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Abstract. We study a model sifting problem introduced by Selberg, in which all of the primes
have roughly the same size. We show that the Selberg lower bound sieve is asymptotically optimal
in this setting, and we use this to give a new lower bound on the sifting limit βκ in terms of
the sifting dimension κ. We also show that one can use a rounding procedure to improve on the
Selberg lower bound sieve by more than a constant amount in this setting, getting a lower order
improvement which is asymptotic to the cube root of the main term.

1. Introduction

In a generic sifting problem, one has a (possibly weighted) set A (typically an interval) to be
sifted, a set P of primes, and for each prime p ∈ P a number κp and a collection of κp distinct
congruence classes cp,1, ..., cp,κp modulo p to sift out. We define the sifted set S(A,P) (suppressing
the dependence on the κps and the choice of congruence classes cp,i) to be

S(A,P) = {a ∈ A | ∀p ∈ P, a 6≡ cp,1, ..., cp,κp (mod p)}.
The goal is to find the best possible upper and lower bounds on the size of S(A,P), and especially
to try to show that S(A,P) is nonempty.

We make the following additional definitions and assumptions. For squarefree d with all prime
divisors coming from the set P, we define a muliplicative function κ(d) by

κ(d) =
∏
p|d

κp,

and we define sets Ad by

Ad =
{
a ∈ A | ∀p | d, p |

κp∏
i=1

(a− cp,i)
}
.

We assume that there is a real number κ, called the sifting dimension, such that∑
p∈P

log(p)

p
κp = (κ+ o(1))

∑
p∈P

log(p)

p
.

We either make the strong assumption that

|Ad| =
κ(d)

d
|A|+O(κ(d))

or the weaker assumption

|Ad| =
κ(d)

d
|A|
(

1 +O
( 1

log(y/d)2κ+ε

))
for some ε > 0. As it turns out, which assumption we make has no effect on the main term of the
final bounds one can obtain on the size of |S(A,P)|, by Theorem 11 of [3].

We also define y = |A|, z = maxP (and typically P is the set of all primes below z), and a
parameter s by y = zs. Often one is interested in the case A = [1, y] and s = 2, since a number

n ∈ [1, y] is prime if it has no prime factor smaller than y1/2. We define a number βκ, called the
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sifting limit, to be the infimum of values of s such that we can prove that S(A,P) 6= ∅ when y = zs

becomes sufficiently large.
The method one uses to prove lower bounds on |S(A,P)| is to choose sieve weights λd such that

S(A,P) ≥
∑
d

λd|Ad| ≥ (1 + o(1))|A|
∑
d

κ(d)

d
λd.

In order to ensure the first inequality above, we need to choose the weights λd such that if we define
θ(d) by

θ(d) =
∑
k|d

λk

then we have θ(1) ≤ 1 and θ(d) ≤ 0 for d having at least one prime divisor from the set P. For
the second inequality, we require λd to be 0 when d > |A| (Lemma 2 of [3] shows that sieves which
violate this assumption may always be replaced with sieves satisfying it, without affecting the main
term of the bound on S(A,P)).

In this paper, we will try to understand the asymptotics of the sifting limit βκ as the sifting
dimension κ goes to infinity, by studying a model sifting problem introduced by Selberg in Section
13 of [3], in which all of the primes have roughly the same size.

More precisely, let A be the interval [1, y] and let P be a set of primes such that there is a number
R with the property that the product of any R primes from P is below y, but the product of any
R + 1 primes from P is greater than y (note that R is within 1 of the parameter s which appears
in the usual sifting problem). Define a new parameter v, analogous to κ, by

v =
∑
p∈P

κp
p
.

It isn’t hard to see that the bounds we can get on S([1, y],P) only depend on the quantities v and
R, since by an averaging argument we may assume without loss of generality that the sieve weights
λd depend only on ω(d), the number of prime factors of d. For this reason we will switch the indices
on our sieve weights from d to ω(d), so we need to optimize only λ0, ..., λR, with λ0 = 1. We make
the definition

θ(n) =
R∑
i=0

λi

(
n

i

)
.

Thus, the upper bound sieve reduces to trying to minimize the quantity∑
n≥0

θ(n)

n!
vn = ev

R∑
n=0

λn
n!
vn

subject to the constraint θ(n) ≥ 0 for n ∈ N. Similarly, the lower bound sieve reduces to trying to
maximize the same quantity subject to the constraint θ(n) ≤ 0 for n ∈ N+. For every R, we let vR
be the largest v such that the optimal lower bound is nonnegative. Note that for the purpose of
computing vR, we can ignore the normalization λ0 = 1.

Selberg [3] shows that bR+1
2 c ≤ vR ≤ R (this is equation (13.22′′′) of Section 13 of [3]), and that

for any v,R the optimal θ takes the form

θ(n) =
∏
i

(
1− n

νi

)(
1− n

νi + 1

)
with νi ∈ N for the upper bound sieve, and

θ(n) = (1− n)
∏
i

(
1− n

νi

)(
1− n

νi + 1

)
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with νi ∈ N for the lower bound sieve (these are equations (13.6) and (13.6′) of Section 13 of [?]).
Furthermore, Selberg [3] shows that each νi ≤ max(2R + 2v,R + 4v) (this is equation (13.8) of
Section 13 of [3]), so for any v,R the optimal θ can be found with a finite amount of computation.

There are striking parallels between the model sifting problem and the usual sifting problem. For
instance, consider the case where v ≤ 1. In this case, we find that the optimal sieve has θ(n) = 0
for n = 1, ..., R or for n = 1, ..., R− 1 (depending on whether it is an upper bound sieve or a lower
bound sieve and on the parity of R), and the corresponding sieve weights are given by λi = (−1)i

for i ≤ R or i ≤ R − 1 and λi = 0 otherwise (to see that this choice of θ(n) is optimal, we just
have to check that the function θ(n) can’t be improved by moving any single root when v ≤ 1 - the
details are left as an exercise to the reader). Correspondingly, it is conjectured that for κ ≤ 1 the
best upper and lower bound sieves are the β-sieves, which have λd ∈ {µ(d), 0} for all d.

