Simplifying clones with partial semilattice operations

Zarathustra Brady

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Unary iteration

Suppose $f : A \to A$, $|A| < \infty$.

Unary iteration

Suppose
$$f: A \to A$$
, $|A| < \infty$.

► Write f^{on}(x) for

$$\underbrace{f(f(\cdots f(x)\cdots))}_{n}$$

Unary iteration

Suppose
$$f : A \to A$$
, $|A| < \infty$.

• Write
$$f^{\circ n}(x)$$
 for $\underbrace{f(f(\cdots f(x) \cdots))}_{n}$.

Proposition

There is some m dividing $lcm\{1, 2, ..., |A|\}$ such that

$$f^{\circ m}(x) \approx f^{\circ km}(x)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

for all $k \geq 1$.

Unary iteration, continued

Definition For $f : A \to A$, $|A| < \infty$, define $f^{\circ \infty}$ by

$$f^{\circ\infty}(x) \coloneqq \lim_{n\to\infty} f^{\circ n!}(x).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Unary iteration, continued

Definition For $f : A \to A$, $|A| < \infty$, define $f^{\circ \infty}$ by $f^{\circ \infty}(x) := \lim_{n \to \infty} f^{\circ n!}(x).$

For any f, $f^{\circ\infty}$ satisfies

 $f^{\circ\infty}(f^{\circ\infty}(x)) \approx f^{\circ\infty}(x).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Unary iteration, continued

Definition For $f : A \to A$, $|A| < \infty$, define $f^{\circ \infty}$ by $f^{\circ \infty}(x) := \lim_{n \to \infty} f^{\circ n!}(x).$

▶ For any f, $f^{\circ\infty}$ satisfies

$$f^{\circ\infty}(f^{\circ\infty}(x)) \approx f^{\circ\infty}(x).$$

• If $e: A \rightarrow A$ satisfies

 $e(e(x)) \approx e(x),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

we say that e is compositionally idempotent.

Nice behavior of unary iteration

• The map $f \mapsto f^{\circ \infty}$ is compatible with homomorphisms:

Nice behavior of unary iteration

• The map $f \mapsto f^{\circ \infty}$ is compatible with homomorphisms:

$$(A, f) \xrightarrow{\varphi} (B, g)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(A, f^{\circ \infty}) \xrightarrow{\varphi} (B, g^{\circ \infty})$$

Also compatible with finite products.

Nice behavior of unary iteration

• The map $f \mapsto f^{\circ \infty}$ is compatible with homomorphisms:

$$(A, f) \xrightarrow{\varphi} (B, g)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(A, f^{\circ \infty}) \xrightarrow{\varphi} (B, g^{\circ \infty})$$

Also compatible with finite products.

▶ As a bonus, f^{∞} can be computed from f in O(|A|) steps.

If e : A → A is compositionally idempotent and f : Aⁿ → A, set

$$f_e(x_1,...,x_n) := e(f(e(x_1),...,e(x_n))).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

If e : A → A is compositionally idempotent and f : Aⁿ → A, set

$$f_e(x_1,...,x_n) := e(f(e(x_1),...,e(x_n))).$$

▶ Have $f_e \in Clo(e, f)$ and

 $f_e: e(A)^n \to e(A).$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

$$f_e(x_1,...,x_n) := e(f(e(x_1),...,e(x_n))).$$

▶ Have $f_e \in Clo(e, f)$ and

$$f_e: e(A)^n \to e(A).$$

If

$$f(x_1,...,x_n)\approx g(y_1,...,y_m),$$

then

$$f_e(x_1,...,x_n) \approx g_e(y_1,...,y_m).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

If e : A → A is compositionally idempotent and f : Aⁿ → A, set

$$f_e(x_1,...,x_n) := e(f(e(x_1),...,e(x_n))).$$

• Have $f_e \in Clo(e, f)$ and

$$f_e: e(A)^n \to e(A).$$

If

$$f(x_1,...,x_n)\approx g(y_1,...,y_m),$$

then

$$f_e(x_1, ..., x_n) \approx g_e(y_1, ..., y_m).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The map f → f_e preserves identities of height at most one, and shrinks the domain.

Reduction to cores

 \blacktriangleright If we are studying identities of height one, we can replace $\mathbb A$ by

$$\mathbb{A}_e := (e(A), \{f_e\}_{f \in \mathsf{Clo}(\mathbb{A})})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for any $e \in Clo_1(\mathbb{A})$ which is compositionally idempotent.

