Asymptotics of a model problem from sieve theory

Zarathustra Brady

Sieve theory

- Take an interval A of consecutive whole numbers, such as $[5,9]=\{5,6,7,8,9\}$.

Sieve theory

- Take an interval A of consecutive whole numbers, such as $[5,9]=\{5,6,7,8,9\}$.
- Remove the multiples of some collection of primes \mathcal{P} from this interval. Call the set that remains $\mathcal{S}(A, \mathcal{P})$.

Sieve theory

- Take an interval A of consecutive whole numbers, such as $[5,9]=\{5,6,7,8,9\}$.
- Remove the multiples of some collection of primes \mathcal{P} from this interval. Call the set that remains $\mathcal{S}(A, \mathcal{P})$.
- For instance, if $\mathcal{P}=\{2,3\}$, then $\mathcal{S}([5,9],\{2,3\})=\{5,7\}$.

Sieve theory

- Take an interval A of consecutive whole numbers, such as $[5,9]=\{5,6,7,8,9\}$.
- Remove the multiples of some collection of primes \mathcal{P} from this interval. Call the set that remains $\mathcal{S}(A, \mathcal{P})$.
- For instance, if $\mathcal{P}=\{2,3\}$, then $\mathcal{S}([5,9],\{2,3\})=\{5,7\}$.
- The big question:

What can we say about $|\mathcal{S}(A, \mathcal{P})|$?

Sieve theory

- Take an interval A of consecutive whole numbers, such as $[5,9]=\{5,6,7,8,9\}$.
- Remove the multiples of some collection of primes \mathcal{P} from this interval. Call the set that remains $\mathcal{S}(A, \mathcal{P})$.
- For instance, if $\mathcal{P}=\{2,3\}$, then $\mathcal{S}([5,9],\{2,3\})=\{5,7\}$.
- The big question:

$$
\text { What can we say about }|\mathcal{S}(A, \mathcal{P})| \text { ? }
$$

- Pretend that we know \mathcal{P}, and that we know the length of A, but we don't know the endpoints of A.

Probabilistic version

- Suppose we pick a uniformly random number n from the interval A.

Probabilistic version

- Suppose we pick a uniformly random number n from the interval A.
- Although we don't know exactly what A is, we do know that

$$
\frac{1}{2}-\frac{1}{|A|} \leq \mathbb{P}[2 \text { divides } n] \leq \frac{1}{2}+\frac{1}{|A|}
$$

Probabilistic version

- Suppose we pick a uniformly random number n from the interval A.
- Although we don't know exactly what A is, we do know that

$$
\frac{1}{2}-\frac{1}{|A|} \leq \mathbb{P}[2 \text { divides } n] \leq \frac{1}{2}+\frac{1}{|A|}
$$

- We also know that

$$
\begin{aligned}
& \frac{1}{3}-\frac{1}{|A|} \leq \mathbb{P}[3 \text { divides } n] \leq \frac{1}{3}+\frac{1}{|A|} \\
& \frac{1}{6}-\frac{1}{|A|} \leq \mathbb{P}[6 \text { divides } n] \leq \frac{1}{6}+\frac{1}{|A|}
\end{aligned}
$$

Probabilistic version

- Suppose we pick a uniformly random number n from the interval A.
- Although we don't know exactly what A is, we do know that

$$
\frac{1}{2}-\frac{1}{|A|} \leq \mathbb{P}[2 \text { divides } n] \leq \frac{1}{2}+\frac{1}{|A|}
$$

- We also know that

$$
\begin{aligned}
& \frac{1}{3}-\frac{1}{|A|} \leq \mathbb{P}[3 \text { divides } n] \leq \frac{1}{3}+\frac{1}{|A|} \\
& \frac{1}{6}-\frac{1}{|A|} \leq \mathbb{P}[6 \text { divides } n] \leq \frac{1}{6}+\frac{1}{|A|}
\end{aligned}
$$

- So we can say that

$$
\mathbb{P}[n \in \mathcal{S}(A,\{2,3\})] \geq 1-\left(\frac{1}{2}+\frac{1}{|A|}\right)-\left(\frac{1}{3}+\frac{1}{|A|}\right)+\left(\frac{1}{6}-\frac{1}{|A|}\right) .
$$

The naïve approaches don't work

- If we ignore the $1 /|A|$ error terms, we can use P.I.E. to predict

$$
\mathbb{P}[n \in \mathcal{S}(A, \mathcal{P})] \stackrel{?}{\sim} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right) .
$$

The naïve approaches don't work

- If we ignore the $1 /|A|$ error terms, we can use P.I.E. to predict

$$
\mathbb{P}[n \in \mathcal{S}(A, \mathcal{P})] \stackrel{?}{\sim} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right) .
$$

- This guess is completely wrong!

The naïve approaches don't work

- If we ignore the $1 /|A|$ error terms, we can use P.I.E. to predict

$$
\mathbb{P}[n \in \mathcal{S}(A, \mathcal{P})] \stackrel{?}{\sim} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right) .
$$

- This guess is completely wrong!
- Take $A=[1, N]$ and take $\mathcal{P}_{\sqrt{N}}$ to be the set of primes below \sqrt{N}.

The naïve approaches don't work

- If we ignore the $1 /|A|$ error terms, we can use P.I.E. to predict

$$
\mathbb{P}[n \in \mathcal{S}(A, \mathcal{P})] \stackrel{?}{\sim} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right) .
$$

- This guess is completely wrong!
- Take $A=[1, N]$ and take $\mathcal{P}_{\sqrt{N}}$ to be the set of primes below \sqrt{N}.
- The guess above predicts that

$$
\mathbb{P}\left[n \in \mathcal{S}\left([1, N], \mathcal{P}_{\sqrt{N}}\right)\right] \stackrel{?}{\approx} \prod_{p<\sqrt{N}}\left(1-\frac{1}{p}\right) \approx \frac{e^{-\gamma}}{\log (\sqrt{N})} .
$$

The naïve approaches don't work

- If we ignore the $1 /|A|$ error terms, we can use P.I.E. to predict

$$
\mathbb{P}[n \in \mathcal{S}(A, \mathcal{P})] \stackrel{?}{\approx} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right) .
$$

- This guess is completely wrong!
- Take $A=[1, N]$ and take $\mathcal{P}_{\sqrt{N}}$ to be the set of primes below \sqrt{N}.
- The guess above predicts that

$$
\mathbb{P}\left[n \in \mathcal{S}\left([1, N], \mathcal{P}_{\sqrt{N}}\right)\right] \stackrel{?}{\approx} \prod_{p<\sqrt{N}}\left(1-\frac{1}{p}\right) \approx \frac{e^{-\gamma}}{\log (\sqrt{N})}
$$

- But the true value is

$$
\mathbb{P}\left[n \in \mathcal{S}\left([1, N], \mathcal{P}_{\sqrt{N}}\right)\right] \approx \frac{1}{\log (N)}
$$

The naïve approaches don't work

- So we can't ignore the error terms.

