Minimal Taylor Algebras

Zarathustra Brady

Taylor algebras

- Definition
\mathbb{A} is called a set if all of its operations are projections. Otherwise, we say \mathbb{A} is nontrivial.

Taylor algebras

- Definition
\mathbb{A} is called a set if all of its operations are projections. Otherwise, we say \mathbb{A} is nontrivial.
- Definition

An idempotent algebra is Taylor if the variety it generates does not contain a two element set.

Taylor algebras

- Definition
\mathbb{A} is called a set if all of its operations are projections. Otherwise, we say \mathbb{A} is nontrivial.
- Definition

An idempotent algebra is Taylor if the variety it generates does not contain a two element set.

- All algebras in this talk will be idempotent, so I won't mention idempotence further.

Useful facts about Taylor algebras

- Theorem (Bulatov and Jeavons)

A finite algebra \mathbb{A} is Taylor iff there is no set in $H S(\mathbb{A})$.

Useful facts about Taylor algebras

- Theorem (Bulatov and Jeavons)

A finite algebra \mathbb{A} is Taylor iff there is no set in $H S(\mathbb{A})$.

- Theorem (Barto and Kozik)

A finite algebra \mathbb{A} is Taylor iff for every number n such that every prime factor of n is greater than $|\mathbb{A}|$, there is an n-ary cyclic term c, i.e.

$$
c\left(x_{1}, x_{2}, \ldots, x_{n}\right) \approx c\left(x_{2}, \ldots, x_{n}, x_{1}\right)
$$

Useful facts about Taylor algebras

- Theorem (Bulatov and Jeavons)

A finite algebra \mathbb{A} is Taylor iff there is no set in $H S(\mathbb{A})$.

- Theorem (Barto and Kozik)

A finite algebra \mathbb{A} is Taylor iff for every number n such that every prime factor of n is greater than $|\mathbb{A}|$, there is an n-ary cyclic term c, i.e.

$$
c\left(x_{1}, x_{2}, \ldots, x_{n}\right) \approx c\left(x_{2}, \ldots, x_{n}, x_{1}\right)
$$

- Corollary

A finite algebra is Taylor iff it has a 4-ary term t satisfying the identity

$$
t(x, x, y, z) \approx t(y, z, z, x)
$$

Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.

Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs \Longleftrightarrow smaller clones.

Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs \Longleftrightarrow smaller clones.
- So it makes sense to study Talyor algebras whose clones are as small as possible.

Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs \Longleftrightarrow smaller clones.
- So it makes sense to study Talyor algebras whose clones are as small as possible.
- Definition

An algebra is a minimal Taylor algebra if it is Taylor, and has no proper reduct which is Taylor.

Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs \Longleftrightarrow smaller clones.
- So it makes sense to study Talyor algebras whose clones are as small as possible.
- Definition

An algebra is a minimal Taylor algebra if it is Taylor, and has no proper reduct which is Taylor.

- Proposition

Every finite Taylor algebra has a reduct which is a minimal Taylor algebra.

Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs \Longleftrightarrow smaller clones.
- So it makes sense to study Talyor algebras whose clones are as small as possible.
- Definition

An algebra is a minimal Taylor algebra if it is Taylor, and has no proper reduct which is Taylor.

- Proposition

Every finite Taylor algebra has a reduct which is a minimal Taylor algebra.

- Proof.

There are only finitely many 4-ary terms t which satisfy $t(x, x, y, z) \approx t(y, z, z, x)$.

First hints of a nice theory

- Theorem If \mathbb{A} is a minimal Taylor algebra, $\mathbb{B} \in H S P(\mathbb{A}), S \subseteq \mathbb{B}$, and t a term of \mathbb{A} satisfy
- S is closed under t,
- (S, t) is a Taylor algebra,
then S is a subalgebra of \mathbb{B}, and is also a minimal Taylor algebra.

First hints of a nice theory

- Theorem If \mathbb{A} is a minimal Taylor algebra, $\mathbb{B} \in H S P(\mathbb{A}), S \subseteq \mathbb{B}$, and t a term of \mathbb{A} satisfy
- S is closed under t,
- (S, t) is a Taylor algebra,
then S is a subalgebra of \mathbb{B}, and is also a minimal Taylor algebra.

First hints of a nice theory

- Theorem If \mathbb{A} is a minimal Taylor algebra, $\mathbb{B} \in H S P(\mathbb{A}), S \subseteq \mathbb{B}$, and t a term of \mathbb{A} satisfy
- S is closed under t,
- (S, t) is a Taylor algebra,
then S is a subalgebra of \mathbb{B}, and is also a minimal Taylor algebra.
- Choose p a prime bigger than $|\mathbb{A}|$ and $|S|$.

First hints of a nice theory

- Theorem If \mathbb{A} is a minimal Taylor algebra, $\mathbb{B} \in H S P(\mathbb{A}), S \subseteq \mathbb{B}$, and t a term of \mathbb{A} satisfy
- S is closed under t,
- (S, t) is a Taylor algebra,
then S is a subalgebra of \mathbb{B}, and is also a minimal Taylor algebra.
- Choose p a prime bigger than $|\mathbb{A}|$ and $|S|$.
- Choose c a p-ary cyclic term of \mathbb{A}, u a p-ary cyclic term of (S, t).