Reduction to cores

If we are studying identities of height one, we can replace A by

$$\mathbb{A}_e := (e(A), \{f_e\}_{f \in \mathsf{Clo}(\mathbb{A})})$$

for any $e \in Clo_1(\mathbb{A})$ which is compositionally idempotent.

Eventually, we reduce to the case where

 $f^{\circ\infty}(x) \approx x$

for all $f \in Clo_1(\mathbb{A})$.

Reduction to cores

If we are studying identities of height one, we can replace A by

$$\mathbb{A}_e := (e(A), \{f_e\}_{f \in \mathsf{Clo}(\mathbb{A})})$$

for any $e \in Clo_1(\mathbb{A})$ which is compositionally idempotent.

Eventually, we reduce to the case where

 $f^{\circ\infty}(x) \approx x$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all $f \in Clo_1(\mathbb{A})$.

▶ In this case, Clo₁(A) must be a group!

Reduction to idempotent algebras

▶ If $Clo_1(\mathbb{A})$ is a group, then $f \in Clo(\mathbb{A})$ can be decomposed:

$$f(x_1,...,x_n) \approx f_{un}(f_{id}(x_1,...,x_n)),$$

where

$$f_{un}(x) \coloneqq f(x,...,x)$$

is unary and invertible, and

$$f_{id}(x_1,...,x_n) \coloneqq f_{un}^{-1}(f(x_1,...,x_n))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is idempotent.

Reduction to idempotent algebras

▶ If $Clo_1(\mathbb{A})$ is a group, then $f \in Clo(\mathbb{A})$ can be decomposed:

$$f(x_1,...,x_n) \approx f_{un}(f_{id}(x_1,...,x_n)),$$

where

$$f_{un}(x) \coloneqq f(x,...,x)$$

is unary and invertible, and

$$f_{id}(x_1,...,x_n) \coloneqq f_{un}^{-1}(f(x_1,...,x_n))$$

is idempotent.

If

$$f(x_1,...,x_n)\approx g(y_1,...,y_m),$$

then

$$f_{id}(x_1,...,x_n) \approx g_{id}(y_1,...,y_m).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We want to generalize this construction to binary operations.

- We want to generalize this construction to binary operations.
- Starting from $t: A^2 \to A$, we will construct $s \in Clo_2(t)$ satisfying

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

- We want to generalize this construction to binary operations.
- Starting from $t: A^2 \to A$, we will construct $s \in Clo_2(t)$ satisfying

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We call such an s a partial semilattice operation.

- We want to generalize this construction to binary operations.
- Starting from $t: A^2 \to A$, we will construct $s \in Clo_2(t)$ satisfying

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We call such an s a partial semilattice operation.
- We will use partial semilattice operations s to simplify our clones (while preserving some height one identities).

- We want to generalize this construction to binary operations.
- Starting from $t: A^2 \to A$, we will construct $s \in Clo_2(t)$ satisfying

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

- We call such an s a partial semilattice operation.
- We will use partial semilattice operations s to simplify our clones (while preserving some height one identities).
- When no further simplifications are possible, binary absorption will have nice properties.

Binary iteration: the first step

For
$$t : A^2 \to A$$
, define $t^{\circ_2 n}$ by
 $t^{\circ_2 n}(x, y) := \underbrace{t(x, t(x, \dots t(x, y) \dots))}_{n}$.

Binary iteration: the first step

For
$$t : A^2 \to A$$
, define $t^{\circ_2 n}$ by
 $t^{\circ_2 n}(x, y) := \underbrace{t(x, t(x, \cdots t(x, y) \cdots))}_{n}$.

▶ Define $t^{\circ_2 \infty}$ by

$$t^{\circ_2\infty}(x,y) = \lim_{n\to\infty} t^{\circ_2 n!}(x,y).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Binary iteration: the first step

For
$$t : A^2 \to A$$
, define $t^{\circ_2 n}$ by
$$t^{\circ_2 n}(x, y) := \underbrace{t(x, t(x, \cdots t(x, y) \cdots))}_{n}.$$

▶ Define $t^{\circ_2 \infty}$ by

$$t^{\circ_2\infty}(x,y) = \lim_{n\to\infty} t^{\circ_2 n!}(x,y).$$

We automatically have

$$t^{\circ_2\infty}(x,t^{\circ_2\infty}(x,y)) \approx t^{\circ_2\infty}(x,y).$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Suppose $f : A^2 \rightarrow A$ is idempotent and satisfies