The naïve approaches don't work

- So we can't ignore the error terms.
- Let's be really conservative this time, and try the union bound:

$$
\mathbb{P}[n \in \mathcal{S}(A, \mathcal{P})] \geq 1-\sum_{p \in \mathcal{P}}\left(\frac{1}{p}+\frac{1}{|A|}\right)
$$

The naïve approaches don't work

- So we can't ignore the error terms.
- Let's be really conservative this time, and try the union bound:

$$
\mathbb{P}[n \in \mathcal{S}(A, \mathcal{P})] \geq 1-\sum_{p \in \mathcal{P}}\left(\frac{1}{p}+\frac{1}{|A|}\right)
$$

- Now the error terms are under control, and at first this seems to be working well...

The naïve approaches don't work

- So we can't ignore the error terms.
- Let's be really conservative this time, and try the union bound:

$$
\mathbb{P}[n \in \mathcal{S}(A, \mathcal{P})] \geq 1-\sum_{p \in \mathcal{P}}\left(\frac{1}{p}+\frac{1}{|A|}\right)
$$

- Now the error terms are under control, and at first this seems to be working well...
- The problem is that

$$
\sum_{p \leq N} \frac{1}{p} \approx \log (\log (N))
$$

diverges. This kills most simple variants of the above idea.

Bucketing approach

- Since $\sum_{p} \frac{1}{p}$ diverges, a good strategy is to put primes in buckets:

$$
\mathcal{P}=\mathcal{P}_{1} \sqcup \mathcal{P}_{2} \sqcup \cdots \sqcup \mathcal{P}_{k} .
$$

Bucketing approach

- Since $\sum_{p} \frac{1}{p}$ diverges, a good strategy is to put primes in buckets:

$$
\mathcal{P}=\mathcal{P}_{1} \sqcup \mathcal{P}_{2} \sqcup \cdots \sqcup \mathcal{P}_{k} .
$$

- We choose our buckets so that each sum

$$
\sum_{p \in \mathcal{P}_{i}} \frac{1}{p}
$$

is of size $\asymp 1$.

Bucketing approach

- Since $\sum_{p} \frac{1}{p}$ diverges, a good strategy is to put primes in buckets:

$$
\mathcal{P}=\mathcal{P}_{1} \sqcup \mathcal{P}_{2} \sqcup \cdots \sqcup \mathcal{P}_{k} .
$$

- We choose our buckets so that each sum

$$
\sum_{p \in \mathcal{P}_{i}} \frac{1}{p}
$$

is of size $\asymp 1$.

- This corresponds to taking buckets of the form

$$
\mathcal{P}_{i}=\mathcal{P} \cap\left[|A|^{1 / s},|A|^{1 / t}\right] .
$$

Bucketing approach

- Since $\sum_{p} \frac{1}{p}$ diverges, a good strategy is to put primes in buckets:

$$
\mathcal{P}=\mathcal{P}_{1} \sqcup \mathcal{P}_{2} \sqcup \cdots \sqcup \mathcal{P}_{k} .
$$

- We choose our buckets so that each sum

$$
\sum_{p \in \mathcal{P}_{i}} \frac{1}{p}
$$

is of size $\asymp 1$.

- This corresponds to taking buckets of the form

$$
\mathcal{P}_{i}=\mathcal{P} \cap\left[|A|^{1 / s},|A|^{1 / t}\right] .
$$

- Buckets corresponding to smaller primes \rightarrow smaller error terms \rightarrow naïve P.I.E. guess is a better approximation.

The model problem

- Most of the asymptotic error comes from the bucket containing the largest primes.

The model problem

- Most of the asymptotic error comes from the bucket containing the largest primes.
- The model problem asks: what if that was the only bucket?

The model problem

- Most of the asymptotic error comes from the bucket containing the largest primes.
- The model problem asks: what if that was the only bucket?
- Suppose we have

$$
p \in \mathcal{P} \Longrightarrow p \in\left[|A|^{1 /(k+1)},|A|^{1 / k}\right] .
$$

The model problem

- Most of the asymptotic error comes from the bucket containing the largest primes.
- The model problem asks: what if that was the only bucket?
- Suppose we have

$$
p \in \mathcal{P} \Longrightarrow p \in\left[|A|^{1 /(k+1)},|A|^{1 / k}\right] .
$$

- Then for any $p_{1}, \ldots, p_{k} \in \mathcal{P}$, we know that

$$
\mathbb{P}\left[p_{1} \cdots p_{k} \text { divides } n\right]=\frac{1}{p_{1} \cdots p_{k}}+O\left(\frac{1}{|A|}\right)
$$

The model problem

- Most of the asymptotic error comes from the bucket containing the largest primes.
- The model problem asks: what if that was the only bucket?
- Suppose we have

$$
p \in \mathcal{P} \Longrightarrow p \in\left[|A|^{1 /(k+1)},|A|^{1 / k}\right] .
$$

- Then for any $p_{1}, \ldots, p_{k} \in \mathcal{P}$, we know that

$$
\mathbb{P}\left[p_{1} \cdots p_{k} \text { divides } n\right]=\frac{1}{p_{1} \cdots p_{k}}+O\left(\frac{1}{|A|}\right)
$$

- So the primes in \mathcal{P} are uncorrelated when considered at most k at a time.

Simplification of model problem

- Since the primes all have roughly the same size, we treat them as interchangeable.

Simplification of model problem

- Since the primes all have roughly the same size, we treat them as interchangeable.
- Define a random variable X by

$$
X=\#\{p \in \mathcal{P} \text { such that } p \text { divides } n\}
$$

Simplification of model problem

- Since the primes all have roughly the same size, we treat them as interchangeable.
- Define a random variable X by

$$
X=\#\{p \in \mathcal{P} \text { such that } p \text { divides } n\}
$$

- The expected size of X is

$$
\mathbb{E}[X] \approx \sum_{p \in \mathcal{P}} \frac{1}{p}
$$

Simplification of model problem

- Since the primes all have roughly the same size, we treat them as interchangeable.
- Define a random variable X by

$$
X=\#\{p \in \mathcal{P} \text { such that } p \text { divides } n\}
$$

- The expected size of X is

$$
\mathbb{E}[X] \approx \sum_{p \in \mathcal{P}} \frac{1}{p} .
$$

- The second moment of X is given by

$$
\mathbb{E}\left[\binom{X}{2}\right] \approx \sum_{p<q \in \mathcal{P}} \frac{1}{p q} \approx \frac{1}{2}\left(\sum_{p \in \mathcal{P}} \frac{1}{p}\right)^{2} .
$$

A Poisson imitator appears

- For each $i \leq k$, we see that

$$
\mathbb{E}\left[\binom{X}{i}\right] \approx \frac{\mathbb{E}[X]^{i}}{i!}
$$

A Poisson imitator appears

- For each $i \leq k$, we see that

$$
\mathbb{E}\left[\binom{X}{i}\right] \approx \frac{\mathbb{E}[X]^{i}}{i!}
$$

- These are exactly the first k moments of a Poisson distribution!

