Interpolating log*

Imagine that we wish to find a function perfectly in between x and e^{x}. That is, we desire a function f such that $f(f(x))=e^{x}$, at least asymptotically. There are slight technical difficulties with finding a function which exactly satisfies $f(f(x))=e^{x}$, but it turns out that we can find a nice bijective function $f:[0, \infty) \rightarrow[0, \infty)$ which satisfies

$$
f(f(x))=e^{x}-1
$$

The advantage of using $e^{x}-1$ here is that $e^{0}-1=0$, so we can set $f(0)=0$.
We define a pair of functions $\varepsilon(x)$ and $\ell(x)$ by

$$
\varepsilon(x)=e^{x}-1
$$

and

$$
\ell(x)=\ln (1+x),
$$

and note that $\varepsilon, \ell:[0, \infty) \rightarrow[0, \infty)$ are inverse bijections.
For each $n \in \mathbb{N}$, we define $\varepsilon^{n}(x)$ and $\ell^{n}(x)$ to be the nth iterates of ε and ℓ, so that $\varepsilon^{0}(x)=$ $\ell^{0}(x)=x$ and $\varepsilon^{n+1}(x)=\varepsilon\left(\varepsilon^{n}(x)\right), \ell^{n+1}(x)=\ell\left(\ell^{n}(x)\right)$. The strategy is to start by defining a bijective function $\ell^{*}:(0, \infty) \rightarrow \mathbb{R}$ such that $\ell^{*}(1)=0$,

$$
\ell^{*}(\varepsilon(x))=\ell^{*}(x)+1,
$$

and

$$
\ell^{*}(\ell(x))=\ell^{*}(x)-1 .
$$

Intuitively, $\ell^{*}(x)$ is "the number of times we have to apply ℓ to reach 1 ". Using ℓ^{*}, we can then construct a function $\varepsilon^{1 / 2}$ which satisfies $\varepsilon^{1 / 2}\left(\varepsilon^{1 / 2}(x)\right)=e^{x}-1$.

Proposition 1. For all $x>0$, we have $\varepsilon(x)>x$ and $\ell(x)<x$. In particular, for any $x>0$, we have $\lim _{n \rightarrow \infty} \ell^{n}(x)=0$.

The intuition for computing $\ell^{*}(x)$ is that we may use the identity

$$
\ell^{*}\left(\ell^{n}(x)\right)=\ell^{*}(x)-n
$$

to reduce the computation of $\ell^{*}(x)$ to the computation of $\ell^{*}\left(\ell^{n}(x)\right)$. Since $\ell^{n}(x)$ is eventually quite close to 0 , we just need to understand how ℓ acts on numbers close to 0 . We can approximate $\ell(x)$ for small x by the Taylor series

$$
\ell(x)=x-\frac{x^{2}}{2}+O\left(x^{3}\right) .
$$

Comparing $\frac{1}{\ell(x)}$ to $\frac{1}{x}$, we get the following estimate.

Proposition 2. For x small, we have

$$
\frac{1}{\ell(x)}=\frac{1}{x}+\frac{1}{2}-\frac{x}{12}+O\left(x^{2}\right)
$$

Additionally, we have

$$
\frac{1}{2}-\frac{x}{12}<\frac{1}{\ell(x)}-\frac{1}{x}<\frac{1}{2}
$$

for all $x>0$.
Proof. The first statement follows from standard power series manipulation:

$$
\frac{1}{x-x^{2} / 2+x^{3} / 3-x^{4} / 4+x^{5} / 5-\cdots}=\frac{1}{x}+\frac{1}{2}-\frac{x}{12}+\frac{x^{2}}{24}-\frac{19 x^{3}}{720}+\cdots
$$

The inequality $\frac{1}{\ell(x)}-\frac{1}{x}<\frac{1}{2}$ is equivalent to

$$
\ell(x)>\frac{1}{1 / x+1 / 2}=2-\frac{4}{2+x}
$$

and since this is true for x sufficiently close to 0 , we just need to check that the derivative of the left hand side is at least the derivative of the right hand side. Thus we just need to check that

$$
\frac{1}{1+x}>\frac{4}{(2+x)^{2}}
$$

which follows by multiplying out.
We only need to check the inequality $\frac{1}{2}-\frac{x}{12}<\frac{1}{\ell(x)}-\frac{1}{x}$ in the range $0<x<6$, and in this range it is equivalent to

$$
\ell(x)<\frac{1}{1 / x+1 / 2-x / 12}=\frac{x}{1+x / 2-x^{2} / 12}
$$

Again, this is true for x sufficiently close to 0 , so we may compare the derivatives instead. We see that we just need to check that

$$
\frac{1}{1+x}<\frac{\left(1+x / 2-x^{2} / 12\right)-x(1 / 2-x / 6)}{\left(1+x / 2-x^{2} / 12\right)^{2}}=\frac{1+x^{2} / 12}{\left(1+x / 2-x^{2} / 12\right)^{2}}
$$

for $0<x<6$. Multiplying out, this becomes

$$
\left(1+x / 2-x^{2} / 12\right)^{2}<(1+x)\left(1+x^{2} / 12\right)
$$

or

$$
1+x+\frac{x^{2}}{12}-\frac{x^{3}}{12}+\frac{x^{4}}{144}<1+x+\frac{x^{2}}{12}+\frac{x^{3}}{12}
$$

which holds for $0<x<24$.
Corollary 1. For $x \leq 1$, we have

$$
\frac{5 n}{12}<\frac{1}{\ell^{n}(x)}-\frac{1}{x}<\frac{n}{2}
$$

Corollary 2. For $x \leq 1$, we have

$$
\frac{1}{\ell^{n}(x)}=\frac{1}{x}+\frac{n}{2}-\sum_{i<n} \frac{\ell^{i}(x)}{12}+O(x)
$$

