
Simplifying clones with partial semilattice
operations

Zarathustra Brady

Unary iteration

I Suppose f : A→ A, |A| <∞.

I Write f ◦n(x) for
f (f (· · · f︸ ︷︷ ︸

n

(x) · · ·)).

Proposition

There is some m dividing lcm{1, 2, ..., |A|} such that

f ◦m(x) ≈ f ◦km(x)

for all k ≥ 1.

Unary iteration

I Suppose f : A→ A, |A| <∞.

I Write f ◦n(x) for
f (f (· · · f︸ ︷︷ ︸

n

(x) · · ·)).

Proposition

There is some m dividing lcm{1, 2, ..., |A|} such that

f ◦m(x) ≈ f ◦km(x)

for all k ≥ 1.

Unary iteration

I Suppose f : A→ A, |A| <∞.

I Write f ◦n(x) for
f (f (· · · f︸ ︷︷ ︸

n

(x) · · ·)).

Proposition

There is some m dividing lcm{1, 2, ..., |A|} such that

f ◦m(x) ≈ f ◦km(x)

for all k ≥ 1.

Unary iteration, continued

Definition
For f : A→ A, |A| <∞, define f ◦∞ by

f ◦∞(x) := lim
n→∞

f ◦n!(x).

I For any f , f ◦∞ satisfies

f ◦∞(f ◦∞(x)) ≈ f ◦∞(x).

I If e : A→ A satisfies

e(e(x)) ≈ e(x),

we say that e is compositionally idempotent.

Unary iteration, continued

Definition
For f : A→ A, |A| <∞, define f ◦∞ by

f ◦∞(x) := lim
n→∞

f ◦n!(x).

I For any f , f ◦∞ satisfies

f ◦∞(f ◦∞(x)) ≈ f ◦∞(x).

I If e : A→ A satisfies

e(e(x)) ≈ e(x),

we say that e is compositionally idempotent.

Unary iteration, continued

Definition
For f : A→ A, |A| <∞, define f ◦∞ by

f ◦∞(x) := lim
n→∞

f ◦n!(x).

I For any f , f ◦∞ satisfies

f ◦∞(f ◦∞(x)) ≈ f ◦∞(x).

I If e : A→ A satisfies

e(e(x)) ≈ e(x),

we say that e is compositionally idempotent.

Nice behavior of unary iteration

I The map f 7→ f ◦∞ is compatible with homomorphisms:

(A, f) (B, g)

(A, f ◦∞) (B, g◦∞)

ϕ

ϕ

I Also compatible with finite products.

I As a bonus, f ◦∞ can be computed from f in O(|A|) steps.

Nice behavior of unary iteration

I The map f 7→ f ◦∞ is compatible with homomorphisms:

(A, f) (B, g)

(A, f ◦∞) (B, g◦∞)

ϕ

ϕ

I Also compatible with finite products.

I As a bonus, f ◦∞ can be computed from f in O(|A|) steps.

Nice behavior of unary iteration

I The map f 7→ f ◦∞ is compatible with homomorphisms:

(A, f) (B, g)

(A, f ◦∞) (B, g◦∞)

ϕ

ϕ

I Also compatible with finite products.

I As a bonus, f ◦∞ can be computed from f in O(|A|) steps.

Using compositionally idempotent unary operations

I If e : A→ A is compositionally idempotent and f : An → A,
set

fe(x1, ..., xn) := e(f (e(x1), ..., e(xn))).

I Have fe ∈ Clo(e, f) and

fe : e(A)n → e(A).

I If
f (x1, ..., xn) ≈ g(y1, ..., ym),

then
fe(x1, ..., xn) ≈ ge(y1, ..., ym).

I The map f 7→ fe preserves identities of height at most one,
and shrinks the domain.

Using compositionally idempotent unary operations

I If e : A→ A is compositionally idempotent and f : An → A,
set

fe(x1, ..., xn) := e(f (e(x1), ..., e(xn))).

I Have fe ∈ Clo(e, f) and

fe : e(A)n → e(A).

I If
f (x1, ..., xn) ≈ g(y1, ..., ym),

then
fe(x1, ..., xn) ≈ ge(y1, ..., ym).

I The map f 7→ fe preserves identities of height at most one,
and shrinks the domain.

Using compositionally idempotent unary operations

I If e : A→ A is compositionally idempotent and f : An → A,
set

fe(x1, ..., xn) := e(f (e(x1), ..., e(xn))).

I Have fe ∈ Clo(e, f) and

fe : e(A)n → e(A).

I If
f (x1, ..., xn) ≈ g(y1, ..., ym),

then
fe(x1, ..., xn) ≈ ge(y1, ..., ym).

I The map f 7→ fe preserves identities of height at most one,
and shrinks the domain.

Using compositionally idempotent unary operations

I If e : A→ A is compositionally idempotent and f : An → A,
set

fe(x1, ..., xn) := e(f (e(x1), ..., e(xn))).

I Have fe ∈ Clo(e, f) and

fe : e(A)n → e(A).

I If
f (x1, ..., xn) ≈ g(y1, ..., ym),

then
fe(x1, ..., xn) ≈ ge(y1, ..., ym).

I The map f 7→ fe preserves identities of height at most one,
and shrinks the domain.

