
SIEVES OF DIMENSION 1 + ε

ZARATHUSTRA BRADY

1. Introduction

Let A be a (possibly weighted) set of whole numbers, and for each positive integer d set Ad =
{a ∈ A, d | a}. Let κ be a real number and by abuse of notation let κ : N→ R be a multiplicative
function satisfying 0 ≤ κ(p) < p for all p, and∑

p≤x
κ(p)

log(p)

p
= (κ+ o(1)) log(x).

Suppose that z, y are such that for every squarefree integer d, all of whose prime factors are less
than z, we have ∣∣∣|Ad| − κ(d)

y

d

∣∣∣ ≤ κ(d),(1)

or alternatively such that for some fixed ε > 0 and every such d we have∣∣∣|Ad| − κ(d)
y

d

∣∣∣ ≤ κ(d)
y

d log(y/d)2κ+ε
.(2)

In particular, we have |A| = y +O(1) in the first case, or |A| = y +O(y/ log(y)2κ+ε) in the second
case. We want to estimate the quantity

S(A, z) = |{a ∈ A,∀p < z (a, p) = 1}| .

Suppose now that y = zs, s a constant, y, z going to infinity. Define sifting functions fκ(s), Fκ(s)
by

(1 + o(1))fκ(s)y
∏
p<z

(
1− κ(p)

p

)
≤ S(A, z) ≤ (1 + o(1))Fκ(s)y

∏
p<z

(
1− κ(p)

p

)
,

with fκ(s) as large as possible (resp. Fκ(s) as small as possible) given that the above inequality
holds for all choices of A satisfying (1). Selberg [2] has shown (in a much more general context)
that the functions fκ(s), Fκ(s) are continuous, monotone, and computable for s > 1, that they do
not change if we replace (1) with (2), and that they tend to 1 exponentially as s goes to infinity.

More specifically, fκ(s) and Fκ(s) can be defined as follows. LetM be the collection of all finite
multisubsets of [0, 1], and for S ∈M let Σ(S) be the sum of the elements of S and |S| be the number
of elements of S (both counted with multiplicity). When we write sums like

∑
A⊆S , we also count

subsets A with multiplicity, so such a sum will always have 2|S| summands. Let λ : M→ R be a
piecewise continuous function supported on S with Σ(S) ≤ 1, and define a function θ :M→ R by

θ(S) =
∑
A⊆S

λ(A).

We say that (λ, θ) forms an upper (resp. lower) bound sieve with sifting limit s if λ is supported
on multisubsets of [0, 1

s ], θ(∅) = λ(∅) ≥ 1 (resp. θ(∅) ≤ 1), and θ(S) ≥ 0 (resp. θ(S) ≤ 0) for all
1



S ⊆ [0, 1
s ] with |S| ≥ 1. Then

Fκ(s) = inf
(λ,θ)≥0

∞∑
n=0

κn

n!

∫ 1
s

0
· · ·
∫ 1

s

0
θ(x1, ..., xn)

dx1

x1
· · · dxn

xn
,(3)

where the infimum is over all upper bound sieves (λ, θ) with sifting limit 1
s , and there is a similar

formula for fκ(s) (note that when fκ(s) = 0, we will typically have λ(∅) = 0).
The Selberg upper bound sieve corresponds to choosing θ = θ′2 for some other sieve (l, θ′), with

l supported on Σ(S) ≤ 1
2 . In terms of the sieve weights λ, this corresponds to

λ(S) =
∑

A∪B=S

l(A)l(B).

In order to describe the weights l, we use the following generalization of the Dickman function.
For s < 0 we set ρκ(s) = 0, for 0 < s ≤ 1 we set ρκ(s) = 1, and for s ≥ 1 we define ρκ(s) by the
differential-difference equation

sκρ′κ(s) = −κ(s− 1)κ−1ρκ(s− 1),

or equivalently by the integral equation

sκρκ(s) =

∫ s

s−1
ρκ(t)dtκ.