First hints of a nice theory

- Theorem

If \mathbb{A} is a minimal Taylor algebra, $\mathbb{B} \in H S P(\mathbb{A}), S \subseteq \mathbb{B}$, and t a term of \mathbb{A} satisfy

- S is closed under t,
- (S, t) is a Taylor algebra,
then S is a subalgebra of \mathbb{B}, and is also a minimal Taylor algebra.
- Choose p a prime bigger than $|\mathbb{A}|$ and $|S|$.
- Choose c a p-ary cyclic term of \mathbb{A}, u a p-ary cyclic term of (S, t).
- Then

$$
f=c\left(u\left(x_{1}, x_{2}, \ldots, x_{p}\right), u\left(x_{2}, x_{3}, \ldots, x_{1}\right), \ldots, u\left(x_{p}, x_{1}, \ldots, x_{p-1}\right)\right)
$$

is a cyclic term of \mathbb{A}.

First hints of a nice theory

- Theorem If \mathbb{A} is a minimal Taylor algebra, $\mathbb{B} \in H S P(\mathbb{A}), S \subseteq \mathbb{B}$, and t a term of \mathbb{A} satisfy
- S is closed under t,
- (S, t) is a Taylor algebra,
then S is a subalgebra of \mathbb{B}, and is also a minimal Taylor algebra.
- Choose p a prime bigger than $|\mathbb{A}|$ and $|S|$.
- Choose c a p-ary cyclic term of \mathbb{A}, u a p-ary cyclic term of (S, t).
- Then

$$
f=c\left(u\left(x_{1}, x_{2}, \ldots, x_{p}\right), u\left(x_{2}, x_{3}, \ldots, x_{1}\right), \ldots, u\left(x_{p}, x_{1}, \ldots, x_{p-1}\right)\right)
$$

is a cyclic term of \mathbb{A}.

- Have $\left.f\right|_{S}=\left.u\right|_{S}$ by idempotence.

A few consequences

- Proposition

For \mathbb{A} minimal Taylor, $a, b \in \mathbb{A}$, then $\{a, b\}$ is a semilattice subalgebra of \mathbb{A} with absorbing element b iff

$$
\left[\begin{array}{l}
b \\
b
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{2}}\left\{\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
b \\
a
\end{array}\right]\right\} .
$$

A few consequences

- Proposition

For \mathbb{A} minimal Taylor, $a, b \in \mathbb{A}$, then $\{a, b\}$ is a semilattice subalgebra of \mathbb{A} with absorbing element b iff

$$
\left[\begin{array}{l}
b \\
b
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{2}}\left\{\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
b \\
a
\end{array}\right]\right\}
$$

- Proposition

For \mathbb{A} minimal Taylor, $a, b \in \mathbb{A}$, then $\{a, b\}$ is a majority subalgebra of \mathbb{A} iff

$$
\left[\begin{array}{ll}
a & b \\
a & b \\
a & b
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{3 \times 2}}\left\{\left[\begin{array}{ll}
a & b \\
a & b \\
b & a
\end{array}\right],\left[\begin{array}{ll}
a & b \\
b & a \\
a & b
\end{array}\right],\left[\begin{array}{ll}
b & a \\
a & b \\
a & b
\end{array}\right]\right\} .
$$

A few consequences, ctd.

- Proposition

For \mathbb{A} minimal Taylor, $a, b \in \mathbb{A}$, then $\{a, b\}$ is a $\mathbb{Z} / 2^{\text {aff }}$ subalgebra of \mathbb{A} iff

$$
\left[\begin{array}{ll}
b & a \\
b & a \\
b & a
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{3 \times 2}}\left\{\left[\begin{array}{ll}
a & b \\
a & b \\
b & a
\end{array}\right],\left[\begin{array}{ll}
a & b \\
b & a \\
a & b
\end{array}\right],\left[\begin{array}{ll}
b & a \\
a & b \\
a & b
\end{array}\right]\right\} .
$$

A few consequences, ctd.

- Proposition

For \mathbb{A} minimal Taylor, $a, b \in \mathbb{A}$, then $\{a, b\}$ is a $\mathbb{Z} / 2^{\text {aff }}$ subalgebra of \mathbb{A} iff

$$
\left[\begin{array}{ll}
b & a \\
b & a \\
b & a
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{3 \times 2}}\left\{\left[\begin{array}{ll}
a & b \\
a & b \\
b & a
\end{array}\right],\left[\begin{array}{ll}
a & b \\
b & a \\
a & b
\end{array}\right],\left[\begin{array}{ll}
b & a \\
a & b \\
a & b
\end{array}\right]\right\} .
$$

- If there is an automorphism of \mathbb{A} which interchanges a, b, then we only have to consider

$$
\mathrm{Sg}_{\mathbb{A}^{3}}\left\{\left[\begin{array}{l}
a \\
a \\
b
\end{array}\right],\left[\begin{array}{l}
a \\
b \\
a
\end{array}\right],\left[\begin{array}{l}
b \\
a \\
a
\end{array}\right]\right\} .
$$

Daisy Chain Terms

- It's difficult to write down explicit examples without nice terms.

Daisy Chain Terms

- It's difficult to write down explicit examples without nice terms.
- Choose a p-ary cyclic term c.

