
Interpolating log∗

Imagine that we wish to find a function perfectly in between x and ex. That is, we desire a
function f such that f(f(x)) = ex, at least asymptotically. There are slight technical difficulties
with finding a function which exactly satisfies f(f(x)) = ex, but it turns out that we can find a
nice bijective function f : [0,∞)→ [0,∞) which satisfies

f(f(x)) = ex − 1.

The advantage of using ex − 1 here is that e0 − 1 = 0, so we can set f(0) = 0.
We define a pair of functions ε(x) and `(x) by

ε(x) = ex − 1

and
`(x) = ln(1 + x),

and note that ε, ` : [0,∞)→ [0,∞) are inverse bijections.
For each n ∈ N, we define εn(x) and `n(x) to be the nth iterates of ε and `, so that ε0(x) =

`0(x) = x and εn+1(x) = ε(εn(x)), `n+1(x) = `(`n(x)). The strategy is to start by defining a
bijective function `∗ : (0,∞)→ R such that `∗(1) = 0,

`∗(ε(x)) = `∗(x) + 1,

and
`∗(`(x)) = `∗(x)− 1.

Intuitively, `∗(x) is “the number of times we have to apply ` to reach 1”. Using `∗, we can then
construct a function ε1/2 which satisfies ε1/2(ε1/2(x)) = ex − 1.

Proposition 1. For all x > 0, we have ε(x) > x and `(x) < x. In particular, for any x > 0, we
have limn→∞ `

n(x) = 0.

The intuition for computing `∗(x) is that we may use the identity

`∗(`n(x)) = `∗(x)− n

to reduce the computation of `∗(x) to the computation of `∗(`n(x)). Since `n(x) is eventually quite
close to 0, we just need to understand how ` acts on numbers close to 0. We can approximate `(x)
for small x by the Taylor series

`(x) = x− x2

2
+O(x3).

Comparing 1
`(x) to 1

x , we get the following estimate.
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Proposition 2. For x small, we have

1

`(x)
=

1

x
+

1

2
− x

12
+O(x2).

Additionally, we have
1

2
− x

12
<

1

`(x)
− 1

x
<

1

2

for all x > 0.

Proof. The first statement follows from standard power series manipulation:

1

x− x2/2 + x3/3− x4/4 + x5/5− · · ·
=

1

x
+

1

2
− x

12
+
x2

24
− 19x3

720
+ · · · .

The inequality 1
`(x) −

1
x <

1
2 is equivalent to

`(x) >
1

1/x+ 1/2
= 2− 4

2 + x
,

and since this is true for x sufficiently close to 0, we just need to check that the derivative of the
left hand side is at least the derivative of the right hand side. Thus we just need to check that

1

1 + x
>

4

(2 + x)2
,

which follows by multiplying out.
We only need to check the inequality 1

2 −
x
12 <

1
`(x) −

1
x in the range 0 < x < 6, and in this

range it is equivalent to

`(x) <
1

1/x+ 1/2− x/12
=

x

1 + x/2− x2/12
.

Again, this is true for x sufficiently close to 0, so we may compare the derivatives instead. We see
that we just need to check that

1

1 + x
<

(1 + x/2− x2/12)− x(1/2− x/6)

(1 + x/2− x2/12)2
=

1 + x2/12

(1 + x/2− x2/12)2

for 0 < x < 6. Multiplying out, this becomes

(1 + x/2− x2/12)2 < (1 + x)(1 + x2/12),

or

1 + x+
x2

12
− x3

12
+

x4

144
< 1 + x+

x2

12
+
x3

12
,

which holds for 0 < x < 24.

Corollary 1. For x ≤ 1, we have

5n

12
<

1

`n(x)
− 1

x
<
n

2
.
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Corollary 2. For x ≤ 1, we have

1

`n(x)
=

1

x
+
n

2
−
∑
i<n

`i(x)

12
+O(x).

Corollary 3. For x ≤ 1, we have

1

`n(x)
=

1

x
+
n

2
−O(ln(n)).