Corollary 3. For $x \leq 1$, we have

$$
\frac{1}{\ell^{n}(x)}=\frac{1}{x}+\frac{n}{2}-O(\ln (n))
$$

Corollary 4. For x fixed and n going to infinity, we have

$$
\frac{1}{\ell^{n}(x)}=\frac{n}{2}-\frac{\ln (n)}{6}+O_{x}(1)
$$

So one natural path to computing $\ell^{*}(x)$ is to try to compute

$$
\lim _{n \rightarrow \infty} n-\frac{\ln (n)}{3}-\frac{2}{\ell^{n}(x)}
$$

A simpler approach is to compare $\frac{2}{\ell^{n}(x)}$ to $\frac{2}{\ell^{n}(1)}$.
Proposition 3. For any $x, y>0$, we have

$$
\left|\frac{1}{x}-\frac{1}{y}\right| \leq\left|\frac{1}{\ell(x)}-\frac{1}{\ell(y)}\right| \leq\left|\frac{1}{x}-\frac{1}{y}\right|+\frac{|x-y|}{12}
$$

Proof. We just need to show that the function $f(x)=-1 / \ell(x)$ has derivative bounded below by $\frac{1}{x^{2}}$ and above by $\frac{1}{x^{2}}+\frac{1}{12}$. We have

$$
f^{\prime}(x)=\frac{1}{1+x} \cdot \frac{1}{\ell(x)^{2}} .
$$

Thus, for the left hand inequality, we just need to check that

$$
\ell(x)^{2}<\frac{x^{2}}{1+x}
$$

or equivalently

$$
\ell(x)<\frac{x}{(1+x)^{1 / 2}} .
$$

Since equality holds at 0 , it's enough to compare the derivatives: we just need to show that

$$
\frac{1}{1+x}<\frac{1}{(1+x)^{1 / 2}}-\frac{x}{2(1+x)^{3 / 2}} .
$$

Multiplying out, this becomes

$$
2 \sqrt{1+x}<2+x
$$

and squaring both sides shows that this holds for all $x>0$.

For the right hand inequality, we need to check that

$$
\ell(x)^{2}>\frac{x^{2}}{(1+x)\left(1+x^{2} / 12\right)}
$$

or equivalently that

$$
\ell(x)>\frac{x}{(1+x)^{1 / 2}\left(1+x^{2} / 12\right)^{1 / 2}} .
$$

Again, it's enough to compare the derivatives, so we just need to check that

$$
\frac{1}{1+x}>\frac{1}{(1+x)^{1 / 2}\left(1+x^{2} / 12\right)^{1 / 2}}-\frac{x}{2(1+x)^{3 / 2}\left(1+x^{2} / 12\right)^{1 / 2}}-\frac{x^{2}}{12(1+x)^{1 / 2}\left(1+x^{2} / 12\right)^{3 / 2}} .
$$

Multiplying out, this becomes

$$
(1+x)^{1 / 2}\left(1+x^{2} / 12\right)^{3 / 2}>1+x / 2-x^{3} / 24,
$$

and on squaring both sides we get the inequality

$$
(1+x)\left(1+x^{2} / 12\right)^{3}>1+x+x^{2} / 4-x^{3} / 12-x^{4} / 24+x^{6} / 24^{2},
$$

which the reader may verify by using the inequality $x^{5}+x^{7} \geq 2 x^{6}$.
Corollary 5. For any $x, y>0$, the limit

$$
\lim _{n \rightarrow \infty} \frac{2}{\ell^{n}(y)}-\frac{2}{\ell^{n}(x)}
$$

exists, and is equal to

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{2}\left(\ell^{n}(x)-\ell^{n}(y)\right)
$$

Proof. To see that the limit exists, note that if $x \geq y$, then the sequence

$$
\frac{2}{\ell^{n}(y)}-\frac{2}{\ell^{n}(x)}
$$

is increasing in n and is bounded above by

$$
\frac{2}{y}-\frac{2}{x}+\sum_{m \geq 0} \frac{\ell^{m}(x)-\ell^{m}(y)}{6} \leq \frac{2}{y}-\frac{2}{x}+\frac{k x}{6},
$$

where k is any integer which satisfies $y \geq \ell^{k}(x)$.
For the second statement, note that

$$
\frac{2}{\ell^{n}(y)}-\frac{2}{\ell^{n}(x)}=\frac{2\left(\ell^{n}(x)-\ell^{n}(y)\right)}{\ell^{n}(x) \ell^{n}(y)}
$$

and use the asymptotic

$$
\ell^{n}(x)=\left(1+o_{x}(1)\right) \frac{2}{n}
$$

(and similarly for y) to replace the denominator by $4 / n^{2}$.

Definition 1. For $x>0$, we define $\ell^{*}(x)$ by

$$
\ell^{*}(x)=\lim _{n \rightarrow \infty} \frac{2}{\ell^{n}(1)}-\frac{2}{\ell^{n}(x)}=\lim _{n \rightarrow \infty} \frac{n^{2}}{2}\left(\ell^{n}(x)-\ell^{n}(1)\right) .
$$

Proposition 4. For all $x>0$, the function $\ell^{*}(x)$ satisfies

$$
\ell^{*}\left(e^{x}-1\right)=\ell^{*}(x)+1
$$

and

$$
\ell^{*}(\ln (1+x))=\ell^{*}(x)-1 .
$$

Proof. It's enough to prove the second statement. By the definition of ℓ^{*}, we have

$$
\ell^{*}(x)-\ell^{*}(\ell(x))=\lim _{n \rightarrow \infty} \frac{2}{\ell^{n+1}(x)}-\frac{2}{\ell^{n}(x)} .
$$

Setting $y_{n}=\ell^{n}(x)$, we have $y_{n} \rightarrow 0$, so the above is equal to

$$
\lim _{y \rightarrow 0} \frac{2}{\ell(y)}-\frac{2}{y}=1
$$

For the sake of concretely approximating ℓ^{*}, we have the following explicit bound.
Proposition 5. If $x \geq y \geq \ell^{k}(x)$, then for any n we have

$$
\frac{2}{\ell^{n}(y)}-\frac{2}{\ell^{n}(x)} \leq \ell^{*}(x)-\ell^{*}(y) \leq \frac{2}{\ell^{n}(y)}-\frac{2}{\ell^{n}(x)}+\frac{k \ell^{n}(x)}{6} .
$$

Of course, we'd like to know if the function ℓ^{*} is well-behaved: is it continuous, is it differentiable, etc. To answer this question, we use the theory of completely monotone/Bernstein functions.

