Simplifying clones with partial semilattice operations

Zarathustra Brady

Unary iteration

- Suppose $f: A \rightarrow A,|A|<\infty$.

Unary iteration

- Suppose $f: A \rightarrow A,|A|<\infty$.
- Write $f^{\circ n}(x)$ for

$$
\underbrace{f(f(\cdots f}_{n}(x) \cdots)) .
$$

Unary iteration

- Suppose $f: A \rightarrow A,|A|<\infty$.
- Write $f^{\circ n}(x)$ for

$$
\underbrace{f(f(\cdots f}_{n}(x) \cdots)) .
$$

Proposition

There is some m dividing $\operatorname{Icm}\{1,2, \ldots,|A|\}$ such that

$$
f^{\circ m}(x) \approx f^{\circ k m}(x)
$$

for all $k \geq 1$.

Unary iteration, continued

Definition
For $f: A \rightarrow A,|A|<\infty$, define $f^{\circ \infty}$ by

$$
f^{\circ \infty}(x):=\lim _{n \rightarrow \infty} f^{\circ n!}(x)
$$

Unary iteration, continued

Definition

For $f: A \rightarrow A,|A|<\infty$, define $f^{\circ \infty}$ by

$$
f^{\circ \infty}(x):=\lim _{n \rightarrow \infty} f^{\circ n!}(x)
$$

- For any $f, f^{\circ \infty}$ satisfies

$$
f^{\circ \infty}\left(f^{\circ \infty}(x)\right) \approx f^{\circ \infty}(x)
$$

Unary iteration, continued

Definition

For $f: A \rightarrow A,|A|<\infty$, define $f^{\circ \infty}$ by

$$
f^{\circ \infty}(x):=\lim _{n \rightarrow \infty} f^{\circ n!}(x)
$$

- For any $f, f^{\circ \infty}$ satisfies

$$
f^{\circ \infty}\left(f^{\circ \infty}(x)\right) \approx f^{\circ \infty}(x)
$$

- If $e: A \rightarrow A$ satisfies

$$
e(e(x)) \approx e(x)
$$

we say that e is compositionally idempotent.

Nice behavior of unary iteration

- The map $f \mapsto f^{\circ \infty}$ is compatible with homomorphisms:

$$
\stackrel{\underset{(A, f)}{\left(A, f^{\circ \infty}\right)} \xrightarrow{\varphi} \stackrel{\varphi}{\downarrow}(B, g)}{\left(B, g^{\circ \infty}\right)}
$$

Nice behavior of unary iteration

- The map $f \mapsto f^{\circ \infty}$ is compatible with homomorphisms:

- Also compatible with finite products.

Nice behavior of unary iteration

- The map $f \mapsto f^{\circ \infty}$ is compatible with homomorphisms:

- Also compatible with finite products.
- As a bonus, $f^{\circ \infty}$ can be computed from f in $O(|A|)$ steps.

Using compositionally idempotent unary operations

- If $e: A \rightarrow A$ is compositionally idempotent and $f: A^{n} \rightarrow A$, set

$$
f_{e}\left(x_{1}, \ldots, x_{n}\right):=e\left(f\left(e\left(x_{1}\right), \ldots, e\left(x_{n}\right)\right)\right) .
$$

Using compositionally idempotent unary operations

- If $e: A \rightarrow A$ is compositionally idempotent and $f: A^{n} \rightarrow A$, set

$$
f_{e}\left(x_{1}, \ldots, x_{n}\right):=e\left(f\left(e\left(x_{1}\right), \ldots, e\left(x_{n}\right)\right)\right) .
$$

- Have $f_{e} \in \operatorname{Clo}(e, f)$ and

$$
f_{e}: e(A)^{n} \rightarrow e(A)
$$

Using compositionally idempotent unary operations

- If $e: A \rightarrow A$ is compositionally idempotent and $f: A^{n} \rightarrow A$, set

$$
f_{e}\left(x_{1}, \ldots, x_{n}\right):=e\left(f\left(e\left(x_{1}\right), \ldots, e\left(x_{n}\right)\right)\right)
$$

- Have $f_{e} \in \operatorname{Clo}(e, f)$ and

$$
f_{e}: e(A)^{n} \rightarrow e(A)
$$

- If

$$
f\left(x_{1}, \ldots, x_{n}\right) \approx g\left(y_{1}, \ldots, y_{m}\right)
$$

then

$$
f_{e}\left(x_{1}, \ldots, x_{n}\right) \approx g_{e}\left(y_{1}, \ldots, y_{m}\right)
$$

Using compositionally idempotent unary operations

- If $e: A \rightarrow A$ is compositionally idempotent and $f: A^{n} \rightarrow A$, set

$$
f_{e}\left(x_{1}, \ldots, x_{n}\right):=e\left(f\left(e\left(x_{1}\right), \ldots, e\left(x_{n}\right)\right)\right) .
$$

- Have $f_{e} \in \operatorname{Clo}(e, f)$ and

$$
f_{e}: e(A)^{n} \rightarrow e(A)
$$

- If

$$
f\left(x_{1}, \ldots, x_{n}\right) \approx g\left(y_{1}, \ldots, y_{m}\right)
$$

then

$$
f_{e}\left(x_{1}, \ldots, x_{n}\right) \approx g_{e}\left(y_{1}, \ldots, y_{m}\right)
$$

- The map $f \mapsto f_{e}$ preserves identities of height at most one, and shrinks the domain.