Corollary 4. For x fixed and n going to infinity, we have

1

`n(x)
=
n

2
− ln(n)

6
+Ox(1).

So one natural path to computing `∗(x) is to try to compute

lim
n→∞

n− ln(n)

3
− 2

`n(x)
.

A simpler approach is to compare 2
`n(x) to 2

`n(1) .

Proposition 3. For any x, y > 0, we have∣∣∣1
x
− 1

y

∣∣∣ ≤ ∣∣∣ 1

`(x)
− 1

`(y)

∣∣∣ ≤ ∣∣∣1
x
− 1

y

∣∣∣+
|x− y|

12
.

Proof. We just need to show that the function f(x) = −1/`(x) has derivative bounded below by
1
x2

and above by 1
x2

+ 1
12 . We have

f ′(x) =
1

1 + x
· 1

`(x)2
.

Thus, for the left hand inequality, we just need to check that

`(x)2 <
x2

1 + x
,

or equivalently

`(x) <
x

(1 + x)1/2
.

Since equality holds at 0, it’s enough to compare the derivatives: we just need to show that

1

1 + x
<

1

(1 + x)1/2
− x

2(1 + x)3/2
.

Multiplying out, this becomes
2
√

1 + x < 2 + x,

and squaring both sides shows that this holds for all x > 0.
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For the right hand inequality, we need to check that

`(x)2 >
x2

(1 + x)(1 + x2/12)
,

or equivalently that

`(x) >
x

(1 + x)1/2(1 + x2/12)1/2
.

Again, it’s enough to compare the derivatives, so we just need to check that

1

1 + x
>

1

(1 + x)1/2(1 + x2/12)1/2
− x

2(1 + x)3/2(1 + x2/12)1/2
− x2

12(1 + x)1/2(1 + x2/12)3/2
.

Multiplying out, this becomes

(1 + x)1/2(1 + x2/12)3/2 > 1 + x/2− x3/24,

and on squaring both sides we get the inequality

(1 + x)(1 + x2/12)3 > 1 + x+ x2/4− x3/12− x4/24 + x6/242,

which the reader may verify by using the inequality x5 + x7 ≥ 2x6.

Corollary 5. For any x, y > 0, the limit

lim
n→∞

2

`n(y)
− 2

`n(x)

exists, and is equal to

lim
n→∞

n2

2

(
`n(x)− `n(y)

)
.

Proof. To see that the limit exists, note that if x ≥ y, then the sequence

2

`n(y)
− 2

`n(x)

is increasing in n and is bounded above by

2

y
− 2

x
+
∑
m≥0

`m(x)− `m(y)

6
≤ 2

y
− 2

x
+
kx

6
,

where k is any integer which satisfies y ≥ `k(x).
For the second statement, note that

2

`n(y)
− 2

`n(x)
=

2(`n(x)− `n(y))

`n(x)`n(y)
,

and use the asymptotic

`n(x) = (1 + ox(1))
2

n

(and similarly for y) to replace the denominator by 4/n2.
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Definition 1. For x > 0, we define `∗(x) by

`∗(x) = lim
n→∞

2

`n(1)
− 2

`n(x)
= lim

n→∞

n2

2

(
`n(x)− `n(1)

)
.

Proposition 4. For all x > 0, the function `∗(x) satisfies

`∗(ex − 1) = `∗(x) + 1

and
`∗(ln(1 + x)) = `∗(x)− 1.

Proof. It’s enough to prove the second statement. By the definition of `∗, we have

`∗(x)− `∗(`(x)) = lim
n→∞

2

`n+1(x)
− 2

`n(x)
.

Setting yn = `n(x), we have yn → 0, so the above is equal to

lim
y→0

2

`(y)
− 2

y
= 1.

For the sake of concretely approximating `∗, we have the following explicit bound.

Proposition 5. If x ≥ y ≥ `k(x), then for any n we have

2

`n(y)
− 2

`n(x)
≤ `∗(x)− `∗(y) ≤ 2

`n(y)
− 2

`n(x)
+
k`n(x)

6
.