Definition 2. A continuous function $f:[0, \infty) \rightarrow \mathbb{R}$ is called completely monotone if it satisfies

$$
(-1)^{n} f^{(n)}(x) \geq 0
$$

for all $x>0$ and all $n \in \mathbb{N}$.
A function $g:[0, \infty) \rightarrow[0, \infty)$ whose derivative is completely monotone is called a Bernstein function.

A function h such that $h^{(n)}(x) \geq 0$ for all x and all $n \in \mathbb{N}$ is called absolutely monotone. If h is absolutely monotone on $(-\infty, 0]$, then $h(-x)$ is completely monotone, and conversely.

Proposition 6. If f, g are Bernstein, then the composition $f \circ g$ is also a Bernstein function. If f is completely monotone and g is Bernstein, then $f \circ g$ is completely monotone.

Corollary 6. For every n, the function ℓ^{n} is a Bernstein function, and $1 / \ell^{n}$ is a completely monotone function.

The next result follows easily from standard facts about divided differences, but I haven't seen it explicitly stated anywhere (aside from the special cases we use here).

Proposition 7. If f is a pointwise limit of functions f_{i} such that for each $n \geq 1$, the derivatives $f_{i}^{(n)}$ exist and have a fixed sign $s_{n} \in\{+,-\}$ not depending on i, then each derivative $f^{(n)}$ exists and has the same fixed sign s_{n}. In this case, we even have

$$
f^{(n)}(x)=\lim _{i \rightarrow \infty} f_{i}^{(n)}(x)
$$

In particular, any pointwise limit of Bernstein functions is a Bernstein function, and the same holds for completely monotone functions.

Using direct arguments, one can show that if f is completely monotone on $(0, \infty)$ then for every $x>0$, the Taylor series of f around x has radius of convergence at least as large as x, and converges to f on the interval $(0, x]$. This quickly leads to the following result.
Proposition 8 ([1]). Every completely monotone function $f:(0, \infty) \rightarrow \mathbb{R}$ extends to an analytic function on the halfplane $\Re(x)>0$, as does any Bernstein function. If f is completely monotone on $(0, \infty)$ and $\Re(x)>0$, then $|f(x)| \leq f(\Re(x))$.

Corollary 7. The function ℓ^{*} has completely monotone derivative, and extends to an analytic function on the halfplane $\Re(x)>0$. For all $n \geq 1$ and $\Re(x)>0$, we have

$$
\left|\ell^{*(n)}(x)\right| \leq(-1)^{n-1} \ell^{*(n)}(\Re(x)) .
$$

Using standard facts about Taylor series, we can show that if $f(x)=\lim _{i \rightarrow \infty} f_{i}(x)$ is a pointwise limit of completely monotone (or Bernstein) functions f_{i} on $(0, \infty)$, and if we extend each f_{i} to a complex analytic function on $\Re(x)>0$, then the extension of f to an analytic function on $\Re(x)>0$ also satisfies

$$
f(x)=\lim _{i \rightarrow \infty} f_{i}(x),
$$

and the convergence is uniform on compact subsets of the halfplane $\Re(x)>0$. As a consequence, we get the formula

$$
\ell^{*}(x)=\lim _{n \rightarrow \infty} \frac{2}{\ell^{n}(1)}-\frac{2}{\ell^{n}(x)}
$$

for all complex x with $\Re(x)>0$.
Using the functional equation $\ell^{*}(x)=\ell^{*}(\ell(x))-1$, we can extend ℓ^{*} to an analytic function on $\mathbb{C} \backslash(-\infty, 0]$. For this to make sense, we need to first extend ℓ to an analytic function on $\mathbb{C} \backslash(-\infty,-1]$ - we do this in the usual way, by integrating $x \mapsto \frac{1}{1+x}$ along paths contained in the region $\mathbb{C} \backslash(-\infty,-1]$. This extension of ℓ takes the halfplane $\Re(x)>0$ into itself, satisfies

$$
\ell(\mathbb{C} \backslash(-\infty, 0]) \subseteq \mathbb{C} \backslash(-\infty, 0],
$$

and satisfies

$$
|\Im(\ell(x))|<\pi
$$

for all $x \in \mathbb{C} \backslash(-\infty, 0]$.
Proposition 9. The function ℓ^{*} extends to an anaytic function on $\mathbb{C} \backslash(-\infty, 0]$, which satisfies the functional equation $\ell^{*}(x)=\ell^{*}(\ell(x))+1$ for all $x \in \mathbb{C} \backslash(-\infty, 0]$. This extension of ℓ^{*} is still given by the formula

$$
\ell^{*}(x)=\lim _{n \rightarrow \infty} \frac{2}{\ell^{n}(1)}-\frac{2}{\ell^{n}(x)}
$$

on $\mathbb{C} \backslash(-\infty, 0]$.

