→ Zi(C•)→ Ci → Bi+1(C•)→ 0.
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Exercise 2. For extra credit, show that for any exact sequence of complexes

0→ C ′• → C• → C ′′• → 0

we can find an exact sequence of Cartan-Eilenberg resolutions

0→ I ′•,• → I•,• → I ′′•,• → 0.

Theorem 2 (Grothendieck spectral sequence). Let F : C → C′, G : C′ → C′′ be left exact additive
functors of abelian categories, and let C, C′ have enough injectives. If F maps injective objects of
C to G-acyclic (M is G-acyclic means RpG(M) = 0 for all p > 0) objects of C′, then we have a
functorial spectral sequence taking A ∈ Ob(C) to

Ep,q2 = RpG(RqF (A)) ⇒ En = Rn(G ◦ F )(A).

Proof. Choose an injective resolution 0→ A→ I•, and then choose a Cartan-Eilenberg resolution
0→ F (I•)→ J•,•. Let K• be the total complex of G(J•,•).

We compute the cohomology of K• in two ways by means of the two spectral sequences E,E′

coming from the double complex G(J•,•). Here E is the spectral sequnce we get by first taking
cohomology in the first index, and E′ is the spectral sequence we get by first taking cohomology in
the second index. E′ is the easier spectral sequence: we have

E′p,q1 = Hq(G(Jp,•)) = RqG(F (Ip)) =

{
(G ◦ F )(Ip) if q = 0

0 if q > 0
,

since F (Ip) was assumed to be G-acyclic. Thus E′p,q2 =

{
Rp(G ◦ F )(A) if q = 0

0 if q > 0
, and the spectral

sequence abuts to E′n = Rn(G ◦ F )(A).
As for E, we have (after switching the roles of p and q)

Ep,q1 = Hq(G(J•,p)) = G(Hq(J•,p)),

since each of the exact sequences

0→ Bq(J•,p)→ Zq(J•,p)→ Hq(J•,p)→ 0,

0→ Zq(J•,p)→ Jq,p → Bq+1(J•,p)→ 0,

0→ Zq(J•,p)→ Jq,p → Jq+1,p

has all terms injective and thus remains exact when we apply the functorG. Since 0→ Hq(F (I•))→
Hq(J•,•) is an injective resolution and Hq(F (I•)) = RqF (A), we have

Ep,q2 = Hp(G(Hq(J•,•))) = RpG(Hq(F (I•))) = RpG(RqF (A)).

This abuts to En = Hn(K•) = E′n = Rn(G ◦ F )(A).

Corollary 1 (Exact sequence of low degree). If F,G are as above, then for any A we have an
exact sequence

0→ R1G(F (A))→ R1(G ◦ F )(A)→ G(R1F (A))→ R2G(F (A))→ R2(G ◦ F )(A).
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We also have the following strengthening of the exact sequence of low degree, from [3].

Corollary 2. If F,G are as above, and if RpG(RqF (A)) = 0 for 0 < q < n, then

RmG(F (A)) ∼= Rm(G ◦ F )(A) for m < n,

and we have an exact sequence

0→ RnG(F (A))→ Rn(G ◦ F )(A)→ G(RnF (A))→ Rn+1G(F (A))→ Rn+1(G ◦ F )(A).

Example 2. Let N be a normal subgroup of a group G. Then the functor A 7→ AN takes G-
modules to G/N -modules, and the functor B 7→ BG/N takes G/N -modules to abelian groups. The
category of G-modules satisfies AB5 and has the generator Z[G], so it has enough injectives by
Theorem 1, and similarly for the category of G/N -modules. It’s easy to check that the functor
A 7→ AN takes injective G-modules to injective G/N -modules (essentially, since every G/N -module
can be regarded as a G-module invariant under N), so we can apply Corollary 1 to obtain the
inflation-restriction exact sequence of group cohomology:

0→ H1(G/N,AN )
inf−→ H1(G,A)

res−→ H1(N,A)G/N
tr−→ H2(G/N,AN )

inf−→ H2(G,A).

3 Sheaf Cohomology

First we recall the definition of a topology. I’m going to follow Tamme’s presentation from [3].

Definition 3. A topology (or site) T is a small category cat(T ) (objects of cat(T ) will be called

opens) together with a set cov(T ) of families {Ui
ϕi→ U}i∈I , called coverings of T , satisfying the

following axioms.

T1 For {Ui → U} any covering and any morphism V → U , the fiber products Ui×U V exist and
{Ui ×U V → V } is also a covering.

T2 For {Ui → U} any covering and for any family of coverings {Vij → Ui}, {Vij → U} is also a
covering.

T3 If U ′ → U is an isomorphism, then {U ′ → U} is a covering.

A morphism of topologies is a functor taking coverings to coverings and commuting with all
fiber products that show up in T1.

Example 3. Let X be a topological space. The site TX with underlying category the category of
open sets of X and coverings given by open coverings satisfies the axioms of a topology. If U, V are
open sets contained in the open set W , then we have U ×W V = U ∩ V .

If f : X → Y is a continuous map, then f−1 : TY → TX is a morphism of topologies.

Our main concern is the case of a topology TX , where X is a scheme.
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3.1 Sheaves and Presheaves

Let P be the category of presheaves on T - that is, the category of contravariant functors from cat(T )
to the category of abelian groups. For any open U we define the section functor by Γ(U,F ) = F (U),
for F a presheaf.

Proposition 2. P is a Grothendieck abelian category. A sequence of presheaves is exact if and
only if it is exact on each open U .

Proof. The only nontrivial part of this theorem is that P has a generator. Rather than constructing
a single generator, it is convenient to construct a set of generators, that is a set of presheaves {Zi}
such that for any N ( M we can find an i and a map Zi → M which does not factor through N .
Then we may take Z =

⊕
i Zi as a generator for P.

Our family of generators is defined as follows. For any open U , we define the presheaf ZU by

ZU (V ) =
⊕

Mor(V,U)

Z.

For any presheaf F , we have F (U) = Hom(ZU , F ). Now it’s easy to see that {ZU}U∈Ob(cat(T ))

is a family of generators for P. Note that ZU represents the section functor Γ(U, ·).

Now we let S be the category of sheaves on T . The objects of S are presheaves F which satisfy
the sheaf axiom, which states that for all coverings {Ui → U}, the sequence

0→ F (U)→
∏
i

F (Ui) ⇒
∏
i,j

F (Ui ×U Uj)

is exact. A morphism of sheaves is then defined to be a morphism of presheaves, making S a full
subcategory of P. Let ι : S → P be the natural inclusion.

Define a functor - : P → P by

F -(U) = lim
−→

{Ui→U}

ker(
∏
i

F (Ui) ⇒
∏
i,j

F (Ui ×U Uj)).

The index category of the limit is the category of coverings of U with morphisms given by refine-
ments of coverings. (A refinement {U ′j → U}j∈J → {Ui → U}i∈I is a map ε : J → I together with
a map U ′j → Uε(j) for each j ∈ J .) In the case that our site comes from a topological space, this
index category is filtered, so we can conclude that - is a left exact functor (in general we can do
some shenanigans to replace the index category with another category which is filtered - see [3] for
details).

Definition 4. A presheaf is called separated if the map F (U)→
∏
i F (Ui) is an injection for every

covering {Ui → U}.