Of course, we’d like to know if the function `∗ is well-behaved: is it continuous, is it differentiable,
etc. To answer this question, we use the theory of completely monotone/Bernstein functions.

Definition 2. A continuous function f : [0,∞)→ R is called completely monotone if it satisfies

(−1)nf (n)(x) ≥ 0

for all x > 0 and all n ∈ N.
A function g : [0,∞) → [0,∞) whose derivative is completely monotone is called a Bernstein

function.
A function h such that h(n)(x) ≥ 0 for all x and all n ∈ N is called absolutely monotone. If h is

absolutely monotone on (−∞, 0], then h(−x) is completely monotone, and conversely.

Proposition 6. If f, g are Bernstein, then the composition f ◦ g is also a Bernstein function. If
f is completely monotone and g is Bernstein, then f ◦ g is completely monotone.

Corollary 6. For every n, the function `n is a Bernstein function, and 1/`n is a completely
monotone function.

The next result follows easily from standard facts about divided differences, but I haven’t seen
it explicitly stated anywhere (aside from the special cases we use here).
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Proposition 7. If f is a pointwise limit of functions fi such that for each n ≥ 1, the derivatives

f
(n)
i exist and have a fixed sign sn ∈ {+,−} not depending on i, then each derivative f (n) exists

and has the same fixed sign sn. In this case, we even have

f (n)(x) = lim
i→∞

f
(n)
i (x).

In particular, any pointwise limit of Bernstein functions is a Bernstein function, and the same
holds for completely monotone functions.

Using direct arguments, one can show that if f is completely monotone on (0,∞) then for every
x > 0, the Taylor series of f around x has radius of convergence at least as large as x, and converges
to f on the interval (0, x]. This quickly leads to the following result.

Proposition 8 ([1]). Every completely monotone function f : (0,∞) → R extends to an analytic
function on the halfplane <(x) > 0, as does any Bernstein function. If f is completely monotone
on (0,∞) and <(x) > 0, then |f(x)| ≤ f(<(x)).

Corollary 7. The function `∗ has completely monotone derivative, and extends to an analytic
function on the halfplane <(x) > 0. For all n ≥ 1 and <(x) > 0, we have

|`∗(n)(x)| ≤ (−1)n−1`∗(n)(<(x)).

Using standard facts about Taylor series, we can show that if f(x) = limi→∞ fi(x) is a pointwise
limit of completely monotone (or Bernstein) functions fi on (0,∞), and if we extend each fi to a
complex analytic function on <(x) > 0, then the extension of f to an analytic function on <(x) > 0
also satisfies

f(x) = lim
i→∞

fi(x),

and the convergence is uniform on compact subsets of the halfplane <(x) > 0. As a consequence,
we get the formula

`∗(x) = lim
n→∞

2

`n(1)
− 2

`n(x)

for all complex x with <(x) > 0.
Using the functional equation `∗(x) = `∗(`(x)) − 1, we can extend `∗ to an analytic function

on C \ (−∞, 0]. For this to make sense, we need to first extend ` to an analytic function on
C \ (−∞,−1] - we do this in the usual way, by integrating x 7→ 1

1+x along paths contained in the
region C \ (−∞,−1]. This extension of ` takes the halfplane <(x) > 0 into itself, satisfies

`
(
C \ (−∞, 0]

)
⊆ C \ (−∞, 0],

and satisfies
|=(`(x))| < π

for all x ∈ C \ (−∞, 0].

Proposition 9. The function `∗ extends to an anaytic function on C \ (−∞, 0], which satisfies the
functional equation `∗(x) = `∗(`(x)) + 1 for all x ∈ C \ (−∞, 0]. This extension of `∗ is still given
by the formula

`∗(x) = lim
n→∞

2

`n(1)
− 2

`n(x)

on C \ (−∞, 0].
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Proof. Since we already have an extension of `∗ to the halfplane <(x) > 0, we just need to check
that for every x ∈ C \ (−∞, 0], there is some n ∈ N such that <(`n(x)) > 0. For x such that
|1 + x| > 1, we have

<(`(x)) = ln |1 + x| > 0,

so we just need to check that for every x there is some n with |1 + `n(x)| > 1. To prove this, we
will first show that for |1 + x| ≤ 1 and =(x) 6= 0, we always have

|=(`(x))| > |=(x)|.