A Poisson imitator appears

- For each $i \leq k$, we see that

$$
\mathbb{E}\left[\binom{X}{i}\right] \approx \frac{\mathbb{E}[X]^{i}}{i!}
$$

- These are exactly the first k moments of a Poisson distribution!
- (We have no idea about the higher moments of X.)

A Poisson imitator appears

- For each $i \leq k$, we see that

$$
\mathbb{E}\left[\binom{X}{i}\right] \approx \frac{\mathbb{E}[X]^{i}}{i!}
$$

- These are exactly the first k moments of a Poisson distribution!
- (We have no idea about the higher moments of X.)
- We want to estimate

$$
\mathbb{P}[n \in \mathcal{S}(A, \mathcal{P})]=\mathbb{P}[X=0] .
$$

Our problem

- Forget all the previous stuff.

Our problem

- Forget all the previous stuff.
- We have a random variable $X \in \mathbb{N}$, a Poisson parameter $\nu \in \mathbb{R}^{+}$, and $k \in \mathbb{N}$, s.t.

$$
i \leq k \quad \Longrightarrow \mathbb{E}\left[\binom{X}{i}\right]=\frac{\nu^{i}}{i!}
$$

Our problem

- Forget all the previous stuff.
- We have a random variable $X \in \mathbb{N}$, a Poisson parameter $\nu \in \mathbb{R}^{+}$, and $k \in \mathbb{N}$, s.t.

$$
i \leq k \quad \Longrightarrow \mathbb{E}\left[\binom{X}{i}\right]=\frac{\nu^{i}}{i!}
$$

- What are the best bounds we can put on

$$
\mathbb{P}[X=0] ?
$$

Our problem

- Forget all the previous stuff.
- We have a random variable $X \in \mathbb{N}$, a Poisson parameter $\nu \in \mathbb{R}^{+}$, and $k \in \mathbb{N}$, s.t.

$$
i \leq k \quad \Longrightarrow \mathbb{E}\left[\binom{X}{i}\right]=\frac{\nu^{i}}{i!}
$$

- What are the best bounds we can put on

$$
\mathbb{P}[X=0] ?
$$

- For which ν, k can we prove that

$$
\mathbb{P}[X=0]>0 ?
$$

Markov's inequality

- How do we use the moment information?

Markov's inequality

- How do we use the moment information?
- Consider a polynomial $\theta(x)$ of degree k :

$$
\theta(x)=\lambda_{0}+\lambda_{1} x+\lambda_{2}\binom{x}{2}+\cdots+\lambda_{k}\binom{x}{k}
$$

Markov's inequality

- How do we use the moment information?
- Consider a polynomial $\theta(x)$ of degree k :

$$
\theta(x)=\lambda_{0}+\lambda_{1} x+\lambda_{2}\binom{x}{2}+\cdots+\lambda_{k}\binom{x}{k}
$$

- Our moment information tells us that

$$
\mathbb{E}[\theta(X)]=\lambda_{0}+\lambda_{1} \nu+\lambda_{2} \frac{\nu^{2}}{2}+\cdots+\lambda_{k} \frac{\nu^{k}}{k!} .
$$

Markov's inequality

- How do we use the moment information?
- Consider a polynomial $\theta(x)$ of degree k :

$$
\theta(x)=\lambda_{0}+\lambda_{1} x+\lambda_{2}\binom{x}{2}+\cdots+\lambda_{k}\binom{x}{k}
$$

- Our moment information tells us that

$$
\mathbb{E}[\theta(X)]=\lambda_{0}+\lambda_{1} \nu+\lambda_{2} \frac{\nu^{2}}{2}+\cdots+\lambda_{k} \frac{\nu^{k}}{k!} .
$$

- If $\theta(x) \leq 0$ for $x \in\{1,2, \ldots\}$, we get

$$
\mathbb{E}[\theta(X)] \leq \mathbb{P}[X=0] \theta(0)
$$

Convex optimization

- Our proof method is to write down a polynomial $\theta(x)$ such that:

Convex optimization

- Our proof method is to write down a polynomial $\theta(x)$ such that:
- θ has degree at most k,

Convex optimization

- Our proof method is to write down a polynomial $\theta(x)$ such that:
- θ has degree at most k,
- $\theta(0)=1$,

Convex optimization

- Our proof method is to write down a polynomial $\theta(x)$ such that:
- θ has degree at most k,
- $\theta(0)=1$,
- for all $x \in \mathbb{N}^{+}, \theta(x) \leq 0$,

Convex optimization

- Our proof method is to write down a polynomial $\theta(x)$ such that:
- θ has degree at most k,
- $\theta(0)=1$,
- for all $x \in \mathbb{N}^{+}, \theta(x) \leq 0$,
- and to conclude that

$$
\mathbb{P}[X=0] \geq \mathbb{E}[\theta(X)]=e^{-\nu} \sum_{n} \theta(n) \frac{\nu^{n}}{n!}
$$

Convex optimization

- Our proof method is to write down a polynomial $\theta(x)$ such that:
- θ has degree at most k,
- $\theta(0)=1$,
- for all $x \in \mathbb{N}^{+}, \theta(x) \leq 0$,
- and to conclude that

$$
\mathbb{P}[X=0] \geq \mathbb{E}[\theta(X)]=e^{-\nu} \sum_{n} \theta(n) \frac{\nu^{n}}{n!}
$$

- Are there any better ways to prove a lower bound on $\mathbb{P}[X=0]$?

Convex optimization

- Our proof method is to write down a polynomial $\theta(x)$ such that:
- θ has degree at most k,
- $\theta(0)=1$,
- for all $x \in \mathbb{N}^{+}, \theta(x) \leq 0$,
- and to conclude that

$$
\mathbb{P}[X=0] \geq \mathbb{E}[\theta(X)]=e^{-\nu} \sum_{n} \theta(n) \frac{\nu^{n}}{n!}
$$

- Are there any better ways to prove a lower bound on $\mathbb{P}[X=0]$?
- A general duality result in convex optimization says that the best lower bound using this strategy is equal to the least possible value of $\mathbb{P}[X=0]$.

Optimizing our choice of θ

- Selberg was able to compute the optimal choices of θ by hand for single digit values of the degree k.