 $f(x, f(x, y)) \approx f(x, y).$

Suppose $f : A^2 \rightarrow A$ is idempotent and satisfies

 $f(x, f(x, y)) \approx f(x, y).$

• Define u(x, y) by

$$u(x,y) \coloneqq f(x,f(y,x)).$$

Suppose $f : A^2 \rightarrow A$ is idempotent and satisfies

 $f(x, f(x, y)) \approx f(x, y).$

• Define u(x, y) by

$$u(x,y) \coloneqq f(x,f(y,x)).$$

$$f(x, u(x, y)) \approx u(x, y),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $f(x, f(x, y)) \approx f(x, y).$

• Define u(x, y) by

$$u(x,y) \coloneqq f(x,f(y,x)).$$

$$f(x, u(x, y)) \approx u(x, y),$$

SO

$$u(u(x,y),x) \approx f(u(x,y), f(x,u(x,y)))$$
$$\approx f(u(x,y), u(x,y))$$
$$\approx u(x,y).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Suppose $u: A^2 \to A$ satisfies

 $u(u(x,y),x) \approx u(x,y).$

Suppose $u : A^2 \rightarrow A$ satisfies

 $u(u(x,y),x) \approx u(x,y).$

• Define s(x, y) by

$$s(x,y) \coloneqq u^{\circ_2 \infty}(x,y).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose
$$u: A^2 \rightarrow A$$
 satisfies

$$u(u(x,y),x) \approx u(x,y).$$

• Define s(x, y) by

$$s(x,y) \coloneqq u^{\circ_2 \infty}(x,y).$$

For all *n*, we have

$$u^{\circ_2 n}(u(x,y),x) \approx u(x,y).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Suppose
$$u: A^2 \rightarrow A$$
 satisfies

$$u(u(x,y),x) \approx u(x,y).$$

• Define s(x, y) by

$$s(x,y) \coloneqq u^{\circ_2 \infty}(x,y).$$

For all *n*, we have

 $u^{\circ_2 n}(u(x,y),x) \approx u(x,y).$

• Replacing y by $u^{\circ_2(n-1)}(x, y)$, we get

 $u^{\circ_2 n}(u^{\circ_2 n}(x,y),x) \approx u^{\circ_2 n}(x,y).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose
$$u: A^2 \rightarrow A$$
 satisfies

$$u(u(x,y),x) \approx u(x,y).$$

• Define s(x, y) by

$$s(x,y) \coloneqq u^{\circ_2 \infty}(x,y).$$

For all n, we have

$$u^{\circ_2 n}(u(x,y),x) \approx u(x,y).$$

• Replacing y by $u^{\circ_2(n-1)}(x, y)$, we get

$$u^{\circ_2 n}(u^{\circ_2 n}(x,y),x) \approx u^{\circ_2 n}(x,y).$$

Taking the limit, we get

$$s(s(x,y),x) \approx s(x,y) \approx s(x,s(x,y)).$$
Binary iteration: putting it all together

Our full construction is given by

$$f(x, y) \coloneqq t^{\circ_2 \infty}(x, y),$$

$$u(x, y) \coloneqq f(x, f(y, x)),$$

$$s(x, y) \coloneqq u^{\circ_2 \infty}(x, y).$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Binary iteration: putting it all together

Our full construction is given by

$$f(x, y) \coloneqq t^{\circ_2 \infty}(x, y),$$

$$u(x, y) \coloneqq f(x, f(y, x)),$$

$$s(x, y) \coloneqq u^{\circ_2 \infty}(x, y).$$

More compactly:

$$s\coloneqq t^{\circ_2\infty}(\pi_1,t^{\circ_2\infty}(\pi_2,\pi_1))^{\circ_2\infty}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Suppose $t_i \mapsto s_i$ by the procedure on the previous slide.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Suppose $t_i \mapsto s_i$ by the procedure on the previous slide.
- The construction is compatible with homomorphisms:

$$egin{array}{cccc} (A_1,t_1) & \stackrel{arphi}{\longrightarrow} & (A_2,t_2) \ & & & & \downarrow \ & & & \downarrow \ & & & \downarrow \ & & & (A_1,s_1) & \stackrel{arphi}{\longrightarrow} & (A_2,s_2) \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Suppose $t_i \mapsto s_i$ by the procedure on the previous slide.
- The construction is compatible with homomorphisms:

$$egin{array}{cccc} (A_1,t_1) & \stackrel{arphi}{\longrightarrow} & (A_2,t_2) \ & & & & \downarrow \ & & & \downarrow \ & & & \downarrow \ & & & (A_1,s_1) & \stackrel{arphi}{\longrightarrow} & (A_2,s_2) \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Also compatible with finite products.