Reduction to cores

I If we are studying identities of height one, we can replace A by

Ae := (e(A), {fe}f ∈Clo(A))

for any e ∈ Clo1(A) which is compositionally idempotent.

I Eventually, we reduce to the case where

f ◦∞(x) ≈ x

for all f ∈ Clo1(A).

I In this case, Clo1(A) must be a group!

Reduction to cores

I If we are studying identities of height one, we can replace A by

Ae := (e(A), {fe}f ∈Clo(A))

for any e ∈ Clo1(A) which is compositionally idempotent.

I Eventually, we reduce to the case where

f ◦∞(x) ≈ x

for all f ∈ Clo1(A).

I In this case, Clo1(A) must be a group!

Reduction to cores

I If we are studying identities of height one, we can replace A by

Ae := (e(A), {fe}f ∈Clo(A))

for any e ∈ Clo1(A) which is compositionally idempotent.

I Eventually, we reduce to the case where

f ◦∞(x) ≈ x

for all f ∈ Clo1(A).

I In this case, Clo1(A) must be a group!

Reduction to idempotent algebras

I If Clo1(A) is a group, then f ∈ Clo(A) can be decomposed:

f (x1, ..., xn) ≈ fun(fid(x1, ..., xn)),

where
fun(x) := f (x , ..., x)

is unary and invertible, and

fid(x1, ..., xn) := f −1un (f (x1, ..., xn))

is idempotent.

I If
f (x1, ..., xn) ≈ g(y1, ..., ym),

then
fid(x1, ..., xn) ≈ gid(y1, ..., ym).

Reduction to idempotent algebras

I If Clo1(A) is a group, then f ∈ Clo(A) can be decomposed:

f (x1, ..., xn) ≈ fun(fid(x1, ..., xn)),

where
fun(x) := f (x , ..., x)

is unary and invertible, and

fid(x1, ..., xn) := f −1un (f (x1, ..., xn))

is idempotent.

I If
f (x1, ..., xn) ≈ g(y1, ..., ym),

then
fid(x1, ..., xn) ≈ gid(y1, ..., ym).

Binary iteration: the goal

I We want to generalize this construction to binary operations.

I Starting from t : A2 → A, we will construct s ∈ Clo2(t)
satisfying

s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y).

I We call such an s a partial semilattice operation.

I We will use partial semilattice operations s to simplify our
clones (while preserving some height one identities).

I When no further simplifications are possible, binary absorption
will have nice properties.

Binary iteration: the goal

I We want to generalize this construction to binary operations.

I Starting from t : A2 → A, we will construct s ∈ Clo2(t)
satisfying

s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y).

I We call such an s a partial semilattice operation.

I We will use partial semilattice operations s to simplify our
clones (while preserving some height one identities).

I When no further simplifications are possible, binary absorption
will have nice properties.

Binary iteration: the goal

I We want to generalize this construction to binary operations.

I Starting from t : A2 → A, we will construct s ∈ Clo2(t)
satisfying

s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y).

I We call such an s a partial semilattice operation.

I We will use partial semilattice operations s to simplify our
clones (while preserving some height one identities).

I When no further simplifications are possible, binary absorption
will have nice properties.

Binary iteration: the goal

I We want to generalize this construction to binary operations.

I Starting from t : A2 → A, we will construct s ∈ Clo2(t)
satisfying

s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y).

I We call such an s a partial semilattice operation.

I We will use partial semilattice operations s to simplify our
clones (while preserving some height one identities).

I When no further simplifications are possible, binary absorption
will have nice properties.

Binary iteration: the goal

I We want to generalize this construction to binary operations.

I Starting from t : A2 → A, we will construct s ∈ Clo2(t)
satisfying

s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y).

I We call such an s a partial semilattice operation.

I We will use partial semilattice operations s to simplify our
clones (while preserving some height one identities).

I When no further simplifications are possible, binary absorption
will have nice properties.

Binary iteration: the first step

I For t : A2 → A, define t◦2n by

t◦2n(x , y) := t(x , t(x , · · · t(x︸ ︷︷ ︸
n

, y) · · ·)).

I Define t◦2∞ by

t◦2∞(x , y) = lim
n→∞

t◦2n!(x , y).

I We automatically have

t◦2∞(x , t◦2∞(x , y)) ≈ t◦2∞(x , y).

Binary iteration: the first step

I For t : A2 → A, define t◦2n by

t◦2n(x , y) := t(x , t(x , · · · t(x︸ ︷︷ ︸
n

, y) · · ·)).

I Define t◦2∞ by

t◦2∞(x , y) = lim
n→∞

t◦2n!(x , y).

I We automatically have

t◦2∞(x , t◦2∞(x , y)) ≈ t◦2∞(x , y).

Binary iteration: the first step

I For t : A2 → A, define t◦2n by

t◦2n(x , y) := t(x , t(x , · · · t(x︸ ︷︷ ︸
n

, y) · · ·)).

I Define t◦2∞ by

t◦2∞(x , y) = lim
n→∞

t◦2n!(x , y).

I We automatically have

t◦2∞(x , t◦2∞(x , y)) ≈ t◦2∞(x , y).

Binary iteration: Bulatov’s clever idea

I Suppose f : A2 → A is idempotent and satisfies

f (x , f (x , y)) ≈ f (x , y).