More parallels are given in [3], where bounds on lim sup R
vR

and lim sup βκ
κ are computed using

various sieves. Using the combinatorial sieve, we get that lim sup R
vR
≤ 3.591..., where 3.591... is the

solution to the exponential equation e1+1/x = x (see equation (13.19) of Section 13 of [3]). Precisely
the same constant appears in the analysis of the β-sieve for the usual sifting problem: using the
β-sieve, we can show that lim sup βκ

κ ≤ 3.591... (this is equation (14.1) of [3]). Similarly, using the
Selberg lower bound sieve it is shown in [3] (see equations (13.22′′) and (14.14) of [3]) that both

lim sup R
vR
≤ 2 and lim sup βκ

κ ≤ 2. However, the analogy between the model problem and the usual

sifting problem is not perfect: in the case of the model problem, an analogue of the Ankeny-Onishi
sieve (described implicitly by equation (13.13) of [3]) gives the bound lim sup R

vR
≤ 2.882..., where

2.882... is the solution to the exponential equation (log(2)x+1)e1+1/x = 4x (see the discussion after

equation (13.20) of [3]), while the usual Ankeny-Onishi sieve gives lim sup βκ
κ ≤ 2.445..., where

2.445... = 2 exp

(∫ log(2)

0

et − 1

t
dt− 1− log log(2)

)
.

See the discussion around equation (14.12) of [3] (which cites [1] for the first computation of the
above constant) for details.

The main result of this paper shows that lim R
vR

= 2, and bounds the difference between vR and

bR+1
2 c between the square root and the cube root of R (up to constants). Based on the analogy

outlined above, this may be regarded as weak evidence for lim βκ
κ = 2, and possibly also as weak

evidence for 2κ− βκ � 3
√
κ.

Theorem 1. For R = 2d+ 1, we have 2
√
d ≥ vR − (d+ 1) ≥ (c+ o(1)) 3

√
d, where c ≈ 1

12.14 is the
positive solution of the equation∫ ∞

0

1

x3/2
min

(
sin2

(
(x3 + c)

√
x
)
, cos2

(
(x3 + c)

√
x
))

dx = 2πc.

From the upper bound on vR we can deduce a lower bound on the usual sifting limit βκ, improving
Selberg’s lower bound by a factor of 2.

Corollary 1. If βκ is the sifting limit of a sieve of dimension κ ≥ 3, then

βκ >
2bκ−

√
κc+ 1

e
1+ 1√

κ

.

Proof. Suppose βκ < 2d + 3 for some d ∈ N. For any y, let P be the set of primes between y
1

2d+3

and y1/βκ . Then if we take v =
∑

p∈P
κ
p , we see that

v = (κ+ o(1)) log

(
2d+ 3

βκ

)
.
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Since the product of any 2d+ 3 primes from P is greater than y, if we can find a nontrivial lower
bound sieve then we must certainly have

κ log

(
2d+ 3

βκ

)
≤ v2d+2 = v2d+1 ≤ d+ 2

√
d+ 1.

Rearranging, we find that

βκ ≥
2d+ 3

e
d+2
√
d+1

κ

.

To finish, we take d = bκ−
√
κc − 1. �

We prove the upper bound on vR in Section 2. The main idea of the argument is to relax the
problem by allowing θ(n) to be any polynomial of the form (1 − n)f(n)f(n − 1) (f a degree d
polynomial), without requiring that the roots of f be integers, and to note that any linear function
of the coefficients of θ is a quadratic form in the coefficients of f .

In Section 3, we prove a result showing that when v = vR, the optimal choice for θ does not have
a root at 2. Based on the results of later sections, it appears that in the optimal lower bound sieve,
the smallest roots of θ(n) are located at 1 and at 3, 4, 5, ..., ε 3

√
d for some ε > 0.

In Section 4, we investigate the roots of the polynomial corresponding to Selberg’s lower bound
sieve. In Section 5, we finally prove the lower bound on vR. The idea of the proof is to try to round
each pair of repeated roots of the polynomial given by the Selberg lower bound sieve both up and
down to the nearest integers. If we perform this rounding procedure directly, there is no guarantee
that we actually improve on Selberg’s sieve, so instead we do a sort of partial rounding: for each
pair of repeated roots, we push the two roots away from each other (keeping their product fixed)
until one of them becomes an integer.

2. Upper bound on vR

Theorem 2. Let R = 2d+ 1. Then vR ≤ d+ 2
√
d+ 1.

Proof. Assume that d ≥ 1, since it is easy to check we have equality for d = 0. Since any optimal
θ takes the form (1− n)f(n)f(n− 1) for some polynomial f of degree d, it’s enough to show that

for v = d+ 2
√
d+ 1 and any polynomial f of degree d we have∑

n≥0

(1− n)f(n)f(n− 1)

n!
vn ≤ 0.

Write

f(n) =
d∑
i=0

li

(
n

i

)
.

Define yi,∆i, si by

yr = (−1)r
∑
i≥0

lr+i
i!
vi,

and ∆r = yr − yr+1, sr =
∑

i≥0 yr+i. Using the identity(
n

a

)(
n

b

)
=
∑
k

k!

(k − a)!(k − b)!(a+ b− k)!

(
n

k

)
,

we see that the variables yr diagonalize the quadratic form corresponding to the Selberg upper
bound sieve: ∑

n≥0

f(n)2

n!
vn = ev

∑
r

y2r
r!
vr.
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Since shifting the argument of f by ±1 has the effect of replacing the yrs with either the ∆rs or
the srs, we have∑
n≥0

(1− n)f(n)f(n− 1)

n!
vn =

∑
n≥0

f(n)f(n− 1)

n!
vn− v

∑
n≥0

f(n+ 1)f(n)

n!
vn = ev

∑
r

vr

r!
yr(sr − v∆r).