Proof. Since we already have an extension of ℓ^{*} to the halfplane $\Re(x)>0$, we just need to check that for every $x \in \mathbb{C} \backslash(-\infty, 0]$, there is some $n \in \mathbb{N}$ such that $\Re\left(\ell^{n}(x)\right)>0$. For x such that $|1+x|>1$, we have

$$
\Re(\ell(x))=\ln |1+x|>0,
$$

so we just need to check that for every x there is some n with $\left|1+\ell^{n}(x)\right|>1$. To prove this, we will first show that for $|1+x| \leq 1$ and $\Im(x) \neq 0$, we always have

$$
|\Im(\ell(x))|>|\Im(x)| .
$$

To see this, suppose that $\Im(x)>0$, and consider the right triangle with vertices $-1, \Re(x)$, and x in the complex plane. If θ is the angle of this triangle at the vertex -1 , then we have $\Im(\ell(x))=\theta$, and

$$
\Im(x)=|1+x| \sin (\theta) \leq \sin (\theta) \leq \theta=\Im(\ell(x)),
$$

with equality only when $\theta=0$.
Now suppose for a contradiction that $\left|1+\ell^{n}(x)\right| \leq 1$ for all n. Suppose without loss of generality that $\Im(x)>0$. Then the sequence $n \mapsto \Im\left(\ell^{n}(x)\right)$ is an increasing sequence, so all of the points $\ell^{n}(x)$ are contained in the compact region

$$
C=\{z:|1+z| \leq 1, \Im(z) \geq \Im(x)>0\} .
$$

In particular, the sequence of points $\ell^{n}(x)$ must have some limit point $z \in C$, and since ℓ is continuous we must then have $\ell(z)=z$. But this is impossible, since we've proved that $\Im(\ell(z))>$ $\Im(z)$ for all $z \in C$. The contradiction proves that there must be some $n \in \mathbb{N}$ such that $\left|1+\ell^{n}(x)\right|>1$, and then we have $\Re\left(\ell^{n+1}(x)\right)>0$ for the same n.

The extension of ℓ^{*} to $\mathbb{C} \backslash(-\infty, 0]$ has

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} \ell^{*}(-1+i \epsilon) & =1+\lim _{x \rightarrow \infty} \ell^{*}\left(-x+\frac{\pi i}{2}\right) \\
& =2+\lim _{x \rightarrow \infty} \ell^{*}(x+(\pi+o(1)) i) \\
& =2+\lim _{x \rightarrow \infty} \ell^{*}(x)+O\left(\ell^{* \prime}(x)\right) \\
& =+\infty .
\end{aligned}
$$

Using the functional equation $\ell^{*}(x)=\ell^{*}(\ell(x))+1$, we get

$$
\lim _{\epsilon \rightarrow 0} \ell^{*}\left(\varepsilon^{n}(-1)+i \epsilon\right)=+\infty
$$

for each $n \in \mathbb{N}$, and since the sequence $\varepsilon^{n}(-1)$ approaches 0 from below, we see that ℓ^{*} has an essential singularity at 0 .

The function ℓ^{*} can be further extended to a multivalued function on

$$
\mathbb{C} \backslash\left(\{0\} \cup\left\{\varepsilon^{n}(-1): n \in \mathbb{N}\right\}\right) .
$$

More precisely, we can extend ℓ^{*} to an analytic function on a infinitely branched cover of \mathbb{C} with branch points lying above $\varepsilon^{n}(-1)$ for $n \in \mathbb{N}$ (we make branch cuts along $(-\infty,-1),(-1, \varepsilon(-1)), \ldots$). One way to make this precise is to consider the set of continuous paths

$$
p:[0,1] \rightarrow \mathbb{C} \backslash\left\{\varepsilon^{n}(-1): n \in \mathbb{N}\right\}
$$

with $p(0) \in(0, \infty)$ and $p(1)=x$ instead of just points x. We can apply ℓ to any such path p to get another such path $\ell(p)$, and as we will soon see, if we apply ℓ sufficiently many times then eventually the path $\ell^{n}(p)$ will be entirely contained in the halfplane $\Re(x)>0$.

As it turns out the set of paths p we have to consider (or equivalently, the set of sheets of the branched cover) is simpler than expected: if a path p starts out by looping counterclockwise around -1 even one time, we will have $\Im(\ell(p))>\pi$ from there on, so

$$
\ell^{*}(p)=\ell^{*}(\ell(p))+1
$$

can be defined straightforwardly from that point on without worrying about p hitting any other branch points. Similar reasoning applied to $\ell^{n}(p)$ shows that if p begins by looping counterclockwise around any $\varepsilon^{n}(-1)$, we don't have to worry about hitting any $\varepsilon^{n+k}(-1)$ for any $k \geq 1$, although we do still have to worry about hitting $\varepsilon^{m}(-1)$ for $m \leq n$. Representative paths p for the various sheets of the cover can be described by sequences

$$
\left(w_{0}, w_{1}, \ldots, w_{n}, 0, \ldots\right)
$$

of integer winding numbers which are eventually 0 , with the following interpretation: if w_{n} is the last nonzero winding number in the sequence, then the sequence of winding numbers describes the path that first winds w_{n} times counterclockwise around $\varepsilon^{n}(-1)$, second winds w_{n-1} times counterclockwise around $\varepsilon^{n-1}(-1), \ldots$, and finally winds w_{0} times counterclockwise around -1 . When we apply ℓ to a path p, the winding number sequence simplifies:

$$
p \leftrightarrow\left(w_{0}, w_{1}, w_{2}, \ldots, w_{n}, 0, \ldots\right) \quad \Longrightarrow \quad \ell(p) \leftrightarrow\left(w_{1}, w_{2}, \ldots, w_{n}, 0,0, \ldots\right) .
$$

To see this, just note that $\Im(x)$ and $\Im(\ell(x))$ always have the same sign as long as we stay in the halfplane $\Re(x)>-1$, so every loop of p around $\varepsilon^{n}(-1)$ gets mapped by ℓ to a loop of $\ell(p)$ around $\varepsilon^{n-1}(-1)$. After applying ℓ to p exactly $n+1$ times, we get a path $\ell^{n+1}(p)$ which is entirely contained in $\mathbb{C} \backslash(-\infty, 0]$, and we have already extended ℓ^{*} to an analytic function on this region.