Daisy Chain Terms

- It's difficult to write down explicit examples without nice terms.
- Choose a p-ary cyclic term c.
- For any $a<\frac{p}{2}$, can make a ternary term $w(x, y, z)$ via:

$$
w(x, y, z)=c(\underbrace{x, \ldots, x}_{a}, \underbrace{y, \ldots, y}_{p-2 a}, \underbrace{z, \ldots, z}_{a})
$$

Daisy Chain Terms

- It's difficult to write down explicit examples without nice terms.
- Choose a p-ary cyclic term c.
- For any $a<\frac{p}{2}$, can make a ternary term $w(x, y, z)$ via:

$$
w(x, y, z)=c(\underbrace{x, \ldots, x}_{a}, \underbrace{y, \ldots, y}_{p-2 a}, \underbrace{z, \ldots, z}_{a}) .
$$

- This satisfies

$$
w(x, x, y) \approx w(y, x, x)
$$

Daisy Chain Terms

- It's difficult to write down explicit examples without nice terms.
- Choose a p-ary cyclic term c.
- For any $a<\frac{p}{2}$, can make a ternary term $w(x, y, z)$ via:

$$
w(x, y, z)=c(\underbrace{x, \ldots, x}_{a}, \underbrace{y, \ldots, y}_{p-2 a}, \underbrace{z, \ldots, z}_{a}) .
$$

- This satisfies

$$
w(x, x, y) \approx w(y, x, x)
$$

- Also have

$$
w(x, y, x)=c(\underbrace{x, \ldots, x}_{a}, \underbrace{y, \ldots, y}_{p-2 a}, \underbrace{x, \ldots, x}_{a}) .
$$

Daisy Chain Terms, ctd.

- From a sequence

$$
a, p-2 a, p-2(p-2 a), \ldots
$$

we get a sequence of ternary terms:

$$
\begin{aligned}
& w_{0}(x, x, y) \approx w_{0}(y, x, x) \approx w_{1}(x, y, x), \\
& w_{1}(x, x, y) \approx w_{1}(y, x, x) \approx w_{2}(x, y, x),
\end{aligned}
$$

Daisy Chain Terms, ctd.

- From a sequence

$$
a, p-2 a, p-2(p-2 a), \ldots
$$

we get a sequence of ternary terms:

$$
\begin{aligned}
& w_{0}(x, x, y) \approx w_{0}(y, x, x) \approx w_{1}(x, y, x), \\
& w_{1}(x, x, y) \approx w_{1}(y, x, x) \approx w_{2}(x, y, x),
\end{aligned}
$$

- If p is large enough and a is close enough to $\frac{p}{3}$, then the sequence can become arbitrarily long.

Daisy Chain Terms, ctd.

- From a sequence

$$
a, p-2 a, p-2(p-2 a), \ldots
$$

we get a sequence of ternary terms:

$$
\begin{aligned}
& w_{0}(x, x, y) \approx w_{0}(y, x, x) \approx w_{1}(x, y, x), \\
& w_{1}(x, x, y) \approx w_{1}(y, x, x) \approx w_{2}(x, y, x),
\end{aligned}
$$

- If p is large enough and a is close enough to $\frac{p}{3}$, then the sequence can become arbitrarily long.
- Since there are only finitely many ternary functions in $\mathrm{Clo}(\mathbb{A})$, we eventually get a cycle.

What do they mean?

- How can daisy chain terms be useful to us?

What do they mean?

- How can daisy chain terms be useful to us?
- For $a, b \in \mathbb{A}$, define a binary relation $\mathbb{D}_{a b} \leq \mathbb{A}^{2}$ by

$$
\mathbb{D}_{a b}=\left\{\left[\begin{array}{l}
c \\
d
\end{array}\right] \text { s.t. }\left[\begin{array}{l}
c \\
d \\
c
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{3}}\left\{\left[\begin{array}{l}
a \\
a \\
b
\end{array}\right],\left[\begin{array}{l}
a \\
b \\
a
\end{array}\right],\left[\begin{array}{l}
b \\
a \\
a
\end{array}\right]\right\}\right\} .
$$

What do they mean?

- How can daisy chain terms be useful to us?
- For $a, b \in \mathbb{A}$, define a binary relation $\mathbb{D}_{a b} \leq \mathbb{A}^{2}$ by

$$
\mathbb{D}_{a b}=\left\{\left[\begin{array}{l}
c \\
d
\end{array}\right] \text { s.t. }\left[\begin{array}{l}
c \\
d \\
c
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{3}}\left\{\left[\begin{array}{l}
a \\
a \\
b
\end{array}\right],\left[\begin{array}{l}
a \\
b \\
a
\end{array}\right],\left[\begin{array}{l}
b \\
a \\
a
\end{array}\right]\right\}\right\} .
$$

- If $\left[\begin{array}{l}a \\ a\end{array}\right] \in \mathbb{D}_{a b}$ and there is an automorphism interchanging a, b, then $\{a, b\}$ is a majority algebra.

What do they mean?

- How can daisy chain terms be useful to us?
- For $a, b \in \mathbb{A}$, define a binary relation $\mathbb{D}_{a b} \leq \mathbb{A}^{2}$ by

$$
\mathbb{D}_{a b}=\left\{\left[\begin{array}{l}
c \\
d
\end{array}\right] \text { s.t. }\left[\begin{array}{l}
c \\
d \\
c
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{3}}\left\{\left[\begin{array}{l}
a \\
a \\
b
\end{array}\right],\left[\begin{array}{l}
a \\
b \\
a
\end{array}\right],\left[\begin{array}{l}
b \\
a \\
a
\end{array}\right]\right\}\right\} .
$$

- If $\left[\begin{array}{l}a \\ a\end{array}\right] \in \mathbb{D}_{a b}$ and there is an automorphism interchanging a, b, then $\{a, b\}$ is a majority algebra.
- Proposition

If \mathbb{A} has daisy chain terms and $a, b \in \mathbb{A}$, then if we consider $\mathbb{D}_{a b}$ as a digraph, it must contain a directed cycle.