Dividing by ev and rewriting this entirely in terms of the si, it becomes∑
r

vr

r!
sr(sr − sr+1 − v(sr − 2sr+1 + sr+2) + r(sr−1 − 2sr + sr+1)).

Comparing this to
∑

r
vr+1

r! ∆2
r , we get

− 2
∑
r

vr

r!
sr(sr − sr+1 − v(sr − 2sr+1 + sr+2) + r(sr−1 − 2sr + sr+1))

=
∑
r

vr+1

r!
∆2
r +

∑
r

vr

r!

(
(v − r − 2)s2r − 2(v − r − 1)srsr+1 + (v − r)s2r+1

)
.

We just have to prove that the last sum above is nonnegative. Since sd+1 = 0, for any constant a
we have ∑

r

vr

r!

(
(v − r − 2)s2r − 2(v − r − 1)srsr+1 + (v − r)s2r+1

)
= as20 +

∑
r

vr

r!

(
(v − r − 2− a)s2r − 2(v − r − 1)srsr+1 +

(
v − r + a

v

r + 1

)
s2r+1

)
.

Thus it is enough to show that we can choose 0 ≤ a ≤ v − d− 2 satisfying

(v − r − 2− a)

(
v − r + a

v

r + 1

)
≥ (v − r − 1)2

for all r < d. It’s easy to see that it is enough to check this for r = d− 1, in which case it reduces
to the inequality

(v − d)2a ≥ va2 + (v + d)a+ d.

Taking a =
√

d
v and v = d+ 2

√
d+ 1, we get equality. �

Remark 1. Numerical calculations indicate that for large d the quadratic form∑
r

vr

r!
yr(sr − v∆r)

is negative definite for v ≈ d+
√
d
2 + 1, so the above argument is probably not best possible.

Theorem 3. For all d sufficiently large, if we take v = d+
√

d
11 + 1,

yr = d+ 1− r − 1√
2d

(
d+ 2− r

2

)
,

and define ∆r = yr − yr+1, sr =
∑d−r

i=0 yr+i, then we have

d∑
r=0

vr

r!
yr(sr − v∆r) > 0.
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Proof. Generally, if we let k = v − (d+ 1) and take yr = d+ 1− r+ a
(
d+2−r

2

)
, then after a lengthy

computation we find that

d∑
r=0

vr

r!
yr(sr − v∆r) =

(
d∑
r=0

vr

r!

)(
− 1

2
k(d+ k2 + 1)− 1

12

(
3(d+ 1)2 − 6k2(2d+ 1)− 5k4 + 16k(d+ 1)

)
a

+
1

12

(
3k(d+ 1)2 − k3(4d− 2)− k5 + 2(d+ 1)2 + 14k2(d+ 1)

)
a2

)

+
vd+1

d!

(
1

2
k(k − 1)− 1

12

(
7kd+ 5k2(k − 1)− 3(d+ 1) + 11k

)
a

− 1

12

(
d(4d+ 21)− k2(3d− 1)− k4 + 13k(d+ 1) + k3 − 13

)
a2

)
.

If k is within a constant factor of
√
d, we have the approximation

d!

vd

d∑
r=0

vr

r!
= Γ(d+ 1, v)v−dev = erfc

(
k√
2d

)
e
k2

2d

√
πd

2
+O(1).

Plugging in d = 11k2 and a = − 1
k
√
22

and expanding everything to first order in k, we get the

theorem. �

Remark 2. The preceding Theorem should be seen as a limitation of our method of producing
upper bounds rather than an indication that vR − (d + 1) �

√
d. Numerical calculations show

that the roots of the corresponding polynomial f are almost equal to the roots of the polynomial
Selberg constructed to show vR ≥ d+1, except that the smallest root is approximately 5

2 instead of
being approximately 3. It appears that this change to the smallest root alone accounts for most of
the improvement to v, and it is only permitted since we have relaxed the condition that θ(n) ≤ 0
for positive integers n to the much less restrictive condition that the roots of θ come in pairs that
differ by at most 1.

It would be interesting to see if better upper bounds on vR could be produced by incorporating
the constraint that for every k the kth root of f is at least 2k + 1 (using the result of the next
section).

3. 2 is not a root of the optimal θ

Theorem 4. Let θ be the polynomial of degree R with θ(0) = 1 and θ(n) ≤ 0 for all positive
integers n. Suppose that θ(2) = 0 and that∑

n

θ(n)

n!
vn ≥ 0.

Then there is another polynomial θ2 of degree R with θ2(0) = 1, θ2(n) ≤ 0 for all positive integers
n, θ2(2) < 0, and ∑

n

θ2(n)

n!
vn > 0.

Proof. Assume without loss of generality that θ is of the form

θ(n) = (1− n)
∏
i

(
1− n

νi

)(
1− n

νi + 1

)
6



for νi positive integers with ν1 = 2, νi+1 ≥ νi + 2. Let 2k be the first integer which is not a root of
θ (it is necessarily even). Define θ2 by

θ2(n) =
n− 2k

k(n− 2)
θ(n).

Then we have∑
n

θ2(n)

n!
vn ≥ 1 +

θ2(2)

2
v2 +

1

k

∑
n>2k

θ(n)

n!
vn ≥ 1 +

θ2(2)

2
v2 − 1

k

(
1 +

θ(2k)

(2k)!
v2k
)
.

We claim that
|θ(2k)|
(2k)!

>

(
|θ2(2)|

2

)k
.