To see this, suppose that =(x) > 0, and consider the right triangle with vertices −1, <(x), and x
in the complex plane. If θ is the angle of this triangle at the vertex −1, then we have =(`(x)) = θ,
and

=(x) = |1 + x| sin(θ) ≤ sin(θ) ≤ θ = =(`(x)),

with equality only when θ = 0.
Now suppose for a contradiction that |1+`n(x)| ≤ 1 for all n. Suppose without loss of generality

that =(x) > 0. Then the sequence n 7→ =(`n(x)) is an increasing sequence, so all of the points
`n(x) are contained in the compact region

C = {z : |1 + z| ≤ 1,=(z) ≥ =(x) > 0}.

In particular, the sequence of points `n(x) must have some limit point z ∈ C, and since ` is
continuous we must then have `(z) = z. But this is impossible, since we’ve proved that =(`(z)) >
=(z) for all z ∈ C. The contradiction proves that there must be some n ∈ N such that |1+`n(x)| > 1,
and then we have <(`n+1(x)) > 0 for the same n.

The extension of `∗ to C \ (−∞, 0] has

lim
ε→0

`∗(−1 + iε) = 1 + lim
x→∞

`∗
(
− x+

πi

2

)
= 2 + lim

x→∞
`∗(x+ (π + o(1))i)

= 2 + lim
x→∞

`∗(x) +O(`∗′(x))

= +∞.

Using the functional equation `∗(x) = `∗(`(x)) + 1, we get

lim
ε→0

`∗(εn(−1) + iε) = +∞

for each n ∈ N, and since the sequence εn(−1) approaches 0 from below, we see that `∗ has an
essential singularity at 0.

The function `∗ can be further extended to a multivalued function on

C \ ({0} ∪ {εn(−1) : n ∈ N}).

More precisely, we can extend `∗ to an analytic function on a infinitely branched cover of C with
branch points lying above εn(−1) for n ∈ N (we make branch cuts along (−∞,−1), (−1, ε(−1)), ...).
One way to make this precise is to consider the set of continuous paths

p : [0, 1]→ C \ {εn(−1) : n ∈ N}
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with p(0) ∈ (0,∞) and p(1) = x instead of just points x. We can apply ` to any such path p to
get another such path `(p), and as we will soon see, if we apply ` sufficiently many times then
eventually the path `n(p) will be entirely contained in the halfplane <(x) > 0.

As it turns out the set of paths p we have to consider (or equivalently, the set of sheets of the
branched cover) is simpler than expected: if a path p starts out by looping counterclockwise around
−1 even one time, we will have =(`(p)) > π from there on, so

`∗(p) = `∗(`(p)) + 1

can be defined straightforwardly from that point on without worrying about p hitting any other
branch points. Similar reasoning applied to `n(p) shows that if p begins by looping counterclockwise
around any εn(−1), we don’t have to worry about hitting any εn+k(−1) for any k ≥ 1, although
we do still have to worry about hitting εm(−1) for m ≤ n. Representative paths p for the various
sheets of the cover can be described by sequences

(w0, w1, ..., wn, 0, ...)

of integer winding numbers which are eventually 0, with the following interpretation: if wn is the
last nonzero winding number in the sequence, then the sequence of winding numbers describes
the path that first winds wn times counterclockwise around εn(−1), second winds wn−1 times
counterclockwise around εn−1(−1), ..., and finally winds w0 times counterclockwise around −1.
When we apply ` to a path p, the winding number sequence simplifies:

p↔ (w0, w1, w2, ..., wn, 0, ...) =⇒ `(p)↔ (w1, w2, ..., wn, 0, 0, ...).

To see this, just note that =(x) and =(`(x)) always have the same sign as long as we stay in
the halfplane <(x) > −1, so every loop of p around εn(−1) gets mapped by ` to a loop of `(p)
around εn−1(−1). After applying ` to p exactly n+ 1 times, we get a path `n+1(p) which is entirely
contained in C \ (−∞, 0], and we have already extended `∗ to an analytic function on this region.