- Suppose $t_i \mapsto s_i$ by the procedure on the previous slide.
- The construction is compatible with homomorphisms:

$$\begin{array}{ccc} (A_1,t_1) & \stackrel{\varphi}{\longrightarrow} & (A_2,t_2) \\ & & & \downarrow \\ & & & \downarrow \\ (A_1,s_1) & \stackrel{\varphi}{\longrightarrow} & (A_2,s_2) \end{array}$$

- Also compatible with finite products.
- As a bonus, s_i can be computed from t_i in time $O(|A_i|^2)$.

```
Suppose t : A^2 \to A satisfies
```

 $t(C,B), t(B,C) \subseteq C$

for some $C \subseteq B \subseteq A$.


```
Suppose t : A^2 \rightarrow A satisfies
```

 $t(C,B), t(B,C) \subseteq C$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for some $C \subseteq B \subseteq A$.

• We say that *C* absorbs *B* with respect to *t*.

```
Suppose t : A^2 \rightarrow A satisfies
```

 $t(C,B), t(B,C) \subseteq C$

for some $C \subseteq B \subseteq A$.

▶ We say that *C* absorbs *B* with respect to *t*.

• If $t \mapsto s$ by our binary iteration procedure, then

 $s(C,B), s(B,C) \subseteq C.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Suppose $t : A^2 \to A$ satisfies

 $t(C,B),t(B,C)\subseteq C$

for some $C \subseteq B \subseteq A$.

▶ We say that *C* absorbs *B* with respect to *t*.

• If $t \mapsto s$ by our binary iteration procedure, then

 $s(C,B), s(B,C) \subseteq C.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• If $B \neq C$, then s must be nontrivial.

Suppose $t : A^2 \rightarrow A$ satisfies

 $t(C,B),t(B,C)\subseteq C$

for some $C \subseteq B \subseteq A$.

▶ We say that *C* absorbs *B* with respect to *t*.

• If $t \mapsto s$ by our binary iteration procedure, then

 $s(C,B), s(B,C) \subseteq C.$

• If $B \neq C$, then s must be nontrivial.

In particular,

 $t(a,b) = t(b,a) = b \implies s(a,b) = s(b,a) = b.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The s we constructed satisfies the identities

 $s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$

The s we constructed satisfies the identities

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

Together with idempotence, these are equivalent to

 $(\{x,s(x,y)\},s)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

being a semilattice with absorbing element s(x, y).

The s we constructed satisfies the identities

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

Together with idempotence, these are equivalent to

 $(\{x, s(x, y)\}, s)$

being a semilattice with absorbing element s(x, y).

• Write $a \rightarrow_s b$ when

 $({a, b}, s)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is a semilattice with absorbing element b.

The s we constructed satisfies the identities

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

Together with idempotence, these are equivalent to

 $(\{x, s(x, y)\}, s)$

being a semilattice with absorbing element s(x, y).

• Write $a \rightarrow_s b$ when

 $({a, b}, s)$

is a semilattice with absorbing element b.

We have

$$a \rightarrow_s b \iff s(a, b) = b$$

 $\iff \exists c \text{ s.t. } s(a, c) = b.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Suppose $a \rightarrow_s b$. We would like:

Suppose $a \rightarrow_s b$. We would like:

• $\{a, b\}$ to be a subalgebra of \mathbb{A} , and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Suppose $a \rightarrow_s b$. We would like:

- $\{a, b\}$ to be a subalgebra of \mathbb{A} , and
- this subalgebra to be term equivalent to $(\{a, b\}, s)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Suppose $a \rightarrow_s b$. We would like:

- $\{a, b\}$ to be a subalgebra of \mathbb{A} , and
- this subalgebra to be term equivalent to $(\{a, b\}, s)$.
- We want to find a reduct of A which satisfies the properties above, which preserves the height one identities satisfied by A.