Since for any ν > 2k we have

1− 2k

ν
<

(
1− 2

ν

)k
,

we just need to show that∣∣∣∣1− 2k

2

∣∣∣∣ ∣∣∣∣1− 2

2k

∣∣∣∣−k ∏
ν 6=2,2k

∣∣∣∣1− 2k

ν

∣∣∣∣ ∣∣∣∣1− 2

ν

∣∣∣∣−k ≥ (2k)!

2k
,

but in fact the left hand side is a telescoping product which is precisely equal to the right hand
side. Thus

1 +
θ2(2)

2
v2 − 1

k

(
1 +

θ(2k)

(2k)!
v2k
)
> 1− |θ2(2)|

2
v2 − 1

k

(
1−

(
|θ2(2)|

2
v2
)k)

> 0. �

4. Properties of Selberg’s construction

Let R = 2d+ 1. In order to show that vR ≥ d+ 1, Selberg [3] finds the optimal θ of the form

θ(n) = (1− n)f(n)2.

If we write

f(n) =
∑
i

li

(
n

i

)
,

and define yi,∆i by

yr = (−1)r
∑
i≥0

lr+i
i!
vi,

and ∆r = yr − yr+1, then we find that

e−v
∑
n≥0

(1− n)f(n)2

n!
vn =

∑
r

vr

r!
y2r −

∑
r

vr+1

r!
∆2
r .

Using Cauchy-Schwarz, Selberg [3] (see the discussion around equation (13.21) of [3]) shows that
this is optimized when the ∆rs are all equal, and in this case the above sum is nonnegative exactly
for v ≤ d+ 1.

Thus we substitute yr = d+ 1− r, v = d+ 1, so

lr = (−1)r
d+1−r∑
i=0

d+ 1− r − i
i!

(d+ 1)i,

and we wish to describe the behavior of the roots ν1, ..., νd of f(n) =
∑

i li
(
n
i

)
as d gets large.
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Proposition 1. The roots ν1, ..., νd of f are all real, positive, and greater than 2. For any integer
n, the closed interval [n, n+ 1] contains at most one root νi.

Proof. These all follow from the optimality of f(n) and simple smoothing arguments. �

Corollary 2. If n is an integer with f(n)f(n+ 2) < 0, then the interval (n, n+ 2) contains exactly
one root νi, and whether νi is above or below n+ 1 is determined by the sign of f(n+ 1).

From here on we assume that ν1 < · · · < νd.

Remark 3. Numerical calculations indicate that we even have νi+1 > νi + 2 for every i.

Proposition 2. Let n be a nonnegative integer. Then

f(n+ 2) =
(d+ 1)d+1

d!

∑
k

(−1)k

(d+ 1)k+1
k!

(
d

k

)(
n

k

)
.

Furthermore, we have f(0) = (d+1)d+1

d! .

Proof. Every time we shift the argument of f by 1, we replace the yrs with their differences. Since
the yrs are linear, after shifting the argument of f twice all but the last of them is 0, which gives
us

f(n+ 2) =
∑
k

(−1)k

(d− k)!
(d+ 1)d−k

(
n

k

)
.

Rearranging this, we get the first formula.
For the second formula, we have

f(0) = l0 =

d∑
i=0

(d+ 1)i

i!
(d+ 1− i) =

d∑
i=0

(d+ 1)i+1

i!
− (d+ 1)i

(i− 1)!
=

(d+ 1)d+1

d!
. �

By the previous Proposition, the function

g(n) =
d!

(d+ 1)d+1
f(n)

is normalized to have g(0) = 1.

Proposition 3. Let a(n, k) be the number of permutations of an n-set having exactly k cycles of
size greater than 1. Then for n a nonnegative integer we have

g(n+ 2) =
1

(d+ 1)n+1

∑
k

(−1)ka(n, k)dk.

In particular, g(n+ 2) is positive for large d if and only if bn2 c is even.
More generally, define aq(n, k) by

aq(n, k) =
∑
l

(
n

l

)
c2(n− l, k)ql,

where c2(m, k), an associated signless Stirling number of the first kind, is defined to be the number
of derangements of an m-set having exactly k cycles of size greater than 1 (so that a(n, k) = a1(n, k)
and c2(n, k) = a0(n, k)). Then we have∑

j

(−1)j(d+ q)n−jj!

(
d

j

)(
n

j

)
=

n!

2πi

∫
C
e(d+q)z(1− z)d dz

zn+1
=
∑
k

(−1)kaq(n, k)dk,

where C is any contour winding counterclockwise around 0.
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Proof. To prove the identity∑
j

(−1)j(d+ q)n−jj!

(
d

j

)(
n

j

)
=

n!

2πi

∫
C
e(d+q)z(1− z)d dz

zn+1

we just need to evaluate the nth derivative, with respect to z, of e(d+q)z(1 − z)d at z = 0. Using
the Leibniz rule we see that this is precisely the left hand side.

Now suppose that C is a circle of radius less than 1. Then we may use the power series for
log(1− z) to see that

n!e(d+q)z(1− z)d = n! exp

(
qz − dz

2

2
− dz

3

3
− · · ·

)
=

∑
l1,l2,...≥0

z
∑
j jlj

n!∏
j j

lj lj !
ql1(−d)

∑
j≥2 lj .

Writing l = l1, k =
∑

j≥2 lj , and interpreting lj as the number of cycles of length j in a permutation,
we see that the zn-coefficient of this series is precisely∑

k,l

(
n

l

)
c2(n− l, k)ql(−d)k =

∑
k

(−1)kaq(n, k)dk. �

Corollary 3. If k is fixed then νk approaches 2k + 1 from above as d goes to ∞.

Proof. By the previous proposition, for any m ≥ 1 we can find d0 sufficiently large that for any
d ≥ d0 we have νj ∈ (2j + 1, 2j + 2) for 1 ≤ j ≤ k +m2. For any d ≥ d0, we then have∏

j 6=k

∣∣∣∣νj − (2k + 1)

νj − (2k + 2)

∣∣∣∣ ≥ ∏
1≤j<k

2j − 1

2j

∏
1≤j≤m

2j + 1

2j
�k

√
m.

