Keep completing the square!

Suppose someone hands you a quadratic polynomial in several variables, such as

$$
x^{2}+2 x y-2 x z+2 y^{2}+2 y z+6 z^{2}-z+1,
$$

and asks you to check whether it is always ≥ 0. How do you do it?
The trick to this is a slight generalization of the high school procedure known as "completing the square", which I like to call "keep completing the square" (I stumbled on this method after meditating on what the Cholesky decomposition really meant in terms of quadratic polynomials). We start by trying to write down a square that agrees with our polynomial at least as far as x is concerned, that is, we try to solve the equation

$$
(x+A y+B z+C)^{2}=x^{2}+2 x y-2 x z+\ldots
$$

for A, B, C (and ignoring the \ldots, since it doesn't involve x). In this case, we can take $A=1, B=$ $-1, C=0$, and we get

$$
(x+y-z)^{2}=x+2 x y-2 x z+y^{2}-2 y z+z^{2} .
$$

Since that doesn't completely match our polynomial, we look at the difference:

$$
\left(x^{2}+2 x y-2 x z+2 y^{2}+2 y z+6 z^{2}-z+1\right)-(x+y-z)^{2}=y^{2}+4 y z+5 z^{2}-z+1 .
$$

Now we complete the square again, this time with y, and so on. Writing the whole process in one string of equalities, we get

$$
\begin{aligned}
x^{2}+2 x y-2 x z+2 y^{2}+2 y z+6 z^{2}-2 z+1 & =(x+y-z)^{2}+y^{2}+4 y z+5 z^{2}-z+1 \\
& =(x+y-z)^{2}+(y+2 z)^{2}+z^{2}-z+1 \\
& =(x+y-z)^{2}+(y+2 z)^{2}+\left(z-\frac{1}{2}\right)^{2}+\frac{3}{4},
\end{aligned}
$$

and this is clearly positive, since it is a sum of squares.
Let's do a more complicated example (the previous example was clearly chosen to let you avoid taking any square roots). What if we are faced with something like

$$
6 x^{2}-4 x y+2 x z+3 y^{2}-4 y z+2 z^{2} ?
$$

At the very first step, it seems like we'll have to take the square root of 6 . What a mess! Here's how to avoid the mess: instead of starting with a square like

$$
(\sqrt{6} x+A y+B z)^{2}
$$

instead we start by looking for something like

$$
6(x+A y+B z)^{2} .
$$

Now we can find A, B by simple division, and we get $A=-\frac{1}{3}, B=\frac{1}{6}$. Continuing, we get

$$
\begin{aligned}
6 x^{2}-4 x y+2 x z+3 y^{2}-4 y z+2 z^{2} & =6\left(x-\frac{1}{3} y+\frac{1}{6} z\right)^{2}+\frac{7}{3} y^{2}-\frac{10}{3} y z+\frac{11}{6} z^{2} \\
& =6\left(x-\frac{1}{3} y+\frac{1}{6} z\right)^{2}+\frac{7}{3}\left(y-\frac{5}{7} z\right)^{2}+\frac{9}{14} z^{2},
\end{aligned}
$$

which is again obviously positive since it has been written as a sum of squares with positive coefficients. (By the way, I came up this polynomial by expanding out $(x-y)^{2}+(x+y-z)^{2}+$ $(2 x-y+z)^{2}$ - so we see that there can be multiple ways to write the same polynomial as a sum of squares. If we had processed the variables in a different order, we could come up with yet another way to write it as a sum of squares!)

What happens if we try to do this to a quadratic polynomial which isn't always ≥ 0 ? Obviously, something has to go wrong. Let's try the polynomial

$$
x^{2}-4 x y+2 x z+y^{2}-2 y z+2 z^{2} .
$$

The first step goes just fine: we get

$$
x^{2}-4 x y+2 x z+y^{2}-2 y z+2 z^{2}=(x-2 y+z)^{2}-3 y^{2}+2 y z+z^{2} .
$$

But now we have a problem: the coefficient of y^{2} is negative. Could our polynomial still be ≥ 0 ? Maybe the z^{2} and the $(x-2 y+z)^{2}$ somehow always conspire to be larger than $3 y^{2}$? Nope! To see why, just set z to 0 , and choose x to make $x-2 y+z$ equal to 0 , for instance, take $z=0, y=1, x=2$.

