Coarse Classification of Binary Minimal Clones

Zarathustra Brady

Minimal clones

- A clone \mathcal{C} is minimal if $f \in \mathcal{C}$ nontrivial implies $\mathcal{C}=\operatorname{Clo}(f)$.

Minimal clones

- A clone \mathcal{C} is minimal if $f \in \mathcal{C}$ nontrivial implies $\mathcal{C}=\operatorname{Clo}(f)$.
- If $\mathrm{Clo}(f)$ is minimal and $g \in \operatorname{Clo}(f)$ nontrivial, then $f \in \mathrm{Clo}(g)$.

Minimal clones

- A clone \mathcal{C} is minimal if $f \in \mathcal{C}$ nontrivial implies $\mathcal{C}=\operatorname{Clo}(f)$.
- If $\mathrm{Clo}(f)$ is minimal and $g \in \operatorname{Clo}(f)$ nontrivial, then $f \in \mathrm{Clo}(g)$.
- \mathbb{A} is called a set if all of its operations are projections. Otherwise, we say \mathbb{A} is nontrivial.

Minimal clones

- A clone \mathcal{C} is minimal if $f \in \mathcal{C}$ nontrivial implies $\mathcal{C}=\operatorname{Clo}(f)$.
- If $\mathrm{Clo}(f)$ is minimal and $g \in \operatorname{Clo}(f)$ nontrivial, then $f \in \mathrm{Clo}(g)$.
- \mathbb{A} is called a set if all of its operations are projections. Otherwise, we say \mathbb{A} is nontrivial.
- If $\operatorname{Clo}(\mathbb{A})$ is minimal and $\mathbb{B} \in \operatorname{Var}(\mathbb{A})$ nontrivial, then $\operatorname{Clo}(\mathbb{B})$ is minimal.

Rosenberg's Five Types Theorem

Theorem (Rosenberg)

Suppose that $\mathbb{A}=(A, f)$ is a finite clone-minimal algebra, and f has minimal arity among nontrivial elements of $\mathrm{Clo}(\mathbb{A})$. Then one of the following is true:

1. f is a unary operation which is either a permutation of prime order or satisfies $f(f(x)) \approx f(x)$,
2. f is ternary, and \mathbb{A} is the idempotent reduct of a vector space over \mathbb{F}_{2},
3. f is a ternary majority operation,
4. f is a semiprojection of arity at least 3 ,
5. f is an idempotent binary operation.

Nice properties

- We say a property \mathcal{P} of functions f is nice if it satisfies the following two conditions:

Nice properties

- We say a property \mathcal{P} of functions f is nice if it satisfies the following two conditions:
- Given f as input, we can verify in polynomial time whether f has property \mathcal{P},

Nice properties

- We say a property \mathcal{P} of functions f is nice if it satisfies the following two conditions:
- Given f as input, we can verify in polynomial time whether f has property \mathcal{P},
- If f has property \mathcal{P} and $g \in \operatorname{Clo}(f)$ is nontrivial, then there is a nontrivial $f^{\prime} \in \operatorname{Clo}(g)$ such that f^{\prime} has property \mathcal{P}.

Nice properties

- We say a property \mathcal{P} of functions f is nice if it satisfies the following two conditions:
- Given f as input, we can verify in polynomial time whether f has property \mathcal{P},
- If f has property \mathcal{P} and $g \in \operatorname{Clo}(f)$ is nontrivial, then there is a nontrivial $f^{\prime} \in \operatorname{Clo}(g)$ such that f^{\prime} has property \mathcal{P}.
- The first four cases in Rosenberg's classification are nice properties.

Majority is a nice property

- As an example, we'll check that being a ternary majority operation is a nice property.

Majority is a nice property

- As an example, we'll check that being a ternary majority operation is a nice property.
- Lemma

If f is a majority operation and $g \in \operatorname{Clo}(f)$ is nontrivial, then g is a near-unanimity operation.

Majority is a nice property

- As an example, we'll check that being a ternary majority operation is a nice property.
- Lemma

If f is a majority operation and $g \in \operatorname{Clo}(f)$ is nontrivial, then g is a near-unanimity operation.

- The proof is by induction on the construction of g in terms of f.

Majority is a nice property

- As an example, we'll check that being a ternary majority operation is a nice property.
- Lemma

If f is a majority operation and $g \in \operatorname{Clo}(f)$ is nontrivial, then g is a near-unanimity operation.

- The proof is by induction on the construction of g in terms of f.
- $\Longrightarrow g$ has a majority term as an identification minor.

Coarse Classification

- Our goal is to find a list of nice properties $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots$ such that every minimal clone has an operation satisfying one of these nice properties.

Coarse Classification

- Our goal is to find a list of nice properties $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots$ such that every minimal clone has an operation satisfying one of these nice properties.
- We'll call such a list a coarse classification of minimal clones.

