Coarse Classification of Binary Minimal Clones

Zarathustra Brady

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• A clone C is *minimal* if $f \in C$ nontrivial implies C = Clo(f).

• A clone C is *minimal* if $f \in C$ nontrivial implies C = Clo(f).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If Clo(f) is minimal and g ∈ Clo(f) nontrivial, then f ∈ Clo(g).

- A clone C is *minimal* if $f \in C$ nontrivial implies C = Clo(f).
- If Clo(f) is minimal and g ∈ Clo(f) nontrivial, then f ∈ Clo(g).
- ► A is called a set if all of its operations are projections. Otherwise, we say A is nontrivial.

- A clone C is *minimal* if $f \in C$ nontrivial implies C = Clo(f).
- If Clo(f) is minimal and g ∈ Clo(f) nontrivial, then f ∈ Clo(g).
- ► A is called a set if all of its operations are projections. Otherwise, we say A is nontrivial.
- If Clo(A) is minimal and B ∈ Var(A) nontrivial, then Clo(B) is minimal.

Rosenberg's Five Types Theorem

Theorem (Rosenberg)

Suppose that $\mathbb{A} = (A, f)$ is a finite clone-minimal algebra, and f has minimal arity among nontrivial elements of $Clo(\mathbb{A})$. Then one of the following is true:

- 1. f is a unary operation which is either a permutation of prime order or satisfies $f(f(x)) \approx f(x)$,
- 2. f is ternary, and \mathbb{A} is the idempotent reduct of a vector space over \mathbb{F}_2 ,

- 3. f is a ternary majority operation,
- 4. f is a semiprojection of arity at least 3,
- 5. f is an idempotent binary operation.

► We say a property *P* of functions *f* is *nice* if it satisfies the following two conditions:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ► We say a property *P* of functions *f* is *nice* if it satisfies the following two conditions:
 - ► Given f as input, we can verify in polynomial time whether f has property P,

- ► We say a property P of functions f is nice if it satisfies the following two conditions:
 - ► Given f as input, we can verify in polynomial time whether f has property P,
 - If f has property P and g ∈ Clo(f) is nontrivial, then there is a nontrivial f' ∈ Clo(g) such that f' has property P.

- ► We say a property P of functions f is nice if it satisfies the following two conditions:
 - ► Given f as input, we can verify in polynomial time whether f has property P,
 - If f has property P and g ∈ Clo(f) is nontrivial, then there is a nontrivial f' ∈ Clo(g) such that f' has property P.

 The first four cases in Rosenberg's classification are nice properties.

 As an example, we'll check that being a ternary majority operation is a nice property.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

As an example, we'll check that being a ternary majority operation is a nice property.

Lemma

If f is a majority operation and $g \in Clo(f)$ is nontrivial, then g is a near-unanimity operation.

As an example, we'll check that being a ternary majority operation is a nice property.

Lemma

If f is a majority operation and $g \in Clo(f)$ is nontrivial, then g is a near-unanimity operation.

The proof is by induction on the construction of g in terms of f.

As an example, we'll check that being a ternary majority operation is a nice property.

Lemma

If f is a majority operation and $g \in Clo(f)$ is nontrivial, then g is a near-unanimity operation.

The proof is by induction on the construction of g in terms of f.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• \implies g has a majority term as an identification minor.

Our goal is to find a list of nice properties P₁, P₂, ... such that every minimal clone has an operation satisfying one of these nice properties.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Our goal is to find a list of nice properties P₁, P₂, ... such that every minimal clone has an operation satisfying one of these nice properties.
- ▶ We'll call such a list a *coarse classification* of minimal clones.

- Our goal is to find a list of nice properties P₁, P₂, ... such that every minimal clone has an operation satisfying one of these nice properties.
- ▶ We'll call such a list a *coarse classification* of minimal clones.

By Rosenberg's result, we just need to find a coarse classification of *binary* minimal clones.

- Our goal is to find a list of nice properties P₁, P₂, ... such that every minimal clone has an operation satisfying one of these nice properties.
- ▶ We'll call such a list a *coarse classification* of minimal clones.
- By Rosenberg's result, we just need to find a coarse classification of *binary* minimal clones.
- The main challenge is to find properties of binary operations f that ensure that Clo(f) doesn't contain any semiprojections.

Taylor Case

► Theorem (Z.)