Reduction to cores

- If we are studying identities of height one, we can replace \mathbb{A} by

$$
\mathbb{A}_{e}:=\left(e(A),\left\{f_{e}\right\}_{f \in \operatorname{Clo}(\mathbb{A})}\right)
$$

for any $e \in \mathrm{Clo}_{1}(\mathbb{A})$ which is compositionally idempotent.

Reduction to cores

- If we are studying identities of height one, we can replace \mathbb{A} by

$$
\mathbb{A}_{e}:=\left(e(A),\left\{f_{e}\right\}_{f \in \operatorname{Clo}(\mathbb{A})}\right)
$$

for any $e \in \mathrm{Clo}_{1}(\mathbb{A})$ which is compositionally idempotent.

- Eventually, we reduce to the case where

$$
f^{\circ \infty}(x) \approx x
$$

for all $f \in \mathrm{Clo}_{1}(\mathbb{A})$.

Reduction to cores

- If we are studying identities of height one, we can replace \mathbb{A} by

$$
\mathbb{A}_{e}:=\left(e(A),\left\{f_{e}\right\}_{f \in \operatorname{Clo}(\mathbb{A})}\right)
$$

for any $e \in \mathrm{Clo}_{1}(\mathbb{A})$ which is compositionally idempotent.

- Eventually, we reduce to the case where

$$
f^{\circ \infty}(x) \approx x
$$

for all $f \in \mathrm{Clo}_{1}(\mathbb{A})$.

- In this case, $\mathrm{Clo}_{1}(\mathbb{A})$ must be a group!

Reduction to idempotent algebras

- If $\mathrm{Clo}_{1}(\mathbb{A})$ is a group, then $f \in \mathrm{Clo}(\mathbb{A})$ can be decomposed:

$$
f\left(x_{1}, \ldots, x_{n}\right) \approx f_{u n}\left(f_{i d}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

where

$$
f_{u n}(x):=f(x, \ldots, x)
$$

is unary and invertible, and

$$
f_{i d}\left(x_{1}, \ldots, x_{n}\right):=f_{u n}^{-1}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)
$$

is idempotent.

Reduction to idempotent algebras

- If $\mathrm{Clo}_{1}(\mathbb{A})$ is a group, then $f \in \mathrm{Clo}(\mathbb{A})$ can be decomposed:

$$
f\left(x_{1}, \ldots, x_{n}\right) \approx f_{u n}\left(f_{i d}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

where

$$
f_{u n}(x):=f(x, \ldots, x)
$$

is unary and invertible, and

$$
f_{i d}\left(x_{1}, \ldots, x_{n}\right):=f_{u n}^{-1}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)
$$

is idempotent.

- If

$$
f\left(x_{1}, \ldots, x_{n}\right) \approx g\left(y_{1}, \ldots, y_{m}\right)
$$

then

$$
f_{i d}\left(x_{1}, \ldots, x_{n}\right) \approx g_{i d}\left(y_{1}, \ldots, y_{m}\right)
$$

Binary iteration: the goal

- We want to generalize this construction to binary operations.

Binary iteration: the goal

- We want to generalize this construction to binary operations.
- Starting from $t: A^{2} \rightarrow A$, we will construct $s \in \mathrm{Clo}_{2}(t)$ satisfying

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

Binary iteration: the goal

- We want to generalize this construction to binary operations.
- Starting from $t: A^{2} \rightarrow A$, we will construct $s \in \mathrm{Clo}_{2}(t)$ satisfying

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

- We call such an s a partial semilattice operation.

Binary iteration: the goal

- We want to generalize this construction to binary operations.
- Starting from $t: A^{2} \rightarrow A$, we will construct $s \in \mathrm{Clo}_{2}(t)$ satisfying

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

- We call such an s a partial semilattice operation.
- We will use partial semilattice operations s to simplify our clones (while preserving some height one identities).

Binary iteration: the goal

- We want to generalize this construction to binary operations.
- Starting from $t: A^{2} \rightarrow A$, we will construct $s \in \mathrm{Clo}_{2}(t)$ satisfying

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

- We call such an s a partial semilattice operation.
- We will use partial semilattice operations s to simplify our clones (while preserving some height one identities).
- When no further simplifications are possible, binary absorption will have nice properties.

Binary iteration: the first step

- For $t: A^{2} \rightarrow A$, define $t^{\circ 2 n}$ by

$$
t^{o_{2 n}}(x, y):=\underbrace{t(x, t(x, \cdots t(x}_{n}, y) \cdots)) .
$$

Binary iteration: the first step

- For $t: A^{2} \rightarrow A$, define $t^{\circ 2 n}$ by

$$
t^{\circ_{2} n}(x, y):=\underbrace{t(x, t(x, \cdots t(x}_{n}, y) \cdots)) .
$$

- Define $t^{\circ 2 \infty}$ by

$$
t^{\circ_{2} \infty}(x, y)=\lim _{n \rightarrow \infty} t^{\circ_{2} n!}(x, y)
$$

Binary iteration: the first step

- For $t: A^{2} \rightarrow A$, define $t^{\circ 2 n}$ by

$$
t^{o_{2 n}}(x, y):=\underbrace{t(x, t(x, \cdots t(x}_{n}, y) \cdots)) .
$$

- Define $t^{0_{2} \infty}$ by

$$
t^{\circ_{2} \infty}(x, y)=\lim _{n \rightarrow \infty} t^{\circ_{2} n!}(x, y)
$$