Coarse Classification

- Our goal is to find a list of nice properties $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots$ such that every minimal clone has an operation satisfying one of these nice properties.
- We'll call such a list a coarse classification of minimal clones.
- By Rosenberg's result, we just need to find a coarse classification of binary minimal clones.

Coarse Classification

- Our goal is to find a list of nice properties $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots$ such that every minimal clone has an operation satisfying one of these nice properties.
- We'll call such a list a coarse classification of minimal clones.
- By Rosenberg's result, we just need to find a coarse classification of binary minimal clones.
- The main challenge is to find properties of binary operations f that ensure that $\mathrm{Clo}(f)$ doesn't contain any semiprojections.

Taylor Case

- Theorem (Z.)

Suppose \mathbb{A} is a finite algebra which is both clone-minimal and Taylor. Then one of the following is true:

1. \mathbb{A} is the idempotent reduct of a vector space over \mathbb{F}_{p} for some prime p,
2. \mathbb{A} is a majority algebra,
3. \mathbb{A} is a spiral.

Taylor Case

- Theorem (Z.)

Suppose \mathbb{A} is a finite algebra which is both clone-minimal and Taylor. Then one of the following is true:

1. \mathbb{A} is the idempotent reduct of a vector space over \mathbb{F}_{p} for some prime p,
2. \mathbb{A} is a majority algebra,
3. \mathbb{A} is a spiral.

- The proof uses the characterization of bounded width algebras.

Taylor Case

- Theorem (Z.)

Suppose \mathbb{A} is a finite algebra which is both clone-minimal and Taylor. Then one of the following is true:

1. \mathbb{A} is the idempotent reduct of a vector space over \mathbb{F}_{p} for some prime p,
2. \mathbb{A} is a majority algebra,
3. \mathbb{A} is a spiral.

- The proof uses the characterization of bounded width algebras.
- All three cases are given by nice properties.

Spirals

- Definition
$\mathbb{A}=(A, f)$ is a spiral if f is binary, idempotent, commutative, and for any $a, b \in \mathbb{A}$ either $\{a, b\}$ is a subalgebra of \mathbb{A}, or $\operatorname{Sg}_{\mathbb{A}}\{a, b\}$ has a surjective map to the free semilattice on two generators.

Spirals

- Definition
$\mathbb{A}=(A, f)$ is a spiral if f is binary, idempotent, commutative, and for any $a, b \in \mathbb{A}$ either $\{a, b\}$ is a subalgebra of \mathbb{A}, or $\operatorname{Sg}_{\mathbb{A}}\{a, b\}$ has a surjective map to the free semilattice on two generators.
- Any 2 -semilattice is a (clone-minimal) spiral.

Spirals

- Definition
$\mathbb{A}=(A, f)$ is a spiral if f is binary, idempotent, commutative, and for any $a, b \in \mathbb{A}$ either $\{a, b\}$ is a subalgebra of \mathbb{A}, or $\operatorname{Sg}_{\mathbb{A}}\{a, b\}$ has a surjective map to the free semilattice on two generators.
- Any 2-semilattice is a (clone-minimal) spiral.
- A clone-minimal spiral which is not a 2 -semilattice:

The non-Taylor case

Theorem (Z.)
Suppose that $\mathbb{A}=(A, f)$ is a binary minimal clone which is not Taylor. Then, after possibly replacing $f(x, y)$ by $f(y, x)$, one of the following is true:

1. \mathbb{A} is a rectangular band,

The non-Taylor case

Theorem (Z.)
Suppose that $\mathbb{A}=(A, f)$ is a binary minimal clone which is not Taylor. Then, after possibly replacing $f(x, y)$ by $f(y, x)$, one of the following is true:

1. \mathbb{A} is a rectangular band,
2. there is a nontrivial $s \in \operatorname{Clo}(f)$ which is a "partial semilattice operation": $s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)$,

The non-Taylor case

Theorem (Z.)
Suppose that $\mathbb{A}=(A, f)$ is a binary minimal clone which is not Taylor. Then, after possibly replacing $f(x, y)$ by $f(y, x)$, one of the following is true:

1. \mathbb{A} is a rectangular band,
2. there is a nontrivial $s \in \operatorname{Clo}(f)$ which is a "partial semilattice operation": $s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)$,
3. \mathbb{A} is a p-cyclic groupoid for some prime p,

The non-Taylor case

Theorem (Z.)
Suppose that $\mathbb{A}=(A, f)$ is a binary minimal clone which is not Taylor. Then, after possibly replacing $f(x, y)$ by $f(y, x)$, one of the following is true:

1. \mathbb{A} is a rectangular band,
2. there is a nontrivial $s \in \operatorname{Clo}(f)$ which is a "partial semilattice operation": $s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)$,
3. \mathbb{A} is a p-cyclic groupoid for some prime p,
4. \mathbb{A} is an idempotent groupoid satisfying $(x y)(z x) \approx x y$ ("neighborhood algebra"),

The non-Taylor case

Theorem (Z.)
Suppose that $\mathbb{A}=(A, f)$ is a binary minimal clone which is not Taylor. Then, after possibly replacing $f(x, y)$ by $f(y, x)$, one of the following is true:

1. \mathbb{A} is a rectangular band,
2. there is a nontrivial $s \in \operatorname{Clo}(f)$ which is a "partial semilattice operation": $s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)$,
3. \mathbb{A} is a p-cyclic groupoid for some prime p,
4. \mathbb{A} is an idempotent groupoid satisfying $(x y)(z x) \approx x y$ ("neighborhood algebra"),
5. \mathbb{A} is a "dispersive algebra".