Suppose \mathbb{A} is a finite algebra which is both clone-minimal and Taylor. Then one of the following is true:

1. A is the idempotent reduct of a vector space over \mathbb{F}_p for some prime p,

- 2. A is a majority algebra,
- 3. \mathbb{A} is a spiral.

Taylor Case

► Theorem (Z.)

Suppose \mathbb{A} is a finite algebra which is both clone-minimal and Taylor. Then one of the following is true:

1. A is the idempotent reduct of a vector space over \mathbb{F}_p for some prime p,

- 2. A is a majority algebra,
- 3. \mathbb{A} is a spiral.
- The proof uses the characterization of bounded width algebras.

Taylor Case

► Theorem (Z.)

Suppose \mathbb{A} is a finite algebra which is both clone-minimal and Taylor. Then one of the following is true:

1. A is the idempotent reduct of a vector space over \mathbb{F}_p for some prime p,

- 2. A is a majority algebra,
- 3. \mathbb{A} is a spiral.
- The proof uses the characterization of bounded width algebras.
- All three cases are given by nice properties.

Spirals

Definition

 $\mathbb{A} = (A, f)$ is a spiral if f is binary, idempotent, commutative, and for any $a, b \in \mathbb{A}$ either $\{a, b\}$ is a subalgebra of \mathbb{A} , or $Sg_{\mathbb{A}}\{a, b\}$ has a surjective map to the free semilattice on two generators.

Spirals

Definition

 $\mathbb{A} = (A, f)$ is a spiral if f is binary, idempotent, commutative, and for any $a, b \in \mathbb{A}$ either $\{a, b\}$ is a subalgebra of \mathbb{A} , or $Sg_{\mathbb{A}}\{a, b\}$ has a surjective map to the free semilattice on two generators.

Any 2-semilattice is a (clone-minimal) spiral.

Spirals

Definition

 $\mathbb{A} = (A, f)$ is a spiral if f is binary, idempotent, commutative, and for any $a, b \in \mathbb{A}$ either $\{a, b\}$ is a subalgebra of \mathbb{A} , or $Sg_{\mathbb{A}}\{a, b\}$ has a surjective map to the free semilattice on two generators.

- Any 2-semilattice is a (clone-minimal) spiral.
- ► A clone-minimal spiral which is not a 2-semilattice:

f	а	b	С	d	е	f
а	а	С	е	d	е	d
b	с	b	С	С	f	f
С	e	С	С	С	е	С
d	d	С	с	d	d	d
е	e	f	е	d	е	f
f	d	f	с	d	f	f

Theorem (Z.)

Suppose that $\mathbb{A} = (A, f)$ is a binary minimal clone which is not Taylor. Then, after possibly replacing f(x, y) by f(y, x), one of the following is true:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1. A is a rectangular band,

Theorem (Z.)

Suppose that $\mathbb{A} = (A, f)$ is a binary minimal clone which is not Taylor. Then, after possibly replacing f(x, y) by f(y, x), one of the following is true:

- 1. A is a rectangular band,
- 2. there is a nontrivial $s \in Clo(f)$ which is a "partial semilattice operation": $s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)$,

Theorem (Z.)

Suppose that $\mathbb{A} = (A, f)$ is a binary minimal clone which is not Taylor. Then, after possibly replacing f(x, y) by f(y, x), one of the following is true:

- 1. A is a rectangular band,
- 2. there is a nontrivial $s \in Clo(f)$ which is a "partial semilattice operation": $s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)$,

3. A is a p-cyclic groupoid for some prime p,

Theorem (Z.)

Suppose that $\mathbb{A} = (A, f)$ is a binary minimal clone which is not Taylor. Then, after possibly replacing f(x, y) by f(y, x), one of the following is true:

- 1. A is a rectangular band,
- 2. there is a nontrivial $s \in Clo(f)$ which is a "partial semilattice operation": $s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)$,

- 3. A is a p-cyclic groupoid for some prime p,
- 4. A is an idempotent groupoid satisfying $(xy)(zx) \approx xy$ ("neighborhood algebra"),

Theorem (Z.)

Suppose that $\mathbb{A} = (A, f)$ is a binary minimal clone which is not Taylor. Then, after possibly replacing f(x, y) by f(y, x), one of the following is true:

- 1. A is a rectangular band,
- 2. there is a nontrivial $s \in Clo(f)$ which is a "partial semilattice operation": $s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y)$,

- 3. A is a p-cyclic groupoid for some prime p,
- 4. A is an idempotent groupoid satisfying $(xy)(zx) \approx xy$ ("neighborhood algebra"),
- 5. A is a "dispersive algebra".