- We automatically have

$$
t^{\circ_{2} \infty}\left(x, t^{\circ_{2} \infty}(x, y)\right) \approx t^{\circ_{2} \infty}(x, y)
$$

Binary iteration: Bulatov's clever idea

- Suppose $f: A^{2} \rightarrow A$ is idempotent and satisfies

$$
f(x, f(x, y)) \approx f(x, y)
$$

Binary iteration: Bulatov's clever idea

- Suppose $f: A^{2} \rightarrow A$ is idempotent and satisfies

$$
f(x, f(x, y)) \approx f(x, y)
$$

- Define $u(x, y)$ by

$$
u(x, y):=f(x, f(y, x))
$$

Binary iteration: Bulatov's clever idea

- Suppose $f: A^{2} \rightarrow A$ is idempotent and satisfies

$$
f(x, f(x, y)) \approx f(x, y)
$$

- Define $u(x, y)$ by

$$
u(x, y):=f(x, f(y, x))
$$

- Then

$$
f(x, u(x, y)) \approx u(x, y)
$$

Binary iteration: Bulatov's clever idea

- Suppose $f: A^{2} \rightarrow A$ is idempotent and satisfies

$$
f(x, f(x, y)) \approx f(x, y)
$$

- Define $u(x, y)$ by

$$
u(x, y):=f(x, f(y, x))
$$

- Then

$$
f(x, u(x, y)) \approx u(x, y)
$$

SO

$$
\begin{aligned}
u(u(x, y), x) & \approx f(u(x, y), f(x, u(x, y))) \\
& \approx f(u(x, y), u(x, y)) \\
& \approx u(x, y)
\end{aligned}
$$

Binary iteration: a minor miracle

- Suppose $u: A^{2} \rightarrow A$ satisfies

$$
u(u(x, y), x) \approx u(x, y)
$$

Binary iteration: a minor miracle

- Suppose $u: A^{2} \rightarrow A$ satisfies

$$
u(u(x, y), x) \approx u(x, y)
$$

- Define $s(x, y)$ by

$$
s(x, y):=u^{0_{2} \infty}(x, y)
$$

Binary iteration: a minor miracle

- Suppose $u: A^{2} \rightarrow A$ satisfies

$$
u(u(x, y), x) \approx u(x, y)
$$

- Define $s(x, y)$ by

$$
s(x, y):=u^{\circ_{2} \infty}(x, y)
$$

- For all n, we have

$$
u^{o_{2} n}(u(x, y), x) \approx u(x, y)
$$

Binary iteration: a minor miracle

- Suppose $u: A^{2} \rightarrow A$ satisfies

$$
u(u(x, y), x) \approx u(x, y)
$$

- Define $s(x, y)$ by

$$
s(x, y):=u^{\circ_{2} \infty}(x, y)
$$

- For all n, we have

$$
u^{O_{2} n}(u(x, y), x) \approx u(x, y)
$$

- Replacing y by $u^{\circ_{2}(n-1)}(x, y)$, we get

$$
u^{O_{2} n}\left(u^{O_{2} n}(x, y), x\right) \approx u^{O_{2} n}(x, y)
$$

Binary iteration: a minor miracle

- Suppose $u: A^{2} \rightarrow A$ satisfies

$$
u(u(x, y), x) \approx u(x, y)
$$

- Define $s(x, y)$ by

$$
s(x, y):=u^{O_{2} \infty}(x, y)
$$

- For all n, we have

$$
u^{o_{2} n}(u(x, y), x) \approx u(x, y)
$$

- Replacing y by $u^{\circ_{2}(n-1)}(x, y)$, we get

$$
u^{\circ_{2} n}\left(u^{\circ_{2} n}(x, y), x\right) \approx u^{\circ_{2} n}(x, y)
$$

- Taking the limit, we get

$$
s(s(x, y), x) \approx s(x, y) \approx s(x, s(x, y))
$$

Binary iteration: putting it all together

- Our full construction is given by

$$
\begin{aligned}
f(x, y) & :=t^{0^{2} \infty}(x, y), \\
u(x, y) & :=f(x, f(y, x)), \\
s(x, y) & :=u^{0_{2} \infty}(x, y) .
\end{aligned}
$$

Binary iteration: putting it all together

- Our full construction is given by

$$
\begin{aligned}
f(x, y) & :=t^{\circ_{2} \infty}(x, y), \\
u(x, y) & :=f(x, f(y, x)), \\
s(x, y) & :=u^{0^{2 \infty}}(x, y) .
\end{aligned}
$$

- More compactly:

$$
s:=t^{\circ_{2} \infty}\left(\pi_{1}, t^{\circ_{2} \infty}\left(\pi_{2}, \pi_{1}\right)\right)^{\circ_{2} \infty}
$$

Nice behavior of binary iteration

- Suppose $t_{i} \mapsto s_{i}$ by the procedure on the previous slide.

Nice behavior of binary iteration

- Suppose $t_{i} \mapsto s_{i}$ by the procedure on the previous slide.
- The construction is compatible with homomorphisms:

Nice behavior of binary iteration

- Suppose $t_{i} \mapsto s_{i}$ by the procedure on the previous slide.
- The construction is compatible with homomorphisms:

- Also compatible with finite products.

Nice behavior of binary iteration

- Suppose $t_{i} \mapsto s_{i}$ by the procedure on the previous slide.
- The construction is compatible with homomorphisms:

- Also compatible with finite products.
- As a bonus, s_{i} can be computed from t_{i} in time $O\left(\left|A_{i}\right|^{2}\right)$.