Dispersive algebras: definition

- We define the variety \mathcal{D} of idempotent groupoids satisfying

$$
\begin{gather*}
x(y x) \approx(x y) x \approx(x y) y \approx(x y)(y x) \approx x y \tag{D1}\\
\left.\forall n \geq 0 \quad x\left(\ldots\left(\left(x y_{1}\right) y_{2}\right) \cdots y_{n}\right)\right) \approx x \tag{D2}
\end{gather*}
$$

Dispersive algebras: definition

- We define the variety \mathcal{D} of idempotent groupoids satisfying

$$
\begin{gather*}
x(y x) \approx(x y) x \approx(x y) y \approx(x y)(y x) \approx x y \tag{D1}\\
\left.\forall n \geq 0 \quad x\left(\ldots\left(\left(x y_{1}\right) y_{2}\right) \cdots y_{n}\right)\right) \approx x \tag{D2}
\end{gather*}
$$

- Proposition (Lévai, Pálfy) If $\mathbb{A} \in \mathcal{D}$, then $\operatorname{Clo}(\mathbb{A})$ is a minimal clone. Also, $\mathcal{F}_{\mathcal{D}}(x, y)$ has exactly four elements: $x, y, x y, y x$.

Dispersive algebras: definition

- We define the variety \mathcal{D} of idempotent groupoids satisfying

$$
\begin{gather*}
x(y x) \approx(x y) x \approx(x y) y \approx(x y)(y x) \approx x y, \tag{D1}\\
\left.\forall n \geq 0 \quad x\left(\ldots\left(\left(x y_{1}\right) y_{2}\right) \cdots y_{n}\right)\right) \approx x . \tag{D2}
\end{gather*}
$$

- Proposition (Lévai, Pálfy)

If $\mathbb{A} \in \mathcal{D}$, then $\operatorname{Clo}(\mathbb{A})$ is a minimal clone. Also, $\mathcal{F}_{\mathcal{D}}(x, y)$ has exactly four elements: $x, y, x y, y x$.

- Definition

An idempotent groupoid \mathbb{A} is dispersive if it satisfies (D2) and if for all $a, b \in \mathbb{A}$, either $\{a, b\}$ is a two element subalgebra of \mathbb{A} or there is a surjective map

$$
\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\} \rightarrow \mathcal{F}_{\mathcal{D}}(x, y)
$$

Absorption identities

- An absorption identity is an identity of the form

$$
t\left(x_{1}, \ldots, x_{n}\right) \approx x_{i}
$$

Absorption identities

- An absorption identity is an identity of the form

$$
t\left(x_{1}, \ldots, x_{n}\right) \approx x_{i}
$$

- If \mathbb{A} is clone-minimal and $\mathbb{B} \in \operatorname{Var}(\mathbb{A})$ is nontrivial, then any absorption identity that holds in \mathbb{B} must also hold in \mathbb{A}.

Absorption identities

- An absorption identity is an identity of the form

$$
t\left(x_{1}, \ldots, x_{n}\right) \approx x_{i}
$$

- If \mathbb{A} is clone-minimal and $\mathbb{B} \in \operatorname{Var}(\mathbb{A})$ is nontrivial, then any absorption identity that holds in \mathbb{B} must also hold in \mathbb{A}.
- In the partial semilattice case, there are no absorption identities at all (aside from idempotence).

Absorption identities

- An absorption identity is an identity of the form

$$
t\left(x_{1}, \ldots, x_{n}\right) \approx x_{i}
$$

- If \mathbb{A} is clone-minimal and $\mathbb{B} \in \operatorname{Var}(\mathbb{A})$ is nontrivial, then any absorption identity that holds in \mathbb{B} must also hold in \mathbb{A}.
- In the partial semilattice case, there are no absorption identities at all (aside from idempotence).
- The dispersive case can alternatively be described as the case where every absorption identity follows from ($\mathcal{D} 2$):

$$
\left.\forall n \geq 0 \quad x\left(\ldots\left(\left(x y_{1}\right) y_{2}\right) \cdots y_{n}\right)\right) \approx x
$$

I call it "dispersive" because there is very little absorption.

Partial semilattice case

- An idempotent binary operation s is a partial semilattice if

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

Partial semilattice case

- An idempotent binary operation s is a partial semilattice if

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

- Proposition

A finite idempotent algebra \mathbb{A} has $a \neq b \in \mathbb{A}$ with

$$
(b, b) \in \operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}
$$

if and only if it has a nontrivial partial semilattice operation.