Optimizing our choice of θ

- Selberg was able to compute the optimal choices of θ by hand for single digit values of the degree k.
- How?

Optimizing our choice of θ

- Selberg was able to compute the optimal choices of θ by hand for single digit values of the degree k.
- How?
- To ensure that $\theta(x) \leq 0$ for $x \in \mathbb{N}^{+}$, we write θ in terms of its roots:

$$
\theta(x)=\left(1-\frac{x}{r_{1}}\right)\left(1-\frac{x}{r_{2}}\right) \cdots\left(1-\frac{x}{r_{k}}\right) .
$$

Optimizing our choice of θ

- Selberg was able to compute the optimal choices of θ by hand for single digit values of the degree k.
- How?
- To ensure that $\theta(x) \leq 0$ for $x \in \mathbb{N}^{+}$, we write θ in terms of its roots:

$$
\theta(x)=\left(1-\frac{x}{r_{1}}\right)\left(1-\frac{x}{r_{2}}\right) \cdots\left(1-\frac{x}{r_{k}}\right) .
$$

- If there are any complex roots, replacing them with their real parts strictly improves our objective function.

Optimizing our choice of θ

- Selberg was able to compute the optimal choices of θ by hand for single digit values of the degree k.
- How?
- To ensure that $\theta(x) \leq 0$ for $x \in \mathbb{N}^{+}$, we write θ in terms of its roots:

$$
\theta(x)=\left(1-\frac{x}{r_{1}}\right)\left(1-\frac{x}{r_{2}}\right) \cdots\left(1-\frac{x}{r_{k}}\right) .
$$

- If there are any complex roots, replacing them with their real parts strictly improves our objective function.
- Removing negative roots also strictly improves our objective function.

Optimizing our choice of θ

- Selberg was able to compute the optimal choices of θ by hand for single digit values of the degree k.
- How?
- To ensure that $\theta(x) \leq 0$ for $x \in \mathbb{N}^{+}$, we write θ in terms of its roots:

$$
\theta(x)=\left(1-\frac{x}{r_{1}}\right)\left(1-\frac{x}{r_{2}}\right) \cdots\left(1-\frac{x}{r_{k}}\right) .
$$

- If there are any complex roots, replacing them with their real parts strictly improves our objective function.
- Removing negative roots also strictly improves our objective function.
- Since coefficients of θ are linear in $1 / r_{i}$, each r_{i} may be taken to be a whole number.

A simplex algorithm you can run by hand

- Our function θ can now be completely described by listing out its (integer) roots.

A simplex algorithm you can run by hand

- Our function θ can now be completely described by listing out its (integer) roots.
- Such a θ satisfies our requirements if:

A simplex algorithm you can run by hand

- Our function θ can now be completely described by listing out its (integer) roots.
- Such a θ satisfies our requirements if:
- 1 is the least root of θ, and

A simplex algorithm you can run by hand

- Our function θ can now be completely described by listing out its (integer) roots.
- Such a θ satisfies our requirements if:
- 1 is the least root of θ, and
- the remaining roots of θ can be paired up so that each pair of roots are at most 1 apart.

A simplex algorithm you can run by hand

- Our function θ can now be completely described by listing out its (integer) roots.
- Such a θ satisfies our requirements if:
- 1 is the least root of θ, and
- the remaining roots of θ can be paired up so that each pair of roots are at most 1 apart.
- Our objective function is $e^{-\nu} \sum_{n} \theta(n) \frac{\nu^{n}}{n!}=\sum_{i} \lambda_{i} \frac{\nu^{i}}{i!}$.

A simplex algorithm you can run by hand

- Our function θ can now be completely described by listing out its (integer) roots.
- Such a θ satisfies our requirements if:
- 1 is the least root of θ, and
- the remaining roots of θ can be paired up so that each pair of roots are at most 1 apart.
- Our objective function is $e^{-\nu} \sum_{n} \theta(n) \frac{\nu^{n}}{n!}=\sum_{i} \lambda_{i} \frac{\nu^{i}!}{i!}$.
- We can "pivot" our choice of θ by moving one of its roots, while keeping the other roots fixed.

A simplex algorithm you can run by hand

- Our function θ can now be completely described by listing out its (integer) roots.
- Such a θ satisfies our requirements if:
- 1 is the least root of θ, and
- the remaining roots of θ can be paired up so that each pair of roots are at most 1 apart.
- Our objective function is $e^{-\nu} \sum_{n} \theta(n) \frac{\nu^{n}}{n!}=\sum_{i} \lambda_{i} \frac{\nu^{i}!}{i!}$.
- We can "pivot" our choice of θ by moving one of its roots, while keeping the other roots fixed.
- Proposition

If no pivot increases the objective value, then θ is (globally) optimal.

...or by computer

k	critical ν_{k}	roots of the optimal θ
1	1	1
3	2	$1,\{3,4\}$ or $1,\{4,5\}$
5	3.11714	$1,\{3,4\},\{7,8\}$
7	4.14377	$1,\{3,4\},\{6,7\},\{11,12\}$
9	5.23808	$1,\{3,4\},\{6,7\},\{10,11\},\{14,15\}$
1001	≈ 503.37	$1,\{3,4\},\{5,6\},\{7,8\}, \ldots$
2001	≈ 1004	$1,\{3,4\},\{5,6\},\{7,8\}, \ldots$

...or by computer

k	critical ν_{k}	roots of the optimal θ
1	1	1
3	2	$1,\{3,4\}$ or $1,\{4,5\}$
5	3.11714	$1,\{3,4\},\{7,8\}$
7	4.14377	$1,\{3,4\},\{6,7\},\{11,12\}$
9	5.23808	$1,\{3,4\},\{6,7\},\{10,11\},\{14,15\}$
1001	≈ 503.37	$1,\{3,4\},\{5,6\},\{7,8\}, \ldots$
2001	≈ 1004	$1,\{3,4\},\{5,6\},\{7,8\}, \ldots$

- Selberg conjectured that $\nu_{k} \asymp \frac{k}{2}$ based on hand calculations.

...or by computer

k	critical ν_{k}	roots of the optimal θ
1	1	1
3	2	$1,\{3,4\}$ or $1,\{4,5\}$
5	3.11714	$1,\{3,4\},\{7,8\}$
7	4.14377	$1,\{3,4\},\{6,7\},\{11,12\}$
9	5.23808	$1,\{3,4\},\{6,7\},\{10,11\},\{14,15\}$
1001	≈ 503.37	$1,\{3,4\},\{5,6\},\{7,8\}, \ldots$
2001	≈ 1004	$1,\{3,4\},\{5,6\},\{7,8\}, \ldots$

- Selberg conjectured that $\nu_{k} \asymp \frac{k}{2}$ based on hand calculations.
- Selberg was able to prove that

$$
\left\lfloor\frac{k+1}{2}\right\rfloor \leq \nu_{k} \leq k
$$

for all k.