Now we turn to the task of computing values of `∗ to higher accuracy. Since applying ` repeat-
edly always takes us close to 0, and since we have the reference values `∗(`n(1)) = −n, we just need
to find more accurate approximations to `∗′(x) for x close to 0. Unfortunately, the essential singu-
larity of `∗ at 0 implies that there is no Laurent series which computes `∗ (or any of its derivatives)
in any punctured disk around 0. Nevertheless, we will show that there is an asymptotic series for
the derivative of `∗ around 0, beginning with

d

dx
`∗(x) =

2

x2
+

1

3x
− 1

36
+

x

270
+

x2

2592
− 71x3

108864
+

8759x4

32659200
+

31x5

3499200
+O(x6)

for x > 0. Further terms of the asymptotic series can be computed by expanding the functional
equation

`∗′(x) =
`∗′(`(x))

1 + x

as if both sides were formal Laurent series and equating coefficients. Explicit error terms in the
asymptotic series can be computed using the theory of divided differences - this can be useful for
getting the most accurate possible approximation when numerically computing `∗.
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Proposition 10. For each k ∈ N, define Ak(x) by

Ak(x) :=
k∑
i=1

i

x− `i(x)

∏
j≤k
j 6=i

x− `j(x)

`i(x)− `j(x)
.

Then for every k ∈ N we have
`∗′(x) = Ak(x) +O(xk−2)

as x approaches 0 from above, and for all x ∈ (0,∞) we have

A2k(x) ≤ `∗′(x) ≤ A2k+1(x).

In particular, since each Ak(x) has a Laurent series with rational coefficients which converges in a
punctured disk around 0 of positive radius, `∗′(x) has an asymptotic series with rational coefficients
as x approaches 0 from above.

Proof. We use the theory of divided differences. For f a function on (0,∞), we set f [x] := f(x),
and recursively

f [x1, ..., xn+1] :=
f [x1, ..., xn−1, xn]− f [x1, ..., xn−1, xn+1]

xn − xn+1
.

If two entries xi, xj are equal, then we define the divided difference by taking a suitable limit (this
will be well-defined as long as f is sufficiently differentiable).

Using `∗(x)− `∗(`i(x)) = i, a standard computation gives

`∗[x, x, `(x), ..., `k(x)] =
`∗′(x)∏k

i=1(x− `i(x))
−

k∑
i=1

i

(x− `i(x))2
∏
j 6=i(`

i(x)− `j(x))
.

By the mean value theorem for divided differences, there is some ξ ∈ [`k(x), x] such that

`∗[x, x, `(x), ..., `k(x)] = `∗(k+1)(ξ).

By the fact that `∗′ is completely monotone, we have

(−1)k`∗[x, x, `(x), ..., `k(x)] = (−1)k`∗(k+1)(ξ) ≥ 0,

so depending on whether k is even or odd, `∗′(x) is either bounded below or above by

Ak(x) :=

k∑
i=1

i

x− `i(x)

∏
j 6=i

x− `j(x)

`i(x)− `j(x)
.

To finish the proof, we just need to check that

`∗′(x)−Ak(x) = `∗[x, x, `(x), ..., `k(x)] ·
k∏
i=1

(x− `i(x))

is O(xk−2). Since x− `i(x) ∝ x2, this is equivalent to proving that

`∗[x, x, `(x), ..., `k(x)] = `∗(k+1)(ξ)
?
= O(x−k−2).
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By complete monotonicity of `∗′, we have

`∗′(ξ/2) ≥
∣∣`∗(k+1)(ξ)

∣∣ · (ξ/2)k

k!
,

and we already know that `∗′(ξ/2) = O(ξ−2) by the concavity of `∗ and the fact that `n(1) = 2+o(1)
n .

Since ξ = x−O(x2), we have ∣∣`∗(k+1)(ξ)
∣∣ = O(ξ−k−2) = O(x−k−2),

so we are done.