Partial semilattice case

- An idempotent binary operation s is a partial semilattice if

$$
s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)
$$

- Proposition

A finite idempotent algebra \mathbb{A} has $a \neq b \in \mathbb{A}$ with

$$
(b, b) \in \operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}
$$

if and only if it has a nontrivial partial semilattice operation.

- Proof sketch: Let $t(a, b)=t(b, a)=b$, then take

$$
\begin{aligned}
t^{n+1}(x, y) & :=t\left(x, t^{n}(x, y)\right) \\
t^{\infty}(x, y) & :=\lim _{n \rightarrow \infty} t^{n!}(x, y) \\
u(x, y) & :=t^{\infty}\left(x, t^{\infty}(y, x)\right), \\
s(x, y) & :=u^{\infty}(x, y)
\end{aligned}
$$

Rectangular band case

- If $\mathbb{A}=(A, f)$ is not Taylor, then $\operatorname{Var}(\mathbb{A})$ must contain a set, on which f either acts as first projection or second projection.

Rectangular band case

- If $\mathbb{A}=(A, f)$ is not Taylor, then $\operatorname{Var}(\mathbb{A})$ must contain a set, on which f either acts as first projection or second projection.
- Suppose $\mathbb{B}_{1}, \mathbb{B}_{2} \in \operatorname{Var}(\mathbb{A})$ are sets such that $f^{\mathbb{B}_{1}}=\pi_{1}$ and $f^{\mathbb{B}_{2}}=\pi_{2}$. Let $\mathbb{B}=\mathbb{B}_{1} \times \mathbb{B}_{2}$.

Rectangular band case

- If $\mathbb{A}=(A, f)$ is not Taylor, then $\operatorname{Var}(\mathbb{A})$ must contain a set, on which f either acts as first projection or second projection.
- Suppose $\mathbb{B}_{1}, \mathbb{B}_{2} \in \operatorname{Var}(\mathbb{A})$ are sets such that $f^{\mathbb{B}_{1}}=\pi_{1}$ and $f^{\mathbb{B}_{2}}=\pi_{2}$. Let $\mathbb{B}=\mathbb{B}_{1} \times \mathbb{B}_{2}$.
- The following absorption identities hold on \mathbb{B} :

$$
\begin{aligned}
u & \approx f(f(f(u, x), y), f(z, f(w, u))) \\
x & \approx f(f(x, w), x) \\
w & \approx f(w, f(x, w))
\end{aligned}
$$

Rectangular band case

- If $\mathbb{A}=(A, f)$ is not Taylor, then $\operatorname{Var}(\mathbb{A})$ must contain a set, on which f either acts as first projection or second projection.
- Suppose $\mathbb{B}_{1}, \mathbb{B}_{2} \in \operatorname{Var}(\mathbb{A})$ are sets such that $f^{\mathbb{B}_{1}}=\pi_{1}$ and $f^{\mathbb{B}_{2}}=\pi_{2}$. Let $\mathbb{B}=\mathbb{B}_{1} \times \mathbb{B}_{2}$.
- The following absorption identities hold on \mathbb{B} :

$$
\begin{aligned}
u & \approx f(f(f(u, x), y), f(z, f(w, u))) \\
x & \approx f(f(x, w), x) \\
w & \approx f(w, f(x, w))
\end{aligned}
$$

- Take $u=f(x, w)$, get

$$
f(f(x, y), f(z, w)) \approx f(x, w)
$$

so \mathbb{A} is a rectangular band.

- If \mathbb{A} is not a rectangular band, then there is only one type of set in $\operatorname{Var}(\mathbb{A})$, and every binary function restricts to either first or second projection on this set.
- If \mathbb{A} is not a rectangular band, then there is only one type of set in $\operatorname{Var}(\mathbb{A})$, and every binary function restricts to either first or second projection on this set.
- We define $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ to be the collection of binary terms of \mathbb{A} which restrict to first projection.
- If \mathbb{A} is not a rectangular band, then there is only one type of set in $\operatorname{Var}(\mathbb{A})$, and every binary function restricts to either first or second projection on this set.
- We define $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ to be the collection of binary terms of \mathbb{A} which restrict to first projection.
- There is a unique surjection from $\mathcal{F}_{\mathbb{A}}(x, y)$ onto a two-element set, and $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ is one of the congruence classes of the kernel.

$\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$

- If \mathbb{A} is not a rectangular band, then there is only one type of set in $\operatorname{Var}(\mathbb{A})$, and every binary function restricts to either first or second projection on this set.
- We define $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ to be the collection of binary terms of \mathbb{A} which restrict to first projection.
- There is a unique surjection from $\mathcal{F}_{\mathbb{A}}(x, y)$ onto a two-element set, and $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ is one of the congruence classes of the kernel.
- From here on, every function we name will always be assumed to be an element of $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$.