When κ is a whole number, the function ρκ(s) has a combinatorial interpretation. Let n be large,
and consider the collection of all ordered pairs (π, c) where π is a permutation of {1, ..., n} and
c : {1, ..., n} → {1, ..., κ} is a compatible coloring of {1, ..., n} (i.e. c(i) = c(π(i)) for all i). Choosing
an ordered pair (π, c) uniformly at random, ρκ(s) is the limit, as n goes to ∞, of the probability
that every cycle of π has length at most n

s .
The optimal choice for the weights l is given in terms of ρκ by

l(S) = (−1)|S|
∫ s

2
−sΣ(S)

0 ρκ(t)dtκ∫ s
2

0 ρκ(t)dtκ
.

When s goes to ∞ this becomes

l(S) ≈

{
(−1)|S| if Σ(S) < 1

2 ,

0 else,

and when s ≤ 2 it becomes

l(S) = (−1)|S|(1− 2Σ(S))κ+.

Setting

σκ(s) =

∫ s
2

0 ρκ(t)dtκ

eγκΓ(κ+ 1)
,

we have

s−κσκ(s) =
1

(2eγ)κΓ(κ+ 1)
0 < s ≤ 2,

(s−κσκ(s))′ = −κs−κ−1σκ(s− 2) s ≥ 2,

and the Selberg sieve gives us the upper bound

Fκ(s) ≤ 1

σκ(s)
.
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The only case in which this is known to be optimal is when κ = 1 and s ≤ 2, in which case the
Selberg sieve (λS , θS) is given by

λS(S) = (−1)|S|
∑

A∪B=S

(−1)|A∩B|(1− 2Σ(A))+(1− 2Σ(B))+,

θS(S) =

(∑
A⊆S

(−1)|A|(1− 2Σ(A))+

)2

.

For Σ(S) ≤ 1
2 , we have

λS(S) = (−1)|S|
(
1− 4

∑
x∈S

x2
)
.

The β-sieve (λβ, θβ) is given as follows. The formula

λβ(S) =

{
(−1)|S| if ∀A ⊆ S, |A| odd =⇒ Σ(A) + βmin(A) ≤ 1,

0 else,

gives the upper bound sieve weights, while the lower bound sieve weights are given by the same
formula with “odd” replaced by “even”. Here β is chosen such that β − 1 is the largest zero of the
function q(s), where q solves the differential-difference equation

(sq(s))′ = κq(s) + κq(s+ 1).

When κ is a half-integer, q(s) is a polynomial of degree 2κ − 1 and β is an algebraic number (see
[1] for details). When κ = 1, we have β = 2.

The β-sieve is best understood in terms of Buchstab iteration:

S(A, z) = |A| −
∑
p<z

S(Ap, p).

This leads to the inequalities

sκfκ(s) ≥ sκ − κ
∫
t>s

tκ−1(Fκ(t− 1)− 1)dt,

sκFκ(s) ≤ sκ + κ

∫
t>s

tκ−1(1− fκ(t− 1))dt.

A variant of Buchstab iteration is given by

S(A, z) = S(A,w)−
∑

w≤p<z
S(Ap, p)

for any w ≤ z. If y = wt and we already have an upper bound sieve (λ+
t , θ

+
t ) with sifting limit t

and lower bound sieves (λ−u , θ
−
u ) with sifting limit u for s − 1 ≤ u ≤ t − 1, the upper bound sieve

(λ′, θ′) we obtain from Buchstab iteration is given by

λ′(S) =

{
λ+
t (S) if S ⊆ [0, 1

t ),

−λ−1
x
−1

(T ) if S = T ∪ {x}, T ⊆ [0, x], 1
t ≤ x <

1
s .