By the previous proposition, we have∏
j

∣∣∣∣νj − (2k + 1)

νj − (2k + 2)

∣∣∣∣ =
|g(2k + 1)|
|g(2k + 2)|

→ a(2k − 1, k − 1)

a(2k, k)

as d → ∞, so we must have
∣∣∣νk−(2k+1)
νk−(2k+2)

∣∣∣ �k
1√
m

for d sufficiently large. Taking m to infinity, we

see that limd→∞ νk = 2k + 1. �

Proposition 4. The coefficients a(n, k) are log-concave in k, that is,

a(n, k)2 ≥ a(n, k − 1)a(n, k + 1).

More generally, for any q ≥ 0 the coefficients aq(n, k) are log-concave in k.

Proof. This will be an application of Theorem 2.5.2 of Francesco Brenti’s memoir on log concavity
[2] (since the proof is short, we’ll reproduce it here). We will show more generally that if qi is a
finite nonnegative log-concave sequence without internal zeros, then the expression

ck =
∑
m≥0

k!

m!
c2(m, k)qm

is log-concave in k. Plugging in qm = m!
(
n
m

)
qn−m gives (a stronger form of) the Proposition.

We start with the easy observation that for any i, j we have(
i+ j

i

)
c2(m, i+ j) =

∑
x+y=m

(
m

x

)
c2(x, i)c2(y, j).

9



Thus, if we define the matrix L by Lk,m = k!
m!c2(m, k), then L has the “semigroup property” of

Francesco Brenti [2], that is, the i+ jth row of the matrix L is the convolution of the ith row and
the jth row for any i, j.

The second ingredient we need is that every two by two minor of L is nonnegative. Since every
entry of L is nonnegative, with Lk,n = 0 exactly when 2k > n, this will follow from the inequality

c2(n, k)c2(n+ 1, k + 1) ≥ c2(n, k + 1)c2(n+ 1, k).(1)

Applying the recurrence

c2(m, l) = (m− 1)(c2(m− 1, l) + c2(m− 2, l − 1))

with (m, l) = (n+ 1, k + 1), (n+ 1, k), (n, k), and (n− 1, k − 1), we see that (1) is equivalent to

(n−1)(c2(n−1, k)+c2(n−2, k−1))c2(n−1, k) ≥ (n−2)c2(n, k+1)(c2(n−2, k−1)+c2(n−3, k−2)),

which follows from the log-concavity of c2(m+ l, l) in l for m = n− k− 1 fixed. The log-concavity
of c2(m + l, l) in l is well-known and can be proved by an easy induction on m using the above
recurrence (in fact, by Theorem 6.7.2 of [2] c2(m+ l, l) is even a Pólya frequency sequence in l).

Now we can apply the proof of Theorem 2.5.2 of [2]. Let Q be the matrix defined by Qi,j = qi+j ,
then if qi is log-concave every two by two minor of Q will be nonpositive. By the Cauchy-Binet
identity, we see that every two by two minor of

C = LQLt

is nonpositive as well. We have

Ci,j =
∑
x,y

Li,xQx,yLj,y

=
∑
m

( ∑
x+y=m

Li,xLj,y

)
qm

=
∑
m

Li+j,mqm

= ci+j ,

so the nonpositivity of the two by two minors of C implies the log-concavity of ck, and we are
done. �

Corollary 4. If νk ≥ 2k + 2, then

4k3 + 9k2 − 4k ≥ 9d.

Furthermore, for any fixed j, if kj is the first integer k such that νk ≥ 2k + 1 + j then as d goes to
infinity we have

lim
d→∞

(2kj)
3

d
=

(
3πj

2

)2

.

Proof. By the previous propositions, for the first claim it’s enough to show that for 4k3+9k2−4k <
9d we have a(2k, k)d > a(2k, k − 1). We have

a(2k, k) = (2k − 1)(2k − 3) · · · 1 = (2k − 1)!!,

and

a(2k, k−1) =

(
2k

2

)
(2k−3)!!+2 ·2k

(
2k − 1

3

)
(2k−5)!!+

22

2!

(
2k

6

)(
6

3

)
(2k−7)!!+6 ·

(
2k

4

)
(2k−5)!!,

10



so
a(2k, k − 1)

a(2k, k)
= k +

4k(k − 1)

3
+

4k(k − 1)(k − 2)

9
+ k(k − 1) =

4k3 + 9k2 − 4k

9
.

For the second claim, we will apply Corollary 2 by showing that for every k � 3
√
d, we have at

least one of g(k − 1)g(k + 1) < 0 or g(k)g(k + 2) < 0, depending on whether k is even or odd and

on the size of

√
(2k)3

9d modulo 2π. More precisely, we will show that for L ≥ k3

d , we have

(−1)k
(d+ 1)2k+1

dka(2k, k)
g(2k + 2) =

∑
l

(−1)l

dl
a(2k, k − l)
a(2k, k)

= cos
(√

(2k)3

9d

)
+OL( 1k ) +O( 1

L!)

and

(−1)k
(d+ 1)2k+2

dka(2k + 1, k)
g(2k+ 3) =

∑
l

(−1)l

dl
a(2k + 1, k − l)
a(2k + 1, k)

=
√

9d
(2k)3

sin
(√

(2k)3

9d

)
+OL( 1k ) +O( 1

L!).

In order to determine the size of a(2k, k), we note that for any fixed l and k large, the largest
contribution of permutations on 2k symbols with k−l nontrivial cycles comes from the permutations
with as few 2-cycles as possible, so we have

a(2k, k − l)
a(2k, k)

=
22l

(2l)!

(
2k

6l

)(
6l

3, ..., 3

)
(2k − 6l − 1)!!