Crucial lemma

- Lemma

Suppose \mathbb{A} is a binary minimal clone, not Taylor, not a rectangular band, and not a partial semilattice. Then for any $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$, we have

$$
f(x, g(x, y)) \approx x
$$

Crucial lemma

- Lemma

Suppose \mathbb{A} is a binary minimal clone, not Taylor, not a rectangular band, and not a partial semilattice. Then for any $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$, we have

$$
f(x, g(x, y)) \approx x
$$

- Proof hints: WLOG every proper subalgebra and quotient of \mathbb{A} is a set.

Crucial lemma

- Lemma

Suppose \mathbb{A} is a binary minimal clone, not Taylor, not a rectangular band, and not a partial semilattice. Then for any $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$, we have

$$
f(x, g(x, y)) \approx x
$$

- Proof hints: WLOG every proper subalgebra and quotient of \mathbb{A} is a set.
- If $f(a, g(a, b)) \neq a$, then $a, g(a, b)$ must generate \mathbb{A}, so there is $h \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ such that $h(a, b)=b$.

Crucial lemma

- Lemma

Suppose \mathbb{A} is a binary minimal clone, not Taylor, not a rectangular band, and not a partial semilattice. Then for any $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$, we have

$$
f(x, g(x, y)) \approx x .
$$

- Proof hints: WLOG every proper subalgebra and quotient of \mathbb{A} is a set.
- If $f(a, g(a, b)) \neq a$, then $a, g(a, b)$ must generate \mathbb{A}, so there is $h \in \operatorname{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ such that $h(a, b)=b$.
- Consider the relation $\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$: either it's the graph of an automorphism, or it has a nontrivial linking congruence, or it's linked.

Crucial lemma

- Lemma

Suppose \mathbb{A} is a binary minimal clone, not Taylor, not a rectangular band, and not a partial semilattice. Then for any $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$, we have

$$
f(x, g(x, y)) \approx x .
$$

- Proof hints: WLOG every proper subalgebra and quotient of \mathbb{A} is a set.
- If $f(a, g(a, b)) \neq a$, then $a, g(a, b)$ must generate \mathbb{A}, so there is $h \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ such that $h(a, b)=b$.
- Consider the relation $\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$: either it's the graph of an automorphism, or it has a nontrivial linking congruence, or it's linked.
- If it's linked, then there is $\mathbb{B}<\mathbb{A}$ such that $\mathbb{B} \times \mathbb{A} \cap \operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\}$ is subdirect... from here it's easy.

Groupy case

- There are three ways to combine binary functions which define associative operations on $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$:

Groupy case

- There are three ways to combine binary functions which define associative operations on $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$:
- $f, g \mapsto f(x, g(x, y))$,

Groupy case

- There are three ways to combine binary functions which define associative operations on $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$:
- $f, g \mapsto f(x, g(x, y))$,
- $f, g \mapsto f(g(x, y), y)$,

Groupy case

- There are three ways to combine binary functions which define associative operations on $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$:
- $f, g \mapsto f(x, g(x, y))$,
- $f, g \mapsto f(g(x, y), y)$,
- $f, g \mapsto f(g(x, y), g(y, x))$.

Groupy case

- There are three ways to combine binary functions which define associative operations on $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$:
- $f, g \mapsto f(x, g(x, y))$,
- $f, g \mapsto f(g(x, y), y)$,
- $f, g \mapsto f(g(x, y), g(y, x))$.
- The first one is boring by the Lemma.

Groupy case

- There are three ways to combine binary functions which define associative operations on $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$:
- $f, g \mapsto f(x, g(x, y))$,
- $f, g \mapsto f(g(x, y), y)$,
- $f, g \mapsto f(g(x, y), g(y, x))$.
- The first one is boring by the Lemma.
- What happens if one of the other two operations forms a group on $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$?

Groupy case - continued

- If the operation $f, g \mapsto f(g(x, y), y)$ forms a group on $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$, then we can use orbit-stabilizer to find nontrivial $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ such that

$$
f(x, g(y, x)) \approx f(x, y)
$$

Groupy case - continued

- If the operation $f, g \mapsto f(g(x, y), y)$ forms a group on $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$, then we can use orbit-stabilizer to find nontrivial $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ such that

$$
f(x, g(y, x)) \approx f(x, y)
$$

- Together with the Lemma from before, we see that

$$
f(x, g(y, z))=f(x, y)
$$

whenever two of x, y, z are equal.

Groupy case - continued

- If the operation $f, g \mapsto f(g(x, y), y)$ forms a group on $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$, then we can use orbit-stabilizer to find nontrivial $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ such that

$$
f(x, g(y, x)) \approx f(x, y)
$$

- Together with the Lemma from before, we see that

$$
f(x, g(y, z))=f(x, y)
$$

whenever two of x, y, z are equal.