Now we turn to the task of computing values of ℓ^{*} to higher accuracy. Since applying ℓ repeatedly always takes us close to 0 , and since we have the reference values $\ell^{*}\left(\ell^{n}(1)\right)=-n$, we just need to find more accurate approximations to $\ell^{* \prime}(x)$ for x close to 0 . Unfortunately, the essential singularity of ℓ^{*} at 0 implies that there is no Laurent series which computes ℓ^{*} (or any of its derivatives) in any punctured disk around 0 . Nevertheless, we will show that there is an asymptotic series for the derivative of ℓ^{*} around 0 , beginning with

$$
\frac{d}{d x} \ell^{*}(x)=\frac{2}{x^{2}}+\frac{1}{3 x}-\frac{1}{36}+\frac{x}{270}+\frac{x^{2}}{2592}-\frac{71 x^{3}}{108864}+\frac{8759 x^{4}}{32659200}+\frac{31 x^{5}}{3499200}+O\left(x^{6}\right)
$$

for $x>0$. Further terms of the asymptotic series can be computed by expanding the functional equation

$$
\ell^{* \prime}(x)=\frac{\ell^{* \prime}(\ell(x))}{1+x}
$$

as if both sides were formal Laurent series and equating coefficients. Explicit error terms in the asymptotic series can be computed using the theory of divided differences - this can be useful for getting the most accurate possible approximation when numerically computing ℓ^{*}.

Proposition 10. For each $k \in \mathbb{N}$, define $A_{k}(x)$ by

$$
A_{k}(x):=\sum_{i=1}^{k} \frac{i}{x-\ell^{i}(x)} \prod_{\substack{j \leq k \\ j \neq i}} \frac{x-\ell^{j}(x)}{\ell^{i}(x)-\ell^{j}(x)}
$$

Then for every $k \in \mathbb{N}$ we have

$$
\ell^{* \prime}(x)=A_{k}(x)+O\left(x^{k-2}\right)
$$

as x approaches 0 from above, and for all $x \in(0, \infty)$ we have

$$
A_{2 k}(x) \leq \ell^{* \prime}(x) \leq A_{2 k+1}(x) .
$$

In particular, since each $A_{k}(x)$ has a Laurent series with rational coefficients which converges in a punctured disk around 0 of positive radius, $\ell^{* \prime}(x)$ has an asymptotic series with rational coefficients as x approaches 0 from above.

Proof. We use the theory of divided differences. For f a function on $(0, \infty)$, we set $f[x]:=f(x)$, and recursively

$$
f\left[x_{1}, \ldots, x_{n+1}\right]:=\frac{f\left[x_{1}, \ldots, x_{n-1}, x_{n}\right]-f\left[x_{1}, \ldots, x_{n-1}, x_{n+1}\right]}{x_{n}-x_{n+1}}
$$

If two entries x_{i}, x_{j} are equal, then we define the divided difference by taking a suitable limit (this will be well-defined as long as f is sufficiently differentiable).

Using $\ell^{*}(x)-\ell^{*}\left(\ell^{i}(x)\right)=i$, a standard computation gives

$$
\ell^{*}\left[x, x, \ell(x), \ldots, \ell^{k}(x)\right]=\frac{\ell^{* \prime}(x)}{\prod_{i=1}^{k}\left(x-\ell^{i}(x)\right)}-\sum_{i=1}^{k} \frac{i}{\left(x-\ell^{i}(x)\right)^{2} \prod_{j \neq i}\left(\ell^{i}(x)-\ell^{j}(x)\right)}
$$

By the mean value theorem for divided differences, there is some $\xi \in\left[\ell^{k}(x), x\right]$ such that

$$
\ell^{*}\left[x, x, \ell(x), \ldots, \ell^{k}(x)\right]=\ell^{*(k+1)}(\xi) .
$$

By the fact that $\ell^{* \prime}$ is completely monotone, we have

$$
(-1)^{k} \ell^{*}\left[x, x, \ell(x), \ldots, \ell^{k}(x)\right]=(-1)^{k} \ell^{*(k+1)}(\xi) \geq 0
$$

so depending on whether k is even or odd, $\ell^{* \prime}(x)$ is either bounded below or above by

$$
A_{k}(x):=\sum_{i=1}^{k} \frac{i}{x-\ell^{i}(x)} \prod_{j \neq i} \frac{x-\ell^{j}(x)}{\ell^{i}(x)-\ell^{j}(x)} .
$$

To finish the proof, we just need to check that

$$
\ell^{* \prime}(x)-A_{k}(x)=\ell^{*}\left[x, x, \ell(x), \ldots, \ell^{k}(x)\right] \cdot \prod_{i=1}^{k}\left(x-\ell^{i}(x)\right)
$$

is $O\left(x^{k-2}\right)$. Since $x-\ell^{i}(x) \propto x^{2}$, this is equivalent to proving that

$$
\ell^{*}\left[x, x, \ell(x), \ldots, \ell^{k}(x)\right]=\ell^{*(k+1)}(\xi) \stackrel{?}{=} O\left(x^{-k-2}\right) .
$$

By complete monotonicity of $\ell^{* \prime}$, we have

$$
\ell^{* \prime}(\xi / 2) \geq\left|\ell^{*(k+1)}(\xi)\right| \cdot \frac{(\xi / 2)^{k}}{k!}
$$

and we already know that $\ell^{* \prime}(\xi / 2)=O\left(\xi^{-2}\right)$ by the concavity of ℓ^{*} and the fact that $\ell^{n}(1)=\frac{2+o(1)}{n}$. Since $\xi=x-O\left(x^{2}\right)$, we have

$$
\left|\ell^{*(k+1)}(\xi)\right|=O\left(\xi^{-k-2}\right)=O\left(x^{-k-2}\right),
$$

so we are done.
We can also prove a uniqueness result for ℓ^{*}, using only the assumption of concavity together with the functional equation.