I Define u(x , y) by

u(x , y) := f (x , f (y , x)).

I Then
f (x , u(x , y)) ≈ u(x , y),

so

u(u(x , y), x) ≈ f (u(x , y), f (x , u(x , y)))

≈ f (u(x , y), u(x , y))

≈ u(x , y).

Binary iteration: Bulatov’s clever idea

I Suppose f : A2 → A is idempotent and satisfies

f (x , f (x , y)) ≈ f (x , y).

I Define u(x , y) by

u(x , y) := f (x , f (y , x)).

I Then
f (x , u(x , y)) ≈ u(x , y),

so

u(u(x , y), x) ≈ f (u(x , y), f (x , u(x , y)))

≈ f (u(x , y), u(x , y))

≈ u(x , y).

Binary iteration: Bulatov’s clever idea

I Suppose f : A2 → A is idempotent and satisfies

f (x , f (x , y)) ≈ f (x , y).

I Define u(x , y) by

u(x , y) := f (x , f (y , x)).

I Then
f (x , u(x , y)) ≈ u(x , y),

so

u(u(x , y), x) ≈ f (u(x , y), f (x , u(x , y)))

≈ f (u(x , y), u(x , y))

≈ u(x , y).

Binary iteration: Bulatov’s clever idea

I Suppose f : A2 → A is idempotent and satisfies

f (x , f (x , y)) ≈ f (x , y).

I Define u(x , y) by

u(x , y) := f (x , f (y , x)).

I Then
f (x , u(x , y)) ≈ u(x , y),

so

u(u(x , y), x) ≈ f (u(x , y), f (x , u(x , y)))

≈ f (u(x , y), u(x , y))

≈ u(x , y).

Binary iteration: a minor miracle
I Suppose u : A2 → A satisfies

u(u(x , y), x) ≈ u(x , y).

I Define s(x , y) by

s(x , y) := u◦2∞(x , y).

I For all n, we have

u◦2n(u(x , y), x) ≈ u(x , y).

I Replacing y by u◦2(n−1)(x , y), we get

u◦2n(u◦2n(x , y), x) ≈ u◦2n(x , y).

I Taking the limit, we get

s(s(x , y), x) ≈ s(x , y) ≈ s(x , s(x , y)).

Binary iteration: a minor miracle
I Suppose u : A2 → A satisfies

u(u(x , y), x) ≈ u(x , y).

I Define s(x , y) by

s(x , y) := u◦2∞(x , y).

I For all n, we have

u◦2n(u(x , y), x) ≈ u(x , y).

I Replacing y by u◦2(n−1)(x , y), we get

u◦2n(u◦2n(x , y), x) ≈ u◦2n(x , y).

I Taking the limit, we get

s(s(x , y), x) ≈ s(x , y) ≈ s(x , s(x , y)).

Binary iteration: a minor miracle
I Suppose u : A2 → A satisfies

u(u(x , y), x) ≈ u(x , y).

I Define s(x , y) by

s(x , y) := u◦2∞(x , y).

I For all n, we have

u◦2n(u(x , y), x) ≈ u(x , y).

I Replacing y by u◦2(n−1)(x , y), we get

u◦2n(u◦2n(x , y), x) ≈ u◦2n(x , y).

I Taking the limit, we get

s(s(x , y), x) ≈ s(x , y) ≈ s(x , s(x , y)).

Binary iteration: a minor miracle
I Suppose u : A2 → A satisfies

u(u(x , y), x) ≈ u(x , y).

I Define s(x , y) by

s(x , y) := u◦2∞(x , y).

I For all n, we have

u◦2n(u(x , y), x) ≈ u(x , y).

I Replacing y by u◦2(n−1)(x , y), we get

u◦2n(u◦2n(x , y), x) ≈ u◦2n(x , y).

I Taking the limit, we get

s(s(x , y), x) ≈ s(x , y) ≈ s(x , s(x , y)).

Binary iteration: a minor miracle
I Suppose u : A2 → A satisfies

u(u(x , y), x) ≈ u(x , y).

I Define s(x , y) by

s(x , y) := u◦2∞(x , y).

I For all n, we have

u◦2n(u(x , y), x) ≈ u(x , y).

I Replacing y by u◦2(n−1)(x , y), we get

u◦2n(u◦2n(x , y), x) ≈ u◦2n(x , y).

I Taking the limit, we get

s(s(x , y), x) ≈ s(x , y) ≈ s(x , s(x , y)).

Binary iteration: putting it all together

I Our full construction is given by

f (x , y) := t◦2∞(x , y),

u(x , y) := f (x , f (y , x)),

s(x , y) := u◦2∞(x , y).

I More compactly:

s := t◦2∞(π1, t
◦2∞(π2, π1))◦2∞.

Binary iteration: putting it all together

I Our full construction is given by

f (x , y) := t◦2∞(x , y),

u(x , y) := f (x , f (y , x)),

s(x , y) := u◦2∞(x , y).

I More compactly:

s := t◦2∞(π1, t
◦2∞(π2, π1))◦2∞.

Nice behavior of binary iteration

I Suppose ti 7→ si by the procedure on the previous slide.

I The construction is compatible with homomorphisms:

(A1, t1) (A2, t2)

(A1, s1) (A2, s2)

ϕ

ϕ

I Also compatible with finite products.