Compatibility with binary absorption

- Suppose $t: A^{2} \rightarrow A$ satisfies

$$
t(C, B), t(B, C) \subseteq C
$$

for some $C \subseteq B \subseteq A$.

Compatibility with binary absorption

- Suppose $t: A^{2} \rightarrow A$ satisfies

$$
t(C, B), t(B, C) \subseteq C
$$

for some $C \subseteq B \subseteq A$.

- We say that C absorbs B with respect to t.

Compatibility with binary absorption

- Suppose $t: A^{2} \rightarrow A$ satisfies

$$
t(C, B), t(B, C) \subseteq C
$$

for some $C \subseteq B \subseteq A$.

- We say that C absorbs B with respect to t.
- If $t \mapsto s$ by our binary iteration procedure, then

$$
s(C, B), s(B, C) \subseteq C
$$

Compatibility with binary absorption

- Suppose $t: A^{2} \rightarrow A$ satisfies

$$
t(C, B), t(B, C) \subseteq C
$$

for some $C \subseteq B \subseteq A$.

- We say that C absorbs B with respect to t.
- If $t \mapsto s$ by our binary iteration procedure, then

$$
s(C, B), s(B, C) \subseteq C
$$

- If $B \neq C$, then s must be nontrivial.

Compatibility with binary absorption

- Suppose $t: A^{2} \rightarrow A$ satisfies

$$
t(C, B), t(B, C) \subseteq C
$$

for some $C \subseteq B \subseteq A$.

- We say that C absorbs B with respect to t.
- If $t \mapsto s$ by our binary iteration procedure, then

$$
s(C, B), s(B, C) \subseteq C
$$

- If $B \neq C$, then s must be nontrivial.
- In particular,

$$
t(a, b)=t(b, a)=b \quad \Longrightarrow \quad s(a, b)=s(b, a)=b .
$$

Meaning of the partial semilattice identities

- The s we constructed satisfies the identities

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

Meaning of the partial semilattice identities

- The s we constructed satisfies the identities

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

- Together with idempotence, these are equivalent to

$$
(\{x, s(x, y)\}, s)
$$

being a semilattice with absorbing element $s(x, y)$.

Meaning of the partial semilattice identities

- The s we constructed satisfies the identities

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

- Together with idempotence, these are equivalent to

$$
(\{x, s(x, y)\}, s)
$$

being a semilattice with absorbing element $s(x, y)$.

- Write $a \rightarrow_{s} b$ when

$$
(\{a, b\}, s)
$$

is a semilattice with absorbing element b.

Meaning of the partial semilattice identities

- The s we constructed satisfies the identities

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

- Together with idempotence, these are equivalent to

$$
(\{x, s(x, y)\}, s)
$$

being a semilattice with absorbing element $s(x, y)$.

- Write $a \rightarrow_{s} b$ when

$$
(\{a, b\}, s)
$$

is a semilattice with absorbing element b.

- We have

$$
\begin{aligned}
a \rightarrow_{s} b & \Longleftrightarrow s(a, b)=b \\
& \Longleftrightarrow \exists c \text { s.t. } s(a, c)=b .
\end{aligned}
$$

Simplifying clones: the goal

- Suppose $a \rightarrow_{s} b$. We would like:

Simplifying clones: the goal

- Suppose $a \rightarrow_{s} b$. We would like:
- $\{a, b\}$ to be a subalgebra of \mathbb{A}, and

Simplifying clones: the goal

- Suppose $a \rightarrow_{s} b$. We would like:
- $\{a, b\}$ to be a subalgebra of \mathbb{A}, and
- this subalgebra to be term equivalent to $(\{a, b\}, s)$.

Simplifying clones: the goal

- Suppose $a \rightarrow_{s} b$. We would like:
- $\{a, b\}$ to be a subalgebra of \mathbb{A}, and
- this subalgebra to be term equivalent to $(\{a, b\}, s)$.
- We want to find a reduct of \mathbb{A} which satisfies the properties above, which preserves the height one identities satisfied by A.

Simplifying clones: the goal

- Suppose $a \rightarrow_{s} b$. We would like:
- $\{a, b\}$ to be a subalgebra of \mathbb{A}, and
- this subalgebra to be term equivalent to $(\{a, b\}, s)$.
- We want to find a reduct of \mathbb{A} which satisfies the properties above, which preserves the height one identities satisfied by A.
- It isn't possible to preserve all height one identities: they must be compatible with semilattices.

Two-variable height-one identities

- For every $n \geq 2$, define $s_{n}: A^{n} \rightarrow A$ by

$$
s_{n}\left(x_{1}, \ldots, x_{n}\right):=s\left(s_{n-1}\left(x_{1}, \ldots, x_{n-1}\right), s\left(x_{1}, x_{n}\right)\right) .
$$

Two-variable height-one identities

- For every $n \geq 2$, define $s_{n}: A^{n} \rightarrow A$ by

$$
s_{n}\left(x_{1}, \ldots, x_{n}\right):=s\left(s_{n-1}\left(x_{1}, \ldots, x_{n-1}\right), s\left(x_{1}, x_{n}\right)\right)
$$