- If f^{-}is the inverse to f in this group, we get

$$
f^{-}(f(x, g(y, z)), y)=x
$$

whenever two of x, y, z are equal. Semiprojection?

Groupy case is p-cyclic groupoids

- We have nontrivial $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ such that $f(x, g(y, z)) \approx f(x, y)$.

Groupy case is p-cyclic groupoids

- We have nontrivial $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ such that $f(x, g(y, z)) \approx f(x, y)$.
- Since $f \in \mathrm{Clo}(g)$, we have

$$
f(x, f(y, z)) \approx f(x, y)
$$

Groupy case is p-cyclic groupoids

- We have nontrivial $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ such that $f(x, g(y, z)) \approx f(x, y)$.
- Since $f \in \mathrm{Clo}(g)$, we have

$$
f(x, f(y, z)) \approx f(x, y)
$$

- Playing with inverses again, we get

$$
f(f(x, y), x) \approx f\left(f(x, y), f^{-}(f(x, y), y)\right) \approx f(x, y)
$$

Groupy case is p-cyclic groupoids

- We have nontrivial $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ such that $f(x, g(y, z)) \approx f(x, y)$.
- Since $f \in \mathrm{Clo}(g)$, we have

$$
f(x, f(y, z)) \approx f(x, y)
$$

- Playing with inverses again, we get

$$
f(f(x, y), x) \approx f\left(f(x, y), f^{-}(f(x, y), y)\right) \approx f(x, y)
$$

- Thus

$$
f(f(x, y), z)=f(f(x, z), y)
$$

whenever two of x, y, z are equal.

p-cyclic groupoids

- An idempotent groupoid \mathbb{A} is a p-cyclic groupoid if it satisfies

$$
\begin{aligned}
x(y z) & \approx x y, \\
(x y) z & \approx(x z) y, \\
(\cdots((x y) y) \cdots y) & \approx x,
\end{aligned}
$$

where the last identity has p ys.

p-cyclic groupoids

- An idempotent groupoid \mathbb{A} is a p-cyclic groupoid if it satisfies

$$
\begin{aligned}
x(y z) & \approx x y \\
(x y) z & \approx(x z) y, \\
(\cdots((x y) y) \cdots y) & \approx x,
\end{aligned}
$$

where the last identity has p ys.

- Theorem (Z.)

If a binary minimal clone is not a rectangular band and does not have any nontrivial term f satisfying the identity

$$
f(f(x, y), y) \approx f(x, y)
$$

then it is a p-cyclic groupoid for some prime p. (And similarly if there is no $f(f(x, y), f(y, x)) \approx f(x, y)$.)

Structure of p-cyclic groupoids

- p-cyclic groupoids were studied by Płonka, who showed they form minimal clones.

Structure of p-cyclic groupoids

- p-cyclic groupoids were studied by Płonka, who showed they form minimal clones.
- The general p-cyclic groupoid can be written as a disjoint union of affine spaces A_{1}, \ldots, A_{n} over \mathbb{F}_{p}, together with vectors $v_{i j} \in A_{i}$ for all i, j, such that

$$
x \in A_{i}, y \in A_{j} \Longrightarrow x y=x+v_{i j} \quad\left(\in A_{i}\right)
$$

Structure of p-cyclic groupoids

- p-cyclic groupoids were studied by Płonka, who showed they form minimal clones.
- The general p-cyclic groupoid can be written as a disjoint union of affine spaces A_{1}, \ldots, A_{n} over \mathbb{F}_{p}, together with vectors $v_{i j} \in A_{i}$ for all i, j, such that

$$
x \in A_{i}, y \in A_{j} \Longrightarrow x y=x+v_{i j} \quad\left(\in A_{i}\right)
$$

- The $v_{i j}$ must satisfy $v_{i i}=0$, and for any fixed i the set of $v_{i j} s$ have to span A_{i}.

Structure of p-cyclic groupoids

- p-cyclic groupoids were studied by Płonka, who showed they form minimal clones.
- The general p-cyclic groupoid can be written as a disjoint union of affine spaces A_{1}, \ldots, A_{n} over \mathbb{F}_{p}, together with vectors $v_{i j} \in A_{i}$ for all i, j, such that

$$
x \in A_{i}, y \in A_{j} \Longrightarrow x y=x+v_{i j} \quad\left(\in A_{i}\right)
$$

- The $v_{i j}$ must satisfy $v_{i i}=0$, and for any fixed i the set of $v_{i j} s$ have to span A_{i}.
- The free p-cyclic groupoid on n generators has $n p^{n-1}$ elements.

