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Minimal clones

I A clone C is minimal if f ∈ C nontrivial implies C = Clo(f ).

I If Clo(f ) is minimal and g ∈ Clo(f ) nontrivial, then
f ∈ Clo(g).

I A is called a set if all of its operations are projections.
Otherwise, we say A is nontrivial.

I If Clo(A) is minimal and B ∈ Var(A) nontrivial, then Clo(B) is
minimal.
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Rosenberg’s Five Types Theorem

Theorem (Rosenberg)

Suppose that A = (A, f ) is a finite clone-minimal algebra, and f
has minimal arity among nontrivial elements of Clo(A). Then one
of the following is true:

1. f is a unary operation which is either a permutation of prime
order or satisfies f (f (x)) ≈ f (x),

2. f is ternary, and A is the idempotent reduct of a vector space
over F2,

3. f is a ternary majority operation,

4. f is a semiprojection of arity at least 3,

5. f is an idempotent binary operation.



Nice properties

I We say a property P of functions f is nice if it satisfies the
following two conditions:

I Given f as input, we can verify in polynomial time whether f
has property P,

I If f has property P and g ∈ Clo(f ) is nontrivial, then there is
a nontrivial f ′ ∈ Clo(g) such that f ′ has property P.

I The first four cases in Rosenberg’s classification are nice
properties.
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Majority is a nice property

I As an example, we’ll check that being a ternary majority
operation is a nice property.

I Lemma
If f is a majority operation and g ∈ Clo(f ) is nontrivial, then g is a
near-unanimity operation.

I The proof is by induction on the construction of g in terms of
f .

I =⇒ g has a majority term as an identification minor.
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Coarse Classification

I Our goal is to find a list of nice properties P1,P2, ... such that
every minimal clone has an operation satisfying one of these
nice properties.

I We’ll call such a list a coarse classification of minimal clones.

I By Rosenberg’s result, we just need to find a coarse
classification of binary minimal clones.

I The main challenge is to find properties of binary operations f
that ensure that Clo(f ) doesn’t contain any semiprojections.
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Taylor Case

I Theorem (Z.)
Suppose A is a finite algebra which is both clone-minimal and
Taylor. Then one of the following is true:

1. A is the idempotent reduct of a vector space over Fp for some
prime p,

2. A is a majority algebra,

3. A is a spiral.

I The proof uses the characterization of bounded width
algebras.

I All three cases are given by nice properties.
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Spirals

I Definition
A = (A, f ) is a spiral if f is binary, idempotent, commutative, and
for any a, b ∈ A either {a, b} is a subalgebra of A, or SgA{a, b}
has a surjective map to the free semilattice on two generators.

I Any 2-semilattice is a (clone-minimal) spiral.

I A clone-minimal spiral which is not a 2-semilattice:
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f a b c d e f

a a c e d e d
b c b c c f f
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d d c c d d d
e e f e d e f
f d f c d f f
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The non-Taylor case

Theorem (Z.)

Suppose that A = (A, f ) is a binary minimal clone which is not
Taylor. Then, after possibly replacing f (x , y) by f (y , x), one of the
following is true:

1. A is a rectangular band,

2. there is a nontrivial s ∈ Clo(f ) which is a “partial semilattice
operation”: s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y),

3. A is a p-cyclic groupoid for some prime p,

4. A is an idempotent groupoid satisfying (xy)(zx) ≈ xy
(“neighborhood algebra”),

5. A is a “dispersive algebra”.
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Dispersive algebras: definition

I We define the variety D of idempotent groupoids satisfying

x(yx) ≈ (xy)x ≈ (xy)y ≈ (xy)(yx) ≈ xy , (D1)

∀n ≥ 0 x(...((xy1)y2) · · · yn)) ≈ x . (D2)

I Proposition (Lévai, Pálfy)

If A ∈ D, then Clo(A) is a minimal clone. Also, FD(x , y) has
exactly four elements: x , y , xy , yx .

I Definition
An idempotent groupoid A is dispersive if it satisfies (D2) and if
for all a, b ∈ A, either {a, b} is a two element subalgebra of A or
there is a surjective map

SgA2{(a, b), (b, a)}� FD(x , y).
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Absorption identities

I An absorption identity is an identity of the form

t(x1, ..., xn) ≈ xi .

I If A is clone-minimal and B ∈ Var(A) is nontrivial, then any
absorption identity that holds in B must also hold in A.