Dispersive algebras: definition

• We define the variety \mathcal{D} of idempotent groupoids satisfying

$$x(yx) \approx (xy)x \approx (xy)y \approx (xy)(yx) \approx xy,$$
 (D1)

$$\forall n \geq 0 \quad x(\dots((xy_1)y_2)\cdots y_n)) \approx x. \tag{D2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Dispersive algebras: definition

• We define the variety \mathcal{D} of idempotent groupoids satisfying

$$x(yx) \approx (xy)x \approx (xy)y \approx (xy)(yx) \approx xy,$$
 (D1)

$$\forall n \geq 0 \quad x(\dots((xy_1)y_2)\cdots y_n)) \approx x. \tag{D2}$$

Proposition (Lévai, Pálfy)

If $\mathbb{A} \in \mathcal{D}$, then $Clo(\mathbb{A})$ is a minimal clone. Also, $\mathcal{F}_{\mathcal{D}}(x, y)$ has exactly four elements: x, y, xy, yx.

Dispersive algebras: definition

 \blacktriangleright We define the variety ${\cal D}$ of idempotent groupoids satisfying

$$x(yx) \approx (xy)x \approx (xy)y \approx (xy)(yx) \approx xy,$$
 (D1)

$$\forall n \geq 0 \quad x(\dots((xy_1)y_2)\cdots y_n)) \approx x. \tag{D2}$$

Proposition (Lévai, Pálfy)

If $\mathbb{A} \in \mathcal{D}$, then $Clo(\mathbb{A})$ is a minimal clone. Also, $\mathcal{F}_{\mathcal{D}}(x, y)$ has exactly four elements: x, y, xy, yx.

Definition

An idempotent groupoid \mathbb{A} is *dispersive* if it satisfies ($\mathcal{D}2$) and if for all $a, b \in \mathbb{A}$, either $\{a, b\}$ is a two element subalgebra of \mathbb{A} or there is a surjective map

$$\operatorname{Sg}_{\mathbb{A}^2}\{(a,b),(b,a)\} \twoheadrightarrow \mathcal{F}_{\mathcal{D}}(x,y).$$

An absorption identity is an identity of the form

 $t(x_1,...,x_n)\approx x_i.$

An absorption identity is an identity of the form

 $t(x_1,...,x_n)\approx x_i.$

If A is clone-minimal and B ∈ Var(A) is nontrivial, then any absorption identity that holds in B must also hold in A.

An absorption identity is an identity of the form

 $t(x_1,...,x_n)\approx x_i.$

- If A is clone-minimal and B ∈ Var(A) is nontrivial, then any absorption identity that holds in B must also hold in A.
- In the partial semilattice case, there are no absorption identities at all (aside from idempotence).

An absorption identity is an identity of the form

 $t(x_1,...,x_n)\approx x_i.$

- If A is clone-minimal and B ∈ Var(A) is nontrivial, then any absorption identity that holds in B must also hold in A.
- In the partial semilattice case, there are no absorption identities at all (aside from idempotence).
- The dispersive case can alternatively be described as the case where every absorption identity follows from (D2):

$$\forall n \geq 0 \quad x(\dots((xy_1)y_2)\cdots y_n)) \approx x.$$

I call it "dispersive" because there is very little absorption.
Partial semilattice case

An idempotent binary operation s is a partial semilattice if

 $s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$

Partial semilattice case

An idempotent binary operation s is a partial semilattice if

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

Proposition

A finite idempotent algebra $\mathbb A$ has a \neq b $\in \mathbb A$ with

$$(b,b)\in \mathsf{Sg}_{\mathbb{A}^2}\{(a,b),(b,a)\}$$

if and only if it has a nontrivial partial semilattice operation.

Partial semilattice case

An idempotent binary operation s is a partial semilattice if

$$s(x, s(x, y)) \approx s(s(x, y), x) \approx s(x, y).$$

Proposition

A finite idempotent algebra $\mathbb A$ has a $\neq b \in \mathbb A$ with

$$(b,b)\in \mathsf{Sg}_{\mathbb{A}^2}\{(a,b),(b,a)\}$$

if and only if it has a nontrivial partial semilattice operation.