Describing a minimal Taylor algebra

- If $p=w_{i}, q=w_{i+1}$ are any pair of adjacent daisy chain terms, then they satisfy the system

$$
\begin{aligned}
& p(x, x, y) \approx p(y, x, x) \approx q(x, y, x) \\
& q(x, x, y) \approx q(y, x, x) .
\end{aligned}
$$

Describing a minimal Taylor algebra

- If $p=w_{i}, q=w_{i+1}$ are any pair of adjacent daisy chain terms, then they satisfy the system

$$
\begin{aligned}
& p(x, x, y) \approx p(y, x, x) \approx q(x, y, x) \\
& q(x, x, y) \approx q(y, x, x) .
\end{aligned}
$$

- Thus p, q generate a Taylor clone, so $\operatorname{Clo}(\mathbb{A})=\langle p, q\rangle$ if \mathbb{A} is minimal Taylor.

Describing a minimal Taylor algebra

- If $p=w_{i}, q=w_{i+1}$ are any pair of adjacent daisy chain terms, then they satisfy the system

$$
\begin{aligned}
& p(x, x, y) \approx p(y, x, x) \approx q(x, y, x) \\
& q(x, x, y) \approx q(y, x, x) .
\end{aligned}
$$

- Thus p, q generate a Taylor clone, so $\operatorname{Clo}(\mathbb{A})=\langle p, q\rangle$ if \mathbb{A} is minimal Taylor.
- In particular, the number of minimal Taylor clones on a set of n elements is at most $n^{2 n^{3}}$.

Describing a minimal Taylor algebra

- If $p=w_{i}, q=w_{i+1}$ are any pair of adjacent daisy chain terms, then they satisfy the system

$$
\begin{aligned}
& p(x, x, y) \approx p(y, x, x) \approx q(x, y, x) \\
& q(x, x, y) \approx q(y, x, x)
\end{aligned}
$$

- Thus p, q generate a Taylor clone, so $\operatorname{Clo}(\mathbb{A})=\langle p, q\rangle$ if \mathbb{A} is minimal Taylor.
- In particular, the number of minimal Taylor clones on a set of n elements is at most $n^{2 n^{3}}$.
- Conjecture

Every minimal Taylor clone can be generated by a single ternary function.

Daisy chain terms in the basic algebras

- Proposition

If w_{i} are daisy chain terms and \mathbb{A} is a semilattice, then each w_{i} is the symmetric ternary semilattice operation on \mathbb{A}.

Daisy chain terms in the basic algebras

- Proposition

If w_{i} are daisy chain terms and \mathbb{A} is a semilattice, then each w_{i} is the symmetric ternary semilattice operation on \mathbb{A}.

- Proposition

If w_{i} are daisy chain terms and \mathbb{A} is a majority algebra, then each w_{i} is a majority operation on \mathbb{A}.

Daisy chain terms in the basic algebras

- Proposition

If w_{i} are daisy chain terms and \mathbb{A} is a semilattice, then each w_{i} is the symmetric ternary semilattice operation on \mathbb{A}.

- Proposition

If w_{i} are daisy chain terms and \mathbb{A} is a majority algebra, then each w_{i} is a majority operation on \mathbb{A}.

- Proposition

If w_{i} are daisy chain terms and \mathbb{A} is affine, then there is a sequence a_{i} such that w_{i} is given by

$$
w_{i}(x, y, z)=a_{i} x+\left(1-2 a_{i}\right) y+a_{i} z
$$

with $a_{i+1}=1-2 a_{i}$.
If $a_{0}=0$, then w_{1} is the Mal'cev operation $x-y+z$ and w_{-1} is the operation $\frac{x+z}{2}$.

Bulatov's graph

- Bulatov studies finite Taylor algebras via three types of edges: semilattice, majority, and affine.

Bulatov's graph

- Bulatov studies finite Taylor algebras via three types of edges: semilattice, majority, and affine.
- In minimal Taylor algebras, we can define his edges more simply.

Bulatov's graph

- Bulatov studies finite Taylor algebras via three types of edges: semilattice, majority, and affine.
- In minimal Taylor algebras, we can define his edges more simply.
- Definition

If \mathbb{A} is minimal Taylor and $a, b \in \mathbb{A}$, then (a, b) is an edge if there is a congruence θ on $\operatorname{Sg}\{a, b\}$ s.t.

$$
\operatorname{Sg}\{a, b\} / \theta
$$

is isomorphic to either a two-element semilattice, a two element majority algebra, or an affine algebra.

Connectivity

- Theorem (Bulatov)

If \mathbb{A} is minimal Taylor, then the associated graph is connected.

Connectivity

- Theorem (Bulatov)

If \mathbb{A} is minimal Taylor, then the associated graph is connected.

- We can simplify the proof!

Connectivity

- Theorem (Bulatov)

If \mathbb{A} is minimal Taylor, then the associated graph is connected.

- We can simplify the proof!
- If \mathbb{A} is a minimal counterexample:
- the hypergraph of proper subalgebras must be disconnected,
- \mathbb{A} is generated by two elements a, b, and
- \mathbb{A} has no proper congruences.

Connectivity

- Theorem (Bulatov)

If \mathbb{A} is minimal Taylor, then the associated graph is connected.