Exercise 3. Show that if F is a presheaf then F - is separated, and if F is a separated presheaf then
F - is a sheaf. Show that for any sheaf G, any map F → G factors through F -.

If we now define # = - ◦ - : P → S, we see that # is left adjoint to ι. # is called sheafification.

Proposition 3. S is a Grothendieck abelian category. ι is left exact and # is exact.
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Proof. The presheaf kernel of a morphism of sheaves is easily seen to be a sheaf (since limits
commute with limits). Using the adjointness of ι and #, we see that the cokernel of a morphism
of sheaves is just the sheafification of the presheaf cokernel.

Since -: P → P is left exact, and since the presheaf kernel agrees with the sheaf kernel, we see
that # is left exact. The left exactness of # implies that the coimage and the image of a morphism
agree (easy exercise). Thus S satisfies AB.

That ι is left exact also follows from the fact that the presheaf kernel and the sheaf kernel agree.
From the adjointness of ι and # we see that # is right exact. Combining this with the above, we
see that # is exact.

For AB3, note that to calculate a colimit in S, we just calculate the colimit in P and then
sheafify (using the adjointness of ι and #). For AB5, note that if filtered colimits are exact in P
then they remain exact in S (since # is exact).

Finally, we must construct a family of generators for S. We take as generators the sheaves Z#
U :

for any sheaf F , we have

F (U) = HomP(ZU , ι(F )) = HomS(Z#
U , F ).

Note that this shows that the sheaf Z#
U represents the functor Γ(U, ·).

3.2 Čech Cohomology

Čech Cohomology is most naturally defined on the category of presheaves.

Definition 5. Let {Ui → U} be a covering. The derived Čech Cohomology groups of a presheaf F
with respect to the covering {Ui → U} are

H0({Ui → U}, F ) = ker(
∏
i

F (Ui) ⇒
∏
i,j

F (Ui ×U Uj)),

and
Hp({Ui → U}, F ) = RpH0({Ui → U}, F ).

These groups can be computed by means of the Čech complex. For the sake of my sanity, we
make the abbreviation Ui0,...,ip = Ui0 ×U · · · ×U Uip .

Definition 6. For F a presheaf and {Ui → U} a covering, the Čech Complex is given by

Cp({Ui → U}, F ) =
∏

(i0,...,ip)

F (Ui0,...,ip),

with differentials dp : Cp({Ui → U}, F )→ Cp+1({Ui → U}, F ) given by

(dps)i0,...,ip+1 =

p+1∑
k=0

(−1)kF (Ui0,...,ip+1 → Ui0,...,îk,...,ip+1
)(si0,...,îk,...,ip+1

),

where the hat over a term means that that term is omitted. In the case of a topological space, this
reduces to the usual definition.
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Theorem 3 (Čech Cohomology is a derived functor). For any presheaf F and any covering {Ui →
U}, we have

Hp({Ui → U}, F ) = Hp(C•({Ui → U}, F )).

Proof. Set Z{Ui→U} = coker(
⊕

i,j ZUi,j ⇒
⊕

i ZUi). Then we have

H0({Ui → U}, F ) = ker(Hom(
⊕
i

ZUi , F ) ⇒ Hom(
⊕
i,j

ZUi,j , F )) = Hom(Z{Ui→U}, F ),

so in fact
Hp({Ui → U}, F ) = Extp(Z{Ui→U}, F ).

Furthermore, we have

Cp({Ui → U}, F ) = Hom(
⊕

(i0,...,ip)

ZUi0,...,ip , F ),

and the maps dp are induced by maps dp+1 :
⊕

(i0,...,ip+1) ZUi0,...,ip+1
→
⊕

(i0,...,ip) ZUi0,...,ip .

For any open V the functor Hom(ZV , ·) = Γ(V, ·) : P → Ab is right exact, so in fact all of the
presheaves ZV are projective. Thus, to show that

Extp(Z{Ui→U}, F ) = Hp(C•({Ui → U}, F )),

it’s enough to show that the projective resolution

0← Z{Ui→U} ←
⊕
i

ZUi
d1←−
⊕
i,j

ZUi,j
d2←− · · ·

is exact. By construction, we already know that it is exact at Z{Ui→U} and at
⊕

i ZUi .
To check the exactness everywhere else, it is enough to check it is exact when we plug in any

open V . Using ZU (V ) =
⊕

Mor(V,U) Z, we see that we just need to prove the exactness of⊕
i

⊕
Mor(V,Ui)

Z d1←−
⊕
i,j

⊕
Mor(V,Ui,j)

Z d2←−
⊕
i,j,k

⊕
Mor(V,Ui,j,k)

Z d3←− · · ·

Now we split this up into non-interacting sequences based on the overall map ϕ : V → U (note
that this step is incredibly silly in the case of topological spaces). Let Sϕ be the set of commuting
diagrams of the form

V //

ϕ
  

Ui

��
U

Then the subset of
∐
i0,...,ip

Mor(V,Ui0,...,ip) that maps to ϕ in Mor(V,U) is identified with Sp+1
ϕ .

Thus we just have to prove the exactness of the sequence⊕
Sϕ

Z d1←−
⊕

Sϕ×Sϕ

Z d2←−
⊕

Sϕ×Sϕ×Sϕ

Z d3←− · · ·
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If we label the generators of the different copies of Z by es0,...,sp , si ∈ Sϕ, then we have

dp(es0,...,sp) =

p∑
k=0

(−1)kei0,...,îk,...,ip .

Most likely, you already know a proof that this sequence is exact (probably involving an explicit
chain homotopy).

Definition 7. For any presheaf F and any open U , the Čech cohomology groups of F on the open
U are

Ȟp(U,F ) = lim
−→

{Ui→U}

Hp({Ui → U}, F ).

Remark 2. We have Ȟ0(U,F ) = F -(U), and Ȟp(U,F ) = RpȞ0(U,F ).

Remark 3. For a general site there is a subtle technical problem with the previous definition: it is
possible that a cover {Ui → U}i is refined by another cover {Vij → U}ij in multiple ways, since
a refinement of a cover comes with a collection of maps ϕij : Vij → Ui over U . In order to fix
this, one shows that for any two such collections of maps ϕij , ϕ

′
ij , the two induced maps from

Hp({Ui → U}i, F ) to Hp({Vij → U}ij , F ) agree. For details see Tamme’s book [3].

3.3 Sheaf Cohomology

Definition 8. If F ∈ S is a sheaf, we define the sheaf cohomology groups of F on the open U by

Hp(U,F ) = RpΓ(U,F ),

and the sheaf cohomology presheaves of F by

Hp(F ) = Rpι(F ).

Remark 4. Since ι is right adjoint to a left exact functor, ι takes injective objects to injective
objects. Thus we may apply the Grothendieck spectral sequence to composite functors G◦ ι, where
G is a left exact additive functor with domain P.

Since the functor Γ(U, ·) : P → Ab is exact, and since Γ(U,F ) = Γ(U, ι(F )), a trivial spectral
sequence shows that for every open U we have Hp(F )(U) = Hp(U,F ). The next proposition shows
that the sheaf cohomology presheaves are not very sheafy for p > 0.

Proposition 4. For any F ∈ S we have Ȟ0(U,Hp(F )) = 0 for all p > 0.

Proof. The map G→ G- is a monomorphism for any separated presheaf G, so it’s enough to show
that Hp(F )# = 0 for all p > 0. Since idS = # ◦ ι and # is exact, a trivial spectral sequence shows
that Hp(F )# = RpidS(F ), and this is 0 for p > 0 since idS is exact.