I In the partial semilattice case, there are no absorption
identities at all (aside from idempotence).

I The dispersive case can alternatively be described as the case
where every absorption identity follows from (D2):

∀n ≥ 0 x(...((xy1)y2) · · · yn)) ≈ x .

I call it “dispersive” because there is very little absorption.
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Partial semilattice case
I An idempotent binary operation s is a partial semilattice if

s(x , s(x , y)) ≈ s(s(x , y), x) ≈ s(x , y).

I Proposition

A finite idempotent algebra A has a 6= b ∈ A with

(b, b) ∈ SgA2{(a, b), (b, a)}

if and only if it has a nontrivial partial semilattice operation.

I Proof sketch: Let t(a, b) = t(b, a) = b, then take

tn+1(x , y) := t(x , tn(x , y)),

t∞(x , y) := lim
n→∞

tn!(x , y),

u(x , y) := t∞(x , t∞(y , x)),

s(x , y) := u∞(x , y).
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Rectangular band case

I If A = (A, f ) is not Taylor, then Var(A) must contain a set,
on which f either acts as first projection or second projection.

I Suppose B1,B2 ∈ Var(A) are sets such that f B1 = π1 and
f B2 = π2. Let B = B1 × B2.

I The following absorption identities hold on B:

u ≈ f (f (f (u, x), y), f (z , f (w , u))),

x ≈ f (f (x ,w), x),

w ≈ f (w , f (x ,w)).

I Take u = f (x ,w), get

f (f (x , y), f (z ,w)) ≈ f (x ,w),

so A is a rectangular band.
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Cloπ12 (A)

I If A is not a rectangular band, then there is only one type of
set in Var(A), and every binary function restricts to either first
or second projection on this set.

I We define Cloπ1
2 (A) to be the collection of binary terms of A

which restrict to first projection.

I There is a unique surjection from FA(x , y) onto a
two-element set, and Cloπ1

2 (A) is one of the congruence
classes of the kernel.

I From here on, every function we name will always be assumed
to be an element of Cloπ1

2 (A).
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Crucial lemma

I Lemma
Suppose A is a binary minimal clone, not Taylor, not a rectangular
band, and not a partial semilattice. Then for any f , g ∈ Cloπ1

2 (A),
we have

f (x , g(x , y)) ≈ x .

I Proof hints: WLOG every proper subalgebra and quotient of
A is a set.

I If f (a, g(a, b)) 6= a, then a, g(a, b) must generate A, so there
is h ∈ Cloπ1

2 (A) such that h(a, b) = b.

I Consider the relation SgA2{(a, b), (b, a)}: either it’s the graph
of an automorphism, or it has a nontrivial linking congruence,
or it’s linked.

I If it’s linked, then there is B < A such that
B× A ∩ SgA2{(a, b), (b, a)} is subdirect... from here it’s easy.
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2 (A),
we have

f (x , g(x , y)) ≈ x .

I Proof hints: WLOG every proper subalgebra and quotient of
A is a set.

I If f (a, g(a, b)) 6= a, then a, g(a, b) must generate A, so there
is h ∈ Cloπ1
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Groupy case

I There are three ways to combine binary functions which define
associative operations on Cloπ1

2 (A):

I f , g 7→ f (x , g(x , y)),

I f , g 7→ f (g(x , y), y),

I f , g 7→ f (g(x , y), g(y , x)).

I The first one is boring by the Lemma.

I What happens if one of the other two operations forms a
group on Cloπ1

2 (A)?
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Groupy case - continued

I If the operation f , g 7→ f (g(x , y), y) forms a group on
Cloπ1

2 (A), then we can use orbit-stabilizer to find nontrivial
f , g ∈ Cloπ1

2 (A) such that

f (x , g(y , x)) ≈ f (x , y).

I Together with the Lemma from before, we see that

f (x , g(y , z)) = f (x , y)

whenever two of x , y , z are equal.

I If f − is the inverse to f in this group, we get

f −(f (x , g(y , z)), y) = x

whenever two of x , y , z are equal. Semiprojection?
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Groupy case is p-cyclic groupoids

I We have nontrivial f , g ∈ Cloπ1
2 (A) such that

f (x , g(y , z)) ≈ f (x , y).

I Since f ∈ Clo(g), we have

f (x , f (y , z)) ≈ f (x , y).