In the previous example, we had a problem because the coefficient of y^{2} was negative. What if the coefficient of y^{2} comes out to exactly 0 ? For an example, let's consider the polynomial

$$
x^{2}-2 x y-2 x z+y^{2}-2 y z+10 z^{2} .
$$

After the first step, we get

$$
x^{2}-2 x y-2 x z+y^{2}-2 y z+2 z^{2}=(x-y-z)^{2}-4 y z+9 z^{2} .
$$

To show that this sometimes goes negative, we will take z to be whatever nonzero value we like say, take $z=1$ - and then pick y to make $-4 y z+9 z^{2}$ come out negative (we can do this since, for any fixed nonzero $z,-4 y z+9 z^{2}$ is a linear function of y with a nonzero y-coefficient), and finally pick x to make $x-y-z$ equal to 0 . For instance, we can take $z=1, y=3, x=4$.

At the end of the day, we have a procedure that starts with a quadratic polynomial in any number of variables, and either writes it as a sum of squares with positive coefficients, or spits out a point where it is negative! We summarize in the following theorem.

Theorem. Suppose that $Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j} a_{i j} x_{i} x_{j}+\sum_{i} a_{i} x_{i}+a$, where $a_{i j}, a_{i}$, a are some coefficients. Then either we can write Q in the form

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} c_{i}\left(x_{i}+b_{i(i+1)} x_{i+1}+\cdots+b_{i n} x_{n}+b_{i}\right)^{2}+c
$$

with $c_{i} \geq 0$ for all i and $c \geq 0$, or else we can find a point $\left(x_{1}, \ldots, x_{n}\right)$ such that $Q\left(x_{1}, \ldots, x_{n}\right)<0$.

In the case of homogeneous quadratic polynomials, people often like to represent their coefficients in a symmetric matrix. In the three variable case, the matrix

$$
\left[\begin{array}{lll}
a & b & d \\
b & c & e \\
d & e & f
\end{array}\right]
$$

corresponds to the polynomial

$$
a x^{2}+2 b x y+c y^{2}+2 d x z+2 e y z+f z^{2}
$$

Why the random factors of 2 ? This is because we have the nice formula

$$
\left[\begin{array}{lll}
x & y & z
\end{array}\right]\left[\begin{array}{lll}
a & b & d \\
b & c & e \\
d & e & f
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=a x^{2}+2 b x y+c y^{2}+2 d x z+2 e y z+f z^{2}
$$

When we follow the "keep completing the square" procedure for this general three variable homogeneous quadratic, we get

$$
\begin{aligned}
a x^{2}+2 b x y+c y^{2}+2 d x z+2 e y z+f z^{2} & =a\left(x+\frac{b}{a} y+\frac{d}{a} z\right)^{2}+\frac{a c-b^{2}}{a} y^{2}+2 \frac{a e-b d}{a} y z+\frac{a f-d^{2}}{a} z^{2} \\
& =a\left(x+\frac{b}{a} y+\frac{d}{a} z\right)^{2}+\frac{a c-b^{2}}{a}\left(y+\frac{a e-b d}{a c-b^{2}} z\right)^{2}+\frac{\left(a f-d^{2}\right)\left(a c-b^{2}\right)-(a e-b d)^{2}}{a\left(a c-b^{2}\right)} z^{2} \\
& =a\left(x+\frac{b}{a} y+\frac{d}{a} z\right)^{2}+\frac{a c-b^{2}}{a}\left(y+\frac{a e-b d}{a c-b^{2}} z\right)^{2}+\frac{a c f+2 b d e-a e^{2}-b^{2} f-c d^{2}}{a c-b^{2}} z^{2} .
\end{aligned}
$$

Curiously, the coefficients in that last formula happen to be ratios of determinants:

$$
\begin{aligned}
\operatorname{det}[a] & =a \\
\operatorname{det}\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] & =a c-b^{2}, \\
\operatorname{det}\left[\begin{array}{lll}
a & b & d \\
b & c & e \\
d & e & f
\end{array}\right] & =a c f+2 b d e-a e^{2}-b^{2} f-c d^{2} .
\end{aligned}
$$

So we've proved that a three variable homogeneous quadratic is ≥ 0 if those three determinants are all positive!

Exercise. Generalize this determinant formula to any number of variables.