When κ = 1, the optimal sifting functions f, F are fixed points of Buchstab iteration. To see
they are optimal, we introduce two weighted sets A+, A− satisfying (2). Both are supported on
[1, y], with the weight on n given by 1 − λ(n) in A+ and given by 1 + λ(n) in A−, where by λ(n)

we mean (−1)Ω(n) (and not a sieve weight). Setting

π±(y, z) = S(A±, z),
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we have

π±(y, z) = π±(y, w)−
∑

w<p<z

π∓(y/p, p),

and by the prime number theorem, for 1 < s < 3 we have

π+(y, z) = 2(π(y)− π(z)) =
2eγ

s

y

eγ log(z)
+O

(
y

log(z)2

)
,

so for all s > 1 we have

π+(y, z) = F (s)
y

eγ log(z)
+O

(
y

log(z)2

)
,

π−(y, z) = f(s)
y

eγ log(z)
+O

(
y

log(z)2

)
.

Our strategy for constructing sieves in dimension 1 + ε is to find an optimal upper bound sieve
(λ, θ) in dimension 1 (i.e., a sieve such that the expression inside the infimum on the right hand
side of (3) is equal to F (s)) such that the sum

∞∑
n=1

1

(n− 1)!

∫ 1
s

0
· · ·
∫ 1

s

0
θ(x1, ..., xn)

dx1

x1
· · · dxn

xn

is as small as possible, since this sum is the rate of change of the expression inside the infimum
on the right hand side of (3) at κ = 1. For (λ, θ) an optimal upper bound sieve with sifting limit
2 ≤ s ≤ 3, set

aθn =
1

n!

∫ 1
2

0
· · ·
∫ 1

2

0
θ(x1, ..., xn)

dx1

x1
· · · dxn

xn
.

We then have aθ0 = 1, aθn ≥ 0, and

eγ = F (2) = 1 + aθ1 + aθ2 + · · · ,

while the quantity we wish to minimize is

aθ1 + 2aθ2 + 3aθ3 + · · · .

Note that this is the same as maximizing the quantity

2eγ − 2− (aθ1 + 2aθ2 + 3aθ3 + · · · ) = aθ1 − aθ3 − 2aθ4 − · · · .

As a consequence, it seems that a good rule of thumb is to simply try to maximize aθ1 =
∫ 1

2
0 θ(x)dxx .

Letting aSn = aθ
S

n , a
β
n = aθ

β

n , we have

aS1 =
1

2
, aS2 =

π2 − 9

12
≈ 0.0724, aS3 ≈ 0.03966,

and

aβ1 = log(3/2) ≈ 0.405, aβ2 =
log(3/2)2

2
≈ 0.0822, aβ3 ≈ 0.06705.

Additionally, from the analysis of the Selberg sieve we have

eγ =
∂

∂κ
eγκΓ(κ+ 1)

∣∣∣∣
κ=1

= aS1 + 2aS2 + 3aS3 + · · · .
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2. Constraints on optimal sieves in dimension 1

The “complementary slackness” constraints on optimal solutions to linear optimization problems
imply that if A is a weighted set satisfying (2) with S(A, z) maximal and (λ, θ) is an optimal upper

bound sieve, then if for d squarefree we set Sd = { log(p)
log(y) s.t. p | d} we get

p | n, p < z, n ∈ A =⇒ θ(Sn) = 0,

λ(Sd) > 0 =⇒ |Ad| −
y

d
=

y

d log(y/d)2+ε
,

λ(Sd) < 0 =⇒ |Ad| −
y

d
= − y

d log(y/d)2+ε
.

We know that the set A+ maximizes S(A, z) to first order. Since the number of n ∈ A+ with
n ≤ y1−ε is small for any ε > 0, while the number of n ∈ A+ with Sn ≈ S is large if Σ(S) = 1, we
conclude that, at least away from a measure zero set,

Σ(S) = 1, min(S) <
1

s
, |S| odd =⇒ θ(S) = 0(O)

for any optimal sieve, and it seems that any nice upper bound sieve satisfying (O) is optimal
(although making this precise is tricky).