We can also prove a uniqueness result for `∗, using only the assumption of concavity together
with the functional equation.

Proposition 11. If f : (0,∞)→ R is a concave function which satisfies f(`(x)) = f(x)− 1 for all
x > 0, and if f(1) = 0, then f = `∗.

Proof. By the functional equation, it’s enough to show that f(x) − `∗(x) = O(x) as x approaches
0 from above. Since f(`n(1)) = −n = `∗(`n(1)) for n ∈ N, it’s enough to show that the difference
between f(x)− f(y) and `∗(x)− `∗(y) is O(x) for x > y > `(x). By the concavity of f , we have

f [x, y, `(x)] ≤ 0

and
f [ε(x), x, y] ≤ 0,

and expanding these inequalities out in the case x > y > `(x) we get

f(ε(x))− f(x)

ε(x)− x
≤ f(x)− f(y)

x− y
≤ f(x)− f(`(x))

x− `(x)
.

By the functional equation f(`(x)) = f(x)− 1, we get

1

ε(x)− x
≤ f(x)− f(y)

x− y
≤ 1

x− `(x)
,

and expanding the upper and lower bounds as Laurent series in x, we get

f(x)− f(y)

x− y
=

2

x2
+O(1/x)

as x approaches 0 from above. Since

x− y ≤ x− `(x) = O(x2),

we have

f(x)− f(y) =
2(x− y)

x2
+O(x).

Since the same reasoning applies to `∗ as well, we have f(x)− f(y) = `∗(x)− `∗(y) + O(x) for all
x > y > `(x).
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We now define a real-analytic tetration function ε∗.

Definition 3. We define ε∗ : R→ (0,∞) to be the inverse function to `∗.

Some of the nice properties of `∗ immediately imply nice properties of ε∗. Since `∗ is increasing
and concave, ε∗ will be increasing and convex. Since `∗(x) extends to a complex analytic function
on C \ (−∞, 0] which satisfies the functional equation `∗(x) = `∗(`(x)) + 1, ε∗ extends to a complex
analytic function on some neighborhood of R which satisfies the functional equation

ε∗(x+ 1) = ε(ε∗(x)).

The uniqueness property of `∗ implies that ε∗ is the unique convex function on R which satisfies
this functional equation together with the initial condition ε∗(0) = 1.

Proposition 12. For every x ∈ R, we have

ε∗(x) = lim
n→∞

εn
( 2

2
`n(1) − x

)
.

Proof. If y = ε∗(x), then from `∗(y) = x we see that

lim
n→∞

2

`n(1)
− 2

`n(y)
= x.

By induction on k, using the inequality |1/a− 1/b| ≤ |1/`(a)− 1/`(b)| which we proved earlier, we
have ∣∣∣ 2

`n−k(y)
− 2

εk( 2
2

`n(1)
−x)

∣∣∣ ≤ ∣∣∣ 2

`n(y)
−
( 2

`n(1)
− x
)∣∣∣,

so in particular we have∣∣∣2
y
− 2

εn( 2
2

`n(1)
−x)

∣∣∣ ≤ ∣∣∣ 2

`n(y)
−
( 2

`n(1)
− x
)∣∣∣ =

∣∣∣x− ( 2

`n(1)
− 2

`n(y)

)∣∣∣.
Taking the limit of both sides as n→∞ proves that

2

ε∗(x)
=

2

y
= lim

n→∞

2

εn( 2
2

`n(1)
−x)

.

Corollary 8. The function ε∗ is absolutely monotone, that is, ε∗(n)(x) ≥ 0 for every n ∈ N and
every x ∈ R.

Proof. From the fact that the function x 7→ 2
c−x is absolutely monotone on (−∞, c) for every

constant c, the fact that ε(x) is absolutely monotone on (0,∞), and the fact that compositions of
absolutely monotone functions are absolutely monotone, each function

εn
( 2

2
`n(1) − x

)
is absolutely monotone on (−∞, 2/`n(1)). Since pointwise limits of absolutely monotone functions
are absolutely monotone, we see that ε∗ is absolutely monotone as well.
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Corollary 9. The function ε∗ extends to an entire function on C which satisfies the functional
equation ε∗(x+ 1) = ε(ε∗(x)). For all x ∈ C, we have

ε∗(x) = lim
n→∞

εn
( 2

2
`n(1) − x

)
.