Suppose $a \rightarrow_s b$. We would like:

- $\{a, b\}$ to be a subalgebra of \mathbb{A} , and
- this subalgebra to be term equivalent to $(\{a, b\}, s)$.
- We want to find a reduct of A which satisfies the properties above, which preserves the height one identities satisfied by A.
- It isn't possible to preserve all height one identities: they must be compatible with semilattices.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▶ For every $n \ge 2$, define $s_n : A^n \to A$ by

$$s_n(x_1,...,x_n) \coloneqq s(s_{n-1}(x_1,...,x_{n-1}),s(x_1,x_n)).$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

For $f : A^n \to A$, define f_s by

 $f_s(x_1,...,x_n) := f(s(x_1,...,x_n), s(x_2,...,x_n,x_1),...,s(x_n,x_1,...,x_{n-1})).$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathbb{A}_{s} = (A, \{f_{s}\}_{f \in \mathsf{Clo}(\mathbb{A})}).$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$\mathbb{A}_{s} = (A, \{f_{s}\}_{f \in \mathsf{Clo}(\mathbb{A})}).$$

If a→s b, then {a, b} is a subalgebra of As, term equivalent to ({a, b}, s).

▶ Define A_s by

$$\mathbb{A}_{s} = (A, \{f_{s}\}_{f \in \mathsf{Clo}(\mathbb{A})}).$$

- If a→_s b, then {a, b} is a subalgebra of A_s, term equivalent to ({a, b}, s).
- Every system of two-variable height-one identities with both variables occuring on each side which is satisfied in A is also satisfied in A_s.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▶ Define A_s by

$$\mathbb{A}_{s} = (A, \{f_{s}\}_{f \in \mathsf{Clo}(\mathbb{A})}).$$

- If a→s b, then {a, b} is a subalgebra of As, term equivalent to ({a, b}, s).
- Every system of two-variable height-one identities with both variables occuring on each side which is satisfied in A is also satisfied in A_s.

In particular:

Define A_s by

$$\mathbb{A}_{s} = (A, \{f_{s}\}_{f \in \mathsf{Clo}(\mathbb{A})}).$$

- If a→s b, then {a, b} is a subalgebra of As, term equivalent to ({a, b}, s).
- Every system of two-variable height-one identities with both variables occuring on each side which is satisfied in A is also satisfied in A_s.

- ロ ト - 4 回 ト - 4 □ - 4

In particular:

• If \mathbb{A} is Taylor, then \mathbb{A}_s is also Taylor.

Define A_s by

$$\mathbb{A}_{s} = (A, \{f_{s}\}_{f \in \mathsf{Clo}(\mathbb{A})}).$$

- If a→_s b, then {a, b} is a subalgebra of A_s, term equivalent to ({a, b}, s).
- Every system of two-variable height-one identities with both variables occuring on each side which is satisfied in A is also satisfied in A_s.

In particular:

- If \mathbb{A} is Taylor, then \mathbb{A}_s is also Taylor.
- If \mathbb{A} has bounded width, then \mathbb{A}_s also has bounded width.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• An operation $f : A^n \to A$ is symmetric if

$$f(x_1,...,x_n) = f(x_{\sigma(1)},...,x_{\sigma(n)}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

for all permutations $\sigma \in S_n$.

• An operation
$$f: A^n \to A$$
 is symmetric if

$$f(x_1,...,x_n) = f(x_{\sigma(1)},...,x_{\sigma(n)}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for all permutations $\sigma \in S_n$.

A has symmetric operations of every arity iff the Linear Programming relaxation solves CSP(A).

• An operation
$$f: A^n \to A$$
 is symmetric if

$$f(x_1,...,x_n) = f(x_{\sigma(1)},...,x_{\sigma(n)}).$$

for all permutations $\sigma \in S_n$.

- A has symmetric operations of every arity iff the Linear Programming relaxation solves CSP(A).
- If f_n are a system of symmetric operations for each arity n, write

$$f_n^s(x_1,...,x_n) := f_{n!}(s_n(x_{\sigma_1(1)},...,x_{\sigma_1(n)}),...,s_n(x_{\sigma_{n!}(1)},...,x_{\sigma_{n!}(n)})).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• An operation
$$f: A^n \to A$$
 is symmetric if

$$f(x_1,...,x_n) = f(x_{\sigma(1)},...,x_{\sigma(n)}).$$

for all permutations $\sigma \in S_n$.

