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Taylor algebras

I Definition
A is called a set if all of its operations are projections. Otherwise,
we say A is nontrivial.

I Definition
An idempotent algebra is Taylor if the variety it generates does not
contain a two element set.

I All algebras in this talk will be idempotent, so I won’t mention
idempotence further.
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Useful facts about Taylor algebras

I Theorem (Bulatov and Jeavons)

A finite algebra A is Taylor iff there is no set in HS(A).

I Theorem (Barto and Kozik)

A finite algebra A is Taylor iff for every number n such that every
prime factor of n is greater than |A|, there is an n-ary cyclic term
c , i.e.

c(x1, x2, ..., xn) ≈ c(x2, ..., xn, x1).

I Corollary

A finite algebra is Taylor iff it has a 4-ary term t satisfying the
identity

t(x , x , y , z) ≈ t(y , z , z , x).
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Minimal Taylor algebras

I My interest in Taylor algebras comes from the study of CSPs.

I Larger CSPs ⇐⇒ smaller clones.

I So it makes sense to study Talyor algebras whose clones are as
small as possible.

I Definition
An algebra is a minimal Taylor algebra if it is Taylor, and has no
proper reduct which is Taylor.

I Proposition

Every finite Taylor algebra has a reduct which is a minimal Taylor
algebra.

I Proof.
There are only finitely many 4-ary terms t which satisfy
t(x , x , y , z) ≈ t(y , z , z , x).
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First hints of a nice theory

I Theorem
If A is a minimal Taylor algebra, B ∈ HSP(A), S ⊆ B, and t a
term of A satisfy

I S is closed under t,
I (S , t) is a Taylor algebra,

then S is a subalgebra of B, and is also a minimal Taylor algebra.

I Choose p a prime bigger than |A| and |S |.
I Choose c a p-ary cyclic term of A, u a p-ary cyclic term of

(S , t).

I Then

f = c(u(x1, x2, ..., xp), u(x2, x3, ..., x1), ..., u(xp, x1, ..., xp−1))

is a cyclic term of A.

I Have f |S = u|S by idempotence.
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A few consequences

I Proposition

For A minimal Taylor, a, b ∈ A, then {a, b} is a semilattice
subalgebra of A with absorbing element b iff[

b
b

]
∈ SgA2

{[
a
b

]
,

[
b
a

]}
.

I Proposition

For A minimal Taylor, a, b ∈ A, then {a, b} is a majority
subalgebra of A iffa b

a b
a b

 ∈ SgA3×2


a b
a b
b a

 ,
a b
b a
a b

 ,
b a
a b
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I If there is an automorphism of A which interchanges a, b,
then we only have to consider

SgA3


aa
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ab
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 ,
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Daisy Chain Terms

I It’s difficult to write down explicit examples without nice
terms.

I Choose a p-ary cyclic term c .

I For any a < p
2 , can make a ternary term w(x , y , z) via:

w(x , y , z) = c(x , ..., x︸ ︷︷ ︸
a

, y , ..., y︸ ︷︷ ︸
p−2a

, z , ..., z︸ ︷︷ ︸
a

).

I This satisfies
w(x , x , y) ≈ w(y , x , x).

I Also have

w(x , y , x) = c(x , ..., x︸ ︷︷ ︸
a

, y , ..., y︸ ︷︷ ︸
p−2a

, x , ..., x︸ ︷︷ ︸
a

).
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Daisy Chain Terms, ctd.

I From a sequence

a, p − 2a, p − 2(p − 2a), ...

we get a sequence of ternary terms:

w0(x , x , y) ≈ w0(y , x , x) ≈ w1(x , y , x),

w1(x , x , y) ≈ w1(y , x , x) ≈ w2(x , y , x),

...

I If p is large enough and a is close enough to p
3 , then the

sequence can become arbitrarily long.

I Since there are only finitely many ternary functions in Clo(A),
we eventually get a cycle.
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What do they mean?

I How can daisy chain terms be useful to us?