- We can simplify the proof!
- If \mathbb{A} is a minimal counterexample:
- the hypergraph of proper subalgebras must be disconnected,
- \mathbb{A} is generated by two elements a, b, and
- \mathbb{A} has no proper congruences.
- It's not hard to show there must be an automorphism interchanging a, b.

Connectivity

- Theorem (Bulatov)

If \mathbb{A} is minimal Taylor, then the associated graph is connected.

- We can simplify the proof!
- If \mathbb{A} is a minimal counterexample:
- the hypergraph of proper subalgebras must be disconnected,
- \mathbb{A} is generated by two elements a, b, and
- \mathbb{A} has no proper congruences.
- It's not hard to show there must be an automorphism interchanging a, b.
- Consider the binary relation $\mathbb{D}_{a b}$!

Connectivity, ctd.

- Recall the definition of $\mathbb{D}_{a b}$:

$$
\mathbb{D}_{a b}=\left\{\left[\begin{array}{l}
c \\
d
\end{array}\right] \text { s.t. }\left[\begin{array}{l}
c \\
d \\
c
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{3}}\left\{\left[\begin{array}{l}
a \\
a \\
b
\end{array}\right],\left[\begin{array}{l}
a \\
b \\
a
\end{array}\right],\left[\begin{array}{l}
b \\
a \\
a
\end{array}\right]\right\}\right\} .
$$

Connectivity, ctd.

- Recall the definition of $\mathbb{D}_{a b}$:

$$
\mathbb{D}_{a b}=\left\{\left[\begin{array}{l}
c \\
d
\end{array}\right] \text { s.t. }\left[\begin{array}{l}
c \\
d \\
c
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{3}}\left\{\left[\begin{array}{l}
a \\
a \\
b
\end{array}\right],\left[\begin{array}{l}
a \\
b \\
a
\end{array}\right],\left[\begin{array}{l}
b \\
a \\
a
\end{array}\right]\right\}\right\} .
$$

- Have $\left[\begin{array}{l}a \\ b\end{array}\right] \in \mathbb{D}_{a b}$, want to show that either $\left[\begin{array}{l}a \\ a\end{array}\right] \in \mathbb{D}_{a b}$ or \mathbb{A} is affine.

Connectivity, ctd.

- Recall the definition of $\mathbb{D}_{a b}$:

$$
\mathbb{D}_{a b}=\left\{\left[\begin{array}{l}
c \\
d
\end{array}\right] \text { s.t. }\left[\begin{array}{l}
c \\
d \\
c
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{3}}\left\{\left[\begin{array}{l}
a \\
a \\
b
\end{array}\right],\left[\begin{array}{l}
a \\
b \\
a
\end{array}\right],\left[\begin{array}{l}
b \\
a \\
a
\end{array}\right]\right\}\right\} .
$$

- Have $\left[\begin{array}{l}a \\ b\end{array}\right] \in \mathbb{D}_{a b}$, want to show that either $\left[\begin{array}{l}a \\ a\end{array}\right] \in \mathbb{D}_{a b}$ or \mathbb{A} is affine.
- The daisy chain terms give us $c, d, e \in \mathbb{A}$ such that

$$
\left[\begin{array}{l}
c \\
d
\end{array}\right],\left[\begin{array}{l}
d \\
e
\end{array}\right] \in \mathbb{D}_{a b}
$$

Connectivity, ctd.

- Recall the definition of $\mathbb{D}_{a b}$:

$$
\mathbb{D}_{a b}=\left\{\left[\begin{array}{l}
c \\
d
\end{array}\right] \text { s.t. }\left[\begin{array}{l}
c \\
d \\
c
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{3}}\left\{\left[\begin{array}{l}
a \\
a \\
b
\end{array}\right],\left[\begin{array}{l}
a \\
b \\
a
\end{array}\right],\left[\begin{array}{l}
b \\
a \\
a
\end{array}\right]\right\}\right\} .
$$

- Have $\left[\begin{array}{l}a \\ b\end{array}\right] \in \mathbb{D}_{a b}$, want to show that either $\left[\begin{array}{l}a \\ a\end{array}\right] \in \mathbb{D}_{a b}$ or \mathbb{A} is affine.
- The daisy chain terms give us $c, d, e \in \mathbb{A}$ such that

$$
\left[\begin{array}{l}
c \\
d
\end{array}\right],\left[\begin{array}{l}
d \\
e
\end{array}\right] \in \mathbb{D}_{a b}
$$

- If both $\operatorname{Sg}\{a, d\}$ and $\operatorname{Sg}\{d, b\}$ are proper subalgebras, then the hypergraph of proper subalgebras is connected.

Connectivity, ctd.

- Recall the definition of $\mathbb{D}_{a b}$:

$$
\mathbb{D}_{a b}=\left\{\left[\begin{array}{l}
c \\
d
\end{array}\right] \text { s.t. }\left[\begin{array}{l}
c \\
d \\
c
\end{array}\right] \in \operatorname{Sg}_{\mathbb{A}^{3}}\left\{\left[\begin{array}{l}
a \\
a \\
b
\end{array}\right],\left[\begin{array}{l}
a \\
b \\
a
\end{array}\right],\left[\begin{array}{l}
b \\
a \\
a
\end{array}\right]\right\}\right\} .
$$

- Have $\left[\begin{array}{l}a \\ b\end{array}\right] \in \mathbb{D}_{a b}$, want to show that either $\left[\begin{array}{l}a \\ a\end{array}\right] \in \mathbb{D}_{a b}$ or \mathbb{A} is affine.
- The daisy chain terms give us $c, d, e \in \mathbb{A}$ such that

$$
\left[\begin{array}{l}
c \\
d
\end{array}\right],\left[\begin{array}{l}
d \\
e
\end{array}\right] \in \mathbb{D}_{a b} .
$$

- If both $\operatorname{Sg}\{a, d\}$ and $\operatorname{Sg}\{d, b\}$ are proper subalgebras, then the hypergraph of proper subalgebras is connected.
- Then we can show $\mathbb{D}_{a b}$ is subdirect, and the proof flows naturally from here.