- If $x_{1}=x$ and $\left\{x_{1}, \ldots, x_{n}\right\}=\{x, y\}$, then

$$
s_{n}\left(x_{1}, \ldots, x_{n}\right) \approx s(x, y)
$$

Two-variable height-one identities

- For every $n \geq 2$, define $s_{n}: A^{n} \rightarrow A$ by

$$
s_{n}\left(x_{1}, \ldots, x_{n}\right):=s\left(s_{n-1}\left(x_{1}, \ldots, x_{n-1}\right), s\left(x_{1}, x_{n}\right)\right) .
$$

- If $x_{1}=x$ and $\left\{x_{1}, \ldots, x_{n}\right\}=\{x, y\}$, then

$$
s_{n}\left(x_{1}, \ldots, x_{n}\right) \approx s(x, y)
$$

- For $f: A^{n} \rightarrow A$, define f_{s} by

$$
f_{s}\left(x_{1}, \ldots, x_{n}\right):=f\left(s\left(x_{1}, \ldots, x_{n}\right), s\left(x_{2}, \ldots, x_{n}, x_{1}\right), \ldots, s\left(x_{n}, x_{1}, \ldots, x_{n-1}\right)\right) .
$$

Two-variable height-one identities

- For every $n \geq 2$, define $s_{n}: A^{n} \rightarrow A$ by

$$
s_{n}\left(x_{1}, \ldots, x_{n}\right):=s\left(s_{n-1}\left(x_{1}, \ldots, x_{n-1}\right), s\left(x_{1}, x_{n}\right)\right) .
$$

- If $x_{1}=x$ and $\left\{x_{1}, \ldots, x_{n}\right\}=\{x, y\}$, then

$$
s_{n}\left(x_{1}, \ldots, x_{n}\right) \approx s(x, y)
$$

- For $f: A^{n} \rightarrow A$, define f_{s} by
$f_{s}\left(x_{1}, \ldots, x_{n}\right):=f\left(s\left(x_{1}, \ldots, x_{n}\right), s\left(x_{2}, \ldots, x_{n}, x_{1}\right), \ldots, s\left(x_{n}, x_{1}, \ldots, x_{n-1}\right)\right)$.
- If

$$
f\left(x_{1}, \ldots, x_{n}\right) \approx g\left(y_{1}, \ldots, y_{m}\right)
$$

and $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{m}\right\}=\{x, y\}$, then

$$
f_{s}\left(x_{1}, \ldots, x_{n}\right) \approx g_{s}\left(y_{1}, \ldots, y_{m}\right)
$$

Two-variable height-one identities, continued

- Define \mathbb{A}_{s} by

$$
\mathbb{A}_{s}=\left(A,\left\{f_{s}\right\}_{f \in \operatorname{Clo}(\mathbb{A})}\right)
$$

Two-variable height-one identities, continued

- Define \mathbb{A}_{s} by

$$
\mathbb{A}_{s}=\left(A,\left\{f_{s}\right\}_{f \in \operatorname{Clo}(\mathbb{A})}\right) .
$$

- If $a \rightarrow_{s} b$, then $\{a, b\}$ is a subalgebra of \mathbb{A}_{s}, term equivalent to $(\{a, b\}, s)$.

Two-variable height-one identities, continued

- Define \mathbb{A}_{s} by

$$
\mathbb{A}_{s}=\left(A,\left\{f_{s}\right\}_{f \in \operatorname{Clo}(\mathbb{A})}\right) .
$$

- If $a \rightarrow_{s} b$, then $\{a, b\}$ is a subalgebra of \mathbb{A}_{s}, term equivalent to $(\{a, b\}, s)$.
- Every system of two-variable height-one identities with both variables occuring on each side which is satisfied in \mathbb{A} is also satisfied in \mathbb{A}_{s}.

Two-variable height-one identities, continued

- Define \mathbb{A}_{s} by

$$
\mathbb{A}_{s}=\left(A,\left\{f_{s}\right\}_{f \in \operatorname{Clo}(\mathbb{A})}\right) .
$$

- If $a \rightarrow_{s} b$, then $\{a, b\}$ is a subalgebra of \mathbb{A}_{s}, term equivalent to $(\{a, b\}, s)$.
- Every system of two-variable height-one identities with both variables occuring on each side which is satisfied in \mathbb{A} is also satisfied in \mathbb{A}_{s}.
- In particular:

Two-variable height-one identities, continued

- Define \mathbb{A}_{s} by

$$
\mathbb{A}_{s}=\left(A,\left\{f_{s}\right\}_{f \in \operatorname{Clo}(\mathbb{A})}\right) .
$$

- If $a \rightarrow_{s} b$, then $\{a, b\}$ is a subalgebra of \mathbb{A}_{s}, term equivalent to $(\{a, b\}, s)$.
- Every system of two-variable height-one identities with both variables occuring on each side which is satisfied in \mathbb{A} is also satisfied in \mathbb{A}_{s}.
- In particular:
- If \mathbb{A} is Taylor, then \mathbb{A}_{s} is also Taylor.

Two-variable height-one identities, continued

- Define \mathbb{A}_{s} by

$$
\mathbb{A}_{s}=\left(A,\left\{f_{s}\right\}_{f \in \operatorname{Clo}(\mathbb{A})}\right) .
$$

- If $a \rightarrow_{s} b$, then $\{a, b\}$ is a subalgebra of \mathbb{A}_{s}, term equivalent to $(\{a, b\}, s)$.
- Every system of two-variable height-one identities with both variables occuring on each side which is satisfied in \mathbb{A} is also satisfied in \mathbb{A}_{s}.
- In particular:
- If \mathbb{A} is Taylor, then \mathbb{A}_{s} is also Taylor.
- If \mathbb{A} has bounded width, then \mathbb{A}_{s} also has bounded width.