I For a, b ∈ A, define a binary relation Dab ≤ A2 by

Dab =


[
c
d

]
s.t.

cd
c

 ∈ SgA3


aa
b

 ,
ab
a

 ,
ba
a


 .

I If

[
a
a

]
∈ Dab and there is an automorphism interchanging a, b,

then {a, b} is a majority algebra.

I Proposition

If A has daisy chain terms and a, b ∈ A, then if we consider Dab as
a digraph, it must contain a directed cycle.
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Describing a minimal Taylor algebra

I If p = wi , q = wi+1 are any pair of adjacent daisy chain
terms, then they satisfy the system

p(x , x , y) ≈ p(y , x , x) ≈ q(x , y , x),

q(x , x , y) ≈ q(y , x , x).

I Thus p, q generate a Taylor clone, so Clo(A) = 〈p, q〉 if A is
minimal Taylor.

I In particular, the number of minimal Taylor clones on a set of
n elements is at most n2n3

.

I Conjecture

Every minimal Taylor clone can be generated by a single ternary
function.
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Daisy chain terms in the basic algebras

I Proposition

If wi are daisy chain terms and A is a semilattice, then each wi is
the symmetric ternary semilattice operation on A.

I Proposition

If wi are daisy chain terms and A is a majority algebra, then each
wi is a majority operation on A.

I Proposition

If wi are daisy chain terms and A is affine, then there is a sequence
ai such that wi is given by

wi (x , y , z) = aix + (1− 2ai )y + aiz ,

with ai+1 = 1− 2ai .
If a0 = 0, then w1 is the Mal’cev operation x − y + z and w−1 is
the operation x+z

2 .
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Bulatov’s graph

I Bulatov studies finite Taylor algebras via three types of edges:
semilattice, majority, and affine.

I In minimal Taylor algebras, we can define his edges more
simply.

I Definition
If A is minimal Taylor and a, b ∈ A, then (a, b) is an edge if there
is a congruence θ on Sg{a, b} s.t.

Sg{a, b}/θ

is isomorphic to either a two-element semilattice, a two element
majority algebra, or an affine algebra.
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Connectivity

I Theorem (Bulatov)

If A is minimal Taylor, then the associated graph is connected.

I We can simplify the proof!
I If A is a minimal counterexample:

I the hypergraph of proper subalgebras must be disconnected,
I A is generated by two elements a, b, and
I A has no proper congruences.

I It’s not hard to show there must be an automorphism
interchanging a, b.

I Consider the binary relation Dab!
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I If both Sg{a, d} and Sg{d , b} are proper subalgebras, then
the hypergraph of proper subalgebras is connected.

I Then we can show Dab is subdirect, and the proof flows
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Can we do better?

I Can we get rid of congruences in the definition of the edges?

I Proposition (Bulatov)

For every semilattice edge from a to b, there is a b′ in the
congruence class of b such that {a, b′} is a two element semilattice
algebra.

I Similar statements fail for majority edges and affine edges.
I There are minimal Taylor algebras A,B of size 4 which have

congruences θ such that:
I A/θ is a two element majority algebra and B/θ is Z/2aff ,
I each congruence class of θ is a copy of Z/2aff ,
I every proper subalgebra of A or B is contained in a congruence

class of θ,
I A has a 3-edge term and B is Mal’cev,
I θ is the center of A or B in the sense of commutator theory.
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Evil algebra #1

I A = ({a, b, c , d}, g), where g is an idempotent ternary
symmetric operation.

I g commutes with the cyclic permutation σ = (a b c d) and
satisfies

g(a, a, b) = a,

g(a, a, c) = c ,

g(a, a, d) = c ,

g(a, b, c) = c .

I θ corresponds to the partition {a, c}, {b, d}.
I The algebra S = SgA2{(a, b), (b, a)} has a congruence ψ

corresponding to the partition{[
a
b

]
,

[
b
c

]
,

[
c
d

]
,

[
d
a

]}
,

{[
a
d

]
,

[
b
a
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c
b
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[
d
c
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,

such that S/ψ is isomorphic to Z/2aff .
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Evil algebra #2

I B = ({a, b, c , d}, p), where p is a Mal’cev operation.