- A has symmetric operations of every arity iff the Linear Programming relaxation solves CSP(A).
- If f_n are a system of symmetric operations for each arity n, write

$$f_n^s(x_1,...,x_n) := f_{n!}(s_n(x_{\sigma_1(1)},...,x_{\sigma_1(n)}),...,s_n(x_{\sigma_{n!}(1)},...,x_{\sigma_{n!}(n)})).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Each f_n^s is symmetric, and if $a \rightarrow_s b$ then f_n^s acts like s_n on $\{a, b\}$.

Totally symmetric operations

• An operation $f : A^n \to A$ is totally symmetric if

$$\{x_1,...,x_n\} = \{y_1,...,y_n\} \implies f(x_1,...,x_n) = f(y_1,...,y_n).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Totally symmetric operations

• An operation $f : A^n \to A$ is totally symmetric if

$$\{x_1,...,x_n\} = \{y_1,...,y_n\} \implies f(x_1,...,x_n) = f(y_1,...,y_n).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A has totally symmetric operations of every arity iff Arc Consistency solves CSP(A).
Totally symmetric operations

• An operation $f : A^n \to A$ is totally symmetric if

 $\{x_1,...,x_n\} = \{y_1,...,y_n\} \implies f(x_1,...,x_n) = f(y_1,...,y_n).$

A has totally symmetric operations of every arity iff Arc Consistency solves CSP(A).

Proposition

If \mathbb{A} has totally symmetric operations f_n of every arity n, then there are totally symmetric operations $f_n^s \in \operatorname{Clo}(\mathbb{A})$ such that if $a \to_s b$ then f_n^s acts like s_n on $\{a, b\}$.

Analogue of idempotence

► These constructions involved preprocessing the inputs to functions f ∈ Clo(A) by applying the operations s_n.

Analogue of idempotence

► These constructions involved preprocessing the inputs to functions f ∈ Clo(A) by applying the operations s_n.

▶ I say that an algebra A has been *prepared* if

$$\begin{bmatrix} b \\ b \end{bmatrix} \in \mathsf{Sg}_{\mathbb{A}^2} \left\{ \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} b \\ a \end{bmatrix} \right\}$$

implies that

$$\{a,b\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is a subalgebra of \mathbb{A} , term equivalent to a semilattice with absorbing element b.

Analogue of idempotence

- ► These constructions involved preprocessing the inputs to functions f ∈ Clo(A) by applying the operations s_n.
- ▶ I say that an algebra A has been *prepared* if

$$\begin{bmatrix} b \\ b \end{bmatrix} \in \mathsf{Sg}_{\mathbb{A}^2} \left\{ \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} b \\ a \end{bmatrix} \right\}$$

implies that

$$\{a,b\}$$

is a subalgebra of \mathbb{A} , term equivalent to a semilattice with absorbing element *b*.

• If \mathbb{A} is prepared, then we write $a \rightarrow b$ if the above holds.

Write B ⊲_{bin} A (B binary absorbs A) if there is a binary term t such that B absorbs A with respect to t.

- Write B ⊲_{bin} A (B binary absorbs A) if there is a binary term t such that B absorbs A with respect to t.
- Write B ⊲_{str} A (B strongly absorbs A) if for every f ∈ Clo(A) which depends on its first variable, we have

 $f(\mathbb{B}, \mathbb{A}, ..., \mathbb{A}) \in \mathbb{B}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Write B ⊲_{bin} A (B binary absorbs A) if there is a binary term t such that B absorbs A with respect to t.
- Write B ⊲_{str} A (B strongly absorbs A) if for every f ∈ Clo(A) which depends on its first variable, we have

 $f(\mathbb{B}, \mathbb{A}, ..., \mathbb{A}) \in \mathbb{B}.$

 \blacktriangleright If \mathbbm{A} has any terms which depend on both variables, then

$$\mathbb{B} \triangleleft_{str} \mathbb{A} \implies \mathbb{B} \triangleleft_{bin} \mathbb{A}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Write B ⊲_{bin} A (B binary absorbs A) if there is a binary term t such that B absorbs A with respect to t.
- Write B ⊲_{str} A (B strongly absorbs A) if for every f ∈ Clo(A) which depends on its first variable, we have