I Playing with inverses again, we get

f (f (x , y), x) ≈ f (f (x , y), f −(f (x , y), y)) ≈ f (x , y),

I Thus
f (f (x , y), z) = f (f (x , z), y)

whenever two of x , y , z are equal.
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p-cyclic groupoids

I An idempotent groupoid A is a p-cyclic groupoid if it satisfies

x(yz) ≈ xy ,

(xy)z ≈ (xz)y ,

(· · · ((xy)y) · · · y) ≈ x ,

where the last identity has p ys.

I Theorem (Z.)

If a binary minimal clone is not a rectangular band and does not
have any nontrivial term f satisfying the identity

f (f (x , y), y) ≈ f (x , y),

then it is a p-cyclic groupoid for some prime p. (And similarly if
there is no f (f (x , y), f (y , x)) ≈ f (x , y).)
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Structure of p-cyclic groupoids

I p-cyclic groupoids were studied by P lonka, who showed they
form minimal clones.

I The general p-cyclic groupoid can be written as a disjoint
union of affine spaces A1, ...,An over Fp, together with
vectors vij ∈ Ai for all i , j , such that

x ∈ Ai , y ∈ Aj =⇒ xy = x + vij (∈ Ai ).

I The vij must satisfy vii = 0, and for any fixed i the set of vijs
have to span Ai .

I The free p-cyclic groupoid on n generators has npn−1

elements.
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Neighborhood algebras

I An idempotent groupoid is a neighborhood algebra if it
satisfies the identity

(xy)(zx) ≈ xy .

I This is equivalent to satisfying the absorption identity

x((yx)z) ≈ x .

I Proposition

If an idempotent groupoid satisfies x(xy) ≈ x(yx) ≈ x and has no
ternary semiprojections, then it is a neighborhood algebra.

I Proposition (Lévai, Pálfy)

Every neighborhood algebra forms a minimal clone.
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Structure of neighborhood algebras

I In a neighborhood algebra, if ab = a then ba = b:

ba = (bb)(ab) = bb = b.

I Make a graph by drawing an edge connecting a to b whenever
ab = a.

I For any a, b, ab is connected to a, b, and every neighbor of a.

I Conversely: Start from any graph such that some vertex is
adjacent to all others, and define an idempotent operation by
ab = a if a, b are connected by an edge, and otherwise let ab
be any vertex which is connected to a, b, and every neighbor
of a.

I The resulting groupoid will then be a neighborhood algebra.
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Dispersive case

I Suppose we are not in any of the previous cases.

I Our crucial Lemma shows that

x(· · · ((xy1)y2) · · · yn) ≈ x

whenever at most two different variables show up on the left
hand side. Semiprojection?

I We need to construct a surjection FA(x , y)� FD(x , y).

I The kernel should have equivalence classes {x}, {y},
Cloπ1

2 (A) \ {x}, and Cloπ2
2 (A) \ {y}.
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Dispersive case - continued

I Suppose, for contradiction, that f , g ∈ Cloπ1
2 (A) are nontrivial

and satisfy
f (x , g(y , x)) ≈ x .

I WLOG every proper subalgebra and quotient of A is a set
(and so Cloπ1

2 (A) is a set).

I For every n, we have

f (x , g(...g(g(y , x), z1), ..., zn)) ≈ x

whenever at most two different variables show up on the left
hand side. Semiprojection?

I Since we aren’t a neighborhood algebra, there must be some
a, b such that

g(a, g(b, a)) 6= a.
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Dispersive case - continued

I We have SgA{a, g(b, a)} = A and

f (a, g(...g(g(b, a), z1), ..., zn)) ≈ a

for all z1, ..., zn.

I By (D2), also have

f (a, g(...g(a, z1), ..., zn)) ≈ a

for all z1, ..., zn.

I Thus, for all c ∈ A we have

f (a, c) = a.

I Since g ∈ Clo(f ), we get g(a, g(b, a)) = a, a contradiction.
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Dispersive case - final

I Need to rule out two similar possibilities - the arguments are
similar, but now we must use the existence of functions
satisfying f (f (x , y), y) ≈ f (x , y) or
f (f (x , y), f (y , x)) ≈ f (x , y).

I To see that SgA2{(a, b), (b, a)}� FD(x , y) when {a, b} is
not a subalgebra, note that if f ((a, b), (b, a)) = (a, b), then
we must have f (x , y) ≈ x .

I I don’t know if this is true:

Conjecture

If A is a dispersive binary minimal clone, then for any a 6= b there
is a surjective map from SgA{a, b} to a two-element set.
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Thank you for your attention.