Theorem 4 (Čech to derived). For any sheaf F we have the following spectral sequences:

• Hp({Ui → U},Hq(F )) ⇒ Hp+q(U,F ),

• Ȟp(U,Hq(F )) ⇒ Hp+q(U,F ).
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Proof. These follow from the Grothendieck spectral sequence applied to the identities

Γ(U, ·) = H0({Ui → U}, ·) ◦ ι = Ȟ0(U, ·) ◦ ι.

Corollary 3. If {Ui → U} is a covering of U satisfying Hq(Ui0,...,ir , F ) = 0 for all q > 0 and all
(i0, ..., ir), then the canonical map

Hp({Ui → U}, F )→ Hp(U,F )

is an isomorphism.

Corollary 4. The map
Ȟ1(U,F )→ H1(U,F )

is always an isomorphism, and the map

Ȟ2(U,F )→ H2(U,F )

is always a monomorphism.

Proof. Since Ȟ0(U,H1(F )) = 0, the exact sequence of low degree from the spectral sequence
Ȟp(U,Hq(F )) ⇒ Hp+q(U,F ) is just

0→ Ȟ1(U,F )→ H1(U,F )→ 0→ Ȟ2(U,F )→ H2(U,F ).

Proposition 5. Suppose that for every presheaf P with P# = 0 we have Ȟp(X,P ) = 0 for all
p ≥ 0. Then for every presheaf P and every p ≥ 0 the natural map Ȟp(X,P )→ Hp(X,P#) is an
isomorphism.

Proof. Consider the exact sequence of presheaves

0→ P → P# → P#/P → 0.

Since sheafification is an exact functor, we see that (P#/P )# = 0, so by assumption we have
Ȟp(X,P#/P ) = 0 for all p. By the long exact sequence of Čech cohomology associated to any
short exact sequence of presheaves, we see that the natural map Ȟp(X,P ) → Ȟp(X,P#) is an
isomorphism for every presheaf P and every p.

Now consider the spectral sequence Ȟp(X,Hq(P#))→ Hp+q(X,P#) of Theorem 4. By Propo-
sition 4 we have (Hq(P#))# = 0 for q > 0, so by assumption we have Ȟp(X,Hq(P#)) = 0 for
q > 0, and then by Corollary 2 the natural maps Ȟp(X,P#)→ Hp(X,P#) are isomorphisms.

Exercise 4. Use the previous Proposition to show that for every presheaf P on a paracompact
Hausdorff topological space X the natural maps Ȟp(X,P )→ Hp(X,P#) are isomorphisms. (Hint:
given a Čech cocycle of a presheaf P with P# = 0 which is defined on some cover, try to construct
a refinement of the cover on which every component of the cocycle vanishes.)
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3.4 Torsors and H1

Since H1 always agrees with Ȟ1 for abelian sheaves, we will extend the definition of H1 to non-
commutative sheaves G as follows.

Definition 9. Let G be a sheaf of (possibly noncommutative) groups on X. For any open cover
{Ui → U}i, we define a cocycle to be an element ϕ ∈

∏
i,j G(Ui,j) satisfying

G(Ui,j,k → Ui,j)(ϕi,j) ·G(Ui,j,k → Uj,k)(ϕj,k) = G(Ui,j,k → Ui,k)(ϕi,k)

for all i, j, k. Two cocycles ϕ, φ are equivalent if there exists an element g ∈
∏
iG(Ui) satisfying

G(Ui,j → Ui)(gi) · ϕi,j = φi,j ·G(Ui,j → Uj)(gj)

for all i, j. The trivial cocycle is the cocycle all of whose components are the identity of G. The
set of cocycles up to equivalence forms a pointed set, which we call H1({Ui → U}i, G). Finally, we
set

H1(U,G) = lim
−→

{Ui→U}

H1({Ui → U}, G).

Definition 10. Let G be a sheaf of (possibly noncommutative) groups on X. A left G-torsor on
X is a sheaf of sets P with a left action G × P → P such that there is an open cover {Ui → X}i
such that P restricted to each Ui is isomorphic, as a sheaf of sets with left G action, to G with the
action defined by left multiplication.

Exercise 5. Check that there is a natural bijection between H1(X,G) and the set of left G-torsors
on X up to isomorphism.

Exercise 6. Let
1→ A→ B → C → 1

be a short exact sequence of sheaves of groups, and suppose that A is contained in the center of B.
Show that for every open U we have an exact sequence (of pointed sets)

1→ H0(U,A)→ H0(U,B)→ H0(U,C)→ H1(U,A)→ H1(U,B)→ H1(U,C)→ H2(U,A).

(Hint: start by constructing a map H1(U,C) → Ȟ2(U,A), then use the injectivity of the natural
map Ȟ2(U,A)→ H2(U,A).)

4 Flask Sheaves

The following lemma from Milne [1] explains the properties that we want from the family of flask
sheaves.

Lemma 3 (Acyclic Cohomology). Let F : C → C′ be a left exact functor of abelian categories, and
assume that C has enough injectives. Let T be a class of objects in C such that

(a) for every object A ∈ C there is a monomorphism from A to an object of T (i.e. C has enough
T -objects),

(b) if A⊕A′ ∈ T then A ∈ T ,

12



(c) if 0 → A′ → A → A′′ → 0 is exact and A′, A ∈ T , then we have A′′ ∈ T and the sequence
0→ F (A′)→ F (A)→ F (A′′)→ 0 is exact.

Then all elements of T are F -acyclic, and so T -resolutions can be used to calculate RpF . Further-
more, all injective objects of C are in T .

Proof. Since every monomorphism from an injective object to an object of T splits, (a) and (b)
imply that every injective object of C is in T . Now let A be any object in T , and choose an injective
resolution

0→ A→ I0 → I1 → · · ·

of A. Split this resolution up into short exact sequences

0→ Z0 →I0 → Z1 → 0

0→ Z1 →I1 → Z2 → 0

· · ·

where Z0 = A. Then by (c) and induction on i, each Zi is in T , and so each sequence

0→ F (Zp)→ F (Ip)→ F (Zp+1)→ 0

is exact in C′. Thus 0→ F (A)→ F (I•) is exact, and so RpF (A) = 0 for all p > 0.

Tamme [3] gives the following definition of flask sheaves.

Definition 11. A sheaf F is flask if for every covering {Ui → U} and for every p > 0, we have

Hp({Ui → U}, F ) = 0.

Proposition 6. The class of flask sheaves satisfies conditions (a), (b), (c) of Lemma 3 for the
functor ι : S → P. Furthermore, for any sheaf F ∈ S the following are equivalent:

(i) F is flask.

(ii) Hp(F ) = 0 for all p > 0, or equivalently Hp(U,F ) = 0 for all opens U and all p > 0.

Proof. Recall that ι takes injectives to injectives. Thus for any injective object I of S, Hp({Ui →
U}, I) = RpH0({Ui → U}, ι(I)) = 0 for p > 0, and so I is flask. Since S has enough injectives, the
class of flask sheaves satisfies condition (a).

Since the functor Hp({Ui → U}, ·) commutes with finite direct sums, the class of flask sheaves
also satisfies condition (b).

Finally, the long exact sequence of Čech cohomology and the fact that Ȟ1(U, ·) = H1(U, ·)
(Corollary 4) show that the class of flask sheaves satisfies condition (c).