By Picard’s little theorem, ε∗ can only avoid a single value on C, and since ε(x) = ex − 1 6= −1
for all x ∈ C, the functional equation for ε∗ shows that

ε∗(x) 6= −1

for all x ∈ C as well. Interestingly, this implies that ε∗ must instead take values such as 0 and
ε(−1) - and in fact, Picard’s great theorem implies that ε∗ takes these values infinitely often. This
may not be such a surprise if you think back to our description of the extension of `∗ to a function
on a branched cover of C with infinitely many sheets, and use the fact that

ε∗(`∗(x)) = x.

For instance, the zeros of ε∗ are in one-to-one correspondence with the set of sheets of this branched
covering, excluding the single starting sheet where `∗ has an essential singularity at 0.

Now we can finally define the fractional compositional powers of the function ex − 1.

Definition 4. For every n ∈ C, we define the function εn : C \ (−∞, 0]→ C by

εn(x) = ε∗(`∗(x) + n).

We define `n by `n(x) = ε−n(x).

Proposition 13. For any m,n ∈ R and any x > 0, we have

εm(εn(x)) = εm+n(x).

In particular, we have
ε1/2(ε1/2(x)) = ex − 1.

We can compute εm with a direct limit formula, using the fact that the limit formulas for `∗

and ε∗ converge uniformly on compact subsets of their domains.

Proposition 14. For m ∈ C and x ∈ C \ (−∞, 0], we have

εm(x) = lim
n→∞

εn
( 2

2
`n(x) −m

)
.

Just for fun, we can also define an asymptotic measurement of “how exponentially” a function
grows.

Definition 5. We say that a function f : (0,∞)→ (0,∞) has exponentiality α(f) if

α(f) = lim
x→∞

`∗(f(x))− `∗(x) = lim
x→∞

`∗(f(ε∗(x)))− x.

12



Under this definition, we have α(1) = −∞, α(x) = 0, α(ε) = 1, and α(`) = −1. Additionally,
we have α(εn) = n for all n ∈ R, α`∗ = −∞, and α(ε∗) = +∞.

Proposition 15. If f, g : (0,∞)→ [ε,∞) are functions with exponentialities α(f), α(g), then

α(fg) = α(f + g) = max(α(f), α(g)).

Proposition 16. If f, g : (0,∞)→ (0,∞) have exponentialities α(f), α(g) > −∞, then

α(f ◦ g) = α(f) + α(g).

Proof. For any x, we have

`∗(f(g(x)))− `∗(x) = `∗(f(g(x)))− `∗(g(x)) + `∗(g(x))− `∗(x).

Since g(x) must go to ∞ as x→∞ if α(g) > −∞, we see that the limit of the above expression is
α(f) + α(g).

Corollary 10. Every function which can be constructed (in finitely many steps) out of positive
polynomials by addition, multiplication, exponentiation, and taking logarithms has an exponentiality
in Z ∪ {−∞}.

1 A slight generalization of the construction

Now that we have defined `∗ and ε∗, it’s tempting to try to iterate these functions as well. Perhaps
we can find a half-tetration function? Immediately we run into the problem that `∗(`∗(x)) is not
defined for x = 1, x = ε∗(−1), etc. Actually, we had the same problem with iterating ln - we got
around this problem by shifting the input by a convenient constant, to define the function `.

Since `∗′ : (0,∞) → (0,∞) is a strictly decreasing continuous function with `∗′(0+) = ∞ and
`∗′(∞) = 0, there is a unique x0 ∈ (0,∞) such that

`∗′(x0) = 1.

Define a new function `∗0 by
`∗0(x) = `∗(x+ x0)− `∗(x0).