Neighborhood algebras

- An idempotent groupoid is a neighborhood algebra if it satisfies the identity

$$
(x y)(z x) \approx x y
$$

Neighborhood algebras

- An idempotent groupoid is a neighborhood algebra if it satisfies the identity

$$
(x y)(z x) \approx x y
$$

- This is equivalent to satisfying the absorption identity

$$
x((y x) z) \approx x
$$

Neighborhood algebras

- An idempotent groupoid is a neighborhood algebra if it satisfies the identity

$$
(x y)(z x) \approx x y
$$

- This is equivalent to satisfying the absorption identity

$$
x((y x) z) \approx x
$$

- Proposition

If an idempotent groupoid satisfies $x(x y) \approx x(y x) \approx x$ and has no ternary semiprojections, then it is a neighborhood algebra.

Neighborhood algebras

- An idempotent groupoid is a neighborhood algebra if it satisfies the identity

$$
(x y)(z x) \approx x y
$$

- This is equivalent to satisfying the absorption identity

$$
x((y x) z) \approx x
$$

- Proposition

If an idempotent groupoid satisfies $x(x y) \approx x(y x) \approx x$ and has no ternary semiprojections, then it is a neighborhood algebra.

- Proposition (Lévai, Pálfy)

Every neighborhood algebra forms a minimal clone.

Structure of neighborhood algebras

- In a neighborhood algebra, if $a b=a$ then $b a=b$:

$$
b a=(b b)(a b)=b b=b
$$

Structure of neighborhood algebras

- In a neighborhood algebra, if $a b=a$ then $b a=b$:

$$
b a=(b b)(a b)=b b=b
$$

- Make a graph by drawing an edge connecting a to b whenever $a b=a$.

Structure of neighborhood algebras

- In a neighborhood algebra, if $a b=a$ then $b a=b$:

$$
b a=(b b)(a b)=b b=b
$$

- Make a graph by drawing an edge connecting a to b whenever $a b=a$.
- For any $a, b, a b$ is connected to a, b, and every neighbor of a.

Structure of neighborhood algebras

- In a neighborhood algebra, if $a b=a$ then $b a=b$:

$$
b a=(b b)(a b)=b b=b
$$

- Make a graph by drawing an edge connecting a to b whenever $a b=a$.
- For any $a, b, a b$ is connected to a, b, and every neighbor of a.
- Conversely: Start from any graph such that some vertex is adjacent to all others, and define an idempotent operation by $a b=a$ if a, b are connected by an edge, and otherwise let $a b$ be any vertex which is connected to a, b, and every neighbor of a.

Structure of neighborhood algebras

- In a neighborhood algebra, if $a b=a$ then $b a=b$:

$$
b a=(b b)(a b)=b b=b
$$

- Make a graph by drawing an edge connecting a to b whenever $a b=a$.
- For any $a, b, a b$ is connected to a, b, and every neighbor of a.
- Conversely: Start from any graph such that some vertex is adjacent to all others, and define an idempotent operation by $a b=a$ if a, b are connected by an edge, and otherwise let $a b$ be any vertex which is connected to a, b, and every neighbor of a.
- The resulting groupoid will then be a neighborhood algebra.

Dispersive case

- Suppose we are not in any of the previous cases.

Dispersive case

- Suppose we are not in any of the previous cases.
- Our crucial Lemma shows that

$$
x\left(\cdots\left(\left(x y_{1}\right) y_{2}\right) \cdots y_{n}\right) \approx x
$$

whenever at most two different variables show up on the left hand side. Semiprojection?

Dispersive case

- Suppose we are not in any of the previous cases.
- Our crucial Lemma shows that

$$
x\left(\cdots\left(\left(x y_{1}\right) y_{2}\right) \cdots y_{n}\right) \approx x
$$

whenever at most two different variables show up on the left hand side. Semiprojection?

- We need to construct a surjection $\mathcal{F}_{\mathbb{A}}(x, y) \rightarrow \mathcal{F}_{\mathcal{D}}(x, y)$.

Dispersive case

- Suppose we are not in any of the previous cases.
- Our crucial Lemma shows that

$$
x\left(\cdots\left(\left(x y_{1}\right) y_{2}\right) \cdots y_{n}\right) \approx x
$$

whenever at most two different variables show up on the left hand side. Semiprojection?

- We need to construct a surjection $\mathcal{F}_{\mathbb{A}}(x, y) \rightarrow \mathcal{F}_{\mathcal{D}}(x, y)$.
- The kernel should have equivalence classes $\{x\},\{y\}$, $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A}) \backslash\{x\}$, and $\mathrm{Clo}_{2}^{\pi_{2}}(\mathbb{A}) \backslash\{y\}$.

Dispersive case - continued

- Suppose, for contradiction, that $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ are nontrivial and satisfy

$$
f(x, g(y, x)) \approx x
$$

Dispersive case - continued

- Suppose, for contradiction, that $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ are nontrivial and satisfy

$$
f(x, g(y, x)) \approx x
$$

- WLOG every proper subalgebra and quotient of \mathbb{A} is a set (and so $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ is a set).