Symmetric operations

- An operation $f: A^{n} \rightarrow A$ is symmetric if

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

for all permutations $\sigma \in S_{n}$.

Symmetric operations

- An operation $f: A^{n} \rightarrow A$ is symmetric if

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

for all permutations $\sigma \in S_{n}$.

- \mathbb{A} has symmetric operations of every arity iff the Linear Programming relaxation solves $\operatorname{CSP}(\mathbb{A})$.

Symmetric operations

- An operation $f: A^{n} \rightarrow A$ is symmetric if

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

for all permutations $\sigma \in S_{n}$.

- \mathbb{A} has symmetric operations of every arity iff the Linear Programming relaxation solves $\operatorname{CSP}(\mathbb{A})$.
- If f_{n} are a system of symmetric operations for each arity n, write

$$
f_{n}^{s}\left(x_{1}, \ldots, x_{n}\right):=f_{n!}\left(s_{n}\left(x_{\sigma_{1}(1)}, \ldots, x_{\sigma_{1}(n)}\right), \ldots, s_{n}\left(x_{\sigma_{n!}(1)}, \ldots, x_{\sigma_{n!}(n)}\right)\right)
$$

Symmetric operations

- An operation $f: A^{n} \rightarrow A$ is symmetric if

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

for all permutations $\sigma \in S_{n}$.

- \mathbb{A} has symmetric operations of every arity iff the Linear Programming relaxation solves $\operatorname{CSP}(\mathbb{A})$.
- If f_{n} are a system of symmetric operations for each arity n, write

$$
f_{n}^{s}\left(x_{1}, \ldots, x_{n}\right):=f_{n!}\left(s_{n}\left(x_{\sigma_{1}(1)}, \ldots, x_{\sigma_{1}(n)}\right), \ldots, s_{n}\left(x_{\sigma_{n!}(1)}, \ldots, x_{\sigma_{n!}(n)}\right)\right)
$$

- Each f_{n}^{s} is symmetric, and if $a \rightarrow_{s} b$ then f_{n}^{s} acts like s_{n} on $\{a, b\}$.

Totally symmetric operations

- An operation $f: A^{n} \rightarrow A$ is totally symmetric if

$$
\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\} \quad \Longrightarrow \quad f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Totally symmetric operations

- An operation $f: A^{n} \rightarrow A$ is totally symmetric if

$$
\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\} \quad \Longrightarrow \quad f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

- \mathbb{A} has totally symmetric operations of every arity iff Arc Consistency solves CSP(A).

Totally symmetric operations

- An operation $f: A^{n} \rightarrow A$ is totally symmetric if

$$
\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\} \quad \Longrightarrow \quad f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

- \mathbb{A} has totally symmetric operations of every arity iff Arc Consistency solves $\operatorname{CSP}(\mathbb{A})$.

Proposition

If \mathbb{A} has totally symmetric operations f_{n} of every arity n, then there are totally symmetric operations $f_{n}^{s} \in \operatorname{Clo}(\mathbb{A})$ such that if $a \rightarrow_{s} b$ then f_{n}^{s} acts like s_{n} on $\{a, b\}$.

Analogue of idempotence

- These constructions involved preprocessing the inputs to functions $f \in \operatorname{Clo}(\mathbb{A})$ by applying the operations s_{n}.

Analogue of idempotence

- These constructions involved preprocessing the inputs to functions $f \in \operatorname{Clo}(\mathbb{A})$ by applying the operations s_{n}.
- I say that an algebra \mathbb{A} has been prepared if

$$
\left[\begin{array}{l}
b \\
b
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{2}}\left\{\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
b \\
a
\end{array}\right]\right\}
$$

implies that

$$
\{a, b\}
$$

is a subalgebra of \mathbb{A}, term equivalent to a semilattice with absorbing element b.

Analogue of idempotence

- These constructions involved preprocessing the inputs to functions $f \in \operatorname{Clo}(\mathbb{A})$ by applying the operations s_{n}.
- I say that an algebra \mathbb{A} has been prepared if

$$
\left[\begin{array}{l}
b \\
b
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{2}}\left\{\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
b \\
a
\end{array}\right]\right\}
$$

implies that

$$
\{a, b\}
$$

is a subalgebra of \mathbb{A}, term equivalent to a semilattice with absorbing element b.

- If \mathbb{A} is prepared, then we write $a \rightarrow b$ if the above holds.

Binary absorption and strong absorption

- Write $\mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}(\mathbb{B}$ binary absorbs $\mathbb{A})$ if there is a binary term t such that \mathbb{B} absorbs \mathbb{A} with respect to t.