▶ Proof sketch: Let t(a, b) = t(b, a) = b, then take

$$egin{aligned} t^{n+1}(x,y) &:= t(x,t^n(x,y)), \ t^\infty(x,y) &:= \lim_{n o \infty} t^{n!}(x,y), \ u(x,y) &:= t^\infty(x,t^\infty(y,x)), \ s(x,y) &:= u^\infty(x,y). \end{aligned}$$

If A = (A, f) is not Taylor, then Var(A) must contain a set, on which f either acts as first projection or second projection.

- If A = (A, f) is not Taylor, then Var(A) must contain a set, on which f either acts as first projection or second projection.
- ▶ Suppose $\mathbb{B}_1, \mathbb{B}_2 \in Var(\mathbb{A})$ are sets such that $f^{\mathbb{B}_1} = \pi_1$ and $f^{\mathbb{B}_2} = \pi_2$. Let $\mathbb{B} = \mathbb{B}_1 \times \mathbb{B}_2$.

- If A = (A, f) is not Taylor, then Var(A) must contain a set, on which f either acts as first projection or second projection.
- ▶ Suppose $\mathbb{B}_1, \mathbb{B}_2 \in Var(\mathbb{A})$ are sets such that $f^{\mathbb{B}_1} = \pi_1$ and $f^{\mathbb{B}_2} = \pi_2$. Let $\mathbb{B} = \mathbb{B}_1 \times \mathbb{B}_2$.
- ► The following absorption identities hold on B:

$$u \approx f(f(f(u, x), y), f(z, f(w, u))),$$

$$x \approx f(f(x, w), x),$$

$$w \approx f(w, f(x, w)).$$

- If A = (A, f) is not Taylor, then Var(A) must contain a set, on which f either acts as first projection or second projection.
- Suppose $\mathbb{B}_1, \mathbb{B}_2 \in Var(\mathbb{A})$ are sets such that $f^{\mathbb{B}_1} = \pi_1$ and $f^{\mathbb{B}_2} = \pi_2$. Let $\mathbb{B} = \mathbb{B}_1 \times \mathbb{B}_2$.
- ► The following absorption identities hold on B:

$$u \approx f(f(f(u, x), y), f(z, f(w, u))),$$

$$x \approx f(f(x, w), x),$$

$$w \approx f(w, f(x, w)).$$

• Take u = f(x, w), get

$$f(f(x,y),f(z,w))\approx f(x,w),$$

so \mathbb{A} is a rectangular band.

If A is not a rectangular band, then there is only one type of set in Var(A), and every binary function restricts to either first or second projection on this set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- If A is not a rectangular band, then there is only one type of set in Var(A), and every binary function restricts to either first or second projection on this set.
- We define Clo₂^{π1}(A) to be the collection of binary terms of A which restrict to first projection.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- If A is not a rectangular band, then there is only one type of set in Var(A), and every binary function restricts to either first or second projection on this set.
- We define Clo₂^{π1}(A) to be the collection of binary terms of A which restrict to first projection.

There is a unique surjection from *F*_A(*x*, *y*) onto a two-element set, and Clo₂^{π1}(A) is one of the congruence classes of the kernel.

- If A is not a rectangular band, then there is only one type of set in Var(A), and every binary function restricts to either first or second projection on this set.
- We define Clo₂^{π1}(A) to be the collection of binary terms of A which restrict to first projection.
- There is a unique surjection from *F*_A(*x*, *y*) onto a two-element set, and Clo₂^{π1}(A) is one of the congruence classes of the kernel.
- From here on, every function we name will always be assumed to be an element of Clo₂^{π1}(A).

Lemma

Suppose \mathbb{A} is a binary minimal clone, not Taylor, not a rectangular band, and not a partial semilattice. Then for any $f, g \in \text{Clo}_2^{\pi_1}(\mathbb{A})$, we have

$$f(x,g(x,y))\approx x.$$

Lemma

Suppose \mathbb{A} is a binary minimal clone, not Taylor, not a rectangular band, and not a partial semilattice. Then for any $f, g \in Clo_2^{\pi_1}(\mathbb{A})$, we have

$$f(x,g(x,y))\approx x.$$

 Proof hints: WLOG every proper subalgebra and quotient of A is a set.