 $f(\mathbb{B}, \mathbb{A}, ..., \mathbb{A}) \in \mathbb{B}.$

 \blacktriangleright If \mathbbm{A} has any terms which depend on both variables, then

$$\mathbb{B} \triangleleft_{str} \mathbb{A} \implies \mathbb{B} \triangleleft_{bin} \mathbb{A}.$$

I say that A has been strongly prepared if

$$\mathbb{B} \triangleleft_{bin} \mathbb{C} \implies \mathbb{B} \triangleleft_{str} \mathbb{C}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Write B ⊲_{bin} A (B binary absorbs A) if there is a binary term t such that B absorbs A with respect to t.
- Write B ⊲_{str} A (B strongly absorbs A) if for every f ∈ Clo(A) which depends on its first variable, we have

 $f(\mathbb{B}, \mathbb{A}, ..., \mathbb{A}) \in \mathbb{B}.$

 \blacktriangleright If \mathbbm{A} has any terms which depend on both variables, then

$$\mathbb{B} \triangleleft_{str} \mathbb{A} \implies \mathbb{B} \triangleleft_{bin} \mathbb{A}.$$

I say that A has been strongly prepared if

$$\mathbb{B} \triangleleft_{bin} \mathbb{C} \implies \mathbb{B} \triangleleft_{str} \mathbb{C}.$$

The previous constructions can be used to reduce to the case where A is strongly prepared.

Transitivity of binary absorption?

Suppose that $\mathbb{B} \triangleleft_{bin} \mathbb{A}$ and $\mathbb{C} \triangleleft_{bin} \mathbb{B}$. Does it follow that $\mathbb{C} \triangleleft_{bin} \mathbb{A}$?

Transitivity of binary absorption?

- Suppose that $\mathbb{B} \triangleleft_{bin} \mathbb{A}$ and $\mathbb{C} \triangleleft_{bin} \mathbb{B}$. Does it follow that $\mathbb{C} \triangleleft_{bin} \mathbb{A}$?
- In general, no:

$$\begin{split} \mathbb{A} &= (\{0,1\}^2, \wedge, \vee), \\ \mathbb{B} &= (\{(0,0), (0,1)\}, \wedge, \vee), \\ \mathbb{C} &= (\{(0,1)\}, \wedge, \vee). \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Transitivity of binary absorption?

- Suppose that $\mathbb{B} \triangleleft_{bin} \mathbb{A}$ and $\mathbb{C} \triangleleft_{bin} \mathbb{B}$. Does it follow that $\mathbb{C} \triangleleft_{bin} \mathbb{A}$?
- In general, no:

$$\begin{split} \mathbb{A} &= (\{0,1\}^2, \wedge, \vee), \\ \mathbb{B} &= (\{(0,0), (0,1)\}, \wedge, \vee), \\ \mathbb{C} &= (\{(0,1)\}, \wedge, \vee). \end{split}$$

Transitivity also fails for strong absorption:

$$\{c\} \triangleleft_{str} \{b, c\} \triangleleft_{str} \{a, b, c\}$$

in the idempotent commutative groupoid with ab = ac = band bc = c.

Useful lemma about absorption

Lemma

If \mathbb{A} is prepared, and if $\mathbb{B} \lhd \mathbb{A}$, then for any partial semilattice operation $s \in Clo_2(\mathbb{A})$ we have

 $s(\mathbb{B},\mathbb{A})\subseteq\mathbb{B}.$

Useful lemma about absorption

Lemma

If \mathbb{A} is prepared, and if $\mathbb{B} \lhd \mathbb{A}$, then for any partial semilattice operation $s \in Clo_2(\mathbb{A})$ we have

 $s(\mathbb{B},\mathbb{A})\subseteq\mathbb{B}.$

Proof. If $b \in \mathbb{B}$ and $s(b, a) \notin \mathbb{B}$, then $\{b, s(b, a)\}$ is a subalgebra of \mathbb{A} which is not absorbed by $\{b\} = \mathbb{B} \cap \{b, s(b, a)\}$.

Preparation fixes transitivity

Proposition

If \mathbb{A} is prepared, and if $\mathbb{C} \triangleleft_{bin} \mathbb{B} \triangleleft_{bin} \mathbb{A}$, then $\mathbb{C} \triangleleft_{bin} \mathbb{A}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Preparation fixes transitivity

Proposition

If \mathbb{A} is prepared, and if $\mathbb{C} \triangleleft_{bin} \mathbb{B} \triangleleft_{bin} \mathbb{A}$, then $\mathbb{C} \triangleleft_{bin} \mathbb{A}$.