Now Lemma 3 shows that (i) implies (ii). The reverse implication follows from the first spectral
sequence of Theorem 4.

If we suppose that our site has the form TX for some topological space X, then we can make
the following simpler definition.

Definition 12. A sheaf F on a topological space X is called flabby if for every inclusion of opens
V ⊆ U the restriction map F (V → U) is surjective.

13



Proposition 7. The class of flabby sheaves on a topological space satisfies conditions (a), (b), (c)
of Lemma 3 for the functor ι : S → P. If a sheaf F on a topological space is flabby, then it is also
flask.

Proof. For (a), we note that any sheaf injects into the product of the skyscraper sheaves corre-
sponding to its stalks, and that such a product is a flabby sheaf. The condition (b) is trivial. Now
suppose that

0→ F ′ → F → F ′′ → 0

is an exact sequence of sheaves with F, F ′ flabby. Let P be the presheaf ι(F )/ι(F ′), so we have
F ′′ = P#. An easy application of the snake lemma shows that every restriction map P (V → U)
is surjective, so to check (c) we just have to check that P is a sheaf, or equivalently that P = P -.
By the long exact sequence of Čech cohomology, it suffices to check that H1({Ui → U}, F ′) = 0 for
every cover {Ui → U}i∈I .

So suppose that s = (si,j) ∈ C1({Ui → U}i∈I , F ′) is a coboundary. Since all three maps
Ui,i,i → Ui,i defined by omitting one of the three factors are the identity in the case of a topological
space, we see that

0 = (d1s)i,i,i = si,i − si,i + si,i = si,i

for every i ∈ I. Similarly, since the two maps Ui,j,i → Uj,i and Ui,j,i → Ui,j defined by omitting
either the first or the last factor are the identity on a topological space, we have

0 = (d1s)i,j,i = sj,i − F (Ui,j,i → Ui,i)si,i + si,j = sj,i + si,j

for all i, j ∈ I. Now well-order the index set I. We will inductively define sections si such that
F ′(Uj,i → Ui)si − F ′(Uj,i → Uj)sj = sj,i for all j < i. Let V =

⋃
j<i Uj,i. Let j, k < i. Then we

have

F ′(Uk,j,i → Uj,i)(sj,i + F ′(Uj,i → Uj)sj)− F ′(Uk,j,i → Uk,i)(sk,i + F ′(Uk,i → Uk)sk) =

F ′(Uk,j,i → Uj,i)(sj,i)− F ′(Uk,j,i → Uk,i)(sk,i) + F ′(Uk,j,i → Uk,j)(sk,j) = (d1s)k,j,i = 0,

so by the sheaf condition for F ′ applied to the cover {Uj,i → V }j<i the sections s̃j,i = sj,i+F
′(Uj,i →

Uj)sj on Uj,i glue to a section s̃ of F ′(V ). Now we take si to be any section of F ′(Ui) such that
F ′(V → Ui)(si) = s̃.

Thus we have constructed (si) ∈ C0({Ui → U}i∈I , F ′) such that (si,j) = d0(si). This calculation
shows that H1({Ui → U}, F ′) = 0, and so we have verified condition (c) for the class of flabby
sheaves.

Now by Lemma 3, a flabby sheaf F is ι-acyclic, and so Hp(F ) = Rpι(F ) = 0 for every p > 0.
Thus by Proposition 6 F is flask.

Remark 5. Even in the case of a topological space, flask does not necessarily imply flabby. For
instance, if X is the Sierpinski space, then all sheaves on X are flask, but not all sheaves on X are
flabby.

Remark 6. Milne [1] mentions a third class of sheaves, which I will call flasque sheaves, that satisfies
the conditions of Lemma 3. A sheaf F is flasque if for every sheaf of sets S, F is acyclic for the
functor Mor(S, ·). Flasque sheaves are easily seen to be flask.
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5 OX-module cohomology

Proposition 8. Let X be a scheme. The category of OX-modules is a Grothendieck abelian cate-
gory. Injective OX-modules are flabby.

Proof. It’s easy to check that AB5 is satisfied. Let U be any open set of X, and let j : U → X be
the inclusion. Then we can form the OX -module j!OU , which is the sheafification of the presheaf
which sends an open V to OV if V ⊆ U and sends V to 0 otherwise. If F is an OX -module, then
we have

HomOX (j!OU , F ) = HomOU (OU , F |U ) = F (U),

so the collection j!OU forms a family of generators as U varies over the open sets of X.
To see that an injective OX -module I is flabby, let V ⊆ U be any inclusion of opens. Then

the natural map j!OV → j!OU is a monomorphism, and so the induced map HomOX (j!OU , I) →
HomOX (j!OV , I) must be surjective. But this map is just the restriction map I(U)→ I(V ).

By the proposition, OX -module cohomology and sheaf cohomology are the same thing, since
any injective resolution in the category of OX -modules will automatically be a flabby, hence flask
resolution in the category of sheaves.

Lemma 4 (Zariski Poincaré Lemma). Let F be a quasi-coherent sheaf on an affine scheme X.
Then Ȟp(X,F ) = 0 for all p > 0.

Proof. Let X = Spec(A), and let M = Γ(X,F ), so F = M̃ . Since the collection of finite covers by
principal open sets is cofinal in the collection of all covers, it suffices to show that if (f1, ..., fn) = 1

then Hp({Spec(Afi)→ Spec(A)}i∈{1,...,n}, M̃) = 0 for p > 0.

Let s = (si0,...,ip) ∈ Zp({Spec(Afi) → Spec(A)}i∈{1,...,n}, M̃). Then we can write si0,...,ip =
mi0,...,ip

(fi0 ···fip )k
with mi0,...,ip ∈M for each i0, ..., ip. We may assume without loss of generality that each

k is 1 by replacing the fis with large enough powers of themselves. For each i0, ..., ip+1 we have an
identity

0 = (dps)i0,...,ip+1 =

p+1∑
k=0

(−1)ksi0,...,îk,...,ip+1
|Spec(Afi0 ···fip+1

)=

p+1∑
k=0

(−1)k
fikmi0,...,îk,...,ip+1

fi0 · · · fip+1

,

so the numerator of the sum is killed by some power of fi0 · · · fip+1 . If we replace each fi by a
sufficiently large power of itself then the numerator of the sum will actually vanish, and we obtain

p+1∑
k=0

(−1)kfikmi0,...,îk,...,ip+1
= 0.

Finally, replacing each fi with a multiple of itself we can assume that
∑n

i=1 fi = 1, so that the fis
form a partition of unity.

Now for each i1, ..., ip, set s′i1,...,ip =
∑n

j=1

mj,i1,...,ip
fi1 ···fip

. Morally speaking, we have

“s′i1,...,ip =

n∑
j=1

fjsj,i1,...,ip”,
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so s′i1,...,ip is acting like a weighted average of the sj,i1,...,ips. Then we have

(dp−1s′)i0,...,ip =

p∑
k=0

(−1)k
n∑
j=1

fikmj,i0,...,îk...,ip

fi0 · · · fip

=
n∑
j=1

∑p
k=0(−1)kfikmj,i0,...,îk...,ip

fi0 · · · fip

=

n∑
j=1

fjmi0,...,ip

fi0 · · · fip
= si0,...,ip .

Finally, we have arrived at the main course.