Lemma

Suppose \mathbb{A} is a binary minimal clone, not Taylor, not a rectangular band, and not a partial semilattice. Then for any $f, g \in Clo_2^{\pi_1}(\mathbb{A})$, we have

$$f(x,g(x,y))\approx x.$$

- Proof hints: WLOG every proper subalgebra and quotient of A is a set.
- If f(a, g(a, b)) ≠ a, then a, g(a, b) must generate A, so there is h ∈ Clo₂^{π1}(A) such that h(a, b) = b.

Lemma

Suppose \mathbb{A} is a binary minimal clone, not Taylor, not a rectangular band, and not a partial semilattice. Then for any $f, g \in Clo_2^{\pi_1}(\mathbb{A})$, we have

$$f(x,g(x,y))\approx x.$$

- Proof hints: WLOG every proper subalgebra and quotient of A is a set.
- If f(a, g(a, b)) ≠ a, then a, g(a, b) must generate A, so there is h ∈ Clo₂^{π1}(A) such that h(a, b) = b.
- Consider the relation Sg_{A²}{(a, b), (b, a)}: either it's the graph of an automorphism, or it has a nontrivial linking congruence, or it's linked.

Lemma

Suppose \mathbb{A} is a binary minimal clone, not Taylor, not a rectangular band, and not a partial semilattice. Then for any $f, g \in Clo_2^{\pi_1}(\mathbb{A})$, we have

$$f(x,g(x,y))\approx x.$$

- Proof hints: WLOG every proper subalgebra and quotient of A is a set.
- If f(a, g(a, b)) ≠ a, then a, g(a, b) must generate A, so there is h ∈ Clo₂^{π1}(A) such that h(a, b) = b.
- Consider the relation Sg_{A²}{(a, b), (b, a)}: either it's the graph of an automorphism, or it has a nontrivial linking congruence, or it's linked.
- If it's linked, then there is B < A such that B × A ∩ Sg_{A²}{(a, b), (b, a)} is subdirect... from here it's easy.

► There are three ways to combine binary functions which define associative operations on Clo₂^{π1}(A):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► There are three ways to combine binary functions which define associative operations on Clo₂^{π1}(A):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $f, g \mapsto f(x, g(x, y))$,

► There are three ways to combine binary functions which define associative operations on Clo₂^{π1}(A):

- $f, g \mapsto f(x, g(x, y))$,
- $f, g \mapsto f(g(x, y), y)$,

► There are three ways to combine binary functions which define associative operations on Clo₂^{π1}(A):

- $f, g \mapsto f(x, g(x, y))$,
- $f, g \mapsto f(g(x, y), y)$,
- $f, g \mapsto f(g(x, y), g(y, x)).$

► There are three ways to combine binary functions which define associative operations on Clo₂^{π1}(A):

- $f, g \mapsto f(x, g(x, y))$,
- $f, g \mapsto f(g(x, y), y)$,
- $f, g \mapsto f(g(x, y), g(y, x)).$
- The first one is boring by the Lemma.

- ► There are three ways to combine binary functions which define associative operations on Clo₂^{π1}(A):
 - $f, g \mapsto f(x, g(x, y))$,
 - $f, g \mapsto f(g(x, y), y)$,
 - $f, g \mapsto f(g(x, y), g(y, x)).$
- The first one is boring by the Lemma.
- What happens if one of the other two operations forms a group on Clo₂^{π1}(A)?

Groupy case - continued

• If the operation $f, g \mapsto f(g(x, y), y)$ forms a group on $\operatorname{Clo}_2^{\pi_1}(\mathbb{A})$, then we can use orbit-stabilizer to find nontrivial $f, g \in \operatorname{Clo}_2^{\pi_1}(\mathbb{A})$ such that

 $f(x,g(y,x)) \approx f(x,y).$

Groupy case - continued

 If the operation f, g → f(g(x, y), y) forms a group on Clo^π₂(A), then we can use orbit-stabilizer to find nontrivial f, g ∈ Clo^π₂(A) such that

$$f(x,g(y,x))\approx f(x,y).$$

Together with the Lemma from before, we see that

$$f(x,g(y,z))=f(x,y)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

whenever two of x, y, z are equal.

Groupy case - continued

 If the operation f, g → f(g(x, y), y) forms a group on Clo^π₂(A), then we can use orbit-stabilizer to find nontrivial f, g ∈ Clo^π₂(A) such that

$$f(x,g(y,x))\approx f(x,y).$$

Together with the Lemma from before, we see that

$$f(x,g(y,z))=f(x,y)$$

whenever two of x, y, z are equal.