(2k − 1)!!
+Ol(k

3l−1) =
(2k)3l

(2l)!32l
+Ol(k

3l−1).

Using the log-concavity of the a(n, k)s, we see that if we take L even and large enough that
a(2k, k − L)/dL > a(2k, k − (L+ 1))/dL+1, then we have∑
l≤L+1

(−1)l

(2l)!

((2k)3

9d

)l
+OL

(k3L+2

dL+1

)
≤
∑
l

(−1)l

dl
a(2k, k − l)
a(2k, k)

≤
∑
l≤L

(−1)l

(2l)!

((2k)3

9d

)l
+OL

(k3L−1
dL

)
.

Taking L ≥ (2k)3

9d , we get∑
l

(−1)l

dl
a(2k, k − l)
a(2k, k)

= cos
(√

(2k)3

9d

)
+OL( 1k ) +O( 1

L!).

Similarly, for large k we have

a(2k + 1, k − l)
a(2k + 1, k)

=
(2k)3l

(2l + 1)!32l
+Ol(k

3l−1),

which gives ∑
l

(−1)l

dl
a(2k + 1, k − l)
a(2k + 1, k)

=
√

9d
(2k)3

sin
(√

(2k)3

9d

)
+OL( 1k ) +O( 1

L!).

Taking L sufficiently large, we see that for k3 ≤ Ld (and k, d large) the sign of g(k)g(k + 2) is

negative unless either k is even and

√
(2k)3

9d is close to a multiple of π, or k is odd and

√
(2k)3

9d is

close to an odd multiple of π
2 . Using Corollary 2, we see that

lim
d→∞

(2k2j−1)
3

9d
=
(
πj − π

2

)2
and

lim
d→∞

(2k2j)
3

9d
= (πj)2 . �

11



Remark 4. Numerical calculations support the approximation

νk ≈ 2k + 1 +
2

3π

√
ν3k
d

when k is small compared to d. When d = 1000 and k ≤ 100, the absolute error is less than 0.05.
On the other hand, we seem to have νd ≈ 4d, so the approximation breaks down for large k.

Proposition 5. Let
θ(n) = (1− n)g(n)2.

For (2k + 2)3 ≤ 18αd, α ≤ 1, we have

|θ(2k + 2)|
(2k + 2)!

(d+ 1)2k+2 ≥ (1− α)2
d2k

(d+ 1)2k
1

2

Ck
4k
,

where Ck = 1
k+1

(
2k
k

)
is the kth Catalan number, and

|θ(2k + 1)|
(2k + 1)!

(d+ 1)2k+1 ≥
(

1− α

3

)2 d2k−2

(d+ 1)2k−2
2k(k + 1)(2k + 1)

9(d+ 1)

Ck
4k
.

Proof. By the log-concavity of the a(n, k)s, since 4k3 + 9k2 − 4k ≤ 1
2(2k + 2)3 ≤ 9αd we have

|g(2k + 2)| ≥ dk

(d+ 1)2k+1

(
a(2k, k)− 1

d
a(2k, k − 1)

)
≥ (1− α)

(2k − 1)!!dk

(d+ 1)2k+1
,

so

|θ(2k + 2)|
(2k + 2)!

(d+ 1)2k+2 ≥ (1− α)2
d2k

(d+ 1)2k
(2k + 1)((2k − 1)!!)2

(2k + 2)!
= (1− α)2

d2k

(d+ 1)2k
1

2

Ck
4k
.

Similarly, using the formulas

a(2k − 1, k − 1) = (2k − 1)!! + 2!

(
2k − 1

3

)
(2k − 5)!! =

(2k + 1)!!

3

and

a(2k − 1, k − 2) =

(
2k − 1

3

)
(2k − 5)!! + 2!

(
2k − 1

3

)(
2k − 4

2

)
(2k − 7)!!

+ 3!

(
2k − 1

4

)
(2k − 5)!! + 4!

(
2k − 1

5

)
(2k − 7)!!

+
2!2

2!

(
2k − 1

6

)(
6

3

)
(2k − 7)!! + 2!3!

(
2k − 1

3

)(
2k − 4

4

)
(2k − 9)!!

+
2!3

3!

(
2k − 1

9

)(
9

3, 3, 3

)
(2k − 11)!!

=
(k − 1)(20k2 + 35k − 123)

405
(2k + 1)!!,

we see that since (k − 1)(20k2 + 35k − 123) ≤ 5
2(2k + 2)3 ≤ 135α3 d, we have

|g(2k + 1)| ≥ dk−1

(d+ 1)2k

(
a(2k − 1, k − 1)− 1

d
a(2k − 1, k − 2)

)
≥
(

1− α

3

) (2k + 1)!!dk−1

3(d+ 1)2k
,

so

|θ(2k + 1)|
(2k + 1)!

(d+1)2k+1 ≥
(

1− α

3

)2 d2k−2

(d+ 1)2k−2
2k((2k + 1)!!)2

9(d+ 1)(2k + 1)!
=
(

1− α

3

)2 d2k−2

(d+ 1)2k−2
2k(k + 1)(2k + 1)

9(d+ 1)

Ck
4k
.

�
12



We can now give our first improvement on Selberg’s lower bound sieve.

Theorem 5. For every d ≥ 4 there is a polynomial θd of degree 2d + 1 with θd(0) = 1, θd(n) ≤ 0
for n ∈ N+, and ∑

n

θd(n)

n!
(d+ 1)n � 1

6
√
d
.

Proof. It’s easy to see that for any root νk of g, we can find a quadratic polynomial qk such that
qk(0) = 1,

0 ≤ qk(n) ≤
(

1− n

νk

)2

for n ∈ N, and at least one of qk(bνkc), qk(dνke) is 0: for instance, we can take

qk(n) =

(
1− n

νk

)2

−min

(
1

bνkc

(
1− bνkc

νk

)2

,
1

dνke

(
1− dνke

νk

)2
)
n.