Dispersive case - continued

- Suppose, for contradiction, that $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ are nontrivial and satisfy

$$
f(x, g(y, x)) \approx x
$$

- WLOG every proper subalgebra and quotient of \mathbb{A} is a set (and so $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ is a set).
- For every n, we have

$$
f\left(x, g\left(\ldots g\left(g(y, x), z_{1}\right), \ldots, z_{n}\right)\right) \approx x
$$

whenever at most two different variables show up on the left hand side. Semiprojection?

Dispersive case - continued

- Suppose, for contradiction, that $f, g \in \mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ are nontrivial and satisfy

$$
f(x, g(y, x)) \approx x
$$

- WLOG every proper subalgebra and quotient of \mathbb{A} is a set (and so $\mathrm{Clo}_{2}^{\pi_{1}}(\mathbb{A})$ is a set).
- For every n, we have

$$
f\left(x, g\left(\ldots g\left(g(y, x), z_{1}\right), \ldots, z_{n}\right)\right) \approx x
$$

whenever at most two different variables show up on the left hand side. Semiprojection?

- Since we aren't a neighborhood algebra, there must be some a, b such that

$$
g(a, g(b, a)) \neq a
$$

Dispersive case - continued

- We have $\operatorname{Sg}_{\mathbb{A}}\{a, g(b, a)\}=\mathbb{A}$ and

$$
f\left(a, g\left(\ldots g\left(g(b, a), z_{1}\right), \ldots, z_{n}\right)\right) \approx a
$$

for all z_{1}, \ldots, z_{n}.

Dispersive case - continued

- We have $\operatorname{Sg}_{\mathbb{A}}\{a, g(b, a)\}=\mathbb{A}$ and

$$
f\left(a, g\left(\ldots g\left(g(b, a), z_{1}\right), \ldots, z_{n}\right)\right) \approx a
$$

for all z_{1}, \ldots, z_{n}.

- By (D2), also have

$$
f\left(a, g\left(\ldots g\left(a, z_{1}\right), \ldots, z_{n}\right)\right) \approx a
$$

for all z_{1}, \ldots, z_{n}.

Dispersive case - continued

- We have $\operatorname{Sg}_{\mathbb{A}}\{a, g(b, a)\}=\mathbb{A}$ and

$$
f\left(a, g\left(\ldots g\left(g(b, a), z_{1}\right), \ldots, z_{n}\right)\right) \approx a
$$

for all z_{1}, \ldots, z_{n}.

- By (D2), also have

$$
f\left(a, g\left(\ldots g\left(a, z_{1}\right), \ldots, z_{n}\right)\right) \approx a
$$

for all z_{1}, \ldots, z_{n}.

- Thus, for all $c \in \mathbb{A}$ we have

$$
f(a, c)=a
$$

Dispersive case - continued

- We have $\operatorname{Sg}_{\mathbb{A}}\{a, g(b, a)\}=\mathbb{A}$ and

$$
f\left(a, g\left(\ldots g\left(g(b, a), z_{1}\right), \ldots, z_{n}\right)\right) \approx a
$$

for all z_{1}, \ldots, z_{n}.

- By (D2), also have

$$
f\left(a, g\left(\ldots g\left(a, z_{1}\right), \ldots, z_{n}\right)\right) \approx a
$$

for all z_{1}, \ldots, z_{n}.

- Thus, for all $c \in \mathbb{A}$ we have

$$
f(a, c)=a
$$

- Since $g \in \operatorname{Clo}(f)$, we get $g(a, g(b, a))=a$, a contradiction.

Dispersive case - final

- Need to rule out two similar possibilities - the arguments are similar, but now we must use the existence of functions satisfying $f(f(x, y), y) \approx f(x, y)$ or $f(f(x, y), f(y, x)) \approx f(x, y)$.

Dispersive case - final

- Need to rule out two similar possibilities - the arguments are similar, but now we must use the existence of functions satisfying $f(f(x, y), y) \approx f(x, y)$ or $f(f(x, y), f(y, x)) \approx f(x, y)$.
- To see that $\mathrm{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\} \rightarrow \mathcal{F}_{\mathcal{D}}(x, y)$ when $\{a, b\}$ is not a subalgebra, note that if $f((a, b),(b, a))=(a, b)$, then we must have $f(x, y) \approx x$.

Dispersive case - final

- Need to rule out two similar possibilities - the arguments are similar, but now we must use the existence of functions satisfying $f(f(x, y), y) \approx f(x, y)$ or $f(f(x, y), f(y, x)) \approx f(x, y)$.
- To see that $\operatorname{Sg}_{\mathbb{A}^{2}}\{(a, b),(b, a)\} \rightarrow \mathcal{F}_{\mathcal{D}}(x, y)$ when $\{a, b\}$ is not a subalgebra, note that if $f((a, b),(b, a))=(a, b)$, then we must have $f(x, y) \approx x$.
- I don't know if this is true:

Conjecture

If \mathbb{A} is a dispersive binary minimal clone, then for any $a \neq b$ there is a surjective map from $\mathrm{Sg}_{\mathbb{A}}\{a, b\}$ to a two-element set.

Thank you for your attention.