Theorem 5. Let X be a separated scheme and let F be a quasicoherent sheaf on X. Then
Hp(X,F ) = Ȟp(X,F ) for all p.

Proof. By Corollary 3 and the fact that the intersection of two affine opens is affine on a separated
scheme, it is enough to check that when X is affine we have Hp(X,F ) = 0 for p > 0. We will prove
this by strong induction on p.

By Theorem 4 we have a spectral sequence Ȟp(X,Hq(F )) ⇒ Hp+q(X,F ). By Lemma 4, we
have Ȟp(X,F ) = 0 for p > 0, and by Proposition 4 we have Ȟ0(X,Hp(F )) = 0 for p > 0. By the
induction hypothesis, the presheafHa(F ) vanishes on every affine open U for every 0 < a < p. Since
affine covers are cofinal in the collection of all covers, we have Ȟp−a(X,Ha(F )) = 0 for 0 < a < p.
Putting everything together we see that Ȟp−a(X,Ha(F )) = 0 for all a, so by the spectral sequence
we must have Hp(X,F ) = 0.

In fact, the proof gives the following (more useful for computations) result.

Corollary 5. Let X be a separated scheme, let F be a quasicoherent sheaf on X, and let {Ui → X}
be any affine cover of X. Then Hp(X,F ) = Hp({Ui → X}, F ) for all p > 0.

6 Higher pushforwards

Let π : X → Y be a map of schemes. Let PX denote the category of presheaves on X, and similarly
for PY ,SX ,SY . Then we can define two functors πp : PX → PY and π∗ : SX → SY by

πp(F )(U) = F (π−1(U))

and π∗ = # ◦ πp ◦ ι. Since # ◦ πp is a composite of two exact functors it is exact, and so a trivial
spectral sequence gives

Rpπ∗F = (πpHp(F ))#.

From this we see that flask sheaves are acyclic for π∗, so we may calculate Rpπ∗ by taking flask
resolutions (so Rpπ∗ is the same as the higher direct image on the category of OX -modules, for
instance).

Theorem 6. Let π : X → Y be a separated map of schemes, and let F be a quasicoherent sheaf on
X. Then for every affine open U of Y we have Rpπ∗F (U) = Ȟp(π−1(U), F ). Furthermore, Rpπ∗F
is a quasicoherent sheaf on Y .
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Proof. By Theorem 5 we have πpHp(F )(U) = Hp(π−1(U), F ) = Ȟp(π−1(U), F ) for every affine
open U on Y . Let T aff

Y denote the topology of affine opens of Y . Since affine opens form a base
of open sets on Y , it’s enough to show that the presheaf U 7→ Ȟp(π−1(U), F ) is a quasicoherent
sheaf on T aff

Y . This follows from the easy fact that Čech cohomology commutes with localization
for quasicoherent sheaves.

7 Hypercohomology

Let C be an abelian category with enough injectives. Let Ch+ denote the category of cochain
complexes C• of objects in C with Ci = 0 for i < 0.

Definition 13. A cochain map C• → D• is a quasiisomorphism if the induced maps on cohomology
are isomorphisms.

Definition 14. An injective resolution of C• is a quasiisomorphism C• ↪→ I• from C• to a complex
of injectives I• such that each map Ci → Ii is a monomorphism.

Exercise 7. Show that the total complex of a Cartan-Eilenberg resolution of C• is an injective
resolution of C•.

Theorem 7. Let C• ↪→ I• be a quasiisomorphism with each Ci → Ii a monomorphism, and let
ϕ• : C• → J• be any cochain map from C• to a complex of injectives J•. Then ϕ• extends to a
map ψ• : I• → J•, and ψ• is unique up to cochain homotopy.

Proof. We will construct the maps ψi : Ii → J i by induction on i. Suppose we have already
constructed ψ0, ..., ψi−1. Since ϕi−1 induces a well-defined map H i−1(C•) → H i−1(J•) and since
the natural map H i−1(C•) → H i−1(I•) is an isomorphism, we have ψi−1(Zi−1(I•)) ⊆ Zi−1(J•).
Thus there is a well-defined map ψ̄ : Bi(I•)→ J i induced by di−1 ◦ ψi−1.

If we now write Bi(I•) ∩ Ci = ker(Bi(I•) ⊕ Ci → Ii), then since the map Bi(I•) ∩ Ci →
H i(I•) ∼= H i(C•) is trivial, and since Bi(I•) ∩ Ci ⊆ Zi(C•) (by the fact that Ci+1 → Ii+1 is a
monomorphism), we have Bi(I•) ∩ Ci = Bi(C•). Thus the maps ψ̄ and ϕi agree on Bi(I•) ∩ Ci,
and we can define a map ψ̃ : Bi(I•) + Ci → J i that agrees with ψ̄ on Bi(I•) and ϕi on Ci. Since
J i is injective, we can extend ψ̃ to a map ψi : Ii → J i.

We have constructed a cochain map ψ• extending ϕ•. To check that any two such extensions
are homotopic, it’s enough to check that if ϕ• = 0 then ψ• is homotopic to 0.

We will construct a homotopy h• : I• → J•−1 that vanishes on C• inductively. Assume we’ve
already constructed h0, ..., hi−1 such that hi−1(Ci−1) = 0. Then

(ψi−1 − di−2 ◦ hi−1) ◦ di−2 = di−2 ◦ (ψi−2 − hi−1 ◦ di−2) = di−2 ◦ di−3 ◦ hi−2 = 0,

so ψi−1 − di−2 ◦ hi−1 vanishes on Bi−1(I•). Since both ψi−1 and di−2 ◦ hi−1 vanish on Ci−1,
and since H i−1(I•) ∼= H i−1(C•), we see that ψi−1 − di−2 ◦ hi−1 vanishes on Zi−1(I•). Thus
the map ψi−1 − di−2 ◦ hi−1 descends to a well-defined map h̄ : Bi(I•) → J i−1, which vanishes on
Bi(I•)∩Ci = Bi(C•) by construction. From this we construct h̃ : Bi(I•)+Ci → J i−1 agreeing with
h̄ on Bi(I•) and with 0 on Ci, and since J i−1 is injective we can extend this to hi : Ii → J i−1.
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Definition 15. If F : C → C′ is a left exact additive functor, then the hypercohomology of a cochain
complex C• with respect to F is given by

Hp(C•) = Hp(F (I•)),

where C• ↪→ I• is any injective resolution. By Theorem 7, Hp is a well-defined functor from Ch+

to C′, and any quasiisomorphism C• → D• induces isomorphisms on hypercohomology.

Remark 7. If Ci = 0 for all i > 0, then Hp(C•) = RpF (C0) for all p.

Theorem 8. (a) A short exact sequence 0→ C ′• → C• → C ′′• → 0 induces a long exact sequence

0→ H0(C ′•)→ H0(C•)→ H0(C ′′•)→ H1(C ′•)→ H1(C•)→ H1(C ′′•)→ · · ·

(b) We have a spectral sequence Ep,q2 = RpF (Hq(C•)) ⇒ En = Hn(C•).

(c) We have a spectral sequence Ep,q1 = RqF (Cp) ⇒ En = Hn(C•).

Proof. Exercise.

Definition 16. If C• is a complex of presheaves we write Ȟp(U,C•) for the pth Čech hyperco-
homology of C• on U , and similarly if C• is a complex of sheaves we write Hp(U,C•) for the pth
sheaf hypercohomology of C•.