I As a bonus, si can be computed from ti in time O(|Ai |2).

Nice behavior of binary iteration

I Suppose ti 7→ si by the procedure on the previous slide.

I The construction is compatible with homomorphisms:

(A1, t1) (A2, t2)

(A1, s1) (A2, s2)

ϕ

ϕ

I Also compatible with finite products.

I As a bonus, si can be computed from ti in time O(|Ai |2).

Nice behavior of binary iteration

I Suppose ti 7→ si by the procedure on the previous slide.

I The construction is compatible with homomorphisms:

(A1, t1) (A2, t2)

(A1, s1) (A2, s2)

ϕ

ϕ

I Also compatible with finite products.

I As a bonus, si can be computed from ti in time O(|Ai |2).

Nice behavior of binary iteration

I Suppose ti 7→ si by the procedure on the previous slide.

I The construction is compatible with homomorphisms:

(A1, t1) (A2, t2)

(A1, s1) (A2, s2)

ϕ

ϕ

I Also compatible with finite products.

I As a bonus, si can be computed from ti in time O(|Ai |2).

Compatibility with binary absorption

I Suppose t : A2 → A satisfies

t(C ,B), t(B,C) ⊆ C

for some C ⊆ B ⊆ A.

I We say that C absorbs B with respect to t.

I If t 7→ s by our binary iteration procedure, then

s(C ,B), s(B,C) ⊆ C .

I If B 6= C , then s must be nontrivial.

I In particular,

t(a, b) = t(b, a) = b =⇒ s(a, b) = s(b, a) = b.

Compatibility with binary absorption

I Suppose t : A2 → A satisfies

t(C ,B), t(B,C) ⊆ C

for some C ⊆ B ⊆ A.

I We say that C absorbs B with respect to t.

I If t 7→ s by our binary iteration procedure, then

s(C ,B), s(B,C) ⊆ C .

I If B 6= C , then s must be nontrivial.

I In particular,

t(a, b) = t(b, a) = b =⇒ s(a, b) = s(b, a) = b.

Compatibility with binary absorption

I Suppose t : A2 → A satisfies

t(C ,B), t(B,C) ⊆ C

for some C ⊆ B ⊆ A.

I We say that C absorbs B with respect to t.

I If t 7→ s by our binary iteration procedure, then

s(C ,B), s(B,C) ⊆ C .

I If B 6= C , then s must be nontrivial.

I In particular,

t(a, b) = t(b, a) = b =⇒ s(a, b) = s(b, a) = b.

Compatibility with binary absorption

I Suppose t : A2 → A satisfies

t(C ,B), t(B,C) ⊆ C

for some C ⊆ B ⊆ A.

I We say that C absorbs B with respect to t.

I If t 7→ s by our binary iteration procedure, then

s(C ,B), s(B,C) ⊆ C .

I If B 6= C , then s must be nontrivial.

I In particular,

t(a, b) = t(b, a) = b =⇒ s(a, b) = s(b, a) = b.

Compatibility with binary absorption

I Suppose t : A2 → A satisfies

t(C ,B), t(B,C) ⊆ C

for some C ⊆ B ⊆ A.

I We say that C absorbs B with respect to t.

I If t 7→ s by our binary iteration procedure, then

s(C ,B), s(B,C) ⊆ C .

I If B 6= C , then s must be nontrivial.

I In particular,

t(a, b) = t(b, a) = b =⇒ s(a, b) = s(b, a) = b.

Meaning of the partial semilattice identities
I The s we constructed satisfies the identities

s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y).

I Together with idempotence, these are equivalent to

({x , s(x , y)}, s)

being a semilattice with absorbing element s(x , y).

I Write a→s b when
({a, b}, s)

is a semilattice with absorbing element b.

I We have

a→s b ⇐⇒ s(a, b) = b

⇐⇒ ∃c s.t. s(a, c) = b.

Meaning of the partial semilattice identities
I The s we constructed satisfies the identities

s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y).

I Together with idempotence, these are equivalent to

({x , s(x , y)}, s)

being a semilattice with absorbing element s(x , y).

I Write a→s b when
({a, b}, s)

is a semilattice with absorbing element b.

I We have

a→s b ⇐⇒ s(a, b) = b

⇐⇒ ∃c s.t. s(a, c) = b.

Meaning of the partial semilattice identities
I The s we constructed satisfies the identities

s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y).

I Together with idempotence, these are equivalent to

({x , s(x , y)}, s)

being a semilattice with absorbing element s(x , y).

I Write a→s b when
({a, b}, s)

is a semilattice with absorbing element b.

I We have

a→s b ⇐⇒ s(a, b) = b

⇐⇒ ∃c s.t. s(a, c) = b.

Meaning of the partial semilattice identities
I The s we constructed satisfies the identities

s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y).

I Together with idempotence, these are equivalent to

({x , s(x , y)}, s)

being a semilattice with absorbing element s(x , y).

I Write a→s b when
({a, b}, s)

is a semilattice with absorbing element b.

I We have

a→s b ⇐⇒ s(a, b) = b

⇐⇒ ∃c s.t. s(a, c) = b.

Simplifying clones: the goal

I Suppose a→s b. We would like:

I {a, b} to be a subalgebra of A, and
I this subalgebra to be term equivalent to ({a, b}, s).