Can we do better?

- Can we get rid of congruences in the definition of the edges?

Can we do better?

- Can we get rid of congruences in the definition of the edges?
- Proposition (Bulatov)

For every semilattice edge from a to b, there is a b^{\prime} in the congruence class of b such that $\left\{a, b^{\prime}\right\}$ is a two element semilattice algebra.

Can we do better?

- Can we get rid of congruences in the definition of the edges?
- Proposition (Bulatov)

For every semilattice edge from a to b, there is a b^{\prime} in the congruence class of b such that $\left\{a, b^{\prime}\right\}$ is a two element semilattice algebra.

- Similar statements fail for majority edges and affine edges.

Can we do better?

- Can we get rid of congruences in the definition of the edges?
- Proposition (Bulatov)

For every semilattice edge from a to b, there is a b^{\prime} in the congruence class of b such that $\left\{a, b^{\prime}\right\}$ is a two element semilattice algebra.

- Similar statements fail for majority edges and affine edges.
- There are minimal Taylor algebras \mathbb{A}, \mathbb{B} of size 4 which have congruences θ such that:
- \mathbb{A} / θ is a two element majority algebra and \mathbb{B} / θ is $\mathbb{Z} / 2^{2 \text { aff }}$,
- each congruence class of θ is a copy of $\mathbb{Z} / 2^{\text {aff }}$,
- every proper subalgebra of \mathbb{A} or \mathbb{B} is contained in a congruence class of θ,
- \mathbb{A} has a 3-edge term and \mathbb{B} is Mal'cev,
- θ is the center of \mathbb{A} or \mathbb{B} in the sense of commutator theory.

Evil algebra \#1

- $\mathbb{A}=(\{a, b, c, d\}, g)$, where g is an idempotent ternary symmetric operation.

Evil algebra \#1

- $\mathbb{A}=(\{a, b, c, d\}, g)$, where g is an idempotent ternary symmetric operation.
- g commutes with the cyclic permutation $\sigma=\left(\begin{array}{lll}a & b & d\end{array}\right)$ and satisfies

$$
\begin{aligned}
& g(a, a, b)=a, \\
& g(a, a, c)=c, \\
& g(a, a, d)=c, \\
& g(a, b, c)=c .
\end{aligned}
$$

Evil algebra \#1

- $\mathbb{A}=(\{a, b, c, d\}, g)$, where g is an idempotent ternary symmetric operation.
- g commutes with the cyclic permutation $\sigma=\left(\begin{array}{lll}a & b & d\end{array}\right)$ and satisfies

$$
\begin{aligned}
& g(a, a, b)=a, \\
& g(a, a, c)=c, \\
& g(a, a, d)=c, \\
& g(a, b, c)=c .
\end{aligned}
$$

- θ corresponds to the partition $\{a, c\},\{b, d\}$.

Evil algebra \#1

- $\mathbb{A}=(\{a, b, c, d\}, g)$, where g is an idempotent ternary symmetric operation.
- g commutes with the cyclic permutation $\sigma=\left(\begin{array}{lll}a & b & d\end{array}\right)$ and satisfies

$$
\begin{aligned}
& g(a, a, b)=a, \\
& g(a, a, c)=c, \\
& g(a, a, d)=c, \\
& g(a, b, c)=c .
\end{aligned}
$$

- θ corresponds to the partition $\{a, c\},\{b, d\}$.
- The algebra $\mathbb{S}=\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$ has a congruence ψ corresponding to the partition

$$
\left\{\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
b \\
c
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right],\left[\begin{array}{l}
d \\
a
\end{array}\right]\right\},\left\{\left[\begin{array}{l}
a \\
d
\end{array}\right],\left[\begin{array}{l}
b \\
a
\end{array}\right],\left[\begin{array}{l}
c \\
b
\end{array}\right],\left[\begin{array}{l}
d \\
c
\end{array}\right]\right\}
$$

such that \mathbb{S} / ψ is isomorphic to $\mathbb{Z} / 2^{\text {aff }}$.

Evil algebra \#2

- $\mathbb{B}=(\{a, b, c, d\}, p)$, where p is a Mal'cev operation.

Evil algebra \#2

- $\mathbb{B}=(\{a, b, c, d\}, p)$, where p is a Mal'cev operation.
- p commutes with the permutations $\sigma=(a c)(b d)$ and $\tau=(a c)$.

Evil algebra \#2

- $\mathbb{B}=(\{a, b, c, d\}, p)$, where p is a Mal'cev operation.
- p commutes with the permutations $\sigma=(a c)(b d)$ and $\tau=(a c)$.
- The polynomials $+_{a}=p(\cdot, a, \cdot),+_{b}=p(\cdot, b, \cdot)$ define abelian groups:
$\left.\begin{array}{c|ccccc|cccc}+a & a & b & c & d & & +_{b} & a & b & c\end{array} d\right)$
- θ corresponds to the partition $\{a, c\},\{b, d\}$.