Selberg's lower bound

- Selberg has a famous construction of a "good enough" sieve which is easy to work with.

Selberg's lower bound

- Selberg has a famous construction of a "good enough" sieve which is easy to work with.
- In this context, we try θ of the form

$$
\theta(x)=(1-x) f(x)^{2}
$$

for an arbitrary polynomial $f(x)$ of degree $d=\frac{k-1}{2}$.

Selberg's lower bound

- Selberg has a famous construction of a "good enough" sieve which is easy to work with.
- In this context, we try θ of the form

$$
\theta(x)=(1-x) f(x)^{2}
$$

for an arbitrary polynomial $f(x)$ of degree $d=\frac{k-1}{2}$.

- The objective becomes a quadratic function of the coefficients of $f(x)$.

Selberg's lower bound

- Selberg has a famous construction of a "good enough" sieve which is easy to work with.
- In this context, we try θ of the form

$$
\theta(x)=(1-x) f(x)^{2}
$$

for an arbitrary polynomial $f(x)$ of degree $d=\frac{k-1}{2}$.

- The objective becomes a quadratic function of the coefficients of $f(x)$.
- By a miracle, we can optimize this quadratic form by hand!

Selberg's lower bound: the quadratic form

- Write out f in the binomial basis as

$$
f(n)=\sum_{r \leq d} \ell_{r}\binom{n}{r}
$$

Selberg's lower bound: the quadratic form

- Write out f in the binomial basis as

$$
f(n)=\sum_{r \leq d} \ell_{r}\binom{n}{r}
$$

- We change coordinates to y_{r} given by

$$
y_{r}=(-1)^{r} \sum_{i \geq 0} \ell_{r+i} \frac{\nu^{i}}{i!}
$$

Selberg's lower bound: the quadratic form

- Write out f in the binomial basis as

$$
f(n)=\sum_{r \leq d} \ell_{r}\binom{n}{r}
$$

- We change coordinates to y_{r} given by

$$
y_{r}=(-1)^{r} \sum_{i \geq 0} \ell_{r+i} \frac{\nu^{i}}{i!}
$$

- Our objective function is

$$
e^{-v} \sum_{n \geq 0}(1-n) f(n)^{2} \frac{\nu^{n}}{n!}=\sum_{r} \frac{\nu^{r}}{r!} y_{r}^{2}-\sum_{r} \frac{\nu^{r+1}}{r!}\left(y_{r}-y_{r+1}\right)^{2}
$$

Selberg's lower bound: the quadratic form

- Write out f in the binomial basis as

$$
f(n)=\sum_{r \leq d} \ell_{r}\binom{n}{r}
$$

- We change coordinates to y_{r} given by

$$
y_{r}=(-1)^{r} \sum_{i \geq 0} \ell_{r+i} \frac{\nu^{i}}{i!}
$$

- Our objective function is

$$
e^{-v} \sum_{n \geq 0}(1-n) f(n)^{2} \frac{\nu^{n}}{n!}=\sum_{r} \frac{\nu^{r}}{r!} y_{r}^{2}-\sum_{r} \frac{\nu^{r+1}}{r!}\left(y_{r}-y_{r+1}\right)^{2} .
$$

- This becomes negative semidefinite when $\nu=d+1=\frac{k+1}{2}$.

Can we make a better sieve?

- I want to know how much we can improve Selberg's construction.

Can we make a better sieve?

- I want to know how much we can improve Selberg's construction.
- Idea: We know the optimal θ has the form

$$
\theta(x)=(1-x) f(x) f(x+1)
$$

for some polynomial f with integer roots.

Can we make a better sieve?

- I want to know how much we can improve Selberg's construction.
- Idea: We know the optimal θ has the form

$$
\theta(x)=(1-x) f(x) f(x+1)
$$

for some polynomial f with integer roots.

- What if we drop the condition that f has integer roots?

Can we make a better sieve?

- I want to know how much we can improve Selberg's construction.
- Idea: We know the optimal θ has the form

$$
\theta(x)=(1-x) f(x) f(x+1)
$$

for some polynomial f with integer roots.

- What if we drop the condition that f has integer roots?
- This will over-estimate the best possible lower bound on $\mathbb{P}[X=0]$.

A more difficult quadratic form

- We use the same change of variables y_{r} as in Selberg's construction.

A more difficult quadratic form

- We use the same change of variables y_{r} as in Selberg's construction.
- Our objective function is

$$
\begin{gathered}
e^{-v} \sum_{n \geq 0}(1-n) f(n) f(n+1) \frac{\nu^{n}}{n!}= \\
\sum_{r} \frac{\nu^{r}}{r!} y_{r}\left(y_{r}-y_{r+1}\right)-\sum_{r} \frac{\nu^{r+1}}{r!}\left(y_{r}-y_{r+1}\right)\left(y_{r}-2 y_{r+1}+y_{r+2}\right)
\end{gathered}
$$

A more difficult quadratic form

- We use the same change of variables y_{r} as in Selberg's construction.
- Our objective function is

$$
\begin{gathered}
e^{-v} \sum_{n \geq 0}(1-n) f(n) f(n+1) \frac{\nu^{n}}{n!}= \\
\sum_{r} \frac{\nu^{r}}{r!} y_{r}\left(y_{r}-y_{r+1}\right)-\sum_{r} \frac{\nu^{r+1}}{r!}\left(y_{r}-y_{r+1}\right)\left(y_{r}-2 y_{r+1}+y_{r+2}\right)
\end{gathered}
$$

- Selberg had to deal with a tridiagonal matrix, I have to deal with a pentadiagonal matrix!

Everything somehow works out

- I want to prove that this horrible pentadiagonal symmetric matrix is negative semidefinite for ν large.

Everything somehow works out

- I want to prove that this horrible pentadiagonal symmetric matrix is negative semidefinite for ν large.
- I computed the Cholesky decomposition for numerical examples to get a hint.

Everything somehow works out

- I want to prove that this horrible pentadiagonal symmetric matrix is negative semidefinite for ν large.
- I computed the Cholesky decomposition for numerical examples to get a hint.
- Eventually I found a (somewhat) clean proof that that it is negative semidefinite for $\nu \geq(\sqrt{d}+1)^{2}$.

Everything somehow works out

- I want to prove that this horrible pentadiagonal symmetric matrix is negative semidefinite for ν large.
- I computed the Cholesky decomposition for numerical examples to get a hint.
- Eventually I found a (somewhat) clean proof that that it is negative semidefinite for $\nu \geq(\sqrt{d}+1)^{2}$.
- Theorem

For $k=2 d+1$, we have $\nu_{k} \leq d+2 \sqrt{d}+1$.