Proposition 11. If $f:(0, \infty) \rightarrow \mathbb{R}$ is a concave function which satisfies $f(\ell(x))=f(x)-1$ for all $x>0$, and if $f(1)=0$, then $f=\ell^{*}$.

Proof. By the functional equation, it's enough to show that $f(x)-\ell^{*}(x)=O(x)$ as x approaches 0 from above. Since $f\left(\ell^{n}(1)\right)=-n=\ell^{*}\left(\ell^{n}(1)\right)$ for $n \in \mathbb{N}$, it's enough to show that the difference between $f(x)-f(y)$ and $\ell^{*}(x)-\ell^{*}(y)$ is $O(x)$ for $x>y>\ell(x)$. By the concavity of f, we have

$$
f[x, y, \ell(x)] \leq 0
$$

and

$$
f[\varepsilon(x), x, y] \leq 0,
$$

and expanding these inequalities out in the case $x>y>\ell(x)$ we get

$$
\frac{f(\varepsilon(x))-f(x)}{\varepsilon(x)-x} \leq \frac{f(x)-f(y)}{x-y} \leq \frac{f(x)-f(\ell(x))}{x-\ell(x)} .
$$

By the functional equation $f(\ell(x))=f(x)-1$, we get

$$
\frac{1}{\varepsilon(x)-x} \leq \frac{f(x)-f(y)}{x-y} \leq \frac{1}{x-\ell(x)},
$$

and expanding the upper and lower bounds as Laurent series in x, we get

$$
\frac{f(x)-f(y)}{x-y}=\frac{2}{x^{2}}+O(1 / x)
$$

as x approaches 0 from above. Since

$$
x-y \leq x-\ell(x)=O\left(x^{2}\right),
$$

we have

$$
f(x)-f(y)=\frac{2(x-y)}{x^{2}}+O(x) .
$$

Since the same reasoning applies to ℓ^{*} as well, we have $f(x)-f(y)=\ell^{*}(x)-\ell^{*}(y)+O(x)$ for all $x>y>\ell(x)$.

We now define a real-analytic tetration function ε^{*}.
Definition 3. We define $\varepsilon^{*}: \mathbb{R} \rightarrow(0, \infty)$ to be the inverse function to ℓ^{*}.
Some of the nice properties of ℓ^{*} immediately imply nice properties of ε^{*}. Since ℓ^{*} is increasing and concave, ε^{*} will be increasing and convex. Since $\ell^{*}(x)$ extends to a complex analytic function on $\mathbb{C} \backslash(-\infty, 0]$ which satisfies the functional equation $\ell^{*}(x)=\ell^{*}(\ell(x))+1, \varepsilon^{*}$ extends to a complex analytic function on some neighborhood of \mathbb{R} which satisfies the functional equation

$$
\varepsilon^{*}(x+1)=\varepsilon\left(\varepsilon^{*}(x)\right) .
$$

The uniqueness property of ℓ^{*} implies that ε^{*} is the unique convex function on \mathbb{R} which satisfies this functional equation together with the initial condition $\varepsilon^{*}(0)=1$.

Proposition 12. For every $x \in \mathbb{R}$, we have

$$
\varepsilon^{*}(x)=\lim _{n \rightarrow \infty} \varepsilon^{n}\left(\frac{2}{\frac{2}{\ell^{n}(1)}-x}\right) .
$$

Proof. If $y=\varepsilon^{*}(x)$, then from $\ell^{*}(y)=x$ we see that

$$
\lim _{n \rightarrow \infty} \frac{2}{\ell^{n}(1)}-\frac{2}{\ell^{n}(y)}=x .
$$

By induction on k, using the inequality $|1 / a-1 / b| \leq|1 / \ell(a)-1 / \ell(b)|$ which we proved earlier, we have

$$
\left.\left\lvert\, \frac{2}{\ell^{n-k}(y)}-\frac{2}{\varepsilon^{k}\left(\frac{2}{\ell^{n}(1)}-x\right.}\right.\right)\left|\leq\left|\frac{2}{\ell^{n}(y)}-\left(\frac{2}{\ell^{n}(1)}-x\right)\right|,\right.
$$

so in particular we have

$$
\left|\frac{2}{y}-\frac{2}{\varepsilon^{n}\left(\frac{2}{\frac{2}{\ell^{n}(1)}-x}\right)}\right| \leq\left|\frac{2}{\ell^{n}(y)}-\left(\frac{2}{\ell^{n}(1)}-x\right)\right|=\left|x-\left(\frac{2}{\ell^{n}(1)}-\frac{2}{\ell^{n}(y)}\right)\right| .
$$

Taking the limit of both sides as $n \rightarrow \infty$ proves that

$$
\frac{2}{\varepsilon^{*}(x)}=\frac{2}{y}=\lim _{n \rightarrow \infty} \frac{2}{\varepsilon^{n}\left(\frac{2}{\frac{2}{\ell^{n}(1)}-x}\right)} .
$$

Corollary 8. The function ε^{*} is absolutely monotone, that is, $\varepsilon^{*(n)}(x) \geq 0$ for every $n \in \mathbb{N}$ and every $x \in \mathbb{R}$.

Proof. From the fact that the function $x \mapsto \frac{2}{c-x}$ is absolutely monotone on $(-\infty, c)$ for every constant c, the fact that $\varepsilon(x)$ is absolutely monotone on $(0, \infty)$, and the fact that compositions of absolutely monotone functions are absolutely monotone, each function

$$
\varepsilon^{n}\left(\frac{2}{\frac{2}{\ell^{n}(1)}-x}\right)
$$

is absolutely monotone on $\left(-\infty, 2 / \ell^{n}(1)\right)$. Since pointwise limits of absolutely monotone functions are absolutely monotone, we see that ε^{*} is absolutely monotone as well.