We define θd by

θd(n) = (1− n)
∏
k

qk(n).

If we set θ(n) = (1− n)g(n)2, then we have∑
n

θd(n)

n!
(d+ 1)n ≥

∑
n

θ(n)

n!
(d+ 1)n +

∑
k

min

(
|θ(bνkc)|
bνkc!

(d+ 1)bνkc,
|θ(dνke)|
dνke!

(d+ 1)dνke
)
.

Since
∑

n
θ(n)
n! (d+ 1)n = 0 and 2k+ 1 ≤ νk ≤ 2k+ 2 for (2k+ 2)3 ≤ 18d, we can apply the previous

Proposition to see that∑
n

θd(n)

n!
(d+1)n ≥

∑
(2k+2)3≤18d

(
1− (2k + 2)3

18d

)2
d2k

(d+ 1)2k
min

(
1

2
,
2k(k + 1)(2k + 1)

9(d+ 1)

)
Ck
4k
� 1

6
√
d
.

�

5. Lower bound on vR

We come at last to trying to prove a lower bound on vR. For any v ≥ d + 1, we define the
polynomial gv by

gv(n) =
d!

vd+1

∑
r

lr

(
n

r

)
,

where

lr = (−1)r
d+1−r∑
k=0

d+ 1− r − k
k!

vk,

as in Selberg’s construction.

Proposition 6. For q = v − d�
√
d, we have

gv(0) = 1− q − 1

v

d!

vd

∑
r

vr

r!
= 1− q − 1

v
Γ(d+ 1, v)v−dev � 1

as well as ∑
n

(1− n)gv(n)2

n!
vn = −ev d!

vd+1
(q − 1)gv(0) = −(

√
2π + o(1))e

q2

2d
q − 1√
d
gv(0).

13



Furthermore, for every nonnegative integer n we have

d

dv

(
vn+1gv(n+ 2)

)
= nvngv(n+ 1)

and

gv(n+ 2) =
1

vn+1

∑
k

(−1)kaq(n, k)dk.

Proof. The first two claims are easy calculations. For the last two claims, we use an analogous
argument to the proof of Proposition 2 to see that

gv(n+ 2) =
1

vn+1

∑
j

(−1)jvn−jj!

(
d

j

)(
n

j

)
.

Multiplying by vn+1 and differentiating each term of the sum with respect to v we get the claim
about the derivative of vn+1gv(n+ 2). The last claim follows from Proposition 3. �

Lemma 1. For 0 ≤ k = v − d− 1 ≤
3√
d

3 and 1 ≤ j ≤ 3
√
d− 1 we have

dj−1
(

2j + 1

3
+ k

)
(2j − 1)!! ≥ (−1)j−1v2jgv(2j + 1) ≥

(
1− 4

27

)
dj−1

(2j + 1)!!

3

and

dj(2j − 1)!! ≥ (−1)jv2j+1gv(2j + 2) ≥ dj−1
(

5d

9
− 2kj(2j + 1)

3
− k2j

)
(2j − 1)!! ≥ 0.

Proof. We prove these inequalities by induction on j. For the base case we use the identity vgv(2) =
1. By the previous Proposition, we have

v2jgv(2j + 1) = (d+ 1)2jg(2j + 1) + (2j − 1)

∫ v

u=d+1
u2j−1gu(2j)du.

By the induction hypothesis, we have (−1)j−1gu(2j) ≥ 0 and (−1)j−1u2j−1gu(2j) ≤ dj−1(2j − 3)!!,
so the claim follows from the bounds established on g(2j + 1) in Proposition 5. The second bound
is proved the same way, except this time (−1)jv2j+1gv(2j + 2) is decreasing in v. �

Theorem 6. If R = 2d+ 1 and d ≥ 8 then vR − (d+ 1)� 3
√
d.

Proof. By the same argument as the one used in the proof of Theorem 5, for any v ≤ d + 1 +
3√
d

3

we can find a polynomial θv of degree 2d+ 1 with θv(0) = gv(0)2,

0 ≥ θv(n) ≥ (1− n)gv(n)2

for n ∈ N+, and such that for any 1 ≤ j ≤ 3
√
d − 1 at least one of θv(2j + 1), θv(2j + 2) vanishes.

Setting k = v − d− 1, we see that∑
n

θv(n)

n!
vn ≥

∑
n

(1− n)gv(n)2

n!
vn+

∑
1≤j≤ 3√

d−1

min

(
2jgv(2j + 1)2

(2j + 1)!
v2j+1,

(2j + 1)gv(2j + 2)2

(2j + 2)!
v2j+2

)
.

By the previous Lemma and Proposition, this is at least

−ev d!

vd+1
k +

∑
1≤j≤ 3√

d−1

min

((
1− 4

27

)2 2j(j + 1)(2j + 1)d2j−2

9v2j−1
,

1

2

(
5d

9
− 2kj(2j + 1)

3
− k2j

)2 d2j−2

v2j

)
Cj
4j
.
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The sum in the above is easily seen to be � 1
6√
d
, and ev d!

vd+1k � k√
d
, so for k � 3

√
d the above is

positive. �

The implied constant in the previous Theorem is very small. In order to get a better constant,
we have to get more accurate bounds for gv, and further we need the bounds to be valid in a larger
range for j, k. One can argue similarly to Corollary 4 to show that if j, k, d→∞ with j3, k3 � d,
and v = d+ k + 1, then we have

(−1)j−1v2jgv(2j + 1) ≈ dj−1
√

d
2j sin

((
2j
3 + k

)√
2j
d

)
(2j − 1)!!

and

(−1)jv2j+1gv(2j + 2) ≈ dj cos

((
2j
3 + k

)√
2j
d

)
(2j − 1)!!,

but instead we will use the saddle point method to get a more accurate approximation.