Then `∗0 has the following properties:

• `∗0(0) = 0,

• `∗0
′(0) = 1,

• `∗0 is a bijection from (0,∞) to itself,

• `∗0 is a Bernstein function,

• the inverse function ε∗0 to `∗0 is given by

ε∗0(x) = ε∗(x+ `∗(x0))− x0,

• the function ε∗0 is a bijection from (−∞,∞) to (−x0,∞),

13



• the function ε∗0 has an absolutely monotone derivative on (−∞,∞).

These properties mirror the properties of `, ε which were needed in order to iterate them.

Definition 6. Say that a pair of real functions (f, g) is nicely iterable if f, g have the following
properties:

• g is defined on all of R,

• f is defined on the interval (g(−∞),∞),

• f(g(x)) = x for all x ∈ R,

• f(0) = g(0) = 0 and f ′(0) = g′(0) = 1,

• f has a completely monotone derivative on its domain,

• g has an absolutely monotone derivative,

• f, g are not linear.

We will write fn, gn for the compositional powers of f and g (we will write ordinary powers of
f, g as f(x)n, g(x)n).

Proposition 17. Suppose that (f, g) are nicely iterable. Then for every x > 0, we have 0 < f(x) <
x and limn→∞ f

n(x) = 0.

Proof. That f(x) ≤ x follows from f ′(0) = 1 and f concave. Suppose for contradiction that
f(x) = x for some x > 0, then we must have f ′′(y) = 0 for all 0 < y < x, and since f ′′ is increasing
and nonpositive, this implies that f ′′ = 0 on (0,∞). Since f is analytic on its domain, this would
imply that f ′′ = 0 identically, contradicting the assumption that f is not linear.

Proposition 18. Suppose that (f, g) are nicely iterable. Then for x, y > 0 we have

1

f(x)
− 1

f(y)
=

1

x
− 1

y
+O(x− y).

Proof. We just need to compare derivatives - more precisely, we need to check that

f ′(x)

f(x)2
=

1

x2
+O(1).

Since the left hand side is decreasing as a function of x, we only need to check this as x approaches
0. Since f ′ is smooth in a neighborhood of 0 and f(0) = 0, f ′(0) = 1, we have

f(x) = x− ax2 +O(x3)

for some a. Expanding, we have

f ′(x)

f(x)2
=

1− 2ax+O(x2)

x2 − 2ax3 +O(x4)
=

1

x2
+O(1).
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Corollary 11. If (f, g) are nicely iterable, then for x > y > fk(x) > 0 and n ≥ 0 we have

1

fn(y)
− 1

fn(x)
=

1

y
− 1

x
+O(kx),

where the implied constant only depends on f, g. In particular, for any x, y > 0 the sequence

n 7→ 1

fn(y)
− 1

fn(x)

is a Cauchy sequence.

Proposition 19. If (f, g) are nicely iterable, then there is a unique concave function f∗ : (0,∞)→
(−∞,∞) such that f∗(1) = 0 and

f∗(x) = f∗(f(x)) + 1

for all x > 0. This f∗ is given explicitly by the formula

f∗(x) =
2

g′′(0)
lim
n→∞

1

fn(1)
− 1

fn(x)
.

Proposition 20. If (f, g) are nicely iterable, then there is a unique convex function g∗ : (−∞,∞)→
(0,∞) such that g∗(0) = 1 and

g∗(x+ 1) = g(g∗(x))

for all x. This g∗ is given explicitly by the formula

g∗(x) = lim
n→∞

gn
( 2

2
fn(1) − g′′(0)x

)
.

Proposition 21. If (f, g) are nicely iterable and f∗, g∗ are as in the previous results, then there is
some x0 ∈ (0,∞) such that if we define

f∗0 (x) = f∗(x+ x0)− f∗(x0)

and
g∗0(x) = g∗(x+ f∗(x0))− x0,

then the pair (f∗0 , g
∗
0) is nicely iterable as well.

If we start with (`, ε) and repeatedly apply the previous result, we get a sequence of abso-
lutely monotone functions with growth rates climbing through the hierarchy of primitive recursive
functions.
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