I We want to find a reduct of A which satisfies the properties
above, which preserves the height one identities satisfied by
A.

I It isn’t possible to preserve all height one identities: they must
be compatible with semilattices.

Simplifying clones: the goal

I Suppose a→s b. We would like:
I {a, b} to be a subalgebra of A, and

I this subalgebra to be term equivalent to ({a, b}, s).

I We want to find a reduct of A which satisfies the properties
above, which preserves the height one identities satisfied by
A.

I It isn’t possible to preserve all height one identities: they must
be compatible with semilattices.

Simplifying clones: the goal

I Suppose a→s b. We would like:
I {a, b} to be a subalgebra of A, and
I this subalgebra to be term equivalent to ({a, b}, s).

I We want to find a reduct of A which satisfies the properties
above, which preserves the height one identities satisfied by
A.

I It isn’t possible to preserve all height one identities: they must
be compatible with semilattices.

Simplifying clones: the goal

I Suppose a→s b. We would like:
I {a, b} to be a subalgebra of A, and
I this subalgebra to be term equivalent to ({a, b}, s).

I We want to find a reduct of A which satisfies the properties
above, which preserves the height one identities satisfied by
A.

I It isn’t possible to preserve all height one identities: they must
be compatible with semilattices.

Simplifying clones: the goal

I Suppose a→s b. We would like:
I {a, b} to be a subalgebra of A, and
I this subalgebra to be term equivalent to ({a, b}, s).

I We want to find a reduct of A which satisfies the properties
above, which preserves the height one identities satisfied by
A.

I It isn’t possible to preserve all height one identities: they must
be compatible with semilattices.

Two-variable height-one identities
I For every n ≥ 2, define sn : An → A by

sn(x1, ..., xn) := s(sn−1(x1, ..., xn−1), s(x1, xn)).

I If x1 = x and {x1, ..., xn} = {x , y}, then

sn(x1, ..., xn) ≈ s(x , y).

I For f : An → A, define fs by

fs(x1, ..., xn) := f (s(x1, ..., xn), s(x2, ..., xn, x1), ..., s(xn, x1, ..., xn−1)).

I If
f (x1, ..., xn) ≈ g(y1, ..., ym)

and {x1, ..., xn} = {y1, ..., ym} = {x , y}, then

fs(x1, ..., xn) ≈ gs(y1, ..., ym).

Two-variable height-one identities
I For every n ≥ 2, define sn : An → A by

sn(x1, ..., xn) := s(sn−1(x1, ..., xn−1), s(x1, xn)).

I If x1 = x and {x1, ..., xn} = {x , y}, then

sn(x1, ..., xn) ≈ s(x , y).

I For f : An → A, define fs by

fs(x1, ..., xn) := f (s(x1, ..., xn), s(x2, ..., xn, x1), ..., s(xn, x1, ..., xn−1)).

I If
f (x1, ..., xn) ≈ g(y1, ..., ym)

and {x1, ..., xn} = {y1, ..., ym} = {x , y}, then

fs(x1, ..., xn) ≈ gs(y1, ..., ym).

Two-variable height-one identities
I For every n ≥ 2, define sn : An → A by

sn(x1, ..., xn) := s(sn−1(x1, ..., xn−1), s(x1, xn)).

I If x1 = x and {x1, ..., xn} = {x , y}, then

sn(x1, ..., xn) ≈ s(x , y).

I For f : An → A, define fs by

fs(x1, ..., xn) := f (s(x1, ..., xn), s(x2, ..., xn, x1), ..., s(xn, x1, ..., xn−1)).

I If
f (x1, ..., xn) ≈ g(y1, ..., ym)

and {x1, ..., xn} = {y1, ..., ym} = {x , y}, then

fs(x1, ..., xn) ≈ gs(y1, ..., ym).

Two-variable height-one identities
I For every n ≥ 2, define sn : An → A by

sn(x1, ..., xn) := s(sn−1(x1, ..., xn−1), s(x1, xn)).

I If x1 = x and {x1, ..., xn} = {x , y}, then

sn(x1, ..., xn) ≈ s(x , y).

I For f : An → A, define fs by

fs(x1, ..., xn) := f (s(x1, ..., xn), s(x2, ..., xn, x1), ..., s(xn, x1, ..., xn−1)).

I If
f (x1, ..., xn) ≈ g(y1, ..., ym)

and {x1, ..., xn} = {y1, ..., ym} = {x , y}, then

fs(x1, ..., xn) ≈ gs(y1, ..., ym).

Two-variable height-one identities, continued

I Define As by
As = (A, {fs}f ∈Clo(A)).

I If a→s b, then {a, b} is a subalgebra of As , term equivalent
to ({a, b}, s).

I Every system of two-variable height-one identities with both
variables occuring on each side which is satisfied in A is also
satisfied in As .

I In particular:

I If A is Taylor, then As is also Taylor.
I If A has bounded width, then As also has bounded width.

Two-variable height-one identities, continued

I Define As by
As = (A, {fs}f ∈Clo(A)).

I If a→s b, then {a, b} is a subalgebra of As , term equivalent
to ({a, b}, s).

I Every system of two-variable height-one identities with both
variables occuring on each side which is satisfied in A is also
satisfied in As .