I p commutes with the permutations σ = (a c)(b d) and
τ = (a c).

I The polynomials +a = p(·, a, ·),+b = p(·, b, ·) define abelian
groups:

+a a b c d

a a b c d
b b c d a
c c d a b
d d a b c

+b a b c d

a b a d c
b a b c d
c d c b a
d c d a b

I θ corresponds to the partition {a, c}, {b, d}.
I The algebra S = SgB2{(a, b), (b, a)} has a congruence ψ such

that S/ψ is isomorphic to Z/4aff .
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Zhuk’s four cases

I Theorem (Zhuk)
If A is minimal Taylor, then at least one of the following holds:

I A has a proper binary absorbing subalgebra,
I A has a proper “center”,
I A has a nontrivial affine quotient, or
I A has a nontrivial polynomially complete quotient.

I Definition
C ≤ A is a center of A if there exist

I a binary-absorption-free Taylor algebra B and
I a subdirect relation R ≤sd A× B, such that

I C =

{
c ∈ A s.t. ∀b ∈ B,

[
c
b

]
∈ R

}
.

I Theorem (Zhuk)

If C is a center of A, then C is a ternary absorbing subalgebra of A.
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Centers and Daisy Chain terms

Theorem
If A is minimal Taylor and M ∈ HSP(A) is the two element
majority algebra on the domain {0, 1}, then the following are
equivalent:

I C is a ternary absorbing subalgebra of A,

I there is a p-ary cyclic term c of A such that whenever
#{xi ∈ C} > p

2 , we have

c(x1, ..., xp) ∈ C,

I the binary relation R ⊆ A×M given by

R = (A× {0}) ∪ (C× {0, 1})

is a subalgebra of A×M,

I every daisy chain term wi (x , y , z) witnesses the fact that C
ternary absorbs A.



Centers produce majority quotients

I If C,D are centers, then for any daisy chain terms wi , we
must have

wi (C,C,D),wi (C,D,C),wi (D,C,C) ⊆ C

and
wi (C,D,D),wi (D,C,D),wi (D,D,C) ⊆ D,

so C ∪ D is a subalgebra of A.

I If C ∩ D = ∅, then the equivalence relation θ on C ∪ D with
parts C,D is preserved by each daisy chain term wi , and
(C ∪ D)/θ is a two element majority algebra.
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Binary absorption is strong absorption

Theorem
If A is minimal Taylor, then the following are equivalent:

I B binary absorbs A,

I there exists a cyclic term c such that if any xi ∈ B, then
c(x1, ..., xp) ∈ B,

I the ternary relation

R = {(x , y , z) s.t. (x 6∈ B) =⇒ (y = z)}

is a subalgebra of A3,

I every term f of A which depends on all its inputs is such that
if any xi ∈ B, then f (x1, ..., xn) ∈ B.



Minimal Taylor algebras generated by two elements

I Theorem
If A is minimal Taylor and A = Sg{a, b}, then the following are
equivalent:

I B binary absorbs A,
I A = B ∪ {a, b} and there is a congruence θ such that B is a

congruence class of θ, and A/θ is a semilattice.

I Theorem
If A is minimal Taylor and A = Sg{a, b}, then A is not
polynomially complete.

I Minimal Taylor algebras generated by two elements are nicer
than general minimal Taylor algebras.

I It’s good enough to understand such algebras.
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Big conjecture

I Conjecture

Suppose A is minimal Taylor, generated by two elements a, b, and
has no affine or semilattice quotient. Then each of a, b is
contained in a proper ternary absorbing subalgebra of A.

I Proposition

Suppose the conjecture holds. Then any daisy chain term wi which
is nontrivial on every affine algebra in HS(A) generates Clo(A). In
particular, Clo(A) is generated by a single ternary term.

I Theorem (Kearnes, Szendrei)

Suppose a minimal Taylor algebra has no semilattice edges and has
its clone generated by a single ternary term. Then it has a 3-edge
term.
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Thank you for your attention.