Everything somehow works out

- I want to prove that this horrible pentadiagonal symmetric matrix is negative semidefinite for ν large.
- I computed the Cholesky decomposition for numerical examples to get a hint.
- Eventually I found a (somewhat) clean proof that that it is negative semidefinite for $\nu \geq(\sqrt{d}+1)^{2}$.
- Theorem

For $k=2 d+1$, we have $\nu_{k} \leq d+2 \sqrt{d}+1$.

- This result is not best-possible: numerical calculations indicate it can be improved to $\nu_{k} \leq d+\frac{\sqrt{d}}{2}+O(1)$.

Can we really get a square-root improvement?

- In our relaxed setting, it is possible to construct a polynomial $f(x)$ of degree d such that

$$
\sum_{n \geq 0}(1-n) f(n) f(n+1) \frac{\nu^{n}}{n!}>0
$$

with $\nu \geq d+\Omega(\sqrt{d})$.

Can we really get a square-root improvement?

- In our relaxed setting, it is possible to construct a polynomial $f(x)$ of degree d such that

$$
\sum_{n \geq 0}(1-n) f(n) f(n+1) \frac{\nu^{n}}{n!}>0
$$

with $\nu \geq d+\Omega(\sqrt{d})$.

- Does this mean that $\nu_{2 d+1} \geq d+\Omega(\sqrt{d})$?

Can we really get a square-root improvement?

- In our relaxed setting, it is possible to construct a polynomial $f(x)$ of degree d such that

$$
\sum_{n \geq 0}(1-n) f(n) f(n+1) \frac{\nu^{n}}{n!}>0
$$

with $\nu \geq d+\Omega(\sqrt{d})$.

- Does this mean that $\nu_{2 d+1} \geq d+\Omega(\sqrt{d})$?
- The first few roots of such an f (for $d \sim 500)$ are

$$
1,\{2.53,3.53\},\{5.19,6.19\},\{7.43,8.43\}, \ldots
$$

Can we really get a square-root improvement?

- In our relaxed setting, it is possible to construct a polynomial $f(x)$ of degree d such that

$$
\sum_{n \geq 0}(1-n) f(n) f(n+1) \frac{\nu^{n}}{n!}>0
$$

with $\nu \geq d+\Omega(\sqrt{d})$.

- Does this mean that $\nu_{2 d+1} \geq d+\Omega(\sqrt{d})$?
- The first few roots of such an f (for $d \sim 500$) are

$$
1,\{2.53,3.53\},\{5.19,6.19\},\{7.43,8.43\}, \ldots
$$

- Most of the improvement can be traced back to allowing the second and third roots to be at 2.5 and 3.5.

How much of an improvement can we really get?

- I don't believe in a square-root improvement, but I want to show there is a real, definite improvement we can make.

How much of an improvement can we really get?

- I don't believe in a square-root improvement, but I want to show there is a real, definite improvement we can make.
- Idea: Take the roots from Selberg's construction, and round each multiplicity-two root up and down.

How much of an improvement can we really get?

- I don't believe in a square-root improvement, but I want to show there is a real, definite improvement we can make.
- Idea: Take the roots from Selberg's construction, and round each multiplicity-two root up and down.
- Numerically, this seems to give us a (small) improvement.

How much of an improvement can we really get?

- I don't believe in a square-root improvement, but I want to show there is a real, definite improvement we can make.
- Idea: Take the roots from Selberg's construction, and round each multiplicity-two root up and down.
- Numerically, this seems to give us a (small) improvement.
- Problem: we can't guarantee that doing this rounding won't make things worse.

How to make an improvement safely

- Recall our objective function (up to scale):

$$
\sum_{n} \theta(n) \frac{\nu^{n}}{n!}
$$

How to make an improvement safely

- Recall our objective function (up to scale):

$$
\sum_{n} \theta(n) \frac{\nu^{n}}{n!}
$$

- Every single summand, other than $\theta(0)$, is negative (or 0).

How to make an improvement safely

- Recall our objective function (up to scale):

$$
\sum_{n} \theta(n) \frac{\nu^{n}}{n!}
$$

- Every single summand, other than $\theta(0)$, is negative (or 0).
- Idea: To guarantee that the objective increases, we try to decrease the absolute value $|\theta(n)|$ for all $n \in \mathbb{N}^{+}$.

Safer rounding

- Write Selberg's $\theta(x)$ as a product:

$$
\theta(x)=(1-x)\left(1-\frac{x}{r_{1}}\right)^{2} \cdots\left(1-\frac{x}{r_{d}}\right)^{2}
$$

Safer rounding

- Write Selberg's $\theta(x)$ as a product:

$$
\theta(x)=(1-x)\left(1-\frac{x}{r_{1}}\right)^{2} \cdots\left(1-\frac{x}{r_{d}}\right)^{2}
$$

- Replace each factor $\left(1-x / r_{i}\right)^{2}$ by a quadratic $q_{i}(x)$ such that:

Safer rounding

- Write Selberg's $\theta(x)$ as a product:

$$
\theta(x)=(1-x)\left(1-\frac{x}{r_{1}}\right)^{2} \cdots\left(1-\frac{x}{r_{d}}\right)^{2} .
$$

- Replace each factor $\left(1-x / r_{i}\right)^{2}$ by a quadratic $q_{i}(x)$ such that:
- $q_{i}(0)=1$,

Safer rounding

- Write Selberg's $\theta(x)$ as a product:

$$
\theta(x)=(1-x)\left(1-\frac{x}{r_{1}}\right)^{2} \cdots\left(1-\frac{x}{r_{d}}\right)^{2} .
$$

- Replace each factor $\left(1-x / r_{i}\right)^{2}$ by a quadratic $q_{i}(x)$ such that:
- $q_{i}(0)=1$,
- $q_{i}(x) \geq 0$ for $x \in \mathbb{N}^{+}$,

Safer rounding

- Write Selberg's $\theta(x)$ as a product:

$$
\theta(x)=(1-x)\left(1-\frac{x}{r_{1}}\right)^{2} \cdots\left(1-\frac{x}{r_{d}}\right)^{2} .
$$

- Replace each factor $\left(1-x / r_{i}\right)^{2}$ by a quadratic $q_{i}(x)$ such that:
- $q_{i}(0)=1$,
- $q_{i}(x) \geq 0$ for $x \in \mathbb{N}^{+}$,
- $q_{i}(x) \leq\left(1-x / r_{i}\right)^{2}$ for $x \in \mathbb{N}^{+}$, and

Safer rounding

- Write Selberg's $\theta(x)$ as a product:

$$
\theta(x)=(1-x)\left(1-\frac{x}{r_{1}}\right)^{2} \cdots\left(1-\frac{x}{r_{d}}\right)^{2} .
$$

- Replace each factor $\left(1-x / r_{i}\right)^{2}$ by a quadratic $q_{i}(x)$ such that:
- $q_{i}(0)=1$,
- $q_{i}(x) \geq 0$ for $x \in \mathbb{N}^{+}$,
- $q_{i}(x) \leq\left(1-x / r_{i}\right)^{2}$ for $x \in \mathbb{N}^{+}$, and
- at least one of $\left\lfloor r_{i}\right\rfloor,\left\lceil r_{i}\right\rceil$ is a root of $q_{i}(x)$.