Proposition 1. If |S| is odd, min(S) < 1
s , and Σ(S) = 1, then θS(S) = 0 and θβ(S) = 0 outside

the measure zero subset where the three smallest elements of S are all equal.

Proof. Although this morally follows from the fact that the Selberg sieve and the β sieve are
optimal, we will give a direct proof. We have

θS(S) =

(∑
A⊆S

(−1)|A|(1− 2Σ(A))+

)2

,

and from Σ(S) = 1 and |S| odd we have

(−1)|A|(1− 2Σ(A))+ + (−1)|S\A|(1− 2Σ(S \A))+ = (−1)|A|(1− 2Σ(A))

for A ⊆ S. If S = {x1, ..., xn}, then since |S| ≥ 2 we have∑
A⊆S

(−1)|A|(1− 2Σ(A))+ =
1

2

∑
A⊆S

(−1)|A|(1− 2Σ(A)) =
1

2

∑
A⊆S

(−1)|A| −
n∑
i=1

xi
∑

xi∈A⊆S
(−1)|A| = 0.

Now we turn to θβ(S). Supposing that x1 ≥ · · · ≥ xn, we just need to show that for all A ⊆ S\{xn}
we have λβ(A) 6= 0 ⇐⇒ λβ(A∪ {xn}) 6= 0. The only case in which this is not obvious is when |A|
is even and Σ(A) + xn + 2xn > 1, and in this case we have

Σ(A) > 1− 3xn ≥ 1− xn − xn−1 − xn−2 = Σ(S \ {xn, xn−1, xn−2}),

so in fact we must have A = S \ {xn}. But then from λβ(A) 6= 0 we must have

x1 + · · ·+ xn−2 + 2xn−2 ≤ 1 = x1 + · · ·+ xn−2 + xn−1 + xn,

so in fact we must have xn−2 = xn−1 = xn. �

Proposition 2. If (λ, θ) is an upper bound sieve with sifting limit s satisfying (O), then for any
0 ≤ x < min(1

s , 1−
2
s ) we have λ(x) = −1.

More generally, if S is a set with min(S) < 1
s and either |S| odd and Σ(S) < 1− 2

s or |S| even and

Σ(S) < 1− 1
s , then θ(S) = 0. In particular, if S is any set such that max(S) < 1

s and Σ(S) < 1− 2
s ,

then λ(S) = (−1)|S|.
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Proof. Note that 1−x
2 > 1

s , so for any set A containing 1−x
2 we have λ(A) = 0. Taking S =

{x, 1−x
2 , 1−x

2 } in (O), we have

0 = θ(S) =
∑
A⊆S

λ(A) = 1 + λ(x),

so λ(x) = −1.
The more general statement follows by a similar argument, using the fact that θ(A) = θ(A∩[0, 1

s ])
for every set A. �

Since we conjecturally have ||A+
d | −

y
d | ≤

(y
d

) 1
2

+o(1)
, it seems that the other complementary

slackness condtions should be treated with some care. If we assume that some version of Pólya’s
conjecture is true on average, so that |A+

d | >
y
d for most d having an even number of prime factors

and |A+
d | <

y
d for most d having an odd number of prime factors, then we might conjecture that

(−1)|S|λ(S) ≥ 0(A)

for optimal upper bound sieves which also have small error terms. It turns out that the Selberg
upper bound sieve (λS , θS) does not satisfy condition (A): taking S to be a set consisting of 9
copies of 1

12 , we get

(−1)9λS
({

9 · 1

12

})
= 2

(
9

4

)(
1− 2 · 4

12

)(
1− 2 · 5

12

)
− 9

(
8

4

)(
1− 2 · 5

12

)2

= −7

2
< 0.