Corollary 9. The function ε^{*} extends to an entire function on \mathbb{C} which satisfies the functional equation $\varepsilon^{*}(x+1)=\varepsilon\left(\varepsilon^{*}(x)\right)$. For all $x \in \mathbb{C}$, we have

$$
\varepsilon^{*}(x)=\lim _{n \rightarrow \infty} \varepsilon^{n}\left(\frac{2}{\frac{2}{\ell^{n}(1)}-x}\right)
$$

By Picard's little theorem, ε^{*} can only avoid a single value on \mathbb{C}, and since $\varepsilon(x)=e^{x}-1 \neq-1$ for all $x \in \mathbb{C}$, the functional equation for ε^{*} shows that

$$
\varepsilon^{*}(x) \neq-1
$$

for all $x \in \mathbb{C}$ as well. Interestingly, this implies that ε^{*} must instead take values such as 0 and $\varepsilon(-1)$ - and in fact, Picard's great theorem implies that ε^{*} takes these values infinitely often. This may not be such a surprise if you think back to our description of the extension of ℓ^{*} to a function on a branched cover of \mathbb{C} with infinitely many sheets, and use the fact that

$$
\varepsilon^{*}\left(\ell^{*}(x)\right)=x
$$

For instance, the zeros of ε^{*} are in one-to-one correspondence with the set of sheets of this branched covering, excluding the single starting sheet where ℓ^{*} has an essential singularity at 0 .

Now we can finally define the fractional compositional powers of the function $e^{x}-1$.
Definition 4. For every $n \in \mathbb{C}$, we define the function $\varepsilon^{n}: \mathbb{C} \backslash(-\infty, 0] \rightarrow \mathbb{C}$ by

$$
\varepsilon^{n}(x)=\varepsilon^{*}\left(\ell^{*}(x)+n\right)
$$

We define ℓ^{n} by $\ell^{n}(x)=\varepsilon^{-n}(x)$.
Proposition 13. For any $m, n \in \mathbb{R}$ and any $x>0$, we have

$$
\varepsilon^{m}\left(\varepsilon^{n}(x)\right)=\varepsilon^{m+n}(x)
$$

In particular, we have

$$
\varepsilon^{1 / 2}\left(\varepsilon^{1 / 2}(x)\right)=e^{x}-1
$$

We can compute ε^{m} with a direct limit formula, using the fact that the limit formulas for ℓ^{*} and ε^{*} converge uniformly on compact subsets of their domains.

Proposition 14. For $m \in \mathbb{C}$ and $x \in \mathbb{C} \backslash(-\infty, 0]$, we have

$$
\varepsilon^{m}(x)=\lim _{n \rightarrow \infty} \varepsilon^{n}\left(\frac{2}{\frac{2}{\ell^{n}(x)}-m}\right)
$$

Just for fun, we can also define an asymptotic measurement of "how exponentially" a function grows.

Definition 5. We say that a function $f:(0, \infty) \rightarrow(0, \infty)$ has exponentiality $\alpha(f)$ if

$$
\alpha(f)=\lim _{x \rightarrow \infty} \ell^{*}(f(x))-\ell^{*}(x)=\lim _{x \rightarrow \infty} \ell^{*}\left(f\left(\varepsilon^{*}(x)\right)\right)-x
$$

Under this definition, we have $\alpha(1)=-\infty, \alpha(x)=0, \alpha(\varepsilon)=1$, and $\alpha(\ell)=-1$. Additionally, we have $\alpha\left(\varepsilon^{n}\right)=n$ for all $n \in \mathbb{R}, \alpha \ell^{*}=-\infty$, and $\alpha\left(\varepsilon^{*}\right)=+\infty$.

Proposition 15. If $f, g:(0, \infty) \rightarrow[\epsilon, \infty)$ are functions with exponentialities $\alpha(f), \alpha(g)$, then

$$
\alpha(f g)=\alpha(f+g)=\max (\alpha(f), \alpha(g)) .
$$

Proposition 16. If $f, g:(0, \infty) \rightarrow(0, \infty)$ have exponentialities $\alpha(f), \alpha(g)>-\infty$, then

$$
\alpha(f \circ g)=\alpha(f)+\alpha(g) .
$$

Proof. For any x, we have

$$
\ell^{*}(f(g(x)))-\ell^{*}(x)=\ell^{*}(f(g(x)))-\ell^{*}(g(x))+\ell^{*}(g(x))-\ell^{*}(x) .
$$

Since $g(x)$ must go to ∞ as $x \rightarrow \infty$ if $\alpha(g)>-\infty$, we see that the limit of the above expression is $\alpha(f)+\alpha(g)$.

Corollary 10. Every function which can be constructed (in finitely many steps) out of positive polynomials by addition, multiplication, exponentiation, and taking logarithms has an exponentiality in $\mathbb{Z} \cup\{-\infty\}$.

1 A slight generalization of the construction

Now that we have defined ℓ^{*} and ε^{*}, it's tempting to try to iterate these functions as well. Perhaps we can find a half-tetration function? Immediately we run into the problem that $\ell^{*}\left(\ell^{*}(x)\right)$ is not defined for $x=1, x=\varepsilon^{*}(-1)$, etc. Actually, we had the same problem with iterating $\ln -$ we got around this problem by shifting the input by a convenient constant, to define the function ℓ.