Evil algebra \#2

- $\mathbb{B}=(\{a, b, c, d\}, p)$, where p is a Mal'cev operation.
- p commutes with the permutations $\sigma=(a c)(b d)$ and $\tau=(a c)$.
- The polynomials $+_{a}=p(\cdot, a, \cdot),+_{b}=p(\cdot, b, \cdot)$ define abelian groups:
$\left.\begin{array}{c|ccccc|cccc}+_{a} & a & b & c & d & & +_{b} & a & b & c\end{array} d\right)$
- θ corresponds to the partition $\{a, c\},\{b, d\}$.
- The algebra $\mathbb{S}=\operatorname{Sg}_{\mathbb{B}^{2}}\{(a, b),(b, a)\}$ has a congruence ψ such that \mathbb{S} / ψ is isomorphic to $\mathbb{Z} / 4^{\text {aff }}$.

Zhuk's four cases

- Theorem (Zhuk)

If \mathbb{A} is minimal Taylor, then at least one of the following holds:

- \mathbb{A} has a proper binary absorbing subalgebra,
- \mathbb{A} has a proper "center",
- \mathbb{A} has a nontrivial affine quotient, or
- \mathbb{A} has a nontrivial polynomially complete quotient.

Zhuk's four cases

- Theorem (Zhuk)

If \mathbb{A} is minimal Taylor, then at least one of the following holds:

- \mathbb{A} has a proper binary absorbing subalgebra,
- \mathbb{A} has a proper "center",
- \mathbb{A} has a nontrivial affine quotient, or
- \mathbb{A} has a nontrivial polynomially complete quotient.
- Definition
$\mathbb{C} \leq \mathbb{A}$ is a center of \mathbb{A} if there exist
- a binary-absorption-free Taylor algebra \mathbb{B} and
- a subdirect relation $\mathbb{R} \leq_{\text {sd }} \mathbb{A} \times \mathbb{B}$, such that
- $\mathbb{C}=\left\{c \in \mathbb{A}\right.$ s.t. $\left.\forall b \in \mathbb{B},\left[\begin{array}{l}c \\ b\end{array}\right] \in \mathbb{R}\right\}$.

Zhuk's four cases

- Theorem (Zhuk)

If \mathbb{A} is minimal Taylor, then at least one of the following holds:

- \mathbb{A} has a proper binary absorbing subalgebra,
- \mathbb{A} has a proper "center",
- \mathbb{A} has a nontrivial affine quotient, or
- \mathbb{A} has a nontrivial polynomially complete quotient.
- Definition
$\mathbb{C} \leq \mathbb{A}$ is a center of \mathbb{A} if there exist
- a binary-absorption-free Taylor algebra \mathbb{B} and
- a subdirect relation $\mathbb{R} \leq_{\text {sd }} \mathbb{A} \times \mathbb{B}$, such that
- $\mathbb{C}=\left\{c \in \mathbb{A}\right.$ s.t. $\left.\forall b \in \mathbb{B},\left[\begin{array}{l}c \\ b\end{array}\right] \in \mathbb{R}\right\}$.
- Theorem (Zhuk)

If \mathbb{C} is a center of \mathbb{A}, then \mathbb{C} is a ternary absorbing subalgebra of \mathbb{A}.

Centers and Daisy Chain terms

Theorem

If \mathbb{A} is minimal Taylor and $\mathbb{M} \in H S P(\mathbb{A})$ is the two element majority algebra on the domain $\{0,1\}$, then the following are equivalent:

- \mathbb{C} is a ternary absorbing subalgebra of \mathbb{A},
- there is a p-ary cyclic term c of \mathbb{A} such that whenever $\#\left\{x_{i} \in \mathbb{C}\right\}>\frac{p}{2}$, we have

$$
c\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{C}
$$

- the binary relation $\mathbb{R} \subseteq \mathbb{A} \times \mathbb{M}$ given by

$$
\mathbb{R}=(\mathbb{A} \times\{0\}) \cup(\mathbb{C} \times\{0,1\})
$$

is a subalgebra of $\mathbb{A} \times \mathbb{M}$,

- every daisy chain term $w_{i}(x, y, z)$ witnesses the fact that \mathbb{C} ternary absorbs \mathbb{A}.

Centers produce majority quotients

- If \mathbb{C}, \mathbb{D} are centers, then for any daisy chain terms w_{i}, we must have

$$
w_{i}(\mathbb{C}, \mathbb{C}, \mathbb{D}), w_{i}(\mathbb{C}, \mathbb{D}, \mathbb{C}), w_{i}(\mathbb{D}, \mathbb{C}, \mathbb{C}) \subseteq \mathbb{C}
$$

and

$$
w_{i}(\mathbb{C}, \mathbb{D}, \mathbb{D}), w_{i}(\mathbb{D}, \mathbb{C}, \mathbb{D}), w_{i}(\mathbb{D}, \mathbb{D}, \mathbb{C}) \subseteq \mathbb{D}
$$

so $\mathbb{C} \cup \mathbb{D}$ is a subalgebra of \mathbb{A}.

Centers produce majority quotients

- If \mathbb{C}, \mathbb{D} are centers, then for any daisy chain terms w_{i}, we must have

$$
w_{i}(\mathbb{C}, \mathbb{C}, \mathbb{D}), w_{i}(\mathbb{C}, \mathbb{D}, \mathbb{C}), w_{i}(\mathbb{D}, \mathbb{C}, \mathbb{C}) \subseteq \mathbb{C}
$$

and

$$
w_{i}(\mathbb{C}, \mathbb{D}, \mathbb{D}), w_{i}(\mathbb{D}, \mathbb{C}, \mathbb{D}), w_{i}(\mathbb{D}, \mathbb{D}, \mathbb{C}) \subseteq \mathbb{D}
$$

so $\mathbb{C} \cup \mathbb{D}$ is a subalgebra of \mathbb{A}.