I In particular:

I If A is Taylor, then As is also Taylor.
I If A has bounded width, then As also has bounded width.

Two-variable height-one identities, continued

I Define As by
As = (A, {fs}f ∈Clo(A)).

I If a→s b, then {a, b} is a subalgebra of As , term equivalent
to ({a, b}, s).

I Every system of two-variable height-one identities with both
variables occuring on each side which is satisfied in A is also
satisfied in As .

I In particular:

I If A is Taylor, then As is also Taylor.
I If A has bounded width, then As also has bounded width.

Two-variable height-one identities, continued

I Define As by
As = (A, {fs}f ∈Clo(A)).

I If a→s b, then {a, b} is a subalgebra of As , term equivalent
to ({a, b}, s).

I Every system of two-variable height-one identities with both
variables occuring on each side which is satisfied in A is also
satisfied in As .

I In particular:

I If A is Taylor, then As is also Taylor.
I If A has bounded width, then As also has bounded width.

Two-variable height-one identities, continued

I Define As by
As = (A, {fs}f ∈Clo(A)).

I If a→s b, then {a, b} is a subalgebra of As , term equivalent
to ({a, b}, s).

I Every system of two-variable height-one identities with both
variables occuring on each side which is satisfied in A is also
satisfied in As .

I In particular:
I If A is Taylor, then As is also Taylor.

I If A has bounded width, then As also has bounded width.

Two-variable height-one identities, continued

I Define As by
As = (A, {fs}f ∈Clo(A)).

I If a→s b, then {a, b} is a subalgebra of As , term equivalent
to ({a, b}, s).

I Every system of two-variable height-one identities with both
variables occuring on each side which is satisfied in A is also
satisfied in As .

I In particular:
I If A is Taylor, then As is also Taylor.
I If A has bounded width, then As also has bounded width.

Symmetric operations

I An operation f : An → A is symmetric if

f (x1, ..., xn) = f (xσ(1), ..., xσ(n)).

for all permutations σ ∈ Sn.

I A has symmetric operations of every arity iff the Linear
Programming relaxation solves CSP(A).

I If fn are a system of symmetric operations for each arity n,
write

f sn (x1, ..., xn) := fn!(sn(xσ1(1), ..., xσ1(n)), ..., sn(xσn!(1), ..., xσn!(n))).

I Each f sn is symmetric, and if a→s b then f sn acts like sn on
{a, b}.

Symmetric operations

I An operation f : An → A is symmetric if

f (x1, ..., xn) = f (xσ(1), ..., xσ(n)).

for all permutations σ ∈ Sn.

I A has symmetric operations of every arity iff the Linear
Programming relaxation solves CSP(A).

I If fn are a system of symmetric operations for each arity n,
write

f sn (x1, ..., xn) := fn!(sn(xσ1(1), ..., xσ1(n)), ..., sn(xσn!(1), ..., xσn!(n))).

I Each f sn is symmetric, and if a→s b then f sn acts like sn on
{a, b}.

Symmetric operations

I An operation f : An → A is symmetric if

f (x1, ..., xn) = f (xσ(1), ..., xσ(n)).

for all permutations σ ∈ Sn.

I A has symmetric operations of every arity iff the Linear
Programming relaxation solves CSP(A).

I If fn are a system of symmetric operations for each arity n,
write

f sn (x1, ..., xn) := fn!(sn(xσ1(1), ..., xσ1(n)), ..., sn(xσn!(1), ..., xσn!(n))).

I Each f sn is symmetric, and if a→s b then f sn acts like sn on
{a, b}.

Symmetric operations

I An operation f : An → A is symmetric if

f (x1, ..., xn) = f (xσ(1), ..., xσ(n)).

for all permutations σ ∈ Sn.

I A has symmetric operations of every arity iff the Linear
Programming relaxation solves CSP(A).

I If fn are a system of symmetric operations for each arity n,
write

f sn (x1, ..., xn) := fn!(sn(xσ1(1), ..., xσ1(n)), ..., sn(xσn!(1), ..., xσn!(n))).

I Each f sn is symmetric, and if a→s b then f sn acts like sn on
{a, b}.

Totally symmetric operations

I An operation f : An → A is totally symmetric if

{x1, ..., xn} = {y1, ..., yn} =⇒ f (x1, ..., xn) = f (y1, ..., yn).

I A has totally symmetric operations of every arity iff Arc
Consistency solves CSP(A).

Proposition

If A has totally symmetric operations fn of every arity n, then there
are totally symmetric operations f sn ∈ Clo(A) such that if a→s b
then f sn acts like sn on {a, b}.

Totally symmetric operations

I An operation f : An → A is totally symmetric if

{x1, ..., xn} = {y1, ..., yn} =⇒ f (x1, ..., xn) = f (y1, ..., yn).

I A has totally symmetric operations of every arity iff Arc
Consistency solves CSP(A).

Proposition

If A has totally symmetric operations fn of every arity n, then there
are totally symmetric operations f sn ∈ Clo(A) such that if a→s b
then f sn acts like sn on {a, b}.

Totally symmetric operations

I An operation f : An → A is totally symmetric if

{x1, ..., xn} = {y1, ..., yn} =⇒ f (x1, ..., xn) = f (y1, ..., yn).

I A has totally symmetric operations of every arity iff Arc
Consistency solves CSP(A).