Safer rounding

- Write Selberg's $\theta(x)$ as a product:

$$
\theta(x)=(1-x)\left(1-\frac{x}{r_{1}}\right)^{2} \cdots\left(1-\frac{x}{r_{d}}\right)^{2} .
$$

- Replace each factor $\left(1-x / r_{i}\right)^{2}$ by a quadratic $q_{i}(x)$ such that:
- $q_{i}(0)=1$,
- $q_{i}(x) \geq 0$ for $x \in \mathbb{N}^{+}$,
- $q_{i}(x) \leq\left(1-x / r_{i}\right)^{2}$ for $x \in \mathbb{N}^{+}$, and
- at least one of $\left\lfloor r_{i}\right\rfloor,\left\lceil r_{i}\right\rceil$ is a root of $q_{i}(x)$.
- This definitely doesn't hurt us. Does it help?

Safer rounding

- Write Selberg's $\theta(x)$ as a product:

$$
\theta(x)=(1-x)\left(1-\frac{x}{r_{1}}\right)^{2} \cdots\left(1-\frac{x}{r_{d}}\right)^{2} .
$$

- Replace each factor $\left(1-x / r_{i}\right)^{2}$ by a quadratic $q_{i}(x)$ such that:
- $q_{i}(0)=1$,
- $q_{i}(x) \geq 0$ for $x \in \mathbb{N}^{+}$,
- $q_{i}(x) \leq\left(1-x / r_{i}\right)^{2}$ for $x \in \mathbb{N}^{+}$, and
- at least one of $\left\lfloor r_{i}\right\rfloor,\left\lceil r_{i}\right\rceil$ is a root of $q_{i}(x)$.
- This definitely doesn't hurt us. Does it help?
- We can now guarantee that at least one of $\theta\left(\left\lfloor r_{i}\right\rfloor\right), \theta\left(\left\lceil r_{i}\right\rceil\right)$ has been replaced with 0 !

An understandable improvement

- If we perform the safer rounding, we guarantee improving our (rescaled) objective function by at least

$$
\sum_{r_{i}} \min \left(\left|\theta\left(\left\lfloor r_{i}\right\rfloor\right)\right| \frac{\nu^{\left\lfloor r_{i}\right\rfloor}}{\left\lfloor r_{i}\right\rfloor!},\left|\theta\left(\left\lceil r_{i}\right\rceil\right)\right| \frac{\nu^{\left\lceil r_{i}\right\rceil}}{\left\lceil r_{i}\right\rceil!}\right) .
$$

An understandable improvement

- If we perform the safer rounding, we guarantee improving our (rescaled) objective function by at least

$$
\sum_{r_{i}} \min \left(\left|\theta\left(\left\lfloor r_{i}\right\rfloor\right)\right| \frac{\nu^{\left\lfloor r_{i}\right\rfloor}}{\left\lfloor r_{i}\right\rfloor!},\left|\theta\left(\left\lceil r_{i}\right\rceil\right)\right| \frac{\nu^{\left\lceil r_{i}\right\rceil}}{\left\lceil r_{i}\right\rceil!}\right) .
$$

- So now we need to understand two things:

An understandable improvement

- If we perform the safer rounding, we guarantee improving our (rescaled) objective function by at least

$$
\sum_{r_{i}} \min \left(\left|\theta\left(\left\lfloor r_{i}\right\rfloor\right)\right| \frac{\nu^{\left\lfloor r_{i}\right\rfloor}}{\left\lfloor r_{i}\right\rfloor!},\left|\theta\left(\left\lceil r_{i}\right\rceil\right)\right| \frac{\nu^{\left\lceil r_{i}\right\rceil}}{\left\lceil r_{i}\right\rceil!}\right) .
$$

- So now we need to understand two things:
- Where are the roots of Selberg's function θ ?

An understandable improvement

- If we perform the safer rounding, we guarantee improving our (rescaled) objective function by at least

$$
\sum_{r_{i}} \min \left(\left|\theta\left(\left\lfloor r_{i}\right\rfloor\right)\right| \frac{\nu^{\left\lfloor r_{i}\right\rfloor}}{\left\lfloor r_{i}\right\rfloor!},\left|\theta\left(\left\lceil r_{i}\right\rceil\right)\right| \frac{\nu^{\left\lceil r_{i}\right\rceil}}{\left\lceil r_{i}\right\rceil!}\right) .
$$

- So now we need to understand two things:
- Where are the roots of Selberg's function θ ?
- How big is θ at the nearby integers?

An understandable improvement

- If we perform the safer rounding, we guarantee improving our (rescaled) objective function by at least

$$
\sum_{r_{i}} \min \left(\left|\theta\left(\left\lfloor r_{i}\right\rfloor\right)\right| \frac{\nu^{\left\lfloor r_{i}\right\rfloor}}{\left\lfloor r_{i}\right\rfloor!},\left|\theta\left(\left\lceil r_{i}\right\rceil\right)\right| \frac{\nu^{\left\lceil r_{i}\right\rceil}}{\left\lceil r_{i}\right\rceil!}\right) .
$$

- So now we need to understand two things:
- Where are the roots of Selberg's function θ ?
- How big is θ at the nearby integers?
- We have exact, combinatorial formulas for the coefficients of Selberg's function.

An understandable improvement

- If we perform the safer rounding, we guarantee improving our (rescaled) objective function by at least

$$
\sum_{r_{i}} \min \left(\left|\theta\left(\left\lfloor r_{i}\right\rfloor\right)\right| \frac{\nu^{\left\lfloor r_{i}\right\rfloor}}{\left\lfloor r_{i}\right\rfloor!},\left|\theta\left(\left\lceil r_{i}\right\rceil\right)\right| \frac{\nu^{\left\lfloor r_{i}\right\rceil}}{\left\lceil r_{i}\right\rceil!}\right) .
$$

- So now we need to understand two things:
- Where are the roots of Selberg's function θ ?
- How big is θ at the nearby integers?
- We have exact, combinatorial formulas for the coefficients of Selberg's function.
- Slight wrinkle: Selberg's function is optimized for $\nu=d+1$. So we modify it for larger ν, before rounding.