• If f^- is the inverse to f in this group, we get

$$f^{-}(f(x,g(y,z)),y) = x$$

whenever two of x, y, z are equal. Semiprojection?

▶ We have nontrivial $f, g \in \operatorname{Clo}_2^{\pi_1}(\mathbb{A})$ such that $f(x, g(y, z)) \approx f(x, y)$.

▶ We have nontrivial $f, g \in \operatorname{Clo}_2^{\pi_1}(\mathbb{A})$ such that $f(x, g(y, z)) \approx f(x, y)$.

Since $f \in Clo(g)$, we have

 $f(x, f(y, z)) \approx f(x, y).$

• We have nontrivial $f, g \in \operatorname{Clo}_2^{\pi_1}(\mathbb{A})$ such that $f(x, g(y, z)) \approx f(x, y)$.

Since $f \in Clo(g)$, we have

$$f(x, f(y, z)) \approx f(x, y).$$

Playing with inverses again, we get

 $f(f(x,y),x) \approx f(f(x,y), f^-(f(x,y),y)) \approx f(x,y),$

▶ We have nontrivial $f, g \in \operatorname{Clo}_2^{\pi_1}(\mathbb{A})$ such that $f(x, g(y, z)) \approx f(x, y)$.

Since $f \in Clo(g)$, we have

$$f(x, f(y, z)) \approx f(x, y).$$

Playing with inverses again, we get

$$f(f(x,y),x) \approx f(f(x,y), f^-(f(x,y),y)) \approx f(x,y),$$

Thus

$$f(f(x,y),z) = f(f(x,z),y)$$

whenever two of x, y, z are equal.

p-cyclic groupoids

► An idempotent groupoid A is a *p*-cyclic groupoid if it satisfies

$$\begin{aligned} x(yz) &\approx xy, \\ (xy)z &\approx (xz)y, \\ (\cdots ((xy)y) \cdots y) &\approx x, \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where the last identity has p ys.

p-cyclic groupoids

► An idempotent groupoid A is a *p*-cyclic groupoid if it satisfies

$$\begin{aligned} x(yz) &\approx xy, \\ (xy)z &\approx (xz)y, \\ (\cdots ((xy)y) \cdots y) &\approx x, \end{aligned}$$

where the last identity has p ys.

► Theorem (Z.)

If a binary minimal clone is not a rectangular band and does not have any nontrivial term f satisfying the identity

 $f(f(x,y),y) \approx f(x,y),$

then it is a p-cyclic groupoid for some prime p. (And similarly if there is no $f(f(x, y), f(y, x)) \approx f(x, y)$.)

 p-cyclic groupoids were studied by Płonka, who showed they form minimal clones.

- p-cyclic groupoids were studied by Płonka, who showed they form minimal clones.
- ► The general *p*-cyclic groupoid can be written as a disjoint union of affine spaces A₁, ..., A_n over 𝔽_p, together with vectors v_{ii} ∈ A_i for all i, j, such that

$$x \in A_i, y \in A_j \implies xy = x + v_{ij} \ (\in A_i).$$

- p-cyclic groupoids were studied by Płonka, who showed they form minimal clones.
- ► The general *p*-cyclic groupoid can be written as a disjoint union of affine spaces A₁, ..., A_n over 𝔽_p, together with vectors v_{ij} ∈ A_i for all i, j, such that

$$x \in A_i, y \in A_j \implies xy = x + v_{ij} \ (\in A_i).$$

The v_{ij} must satisfy v_{ii} = 0, and for any fixed i the set of v_{ij}s have to span A_i.

- p-cyclic groupoids were studied by Płonka, who showed they form minimal clones.
- ► The general *p*-cyclic groupoid can be written as a disjoint union of affine spaces A₁, ..., A_n over 𝔽_p, together with vectors v_{ij} ∈ A_i for all i, j, such that

$$x \in A_i, y \in A_j \implies xy = x + v_{ij} \ (\in A_i).$$

- The v_{ij} must satisfy v_{ii} = 0, and for any fixed i the set of v_{ij}s have to span A_i.
- ► The free *p*-cyclic groupoid on *n* generators has *npⁿ⁻¹* elements.