Since $\ell^{* \prime}:(0, \infty) \rightarrow(0, \infty)$ is a strictly decreasing continuous function with $\ell^{* \prime}(0+)=\infty$ and $\ell^{* \prime}(\infty)=0$, there is a unique $x_{0} \in(0, \infty)$ such that

$$
\ell^{*^{\prime}}\left(x_{0}\right)=1 .
$$

Define a new function ℓ_{0}^{*} by

$$
\ell_{0}^{*}(x)=\ell^{*}\left(x+x_{0}\right)-\ell^{*}\left(x_{0}\right) .
$$

Then ℓ_{0}^{*} has the following properties:

- $\ell_{0}^{*}(0)=0$,
- $\ell_{0}^{* \prime}(0)=1$,
- ℓ_{0}^{*} is a bijection from $(0, \infty)$ to itself,
- ℓ_{0}^{*} is a Bernstein function,
- the inverse function ε_{0}^{*} to ℓ_{0}^{*} is given by

$$
\varepsilon_{0}^{*}(x)=\varepsilon^{*}\left(x+\ell^{*}\left(x_{0}\right)\right)-x_{0},
$$

- the function ε_{0}^{*} is a bijection from $(-\infty, \infty)$ to $\left(-x_{0}, \infty\right)$,
- the function ε_{0}^{*} has an absolutely monotone derivative on $(-\infty, \infty)$.

These properties mirror the properties of ℓ, ε which were needed in order to iterate them.
Definition 6. Say that a pair of real functions (f, g) is nicely iterable if f, g have the following properties:

- g is defined on all of \mathbb{R},
- f is defined on the interval $(g(-\infty), \infty)$,
- $f(g(x))=x$ for all $x \in \mathbb{R}$,
- $f(0)=g(0)=0$ and $f^{\prime}(0)=g^{\prime}(0)=1$,
- f has a completely monotone derivative on its domain,
- g has an absolutely monotone derivative,
- f, g are not linear.

We will write f^{n}, g^{n} for the compositional powers of f and g (we will write ordinary powers of f, g as $\left.f(x)^{n}, g(x)^{n}\right)$.

Proposition 17. Suppose that (f, g) are nicely iterable. Then for every $x>0$, we have $0<f(x)<$ x and $\lim _{n \rightarrow \infty} f^{n}(x)=0$.

Proof. That $f(x) \leq x$ follows from $f^{\prime}(0)=1$ and f concave. Suppose for contradiction that $f(x)=x$ for some $x>0$, then we must have $f^{\prime \prime}(y)=0$ for all $0<y<x$, and since $f^{\prime \prime}$ is increasing and nonpositive, this implies that $f^{\prime \prime}=0$ on $(0, \infty)$. Since f is analytic on its domain, this would imply that $f^{\prime \prime}=0$ identically, contradicting the assumption that f is not linear.

Proposition 18. Suppose that (f, g) are nicely iterable. Then for $x, y>0$ we have

$$
\frac{1}{f(x)}-\frac{1}{f(y)}=\frac{1}{x}-\frac{1}{y}+O(x-y)
$$

Proof. We just need to compare derivatives - more precisely, we need to check that

$$
\frac{f^{\prime}(x)}{f(x)^{2}}=\frac{1}{x^{2}}+O(1) .
$$

Since the left hand side is decreasing as a function of x, we only need to check this as x approaches 0 . Since f^{\prime} is smooth in a neighborhood of 0 and $f(0)=0, f^{\prime}(0)=1$, we have

$$
f(x)=x-a x^{2}+O\left(x^{3}\right)
$$

for some a. Expanding, we have

$$
\frac{f^{\prime}(x)}{f(x)^{2}}=\frac{1-2 a x+O\left(x^{2}\right)}{x^{2}-2 a x^{3}+O\left(x^{4}\right)}=\frac{1}{x^{2}}+O(1) .
$$

Corollary 11. If (f, g) are nicely iterable, then for $x>y>f^{k}(x)>0$ and $n \geq 0$ we have

$$
\frac{1}{f^{n}(y)}-\frac{1}{f^{n}(x)}=\frac{1}{y}-\frac{1}{x}+O(k x)
$$

where the implied constant only depends on f, g. In particular, for any $x, y>0$ the sequence

$$
n \mapsto \frac{1}{f^{n}(y)}-\frac{1}{f^{n}(x)}
$$

is a Cauchy sequence.
Proposition 19. If (f, g) are nicely iterable, then there is a unique concave function $f^{*}:(0, \infty) \rightarrow$ $(-\infty, \infty)$ such that $f^{*}(1)=0$ and

$$
f^{*}(x)=f^{*}(f(x))+1
$$

for all $x>0$. This f^{*} is given explicitly by the formula

$$
f^{*}(x)=\frac{2}{g^{\prime \prime}(0)} \lim _{n \rightarrow \infty} \frac{1}{f^{n}(1)}-\frac{1}{f^{n}(x)}
$$

Proposition 20. If (f, g) are nicely iterable, then there is a unique convex function $g^{*}:(-\infty, \infty) \rightarrow$ $(0, \infty)$ such that $g^{*}(0)=1$ and

$$
g^{*}(x+1)=g\left(g^{*}(x)\right)
$$

for all x. This g^{*} is given explicitly by the formula

$$
g^{*}(x)=\lim _{n \rightarrow \infty} g^{n}\left(\frac{2}{\frac{2}{f^{n}(1)}-g^{\prime \prime}(0) x}\right) .
$$

Proposition 21. If (f, g) are nicely iterable and f^{*}, g^{*} are as in the previous results, then there is some $x_{0} \in(0, \infty)$ such that if we define

$$
f_{0}^{*}(x)=f^{*}\left(x+x_{0}\right)-f^{*}\left(x_{0}\right)
$$

and

$$
g_{0}^{*}(x)=g^{*}\left(x+f^{*}\left(x_{0}\right)\right)-x_{0},
$$

then the pair $\left(f_{0}^{*}, g_{0}^{*}\right)$ is nicely iterable as well.
If we start with (ℓ, ε) and repeatedly apply the previous result, we get a sequence of absolutely monotone functions with growth rates climbing through the hierarchy of primitive recursive functions.

References

[1] David Vernon Widder. The Laplace Transform. Princeton University Press, Princeton, 1946.