- If $\mathbb{C} \cap \mathbb{D}=\emptyset$, then the equivalence relation θ on $\mathbb{C} \cup \mathbb{D}$ with parts \mathbb{C}, \mathbb{D} is preserved by each daisy chain term w_{i}, and $(\mathbb{C} \cup \mathbb{D}) / \theta$ is a two element majority algebra.

Binary absorption is strong absorption

Theorem
If \mathbb{A} is minimal Taylor, then the following are equivalent:

- \mathbb{B} binary absorbs \mathbb{A},
- there exists a cyclic term c such that if any $x_{i} \in \mathbb{B}$, then $c\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{B}$,
- the ternary relation

$$
\mathbb{R}=\{(x, y, z) \text { s.t. }(x \notin \mathbb{B}) \Longrightarrow(y=z)\}
$$

is a subalgebra of \mathbb{A}^{3},

- every term f of \mathbb{A} which depends on all its inputs is such that if any $x_{i} \in \mathbb{B}$, then $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{B}$.

Minimal Taylor algebras generated by two elements

- Theorem

If \mathbb{A} is minimal Taylor and $\mathbb{A}=\operatorname{Sg}\{a, b\}$, then the following are equivalent:

- \mathbb{B} binary absorbs \mathbb{A},
- $\mathbb{A}=\mathbb{B} \cup\{a, b\}$ and there is a congruence θ such that \mathbb{B} is a congruence class of θ, and \mathbb{A} / θ is a semilattice.

Minimal Taylor algebras generated by two elements

- Theorem

If \mathbb{A} is minimal Taylor and $\mathbb{A}=\operatorname{Sg}\{a, b\}$, then the following are equivalent:

- \mathbb{B} binary absorbs \mathbb{A},
- $\mathbb{A}=\mathbb{B} \cup\{a, b\}$ and there is a congruence θ such that \mathbb{B} is a congruence class of θ, and \mathbb{A} / θ is a semilattice.
- Theorem

If \mathbb{A} is minimal Taylor and $\mathbb{A}=\operatorname{Sg}\{a, b\}$, then \mathbb{A} is not polynomially complete.

Minimal Taylor algebras generated by two elements

- Theorem

If \mathbb{A} is minimal Taylor and $\mathbb{A}=\operatorname{Sg}\{a, b\}$, then the following are equivalent:

- \mathbb{B} binary absorbs \mathbb{A},
- $\mathbb{A}=\mathbb{B} \cup\{a, b\}$ and there is a congruence θ such that \mathbb{B} is a congruence class of θ, and \mathbb{A} / θ is a semilattice.
- Theorem

If \mathbb{A} is minimal Taylor and $\mathbb{A}=\operatorname{Sg}\{a, b\}$, then \mathbb{A} is not polynomially complete.

- Minimal Taylor algebras generated by two elements are nicer than general minimal Taylor algebras.

Minimal Taylor algebras generated by two elements

- Theorem

If \mathbb{A} is minimal Taylor and $\mathbb{A}=\operatorname{Sg}\{a, b\}$, then the following are equivalent:

- \mathbb{B} binary absorbs \mathbb{A},
- $\mathbb{A}=\mathbb{B} \cup\{a, b\}$ and there is a congruence θ such that \mathbb{B} is a congruence class of θ, and \mathbb{A} / θ is a semilattice.
- Theorem If \mathbb{A} is minimal Taylor and $\mathbb{A}=\operatorname{Sg}\{a, b\}$, then \mathbb{A} is not polynomially complete.
- Minimal Taylor algebras generated by two elements are nicer than general minimal Taylor algebras.
- It's good enough to understand such algebras.

Big conjecture

- Conjecture

Suppose \mathbb{A} is minimal Taylor, generated by two elements a, b, and has no affine or semilattice quotient. Then each of a, b is contained in a proper ternary absorbing subalgebra of \mathbb{A}.

Big conjecture

- Conjecture

Suppose \mathbb{A} is minimal Taylor, generated by two elements a, b, and has no affine or semilattice quotient. Then each of a, b is contained in a proper ternary absorbing subalgebra of \mathbb{A}.

- Proposition

Suppose the conjecture holds. Then any daisy chain term w_{i} which is nontrivial on every affine algebra in $\operatorname{HS}(\mathbb{A})$ generates $\mathrm{Clo}(\mathbb{A})$. In particular, $\operatorname{Clo}(\mathbb{A})$ is generated by a single ternary term.

Big conjecture

- Conjecture

Suppose \mathbb{A} is minimal Taylor, generated by two elements a, b, and has no affine or semilattice quotient. Then each of a, b is contained in a proper ternary absorbing subalgebra of \mathbb{A}.

- Proposition

Suppose the conjecture holds. Then any daisy chain term w_{i} which is nontrivial on every affine algebra in $H S(\mathbb{A})$ generates $\mathrm{Clo}(\mathbb{A})$. In particular, $\operatorname{Clo}(\mathbb{A})$ is generated by a single ternary term.

- Theorem (Kearnes, Szendrei)

Suppose a minimal Taylor algebra has no semilattice edges and has its clone generated by a single ternary term. Then it has a 3-edge term.

Thank you for your attention.