Binary absorption and strong absorption

- Write $\mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}(\mathbb{B}$ binary absorbs $\mathbb{A})$ if there is a binary term t such that \mathbb{B} absorbs \mathbb{A} with respect to t.
- Write $\mathbb{B} \triangleleft_{\text {str }} \mathbb{A}(\mathbb{B}$ strongly absorbs $\mathbb{A})$ if for every $f \in \operatorname{Clo}(\mathbb{A})$ which depends on its first variable, we have

$$
f(\mathbb{B}, \mathbb{A}, \ldots, \mathbb{A}) \in \mathbb{B}
$$

Binary absorption and strong absorption

- Write $\mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}(\mathbb{B}$ binary absorbs $\mathbb{A})$ if there is a binary term t such that \mathbb{B} absorbs \mathbb{A} with respect to t.
- Write $\mathbb{B} \triangleleft_{\text {str }} \mathbb{A}(\mathbb{B}$ strongly absorbs $\mathbb{A})$ if for every $f \in \operatorname{Clo}(\mathbb{A})$ which depends on its first variable, we have

$$
f(\mathbb{B}, \mathbb{A}, \ldots, \mathbb{A}) \in \mathbb{B}
$$

- If \mathbb{A} has any terms which depend on both variables, then

$$
\mathbb{B} \triangleleft_{\text {str }} \mathbb{A} \quad \Longrightarrow \quad \mathbb{B} \triangleleft_{\text {bin }} \mathbb{A} .
$$

Binary absorption and strong absorption

- Write $\mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}(\mathbb{B}$ binary absorbs $\mathbb{A})$ if there is a binary term t such that \mathbb{B} absorbs \mathbb{A} with respect to t.
- Write $\mathbb{B} \triangleleft_{\text {str }} \mathbb{A}(\mathbb{B}$ strongly absorbs $\mathbb{A})$ if for every $f \in \operatorname{Clo}(\mathbb{A})$ which depends on its first variable, we have

$$
f(\mathbb{B}, \mathbb{A}, \ldots, \mathbb{A}) \in \mathbb{B}
$$

- If \mathbb{A} has any terms which depend on both variables, then

$$
\mathbb{B} \triangleleft_{\text {str }} \mathbb{A} \quad \Longrightarrow \quad \mathbb{B} \triangleleft_{\text {bin }} \mathbb{A} .
$$

- I say that \mathbb{A} has been strongly prepared if

$$
\mathbb{B} \triangleleft_{\text {bin }} \mathbb{C} \quad \Longrightarrow \quad \mathbb{B} \triangleleft_{\text {str }} \mathbb{C} \text {. }
$$

Binary absorption and strong absorption

- Write $\mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}(\mathbb{B}$ binary absorbs $\mathbb{A})$ if there is a binary term t such that \mathbb{B} absorbs \mathbb{A} with respect to t.
- Write $\mathbb{B} \triangleleft_{\text {str }} \mathbb{A}(\mathbb{B}$ strongly absorbs $\mathbb{A})$ if for every $f \in \operatorname{Clo}(\mathbb{A})$ which depends on its first variable, we have

$$
f(\mathbb{B}, \mathbb{A}, \ldots, \mathbb{A}) \in \mathbb{B}
$$

- If \mathbb{A} has any terms which depend on both variables, then

$$
\mathbb{B} \triangleleft_{\text {str }} \mathbb{A} \quad \Longrightarrow \quad \mathbb{B} \triangleleft_{\text {bin }} \mathbb{A} \text {. }
$$

- I say that \mathbb{A} has been strongly prepared if

$$
\mathbb{B} \triangleleft_{\text {bin }} \mathbb{C} \quad \Longrightarrow \quad \mathbb{B} \triangleleft_{\text {str }} \mathbb{C} \text {. }
$$

- The previous constructions can be used to reduce to the case where \mathbb{A} is strongly prepared.

Transitivity of binary absorption?

- Suppose that $\mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}$ and $\mathbb{C} \triangleleft_{\text {bin }} \mathbb{B}$. Does it follow that $\mathbb{C} \triangleleft_{\text {bin }} \mathbb{A}$?

Transitivity of binary absorption?

- Suppose that $\mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}$ and $\mathbb{C} \triangleleft_{\text {bin }} \mathbb{B}$. Does it follow that $\mathbb{C} \triangleleft_{\text {bin }} \mathbb{A}$?
- In general, no:

$$
\begin{aligned}
& \mathbb{A}=\left(\{0,1\}^{2}, \wedge, \vee\right), \\
& \mathbb{B}=(\{(0,0),(0,1)\}, \wedge, \vee), \\
& \mathbb{C}=(\{(0,1)\}, \wedge, \vee)
\end{aligned}
$$

Transitivity of binary absorption?

- Suppose that $\mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}$ and $\mathbb{C} \triangleleft_{\text {bin }} \mathbb{B}$. Does it follow that $\mathbb{C} \triangleleft_{\text {bin }} \mathbb{A}$?
- In general, no:

$$
\begin{aligned}
& \mathbb{A}=\left(\{0,1\}^{2}, \wedge, \vee\right), \\
& \mathbb{B}=(\{(0,0),(0,1)\}, \wedge, \vee), \\
& \mathbb{C}=(\{(0,1)\}, \wedge, \vee)
\end{aligned}
$$

- Transitivity also fails for strong absorption:

$$
\{c\} \triangleleft_{s t r}\{b, c\} \triangleleft_{s t r}\{a, b, c\}
$$

in the idempotent commutative groupoid with $a b=a c=b$ and $b c=c$.

Useful lemma about absorption

Lemma

If \mathbb{A} is prepared, and if $\mathbb{B} \triangleleft \mathbb{A}$, then for any partial semilattice operation $s \in \mathrm{Clo}_{2}(\mathbb{A})$ we have

$$
s(\mathbb{B}, \mathbb{A}) \subseteq \mathbb{B}
$$

Useful lemma about absorption

Lemma

If \mathbb{A} is prepared, and if $\mathbb{B} \triangleleft \mathbb{A}$, then for any partial semilattice operation $s \in \mathrm{Clo}_{2}(\mathbb{A})$ we have

$$
s(\mathbb{B}, \mathbb{A}) \subseteq \mathbb{B}
$$

Proof.