Neighborhood algebras

An idempotent groupoid is a *neighborhood algebra* if it satisfies the identity

 $(xy)(zx) \approx xy.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
Neighborhood algebras

An idempotent groupoid is a *neighborhood algebra* if it satisfies the identity

 $(xy)(zx) \approx xy.$

This is equivalent to satisfying the absorption identity

 $x((yx)z)\approx x.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Neighborhood algebras

An idempotent groupoid is a *neighborhood algebra* if it satisfies the identity

 $(xy)(zx) \approx xy.$

This is equivalent to satisfying the absorption identity

 $x((yx)z) \approx x.$

Proposition

If an idempotent groupoid satisfies $x(xy) \approx x(yx) \approx x$ and has no ternary semiprojections, then it is a neighborhood algebra.

Neighborhood algebras

An idempotent groupoid is a *neighborhood algebra* if it satisfies the identity

 $(xy)(zx) \approx xy.$

This is equivalent to satisfying the absorption identity

 $x((yx)z) \approx x.$

Proposition

If an idempotent groupoid satisfies $x(xy) \approx x(yx) \approx x$ and has no ternary semiprojections, then it is a neighborhood algebra.

Proposition (Lévai, Pálfy)

Every neighborhood algebra forms a minimal clone.

▶ In a neighborhood algebra, if ab = a then ba = b:

$$ba = (bb)(ab) = bb = b.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

• In a neighborhood algebra, if ab = a then ba = b:

$$ba = (bb)(ab) = bb = b.$$

Make a graph by drawing an edge connecting a to b whenever ab = a.

• In a neighborhood algebra, if ab = a then ba = b:

$$ba = (bb)(ab) = bb = b.$$

- Make a graph by drawing an edge connecting a to b whenever ab = a.
- ▶ For any *a*, *b*, *ab* is connected to *a*, *b*, and every neighbor of *a*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• In a neighborhood algebra, if ab = a then ba = b:

$$ba = (bb)(ab) = bb = b.$$

- Make a graph by drawing an edge connecting a to b whenever ab = a.
- For any *a*, *b*, *ab* is connected to *a*, *b*, and every neighbor of *a*.
- Conversely: Start from any graph such that some vertex is adjacent to all others, and define an idempotent operation by ab = a if a, b are connected by an edge, and otherwise let ab be any vertex which is connected to a, b, and every neighbor of a.

• In a neighborhood algebra, if ab = a then ba = b:

$$ba = (bb)(ab) = bb = b.$$

- Make a graph by drawing an edge connecting a to b whenever ab = a.
- For any *a*, *b*, *ab* is connected to *a*, *b*, and every neighbor of *a*.
- Conversely: Start from any graph such that some vertex is adjacent to all others, and define an idempotent operation by ab = a if a, b are connected by an edge, and otherwise let ab be any vertex which is connected to a, b, and every neighbor of a.
- The resulting groupoid will then be a neighborhood algebra.

Suppose we are not in any of the previous cases.

Suppose we are not in any of the previous cases.

Our crucial Lemma shows that

$$x(\cdots((xy_1)y_2)\cdots y_n)\approx x$$

whenever at most two different variables show up on the left hand side. Semiprojection?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose we are not in any of the previous cases.

Our crucial Lemma shows that

$$x(\cdots((xy_1)y_2)\cdots y_n)\approx x$$

whenever at most two different variables show up on the left hand side. Semiprojection?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• We need to construct a surjection $\mathcal{F}_{\mathbb{A}}(x, y) \twoheadrightarrow \mathcal{F}_{\mathcal{D}}(x, y)$.

Suppose we are not in any of the previous cases.

Our crucial Lemma shows that

$$x(\cdots((xy_1)y_2)\cdots y_n)\approx x$$

whenever at most two different variables show up on the left hand side. Semiprojection?

- We need to construct a surjection $\mathcal{F}_{\mathbb{A}}(x, y) \twoheadrightarrow \mathcal{F}_{\mathcal{D}}(x, y)$.
- The kernel should have equivalence classes {x}, {y}, Clo₂^{π1}(A) \ {x}, and Clo₂^{π2}(A) \ {y}.

Suppose, for contradiction, that f, g ∈ Clo₂^{π1}(A) are nontrivial and satisfy

 $f(x,g(y,x))\approx x.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose, for contradiction, that f, g ∈ Clo₂^{π1}(A) are nontrivial and satisfy

 $f(x,g(y,x))\approx x.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► WLOG every proper subalgebra and quotient of A is a set (and so Clo^{π1}₂(A) is a set).