Exercise 8. If C• is a complex of sheaves, show there is a natural map Ȟp(U,C•)→ Hp(U,C•).

8 Soft and fine sheaves

For this section, we only consider paracompact topological spaces.

Definition 17. A sheaf F on a paracompact topological space X is soft if for every closed set K,
the map Γ(X,F )→ Γ(K,F |K) is surjective.

Proposition 9. If F is a flabby sheaf on a paracompact topological space X then F is soft.

Proof. Let K be a closed subset of X, and let s be a section of F |K . Write sp for the germ of s at a
point p of K. Then by the definition of F |K , for each point p ∈ K we can find an open neighborhood
Up and a section sp of F on Up such that spq = sq for all q ∈ Up ∩K. Since X is paracompact, we
can find a locally finite refinement {X \K → X,Vi → X} of the cover {X \K → X,Up → X}. If
Vi ⊆ Up, let si = sp|Vi .

Now for each point p ∈ K, if we let i1, ..., in be the finite set of indices i such that p ∈ Vi, then
each of the stalks s

ij
p agrees with sp. Thus we can find an open neighborhood Wp of p such that

si1 |Wp = · · · = sin |Wp . Thus the section s extends to a section of F on
⋃
pWp. Since F is flabby

and
⋃
pWp is open, we can extend this to a global section of F .

Proposition 10. Suppose F is a soft sheaf on a paracompact topological space X. For any closed
set K ⊆ X, section s of F |K , and locally finite cover {Ui → X}i we can find sections si ∈ F (X)
with supp(si) ⊆ Ui and s =

∑
i s
i|K .
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Proof. Assume the index set of the Uis is well-ordered. We will construct the sis inductively, such
that for every i, if we write Ki = K \ (∪j>iUj), then we have s|Ki =

∑
j≤i s

j |Ki . Suppose that we

have already constructed sj for all j < i. Then at any point p of Ki \ Ui we have sp =
∑

j<i s
j
p by

the inductive hypothesis, since there is a maximal j < i with p ∈ Uj by the local finiteness of the
cover. Now we just take si ∈ F (X) to be any extension of the section of F |Ki∪(X\Ui) which is equal
to 0 on X \ Ui and is equal to s|Ki −

∑
j<i s

j |Ki on Ki.

Proposition 11. The class of soft sheaves on a paracompact Hausdorff topological space X satisfies
conditions (a), (b), (c) of Lemma 3 for Γ(X, ·), so soft sheaves are acyclic for Γ(X, ·).

Proof. For condition (a) we use the fact that there are enough flabby sheaves and Proposition 9.
Condition (b) is trivial.

Now we show that for any soft sheaf F we have H1(X,F ) = 0. Let {Ui → X}i∈I be any locally
finite open cover. Let {Vi → X}i be a shrinking of this cover, i.e. an open cover of X such that
for each i we have V i ⊆ Ui (this exists since X is paracompact Hausdorff). It’s enough to show
that Im(H1({Ui → X}i, F )→ H1({Vi → X}i, F )) = 0. The proof of this closely mimics the proof
of Proposition 7, once we note that for any J ⊆ I the set ∪j∈JV j is closed by local finiteness.

Now let
0→ F ′ → F → F ′′ → 0

be an exact sequence of sheaves with F ′, F soft. Let K ⊆ X be any closed set. Then F ′|K is soft,
so H1(K,F ′|K) = 0, and thus the sequence

0→ Γ(K,F ′|K)→ Γ(K,F |K)→ Γ(K,F ′′|K)→ 0

is exact. Now since F is soft, we see that any section of F ′′|K can be lifted to a section of F |K and
then to a global section of F , so F ′′ is soft as well.

Definition 18. A sheaf F is fine if Hom(F, F ) is soft.

Proposition 12. Let X be a paracompact topological space, and let F be a sheaf on X. The
following are equivalent:

(a) F is fine,

(b) for any closed disjoint sets A,B ⊆ X there is an endomorphism of F which restricts to the
identity on A and restricts to 0 on B,

(c) there is a sheaf of rings A acting on F such that for any locally finite open cover {Ui → X}i
there is a collection of elements ai ∈ A(X) with supp(ai) ⊆ Ui and 1 =

∑
i ai.

Furthermore, every fine sheaf is soft.

Proposition 13. If F is a fine sheaf on a paracompact topological space X, then Hp(X,F ) = 0
for every p > 0.

Proof. Let A be a sheaf of rings as in (c) of Proposition 12. Then we can find an acyclic resolution

0→ F → I0 → I1 → · · ·

19



of F such that I• is a complex of A-modules and each map is an A-module map (one way to do this
is to use the functoriality of the injective embeddings constructed in Theorem 1). Let s ∈ Γ(X, Ip)
with ds = 0, then by exactness X is covered by open sets Ui such that for each i there is an
element ti ∈ Γ(Ui, I

p−1) with s|Ui = dti. By passing to a refinement we may assume that the cover
{Ui → X}i is locally finite. Let ai ∈ A(X) be as in (c) of Proposition 12. Then for each i we have
aiti ∈ Γ(X, Ip−1) and ais = d(aiti), so

s =
∑
i

ais = d
(∑

i

aiti
)
.

8.1 Sheaves on manifolds

First we show that singular cohomology and sheaf cohomology agree on a locally contractible space
X. For any ring R we associate a sheaf RX , the sheaf of locally constant R-valued functions on X
(this is the sheafification of the constant presheaf which takes every open set to R).

Theorem 9. Let X be a locally contractible topological space, and let R be any ring. Then for each
p ≥ 0 there is a natural isomorphism

Hp
sing(X,R) ' Hp(X,RX).

Proof. For each open U ⊆ X, let C•(U) be the singular cochain complex with values in R associated
to U . Let C• be the associated complex of presheaves. Let V • be the complex of locally vanishing
cochains, where we say a cochain vanishes near p if there is an open set containing p such that any
simplex mapping into this neighborhood is assigned the value 0 by the cochain. The sheafification
(C•)# is then equal to (C/V )•. Since the complex C•(U) is exact for every contractible U (using
the usual chain homotopy induced by taking any simplex to its image under a fixed contraction of
U), the complex

0→ RX → (C/V )0 → (C/V )1 → · · ·

is a flabby resolution of RX . Thus we have Hp(X,RX) = Hp((C/V )•(X)) for each p, and by the
definition of singular cohomology we have Hp

sing(X,R) = Hp(C•(X)).
To finish, we just need to show that C•(X)→ (C/V )•(X) is a quasiisomorphism, or equivalently

that V •(X) is exact. To see this, let ϕ be a locally vanishing i-cocycle, and let σ be an i−1-simplex.
Using barycentric subdivision, construct an i-chain cσ with boundary equal to σ plus a collection
of i− 1-simplices contained in open sets on which ϕ vanishes. Note that ϕ(cσ) independent of cσ:
for any c′σ satisfying the same conditions, cσ − c′σ is homologous to a sum of i-simplices contained
in sets on which ϕ vanishes. Thus we can use the map σ 7→ ϕ(cσ) to define an i − 1-cochain, the
boundary of which is easily seen to be ϕ.

Now we specialize to the case X is a paracompact smooth manifold of dimension n. Let Ω•

be the complex of sheaves of smooth differential forms. Then by the Poincaré Lemma we have an
exact sequence

0→ RX → Ω0 d→ Ω1 d→ · · · d→ Ωn → 0,

and each Ωp is fine since it is a C∞-module. Setting Hp
dR(X,R) = Hp(Ω•(X)), this gives the

following theorem.