Explicit formula for Selberg's function

- Selberg's function is $\theta(x)=(1-x) f(x)^{2}$, where f is given by

$$
f(n+2)=\frac{1}{(d+1)^{n+1}} \sum_{i}(-1)^{i} a(n, i) d^{i}
$$

Explicit formula for Selberg's function

- Selberg's function is $\theta(x)=(1-x) f(x)^{2}$, where f is given by

$$
f(n+2)=\frac{1}{(d+1)^{n+1}} \sum_{i}(-1)^{i} a(n, i) d^{i}
$$

- Here $a(n, i)$ is the number of permutations of an n-set having exactly i cycles of size greater than 1 .

Explicit formula for Selberg's function

- Selberg's function is $\theta(x)=(1-x) f(x)^{2}$, where f is given by

$$
f(n+2)=\frac{1}{(d+1)^{n+1}} \sum_{i}(-1)^{i} a(n, i) d^{i}
$$

- Here $a(n, i)$ is the number of permutations of an n-set having exactly i cycles of size greater than 1 .
- For $\nu>d+1$, we use the function f_{ν} given by

$$
f_{\nu}(n+2)=\frac{1}{\nu^{n+1}} \sum_{i}(-1)^{i} a_{q}(n, i) d^{i}
$$

where $q=\nu-d$ and

$$
a_{q}(n, i)=\sum_{\sigma \in S_{n}, i} \sum_{\text {nontrivial cycles }} q^{\# \operatorname{Fix}(\sigma)} .
$$

Let's at least understand $f(3)$ and $f(4)$

- To understand the contribution from rounding at the smallest root, we compute $f_{\nu}(3)$ and $f_{\nu}(4)$.

Let's at least understand $f(3)$ and $f(4)$

- To understand the contribution from rounding at the smallest root, we compute $f_{\nu}(3)$ and $f_{\nu}(4)$.
- We have

$$
f_{\nu}(1+2)=\frac{1}{\nu^{1+1}}\left(a_{q}(1,0) d^{0}\right)=\frac{q}{\nu^{2}}
$$

and

$$
f_{\nu}(2+2)=\frac{1}{\nu^{2+1}}\left(a_{q}(2,0) d^{0}-a_{q}(2,1) d^{1}\right)=-\frac{d-q^{2}}{\nu^{3}} .
$$

Let's at least understand $f(3)$ and $f(4)$

- To understand the contribution from rounding at the smallest root, we compute $f_{\nu}(3)$ and $f_{\nu}(4)$.
- We have

$$
f_{\nu}(1+2)=\frac{1}{\nu^{1+1}}\left(a_{q}(1,0) d^{0}\right)=\frac{q}{\nu^{2}}
$$

and

$$
f_{\nu}(2+2)=\frac{1}{\nu^{2+1}}\left(a_{q}(2,0) d^{0}-a_{q}(2,1) d^{1}\right)=-\frac{d-q^{2}}{\nu^{3}} .
$$

- These have opposite sign, so f_{ν} has a root between 3 and 4, and both $\left|f_{\nu}(3)\right|,\left|f_{\nu}(4)\right|$ are $\gg \frac{1}{d^{2}}$.

Let's at least understand $f(3)$ and $f(4)$

- To understand the contribution from rounding at the smallest root, we compute $f_{\nu}(3)$ and $f_{\nu}(4)$.
- We have

$$
f_{\nu}(1+2)=\frac{1}{\nu^{1+1}}\left(a_{q}(1,0) d^{0}\right)=\frac{q}{\nu^{2}},
$$

and

$$
f_{\nu}(2+2)=\frac{1}{\nu^{2+1}}\left(a_{q}(2,0) d^{0}-a_{q}(2,1) d^{1}\right)=-\frac{d-q^{2}}{\nu^{3}} .
$$

- These have opposite sign, so f_{ν} has a root between 3 and 4, and both $\left|f_{\nu}(3)\right|,\left|f_{\nu}(4)\right|$ are $\gg \frac{1}{d^{2}}$.
- Most of the contribution to $f_{\nu}(n)$ comes from permutations which are almost entirely 2-cycles, so the result depends heavily on whether n is even or odd.

Saddle point method

- I continued with the combinatorial analysis, eventually proving that $a_{q}(n, i)$ is log-concave in i in order to get strong enough approximations...

Saddle point method

- I continued with the combinatorial analysis, eventually proving that $a_{q}(n, i)$ is log-concave in i in order to get strong enough approximations...
- My advisor (Sound) suggested a different approach.

Saddle point method

- I continued with the combinatorial analysis, eventually proving that $a_{q}(n, i)$ is log-concave in i in order to get strong enough approximations...
- My advisor (Sound) suggested a different approach.
- We can compute f_{ν} via a contour integral:

$$
f_{\nu}(n+2)=\frac{n!}{2 \pi i} \int_{C} e^{\nu z}(1-z)^{d} \frac{d z}{z^{n+1}} .
$$

Saddle point method

- I continued with the combinatorial analysis, eventually proving that $a_{q}(n, i)$ is log-concave in i in order to get strong enough approximations...
- My advisor (Sound) suggested a different approach.
- We can compute f_{ν} via a contour integral:

$$
f_{\nu}(n+2)=\frac{n!}{2 \pi i} \int_{C} e^{\nu z}(1-z)^{d} \frac{d z}{z^{n+1}} .
$$

- The integrand has saddle points at z_{0}, \bar{z}_{0} solving the quadratic

$$
\nu z_{0}^{2}-(n+q) z_{0}+n=0
$$

Saddle point method

- I continued with the combinatorial analysis, eventually proving that $a_{q}(n, i)$ is log-concave in i in order to get strong enough approximations...
- My advisor (Sound) suggested a different approach.
- We can compute f_{ν} via a contour integral:

$$
f_{\nu}(n+2)=\frac{n!}{2 \pi i} \int_{C} e^{\nu z}(1-z)^{d} \frac{d z}{z^{n+1}} .
$$

- The integrand has saddle points at z_{0}, \bar{z}_{0} solving the quadratic

$$
\nu z_{0}^{2}-(n+q) z_{0}+n=0 .
$$

- Either way, we get a somewhat complicated sinusoidal expression for f_{ν}.

The dust settles

Theorem
If $k=2 d+1$ then

$$
\nu_{k}-d \geq(c+o(1)) \sqrt[3]{d}
$$

where $c \approx \frac{1}{12.14}$ is the greatest positive solution of the inequality

$$
\int_{0}^{\infty} \frac{1}{x^{3 / 2}} \min \left(\sin ^{2}\left(\left(\frac{x}{3}+c\right) \sqrt{x}\right), \cos ^{2}\left(\left(\frac{x}{3}+c\right) \sqrt{x}\right)\right) d x \geq 2 \pi c
$$

Thank you for your attention.