Proposition

If A has totally symmetric operations fn of every arity n, then there
are totally symmetric operations f sn ∈ Clo(A) such that if a→s b
then f sn acts like sn on {a, b}.

Analogue of idempotence

I These constructions involved preprocessing the inputs to
functions f ∈ Clo(A) by applying the operations sn.

I I say that an algebra A has been prepared if[
b
b

]
∈ SgA2

{[a
b

]
,

[
b
a

]}
implies that

{a, b}

is a subalgebra of A, term equivalent to a semilattice with
absorbing element b.

I If A is prepared, then we write a→ b if the above holds.

Analogue of idempotence

I These constructions involved preprocessing the inputs to
functions f ∈ Clo(A) by applying the operations sn.

I I say that an algebra A has been prepared if[
b
b

]
∈ SgA2

{[a
b

]
,

[
b
a

]}
implies that

{a, b}

is a subalgebra of A, term equivalent to a semilattice with
absorbing element b.

I If A is prepared, then we write a→ b if the above holds.

Analogue of idempotence

I These constructions involved preprocessing the inputs to
functions f ∈ Clo(A) by applying the operations sn.

I I say that an algebra A has been prepared if[
b
b

]
∈ SgA2

{[a
b

]
,

[
b
a

]}
implies that

{a, b}

is a subalgebra of A, term equivalent to a semilattice with
absorbing element b.

I If A is prepared, then we write a→ b if the above holds.

Binary absorption and strong absorption

I Write B�bin A (B binary absorbs A) if there is a binary term
t such that B absorbs A with respect to t.

I Write B�str A (B strongly absorbs A) if for every f ∈ Clo(A)
which depends on its first variable, we have

f (B,A, ...,A) ∈ B.

I If A has any terms which depend on both variables, then

B�str A =⇒ B�bin A.

I I say that A has been strongly prepared if

B�bin C =⇒ B�str C.

I The previous constructions can be used to reduce to the case
where A is strongly prepared.

Binary absorption and strong absorption

I Write B�bin A (B binary absorbs A) if there is a binary term
t such that B absorbs A with respect to t.

I Write B�str A (B strongly absorbs A) if for every f ∈ Clo(A)
which depends on its first variable, we have

f (B,A, ...,A) ∈ B.

I If A has any terms which depend on both variables, then

B�str A =⇒ B�bin A.

I I say that A has been strongly prepared if

B�bin C =⇒ B�str C.

I The previous constructions can be used to reduce to the case
where A is strongly prepared.

Binary absorption and strong absorption

I Write B�bin A (B binary absorbs A) if there is a binary term
t such that B absorbs A with respect to t.

I Write B�str A (B strongly absorbs A) if for every f ∈ Clo(A)
which depends on its first variable, we have

f (B,A, ...,A) ∈ B.

I If A has any terms which depend on both variables, then

B�str A =⇒ B�bin A.

I I say that A has been strongly prepared if

B�bin C =⇒ B�str C.

I The previous constructions can be used to reduce to the case
where A is strongly prepared.

Binary absorption and strong absorption

I Write B�bin A (B binary absorbs A) if there is a binary term
t such that B absorbs A with respect to t.

I Write B�str A (B strongly absorbs A) if for every f ∈ Clo(A)
which depends on its first variable, we have

f (B,A, ...,A) ∈ B.

I If A has any terms which depend on both variables, then

B�str A =⇒ B�bin A.

I I say that A has been strongly prepared if

B�bin C =⇒ B�str C.

I The previous constructions can be used to reduce to the case
where A is strongly prepared.

Binary absorption and strong absorption

I Write B�bin A (B binary absorbs A) if there is a binary term
t such that B absorbs A with respect to t.

I Write B�str A (B strongly absorbs A) if for every f ∈ Clo(A)
which depends on its first variable, we have

f (B,A, ...,A) ∈ B.

I If A has any terms which depend on both variables, then

B�str A =⇒ B�bin A.

I I say that A has been strongly prepared if

B�bin C =⇒ B�str C.

I The previous constructions can be used to reduce to the case
where A is strongly prepared.

Transitivity of binary absorption?

I Suppose that B�bin A and C�bin B. Does it follow that
C�bin A?

I In general, no:

A = ({0, 1}2,∧,∨),

B = ({(0, 0), (0, 1)},∧,∨),

C = ({(0, 1)},∧,∨).

I Transitivity also fails for strong absorption:

{c}�str {b, c}�str {a, b, c}

in the idempotent commutative groupoid with ab = ac = b
and bc = c .

Transitivity of binary absorption?

I Suppose that B�bin A and C�bin B. Does it follow that
C�bin A?

I In general, no:

A = ({0, 1}2,∧,∨),

B = ({(0, 0), (0, 1)},∧,∨),

C = ({(0, 1)},∧,∨).

I Transitivity also fails for strong absorption:

{c}�str {b, c}�str {a, b, c}

in the idempotent commutative groupoid with ab = ac = b
and bc = c .

Transitivity of binary absorption?

I Suppose that B�bin A and C�bin B. Does it follow that
C�bin A?

I In general, no:

A = ({0, 1}2,∧,∨),

B = ({(0, 0), (0, 1)},∧,∨),

C = ({(0, 1)},∧,∨).