Suppose, for contradiction, that f, g ∈ Clo₂^{π1}(A) are nontrivial and satisfy

 $f(x,g(y,x))\approx x.$

- ► WLOG every proper subalgebra and quotient of A is a set (and so Clo^{π1}₂(A) is a set).
- ► For every *n*, we have

$$f(x,g(...g(g(y,x),z_1),...,z_n)) \approx x$$

whenever at most two different variables show up on the left hand side. Semiprojection?

Suppose, for contradiction, that f, g ∈ Clo₂^{π1}(A) are nontrivial and satisfy

 $f(x,g(y,x))\approx x.$

- WLOG every proper subalgebra and quotient of A is a set (and so Clo^{π₁}₂(A) is a set).
- ▶ For every *n*, we have

$$f(x,g(...g(g(y,x),z_1),...,z_n)) \approx x$$

whenever at most two different variables show up on the left hand side. Semiprojection?

Since we aren't a neighborhood algebra, there must be some a, b such that

$$g(a,g(b,a)) \neq a.$$

▶ We have
$$Sg_{\mathbb{A}}\{a, g(b, a)\} = \mathbb{A}$$
 and
 $f(a, g(...g(g(b, a), z_1), ..., z_n)) \approx a$

<□ > < @ > < E > < E > E のQ @

for all z_1, \ldots, z_n .

▶ We have
$$Sg_{\mathbb{A}}{a, g(b, a)} = \mathbb{A}$$
 and
 $f(a, g(...g(g(b, a), z_1), ..., z_n)) \approx a$

for all z_1, \ldots, z_n .

▶ By (D2), also have

$$f(a,g(...g(a,z_1),...,z_n)) \approx a$$

for all z_1, \ldots, z_n .

▶ We have
$$Sg_{\mathbb{A}}\{a, g(b, a)\} = \mathbb{A}$$
 and
 $f(a, g(...g(g(b, a), z_1), ..., z_n)) \approx a$

for all z_1, \ldots, z_n .

▶ By (D2), also have

$$f(a,g(...g(a,z_1),...,z_n)) \approx a$$

for all z_1, \ldots, z_n .

• Thus, for all $c \in \mathbb{A}$ we have

$$f(a,c)=a.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

▶ We have
$$Sg_{\mathbb{A}}{a, g(b, a)} = \mathbb{A}$$
 and
 $f(a, g(...g(g(b, a), z_1), ..., z_n)) \approx a$

for all z_1, \ldots, z_n .

▶ By (D2), also have

$$f(a,g(...g(a,z_1),...,z_n)) \approx a$$

for all z_1, \ldots, z_n .

• Thus, for all $c \in \mathbb{A}$ we have

$$f(a,c)=a.$$

▶ Since $g \in Clo(f)$, we get g(a, g(b, a)) = a, a contradiction.

Dispersive case - final

Need to rule out two similar possibilities - the arguments are similar, but now we must use the existence of functions satisfying f(f(x, y), y) ≈ f(x, y) or f(f(x, y), f(y, x)) ≈ f(x, y).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dispersive case - final

- Need to rule out two similar possibilities the arguments are similar, but now we must use the existence of functions satisfying f(f(x, y), y) ≈ f(x, y) or f(f(x, y), f(y, x)) ≈ f(x, y).
- To see that Sg_{A²}{(a, b), (b, a)} → F_D(x, y) when {a, b} is not a subalgebra, note that if f((a, b), (b, a)) = (a, b), then we must have f(x, y) ≈ x.

Dispersive case - final

- Need to rule out two similar possibilities the arguments are similar, but now we must use the existence of functions satisfying f(f(x, y), y) ≈ f(x, y) or f(f(x, y), f(y, x)) ≈ f(x, y).
- To see that Sg_{A²}{(a, b), (b, a)} → F_D(x, y) when {a, b} is not a subalgebra, note that if f((a, b), (b, a)) = (a, b), then we must have f(x, y) ≈ x.
- I don't know if this is true:

Conjecture

If A is a dispersive binary minimal clone, then for any $a \neq b$ there is a surjective map from $Sg_{A}\{a, b\}$ to a two-element set.

Thank you for your attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?