Theorem 7. If n, q, d ≥ 1 with 4(n+ q)2 ≤ d, and if v = d+ q, then we have

v(n+2)/2gv(n+ 2) =
n!en/2

√
πn(n+1)/2

<
(
i−n exp

(
i(n3 + q)

√
n
v +O( n+q√

nv
)
))

e
q2

4v .

Proof. We compute gv(n+ 2) by the formula

vn+1gv(n+ 2) =
n!

2πi

∫
C
evz(1− z)dz−ndz

z
,

where the contour is taken to be a circle of radius
√

n
v centered at the origin. Since the logarithmic

derivative of the integrand is v− d
1−z −

n
z , the integrand has saddle points at z0, z̄0, where z0 is the

root of vz20 − (n+ q)z0 + n = 0 having positive imaginary part.
Writing z =

√
n
v e
iθ, z0 =

√
n
v e
iθ0 , we have

v(n+2)/2gv(n+ 2) =
n!

2πnn/2

∫ 2π

0
evz−inθ(1− z)ddθ.

To see that we may restrict the integral to a small interval around θ0 and 2π− θ0, we consider the
real part of the logarithm of the integrand as a function of cos(θ):

log |evz−inθ(1− z)d| =
√
nv cos(θ) + d log

∣∣∣1−√n
v e
iθ
∣∣∣ =
√
nv cos(θ) +

d

2
log
(

1 +
n

v
− 2
√

n
v cos(θ)

)
.

Taking the second derivative with respect to cos(θ), we obtain

d2

(d cos(θ))2
log |evz−inθ(1− z)d| = − 2dn

v
(

1 + n
v − 2

√
n
v cos(θ)

)2 ≤ − 2dnv

(
√
v +
√
n)4

,

so

|evz(1− z)d| ≤ |evz0(1− z0)d|e
− dv

(
√
v+
√
n)4

n(cos(θ)−cos(θ0))2
,

and we see that we may restrict our attention to θ with | cos(θ)− cos(θ0)| � log(n)√
n

. Since cos(θ0) =

n+q
2
√
nv
≤ 1

4 , this is equivalent to restricting to the ranges |θ−θ0| � log(n)√
n

and |θ−(2π−θ0)| � log(n)√
n

.

Around θ0, the integrand can be written as

evz0−inθ0(1− z0)d exp
(
α(θ − θ0)2 + β(θ − θ0)3 +O(n(θ − θ0)4)

)
,
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with

α = −vz0
2

+
dz0

2(1− z0)
+

dz20
2(1− z0)2

= −n+
(q − n)(vz0 − n)

2d
= −n+O

(
(n+ q)

√
n
v

)
,

β = − ivz0
6

+
idz0

6(1− z0)
+

idz20
2(1− z0)2

+
idz30

3(1− z0)3
= −2in

3
+O

(
(n+ q)

√
n
v

)
.

Thus we have

exp
(
α(θ − θ0)2 + β(θ − θ0)3 +O(n(θ − θ0)4)

)
= eα(θ−θ0)

2
(1+β(θ−θ0)3+O(n(θ−θ0)4+n2(θ−θ0)6)),

and after integrating we get∫ 2π

0
evz−inθ(1− z)ddθ = 2<

(
evz0−inθ0(1− z0)d

√
π√
n

(1 +O( n+q√
nv

))
)
.

By the defining equation for z0 we have v
nz

2
0 = −1 + n+q

n z0, so

e−inθ0 = i−n
(

1− n+ q

n
z0

)−n/2
= i−n exp

(
n+ q

2
z0 −

(n+ q)2

4v
+O( n+q√

nv
)

)
.

Also, we have

evz0(1− z0)d = exp

(
n

2
+

(
n

3
+ q − n+ q

2

)
z0 +

n(n− 2q)

12v
+O( n+q√

nv
)

)
,

so, using z0 = i
√

n
v + n+q

2v +O( (n+q)
2

v2
), we have

v(n+2)/2gv(n+ 2) =
n!

√
πn(n+1)/2

<
(
i−n exp

(
n
2 + i(n3 + q)

√
n
v + q2

4v +O( n+q√
nv

)
))

. �

Theorem 8. If R = 2d+ 1 then vR − d ≥ (c+ o(1)) 3
√
d, where c ≈ 1

12.14 is the positive solution of
the equation ∫ ∞

0

1

x3/2
min

(
sin2

(
(x3 + c)

√
x
)
, cos2

(
(x3 + c)

√
x
))

dx = 2πc.

Proof. Set v = d+ q with q = (c+ o(1)) 3
√
d, and let νj be the jth root of gv. Let Gv(n) be defined

by

Gv(n) =
(n− 1)gv(n)2

n!
vn.

Arguing as in Theorem 6, we just need to check that∑
n

(1− n)gv(n)2

n!
vn +

∑
j�
√
v

min (Gv(bνjc), Gv(dνje)) ≥ 0.

As in Corollary 4, we have νj ≈ 2j + 1, and applying the previous Theorem we get

min (Gv(bνjc), Gv(dνje)) ≈
e
q2

2v

2
√
πj3

min

(
sin2

(
(2j3 + q)

√
2j
v

)
, cos2

(
(2j3 + q)

√
2j
v

))
,

while from Proposition 6 we have∑
n

(1− n)gv(n)2

n!
vn ≈ −

√
2πe

q2

2v
q√
v
.

Thus, we just need∑
j≥1

1

2
√
πj3

min

(
sin2

(
(2j3 + q)

√
2j
v

)
, cos2

(
(2j3 + q)

√
2j
v

))
&
√

2π
q√
v
.
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Writing 2j = x 3
√
v, q = c 3

√
v and approximating the sum by an integral, this becomes∫ ∞

0

1

x3/2
min

(
sin2

(
(x3 + c)

√
x
)
, cos2

(
(x3 + c)

√
x
))

dx ≥ 2πc. �
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