If $b \in \mathbb{B}$ and $s(b, a) \notin \mathbb{B}$, then $\{b, s(b, a)\}$ is a subalgebra of \mathbb{A} which is not absorbed by $\{b\}=\mathbb{B} \cap\{b, s(b, a)\}$.

Preparation fixes transitivity

Proposition

If \mathbb{A} is prepared, and if $\mathbb{C} \triangleleft_{\text {bin }} \mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}$, then $\mathbb{C} \triangleleft_{\text {bin }} \mathbb{A}$.

Preparation fixes transitivity

Proposition

If \mathbb{A} is prepared, and if $\mathbb{C} \triangleleft_{\text {bin }} \mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}$, then $\mathbb{C} \triangleleft_{\text {bin }} \mathbb{A}$.

Proof.

Choose a partial semilattice term s such that

$$
s(\mathbb{B}, \mathbb{C}), s(\mathbb{C}, \mathbb{B}) \subseteq \mathbb{C}
$$

and any t witnessing $\mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}$. Define $u \in \operatorname{Clo}(s, t)$ by

$$
u(x, y):=s(s(t(x, y), y), s(t(y, x), x))
$$

Then u witnesses $\mathbb{C} \triangleleft_{\text {bin }} \mathbb{A}$.

Preparation forces intersection

Proposition
If \mathbb{A} is prepared, and if $\mathbb{B}_{1} \triangleleft \mathbb{A}, \mathbb{B}_{2} \triangleleft_{\text {bin }} \mathbb{A}$, then $\mathbb{B}_{1} \cap \mathbb{B}_{2} \neq \emptyset$.

Preparation forces intersection

Proposition
If \mathbb{A} is prepared, and if $\mathbb{B}_{1} \triangleleft \mathbb{A}, \mathbb{B}_{2} \triangleleft_{\text {bin }} \mathbb{A}$, then $\mathbb{B}_{1} \cap \mathbb{B}_{2} \neq \emptyset$.

Proof.
Choose a partial semilattice term s such that

$$
s\left(\mathbb{B}_{2}, \mathbb{A}\right), s\left(\mathbb{A}, \mathbb{B}_{2}\right) \subseteq \mathbb{B}_{2}
$$

and any $b_{1} \in \mathbb{B}_{1}, b_{2} \in \mathbb{B}_{2}$. Then

$$
s\left(b_{1}, b_{2}\right) \in \mathbb{B}_{1} \cap \mathbb{B}_{2}
$$

Nice criterion for binary absorption

Proposition

If \mathbb{A} is prepared, and if $s(\mathbb{B}, \mathbb{A}) \subseteq \mathbb{B}$ for a partial semilattice operation s, then TFAE:

Nice criterion for binary absorption

Proposition

If \mathbb{A} is prepared, and if $s(\mathbb{B}, \mathbb{A}) \subseteq \mathbb{B}$ for a partial semilattice operation s, then TFAE:

- $\mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}$,

Nice criterion for binary absorption

Proposition

If \mathbb{A} is prepared, and if $s(\mathbb{B}, \mathbb{A}) \subseteq \mathbb{B}$ for a partial semilattice operation s, then TFAE:

- $\mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}$,
- for all $a \in \mathbb{A} \backslash \mathbb{B}$ and $b \in \mathbb{B}, \operatorname{Sg}_{\mathbb{A}}\{a, b\}$ has a proper binary absorbing subalgebra,

Nice criterion for binary absorption

Proposition

If \mathbb{A} is prepared, and if $s(\mathbb{B}, \mathbb{A}) \subseteq \mathbb{B}$ for a partial semilattice operation s, then TFAE:

- $\mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}$,
- for all $a \in \mathbb{A} \backslash \mathbb{B}$ and $b \in \mathbb{B}, \operatorname{Sg}_{\mathbb{A}}\{a, b\}$ has a proper binary absorbing subalgebra,
- for all $a \in \mathbb{A} \backslash \mathbb{B}$ and $b \in \mathbb{B}, \operatorname{Sg}_{\mathbb{A}}\{a, b\}$ contains a directed path

$$
a=a_{1} \rightarrow a_{2} \rightarrow \cdots \rightarrow a_{n} \in \mathbb{B}
$$

Nice criterion for binary absorption

Proposition

If \mathbb{A} is prepared, and if $s(\mathbb{B}, \mathbb{A}) \subseteq \mathbb{B}$ for a partial semilattice operation s, then TFAE:

- $\mathbb{B} \triangleleft_{\text {bin }} \mathbb{A}$,
- for all $a \in \mathbb{A} \backslash \mathbb{B}$ and $b \in \mathbb{B}, \operatorname{Sg}_{\mathbb{A}}\{a, b\}$ has a proper binary absorbing subalgebra,
- for all $a \in \mathbb{A} \backslash \mathbb{B}$ and $b \in \mathbb{B}, \operatorname{Sg}_{\mathbb{A}}\{a, b\}$ contains a directed path

$$
a=a_{1} \rightarrow a_{2} \rightarrow \cdots \rightarrow a_{n} \in \mathbb{B} .
$$

- for all $a \in \mathbb{A} \backslash \mathbb{B}$ and $b \in \mathbb{B}$, there is some $b^{\prime} \in \operatorname{Sg}_{\mathbb{A}}\{a, b\}$ such that

$$
a \rightarrow b^{\prime} \in \mathbb{B} .
$$

Thank you for your attention.