Theorem 10 (de Rham). For a paracompact smooth manifold X, we have Hp(X,RX) = Hp
dR(X,R).
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Now we consider the case X is a paracompact complex manifold of dimension n. For any p, q
we let Ωp,q be the sheaf of complex C∞ differential forms of type (p, q), and let Ωr

C = Ωr ⊗R C =
⊕p+q=rΩp,q. We let Ωp

hol ⊆ Ωp,0 be the sheaf of holomorphic differential p-forms.

Lemma 5 (∂̄-Poincaré Lemma). For a complex manifold X of dimension n and for any p the
sequence

0→ Ωp
hol → Ωp,0 ∂̄→ Ωp,1 ∂̄→ · · · ∂̄→ Ωp,n → 0

is exact.

Proof. It’s enough to prove this for p = 0, since we can get the general result by tensoring with the
locally free OX -module Ωp

hol (here OX is the sheaf of holomorphic functions on X). Since exactness
is a local property, we may assume that X is a polydisc.

First we show this for n = 1. Recall the general Cauchy integral formula: if D is a disk,
f ∈ C∞(D), z ∈ D, then

2πif(z) =

∫
∂D

f(w)

w − z
dw +

∫
D

∂f

∂w̄
(w)

dw ∧ dw̄
w − z

,

which follows from Stokes’ Theorem applied to the form f(w)
w−z dw and some bounds for the contri-

bution from w near z. Now if we set

g(z) =
1

2πi

∫
D

f(w)

w − z
dw ∧ dw̄,

then by writing f as the sum of a function which vanishes near z and a function which vanishes
near ∂D we can show that g ∈ C∞(D), with ∂̄g = fdz̄ on D.

For general n, we show that if a form ω which only involves dz̄1, ..., dz̄k has ∂̄ω = 0, then we
can find a form ϕ such that ω − ∂̄ϕ only involves dz̄1, ..., dz̄k−1. Write

ω = ω1 ∧ dz̄k + ω2,

with ω1, ω2 only involving dz̄1, ..., dz̄k−1. Then for each l > k we have ∂
∂z̄l
ω1 = 0 since ∂̄ω2 doesn’t

have any terms involving dz̄k ∧ dz̄l. Thus we can apply the construction for the case n = 1 to each
coefficient of ω1 to get ϕ.

Corollary 6. For any paracompact complex manifold X of dimension n the sequence

0→ CX → Ω0
hol

d→ Ω1
hol

d→ · · · d→ Ωn
hol → 0

is exact. Thus Hp(X,CX) = Hp(X,Ω•hol).

Proof. This is an immediate application of the spectral sequence associated to the double complex
Ωp,q, since by the ∂̄-Poincaré Lemma the columns are exact and by the usual Poincaré Lemma the
total complex is exact.

For any p, q, we define the Dolbeault cohomology group Hp,q

∂̄
(X) of X to be the qth cohomology

group of the complex

0→ Ωp,0(X)
∂̄→ Ωp,1(X)

∂̄→ · · · ∂̄→ Ωp,n(X)→ 0.
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The spectral sequence of the double complex Ωp,q gives us a spectral sequence

Ep,q1 = Hp,q

∂̄
(X) ⇒ En = Hn

dR(X,R)⊗R C.

Since each Ωp,q is fine, the ∂̄-Poincaré Lemma gives the following theorem.

Theorem 11 (Dolbeault). Let X be a paracompact complex manifold. For every p, q we have
Hq(X,Ωp

hol) = Hp,q

∂̄
(X).

9 Descent

9.1 Galois descent

Let L/K be a Galois extension of fields with Galois group Γ. If V is a vector space over L, we say
that a group action σ : Γ× V → V is a semilinear action of Γ on V if, setting σg(v) = σ(g, v) for
g ∈ Γ, v ∈ V , we have σg : V → V additive for every g ∈ Γ and

σg(lv) = g(l)σg(v)

for all g ∈ Γ, l ∈ L, v ∈ V .

Theorem 12. There is an equivalence of categories

{Vect/K} ↔ {(V, σ) | V ∈ Vect/L, σ : Γ× V → V semilinear}

defined by

W 7→ (W ⊗K L, σg : w ⊗ l 7→ w ⊗ g(l)),

V Γ ←[ (V, σ).

Proof. We just need to show that for any (V, σ) the natural map V Γ⊗K L→ V is an isomorphism.
Suppose first that this map is not injective, and consider the minimal relation

∑
i liwi = 0,

wi ∈ V Γ linearly independent over K, li ∈ L. Without loss of generality we may take ln = 1. Then
for every g ∈ Γ we have ∑

i

g(li)wi =
∑
i

σg(liwi) = σg

(∑
i

liwi

)
= 0,

so
∑

i<n(g(li)− li)wi = 0, and by minimality we must have li = g(li) for all g ∈ Γ, so each li is in
K, contradicting the independence of the wi over K.

Now suppose that the map is not surjective, and set V ′ = V/V Γ⊗KL. Set Tr(v′) =
∑

g∈Γ σg(v
′).

If v′ ∈ V ′ \ {0}, then the map

l 7→ Tr(lv′) =
∑
g∈Γ

g(l)σg(v
′)

is not identically 0 by Artin’s theorem on the linear independence of characters applied to the
characters (of L×) g : L× → L×, g ∈ Γ. Choose l such that Tr(lv′) 6= 0, and choose v ∈ V mapping
to lv′ in V ′. Then we have Tr(v) 6∈ V Γ ⊗K L, but clearly Tr(v) is invariant under the action of Γ,
a contradiction.

Corollary 7. For every n ∈ N we have H1(Γ,GLn(L)) = 1.
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9.2 Faithfully flat descent

For a ring map A→ B and an A-module M , define the Amitsur complex to be

0→M ⊗A B →M ⊗A B ⊗A B → · · · ,

where the pth differential is given by

dp(m⊗ b0 ⊗ · · · ⊗ bp) =

p+1∑
i=0

(−1)im⊗ b0 ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi ⊗ · · · ⊗ bp.

Note this is the same as the Čech complex C•({Spec B → Spec A}, M̃).

Lemma 6 (Fpqc Poincaré Lemma). If the map A→ B is such that either

a) there is a section s : B → A, or

b) the map A→ B is faithfully flat,

then the Amitsur complex C•({Spec B → Spec A}, M̃) is quasiisomorphic to the complex

0→M → 0→ 0→ · · · .

Proof. We just need to show that

0→M →M ⊗A B →M ⊗A B ⊗A B → · · ·

is exact.
In case a), we have the chain homotopy

0 //M

0
��

1
��

//M ⊗A B

0
��

1
��

h

zz

//M ⊗A B ⊗A B

0
��

1
��

h

vv

// · · ·

0 //M //M ⊗A B //M ⊗A B ⊗A B // · · ·

given by
h(m⊗ b0 ⊗ b1 ⊗ · · · ⊗ bp) = s(b0)m⊗ b1 ⊗ · · · ⊗ bp.