On the other hand, the Selberg upper bound sieve does not have a very good error term in compar-
ison with the β-sieve, which does satisfy (A). Additionally, the Selberg upper bound sieve satisfies
(A) for sets S with Σ(S) ≤ 1

2 .
Generally speaking, linear optimization problems tend to have unique solutions, corresponding

to vertices of some associated polytope. When the solution is nonunique, then the problem is said
to be degenerate - this corresponds to the polytope having a face which is contained in a level set
of the linear function we are trying to optimize. In the case of the linear sieve (i.e. κ = 1), the
problem turns out to be infinitely degenerate. From this point of view, the Selberg upper bound
sieve method corresponds to restricting ourselves to some ellipsoid contained in our polytope. Since
the Selberg upper bound sieve is actually optimal when κ = 1 and s = 2, this means it “should”
correspond to some sort of interior point of the degenerate top face of our polytope. Thus if
θS(S) = 0 for sets S satisfying some simple property, then it seems likely that θ(S) = 0 for any
optimal upper bound sieve and any set S satisfying the same property.

Proposition 3. For |S| ≥ 2, min(S) < 1
s , Σ(S) ≤ 1

2 , we have θS(S) = θβ(S) = 0.

Proof. We have

θS(S) =

(∑
A⊆S

(−1)|A|(1− 2Σ(A))+

)2

,

and from Σ(S) ≤ 1
2 we have (1− 2Σ(A))+ = 1− 2Σ(A) for A ⊆ S. If S = {x1, ..., xn}, then∑

A⊆S
(−1)|A|(1− 2Σ(A)) =

∑
A⊆S

(−1)|A| − 2

n∑
i=1

xi
∑

xi∈A⊆S
(−1)|A| = 0.

Now we turn to θβ(S). Supposing that x1 ≥ · · · ≥ xn, we just need to show that for all A ⊆ S\{xn}
we have λβ(A) 6= 0 ⇐⇒ λβ(A∪ {xn}) 6= 0. The only case in which this is not obvious is when |A|
is even and Σ(A) + xn + 2xn > 1, and in this case we have

Σ(S) ≥ nxn ≥ 2xn > 1− (Σ(A) + xn) ≥ 1− Σ(S) ≥ 1

2
,
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a contradiction. �

Based on this, we conjecture that any optimal upper bound sieve has the property

|S| ≥ 2, min(S) <
1

s
, Σ(S) ≤ 1

2
=⇒ θ(S) = 0.(1

2)

If we assume (1
2), we get the nice formula

max(S) <
1

s
, Σ(S) ≤ 1

2
=⇒ λ(S) = (−1)|S|

(
1−

∑
x∈S

θ(x)
)

which determines many of the sieve weights in terms of the sieve weights attached to singletons, so
it seems that the most important thing to focus on is the function θ(x). By Proposition 2, we have
θ(x) = 0 for 0 ≤ x < min(1

s , 1−
2
s ), and since the sifting limit is s we have θ(x) = 1 for x > 1

s . The
Selberg upper bound sieve has

θS(x) =

{
4x2 if 0 ≤ x ≤ 1

2 ,

1 else,

while the β-sieve has

θβ(x) =

{
0 if 0 ≤ x ≤ min(1

s ,
1
3),

1 else.

The following conjecture is natural, if unjustified:

x ≥ y =⇒ θ(x) ≥ θ(y).(>)

Now we consider the support of λ. In the case of the Selberg upper bound sieve, we clearly have

λS(S) 6= 0 =⇒ ∃A ⊆ S, Σ(A) ≤ 1

2
, Σ(S \A) ≤ 1

2
.

The β-sieve has a more interesting constraint on its support.

Definition 1. A set S is flexible if for every 0 ≤ x ≤ 1 there exists A ⊆ S such that Σ(A) ≤ x and
Σ(S \A) ≤ 1− x.

Proposition 4 (from section 12.7 of [1]). If for every A ⊆ S we have Σ(A) + min(A) ≤ 1, then S
is flexible. In particular, if λβ(S) 6= 0 then S is flexible.