Proof.

Choose a partial semilattice term s such that

$$s(\mathbb{B},\mathbb{C}),s(\mathbb{C},\mathbb{B})\subseteq\mathbb{C},$$

and any t witnessing $\mathbb{B} \triangleleft_{bin} \mathbb{A}$. Define $u \in Clo(s, t)$ by

$$u(x,y) \coloneqq s(s(t(x,y),y),s(t(y,x),x)).$$

Then *u* witnesses $\mathbb{C} \triangleleft_{bin} \mathbb{A}$.

Preparation forces intersection

Proposition

If \mathbb{A} is prepared, and if $\mathbb{B}_1 \lhd \mathbb{A}, \mathbb{B}_2 \lhd_{bin} \mathbb{A}$, then $\mathbb{B}_1 \cap \mathbb{B}_2 \neq \emptyset$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Preparation forces intersection

Proposition

If \mathbb{A} is prepared, and if $\mathbb{B}_1 \lhd \mathbb{A}, \mathbb{B}_2 \lhd_{bin} \mathbb{A}$, then $\mathbb{B}_1 \cap \mathbb{B}_2 \neq \emptyset$.

Proof.

Choose a partial semilattice term s such that

 $s(\mathbb{B}_2, \mathbb{A}), s(\mathbb{A}, \mathbb{B}_2) \subseteq \mathbb{B}_2,$

and any $b_1 \in \mathbb{B}_1$, $b_2 \in \mathbb{B}_2$. Then

 $s(b_1, b_2) \in \mathbb{B}_1 \cap \mathbb{B}_2.$

Proposition

If \mathbb{A} is prepared, and if $s(\mathbb{B}, \mathbb{A}) \subseteq \mathbb{B}$ for a partial semilattice operation s, then TFAE:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proposition

If \mathbb{A} is prepared, and if $s(\mathbb{B}, \mathbb{A}) \subseteq \mathbb{B}$ for a partial semilattice operation s, then TFAE:

 $\blacktriangleright \mathbb{B} \triangleleft_{bin} \mathbb{A},$

Proposition

If \mathbb{A} is prepared, and if $s(\mathbb{B}, \mathbb{A}) \subseteq \mathbb{B}$ for a partial semilattice operation s, then TFAE:

▶ for all $a \in \mathbb{A} \setminus \mathbb{B}$ and $b \in \mathbb{B}$, $Sg_{\mathbb{A}}\{a, b\}$ has a proper binary absorbing subalgebra,

Proposition

If \mathbb{A} is prepared, and if $s(\mathbb{B}, \mathbb{A}) \subseteq \mathbb{B}$ for a partial semilattice operation s, then TFAE:

▶ for all $a \in A \setminus B$ and $b \in B$, $Sg_A{a, b}$ has a proper binary absorbing subalgebra,

▶ for all $a \in \mathbb{A} \setminus \mathbb{B}$ and $b \in \mathbb{B}$, $Sg_{\mathbb{A}}\{a, b\}$ contains a directed path

$$a = a_1 \rightarrow a_2 \rightarrow \cdots \rightarrow a_n \in \mathbb{B}.$$

Proposition

If \mathbb{A} is prepared, and if $s(\mathbb{B}, \mathbb{A}) \subseteq \mathbb{B}$ for a partial semilattice operation s, then TFAE:

$$\blacktriangleright \mathbb{B} \triangleleft_{bin} \mathbb{A},$$

▶ for all $a \in A \setminus B$ and $b \in B$, $Sg_A{a, b}$ has a proper binary absorbing subalgebra,

▶ for all
$$a \in \mathbb{A} \setminus \mathbb{B}$$
 and $b \in \mathbb{B}$, $\mathsf{Sg}_{\mathbb{A}}\{a, b\}$ contains a directed path

$$a = a_1 \rightarrow a_2 \rightarrow \cdots \rightarrow a_n \in \mathbb{B}.$$

▶ for all $a \in \mathbb{A} \setminus \mathbb{B}$ and $b \in \mathbb{B}$, there is some $b' \in Sg_{\mathbb{A}}\{a, b\}$ such that

$$a \rightarrow b' \in \mathbb{B}$$
.

Thank you for your attention.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