In case b), by faithful flatness it is enough to check exactness after applying the functor B⊗A ·.
We have

0 // B ⊗AM // B ⊗AM ⊗A B // B ⊗AM ⊗A B ⊗A B // · · ·

0 // B ⊗AM // (B ⊗AM)⊗B (B ⊗A B) // (B ⊗AM)⊗B (B ⊗A B)⊗B (B ⊗A B) // · · ·

i.e. B ⊗A C•({Spec B → Spec A}, M̃) = C•({Spec B ⊗A B → Spec B}, ˜B ⊗AM), where the map
B → B⊗AB is given by b 7→ 1⊗b. This map has the section s : B⊗AB → B given by s(b⊗b′) = bb′,
so we are done by case a).
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Example 4. Suppose that f1, ..., fn ∈ A are such that (f1, ..., fn) = 1. Then {Spec Afi → Spec A}i
is an open cover of Spec A by principal open sets. Setting B =

∏n
i=1Afi , we see that A → B

is faithfully flat, and we can apply the fpqc Poincaré lemma to give another proof of the Zariski
Poincaré lemma.

Definition 19. A descent datum (for a ring map A→ B) is a pair (N,ϕ), where N is a B module
and ϕ : N ⊗A B ' B ⊗A N is an isomorphism of B ⊗A B modules such that the diagram

N ⊗A B ⊗A B
ϕ13 //

ϕ12 ))

B ⊗A B ⊗A N

B ⊗A N ⊗A B
ϕ23

55

commutes (this is the cocycle condition).

Theorem 13. If A→ B is faithfully flat, we have an equivalence of categories

{M ∈ A-mod} ↔ {(N,ϕ) descent datum}

given by

M 7→ (B ⊗AM, ϕ : (b⊗m)⊗ b′ 7→ b⊗ (b′ ⊗m)),

ker(n 7→ ϕ(n⊗ 1)− 1⊗ n)←[ (N,ϕ).

Proof. First we need to check that if we start from M , then go to (N,ϕ), then go back we get
something naturally isomorphic to M . This follows immediately from the exactness of

0→M →M ⊗A B ⇒M ⊗A B ⊗A B.

Now we check that if we start from (N,ϕ), go to M , and go back we get something naturally
isomorphic to (N,ϕ). By the cocycle condition, if ϕ(n ⊗ 1) =

∑
i bi ⊗ ni then

∑
i bi ⊗ 1 ⊗ ni =∑

i bi ⊗ ϕ(ni ⊗ 1), so

ϕ(n⊗ 1) ∈ ker(b⊗ n 7→ b⊗ (ϕ(n⊗ 1)− 1⊗ n)),

and the right hand side is B ⊗A M by the flatness of A → B. This defines a natural map
N

ϕ→ B ⊗AM . For b ∈ B,m ∈M we have

ϕ(bm⊗ 1) = (b⊗ 1)ϕ(m⊗ 1) = (b⊗ 1)(1⊗m) = b⊗m,

so the composite map B ⊗AM → N
ϕ→ B ⊗AM is the identity, hence N

ϕ→ B ⊗AM is surjective.
Since A → B is faithfully flat the natural map N → N ⊗A B is injective, and ϕ is injective by
assumption, so the composite map N

ϕ→ B ⊗AM is also injective, hence an isomorphism. Finally,
we have to check that the original ϕ matches the new ϕ: for any b, b′ ∈ B,m ∈M , we have

ϕ((bm)⊗ b′) = (b⊗ b′)ϕ(m⊗ 1) = (b⊗ b′)(1⊗m) = b⊗ (b′m).

Definition 20. A family of maps {Yi → X}i of schemes is called an fpqc cover (fpqc stands for
“faithfully flat quasi-compact” in French) if each Yi → X is flat, and if for every affine open subset
U of X there is a finite collection of affine open subsets of the Yis which map surjectively onto U .
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Remark 8. It’s easy to see that a family {Yi → X}i is an fpqc cover if and only if the map
∐
i Yi → X

is an fpqc cover.

Corollary 8. Let Y → X be an fpqc cover. Let p1, p2 be the projections from Y ×X Y to Y , and
let π1, π2, π3 be the three projections from Y ×X Y ×X Y to Y . Then we have an equivalence of
categories

{F qcoh/X} ↔ {(G, ϕ),G qcoh/Y, ϕ : p∗1G ' p∗2G s.t. ϕ23 ◦ ϕ12 = ϕ13 : π∗1G → π∗3G}.

Proof. Left as an exercise.

Example 5. We say that a cover Y → X is Galois if there exists a finite group Γ of automorphisms
of Y over X such that Γ×Y ' Y ×X Y, (σ, y) 7→ (σy, y). Then we have Γ×Γ×Y ' Y ×X Y ×X Y ,
(σ, τ, y) 7→ (στy, τy, y).

In particular we can consider the case Y = Spec L,X = Spec K, L/K a Galois field extension.
In this case we have L⊗K L '

∏
g∈Γ L by

∏
g∈Γ lg 7→

∑
g∈Γ g(lg)⊗ lg (that this is an isomorphism

follows from Artin’s linear independence of characters). A descent datum (V, ϕ) over L is then
easily seen to be the same thing as a Galois semilinear action σ : Γ× V → V via

ϕ(lv ⊗ g(l)) = l ⊗ g(l)σg(v).

Theorem 14. Let F be a quasicoherent OX-module on a scheme X, and define a presheaf on the
category of schemes over X taking π : Y → X to Γ(Y, π∗F). Then this presheaf is a sheaf in the
fpqc topology.

Proof. Note that for any π : Y → X we have Γ(Y, π∗F) = HomOY (OY , π∗F). If π : Y → X is any
fpqc cover, the natural bijection between maps OX → F and descent data for maps OY → π∗F
shows that our presheaf satisfies the sheaf condition for this cover.

Theorem 15. Any representable functor is a sheaf of sets in the fpqc topology. In particular, every
abelian group scheme represents an abelian sheaf in the fpqc topology.

Proof. We’ll just prove this in the affine case. Let A→ B be a faithfully flat map of rings, and let
C be our representing ring. We need to show that every map Spec B → Spec C such that the two
induced maps Spec B ⊗A B ⇒ Spec C agree is induced by a unique map Spec A→ Spec C. This
follows from the exactness of the sequence

0→ A→ B ⇒ B ⊗A B,

which follows from the special case M = A of Lemma 6.

Remark 9. Since the category of schemes is not a small category, we technically shouldn’t call the
fpqc topology a “topology”, and it doesn’t necessarily make sense to define cohomology groups
with respect to the fpqc topology. Instead we usually focus on small subcategories with topologies
whose open covers are a subset of the fpqc covers (such as the Zariski, étale, or fppf topologies).
The above theorems clearly continue to apply to such topologies.

Theorem 16. Let X be a separated scheme and let F be a quasicoherent sheaf on X. Let T be a
topology containing the Zariski topology on X, whose opens are a small subcategory of the category
of schemes over X, such that every cover of an affine scheme over X can be refined to a faithfully
flat cover by a finite collection of affine schemes. Extend F to a sheaf on T as in Theorem 15.
Then for any p ≥ 0 we have Hp(T,X,F) = Ȟp(X,F) (i.e. the usual Zariski Čech cohomology).
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Proof. The proof is almost identical to the proof of Theorem 5, with the fpqc Poincaré lemma
taking the place of the Zariski Poincaré lemma.

Theorem 17. Let X,T be as in the previous theorem. Then

H1(T,X,GLn) = {rank n vector bundles/X}/ '

for every n ∈ N. In particular, H1(T,X,Gm) = Pic(X).
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