I Transitivity also fails for strong absorption:

{c}�str {b, c}�str {a, b, c}

in the idempotent commutative groupoid with ab = ac = b
and bc = c .

Useful lemma about absorption

Lemma
If A is prepared, and if B� A, then for any partial semilattice
operation s ∈ Clo2(A) we have

s(B,A) ⊆ B.

Proof.
If b ∈ B and s(b, a) 6∈ B, then {b, s(b, a)} is a subalgebra of A
which is not absorbed by {b} = B ∩ {b, s(b, a)}.

Useful lemma about absorption

Lemma
If A is prepared, and if B� A, then for any partial semilattice
operation s ∈ Clo2(A) we have

s(B,A) ⊆ B.

Proof.
If b ∈ B and s(b, a) 6∈ B, then {b, s(b, a)} is a subalgebra of A
which is not absorbed by {b} = B ∩ {b, s(b, a)}.

Preparation fixes transitivity

Proposition

If A is prepared, and if C�bin B�bin A, then C�bin A.

Proof.
Choose a partial semilattice term s such that

s(B,C), s(C,B) ⊆ C,

and any t witnessing B�bin A. Define u ∈ Clo(s, t) by

u(x , y) := s(s(t(x , y), y), s(t(y , x), x)).

Then u witnesses C�bin A.

Preparation fixes transitivity

Proposition

If A is prepared, and if C�bin B�bin A, then C�bin A.

Proof.
Choose a partial semilattice term s such that

s(B,C), s(C,B) ⊆ C,

and any t witnessing B�bin A. Define u ∈ Clo(s, t) by

u(x , y) := s(s(t(x , y), y), s(t(y , x), x)).

Then u witnesses C�bin A.

Preparation forces intersection

Proposition

If A is prepared, and if B1 � A,B2 �bin A, then B1 ∩ B2 6= ∅.

Proof.
Choose a partial semilattice term s such that

s(B2,A), s(A,B2) ⊆ B2,

and any b1 ∈ B1, b2 ∈ B2. Then

s(b1, b2) ∈ B1 ∩ B2.

Preparation forces intersection

Proposition

If A is prepared, and if B1 � A,B2 �bin A, then B1 ∩ B2 6= ∅.

Proof.
Choose a partial semilattice term s such that

s(B2,A), s(A,B2) ⊆ B2,

and any b1 ∈ B1, b2 ∈ B2. Then

s(b1, b2) ∈ B1 ∩ B2.

Nice criterion for binary absorption

Proposition
If A is prepared, and if s(B,A) ⊆ B for a partial semilattice
operation s, then TFAE:

I B�bin A,

I for all a ∈ A \ B and b ∈ B, SgA{a, b} has a proper binary
absorbing subalgebra,

I for all a ∈ A \ B and b ∈ B, SgA{a, b} contains a directed path

a = a1 → a2 → · · · → an ∈ B.

I for all a ∈ A \ B and b ∈ B, there is some b′ ∈ SgA{a, b} such that

a→ b′ ∈ B.

Nice criterion for binary absorption

Proposition
If A is prepared, and if s(B,A) ⊆ B for a partial semilattice
operation s, then TFAE:

I B�bin A,

I for all a ∈ A \ B and b ∈ B, SgA{a, b} has a proper binary
absorbing subalgebra,

I for all a ∈ A \ B and b ∈ B, SgA{a, b} contains a directed path

a = a1 → a2 → · · · → an ∈ B.

I for all a ∈ A \ B and b ∈ B, there is some b′ ∈ SgA{a, b} such that

a→ b′ ∈ B.

Nice criterion for binary absorption

Proposition
If A is prepared, and if s(B,A) ⊆ B for a partial semilattice
operation s, then TFAE:

I B�bin A,

I for all a ∈ A \ B and b ∈ B, SgA{a, b} has a proper binary
absorbing subalgebra,

I for all a ∈ A \ B and b ∈ B, SgA{a, b} contains a directed path

a = a1 → a2 → · · · → an ∈ B.

I for all a ∈ A \ B and b ∈ B, there is some b′ ∈ SgA{a, b} such that

a→ b′ ∈ B.

Nice criterion for binary absorption

Proposition
If A is prepared, and if s(B,A) ⊆ B for a partial semilattice
operation s, then TFAE:

I B�bin A,

I for all a ∈ A \ B and b ∈ B, SgA{a, b} has a proper binary
absorbing subalgebra,

I for all a ∈ A \ B and b ∈ B, SgA{a, b} contains a directed path

a = a1 → a2 → · · · → an ∈ B.

I for all a ∈ A \ B and b ∈ B, there is some b′ ∈ SgA{a, b} such that

a→ b′ ∈ B.

Nice criterion for binary absorption

Proposition
If A is prepared, and if s(B,A) ⊆ B for a partial semilattice
operation s, then TFAE:

I B�bin A,

I for all a ∈ A \ B and b ∈ B, SgA{a, b} has a proper binary
absorbing subalgebra,

I for all a ∈ A \ B and b ∈ B, SgA{a, b} contains a directed path

a = a1 → a2 → · · · → an ∈ B.

I for all a ∈ A \ B and b ∈ B, there is some b′ ∈ SgA{a, b} such that

a→ b′ ∈ B.

Thank you for your attention.