Proof. Set u = min(S), S′ = S \{u}. By induction on |S|, we see that S′ is flexible. Let 0 ≤ x ≤ 1,
and suppose that A′ ⊆ S′ satisfies Σ(A′) ≤ x, Σ(S′ \A′) ≤ 1− x. Since

Σ(A′ ∪ {u}) + Σ((S′ \A′) ∪ {u}) = Σ(S) + min(S) ≤ 1

by assumption, we must have one of Σ(A′ ∪ {u}) ≤ x, Σ((S′ \A′)∪ {u}) ≤ 1− x, so at least one of
the choices A = A′ or A = A′ ∪ {u} satisfies Σ(A) ≤ x, Σ(S \A) ≤ 1− x.

Now suppose that λβ(S) 6= 0, so that for any A ⊆ S with |A| odd we have Σ(A) + 2 min(A) ≤ 1.
Then for any A ⊆ S with |A| even, if A′ = A \ {min(A)} then |A′| is odd, so

Σ(A) + min(A) = Σ(A′) + 2 min(A) ≤ Σ(A′) + 2 min(A′) ≤ 1. �

It seems that as s decreases from∞ to 2, the supports of optimal sieves get gradually less flexible,
although it isn’t clear what the correct weakening of flexibility should be. The following conjecture
seems plausible:

S ⊆
[
1− 2

s
,
1

s

]
, λ(S) 6= 0 =⇒ Σ(S) ≤ 2

s
.(F)
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3. Upper bound iteration rules

Here by an iteration rule we mean a special type of sieve, used to get new bounds on S(A, z)
given upper and lower bounds on S(Ad, w) for squarefree numbers d having all their prime factors
between w and z. Supposing y = zs = wt, if (λit, θit) is an upper bound sieve such that every set
in the support of λit is contained in [1

t ,
1
s ], then the corresponding iteration rule is given by

S(A, z) ≤
∑

d squarefree
p|d =⇒ w≤p<z

λit(Sd)S(Ad, w),

where Sd = { log(p)
log(y) s.t. p | d}. This leads to an iterative inequality on Fκ(s) in terms of Fκ, fκ in

an obvious way. The main advantage of using iteration rules is that it is typically very easy to
check that (λit, θit) is a valid upper bound sieve. Our main concern is with iteration rules which
are optimal when κ = 1, i.e. such that the pair of functions F, f is a fixed point of the iteration
rule.

Theorem 1. Suppose that the upper bound sieve (λit, θit) has λit supported on sets contained in
[1− 2

s ,
1
s ], and satisfies the conditions (O), (A), (F) for all sets S ⊆ [1− 2

s ,
1
s ]. Then the corresponding

iteration rule is optimal in dimension κ = 1.

Proof. Set t = 1
1− 2

s

, w = y
1
t . By condition (A), the iteration rule is given to first order by

F (s)
y

eγ log(z)
≤

∑
µ(d)=1

p|d =⇒ w≤p<z

λit(Sd)F (t−tΣ(Sd))
y/d

eγ log(w)
+

∑
µ(d)=−1

p|d =⇒ w≤p<z

λit(Sd)f(t−tΣ(Sd))
y/d

eγ log(w)
.

The main idea is to exploit the fact that S(A+, z) = F (s) y
eγ log(z) + O

(
y

log(z)2

)
and S(A−, z) =

f(s) y
eγ log(z) + O

(
y

log(z)2

)
for all s > 1. Since λit(Sd) 6= 0 implies t − tΣ(Sd) ≥ t − t · 2

s = 1 by

condition (F), we just need to check that

S(A+, z) =
∑

µ(d)=1
p|d =⇒ w≤p<z

λit(Sd)S(A+
d , w) +

∑
µ(d)=−1

p|d =⇒ w≤p<z

λit(Sd)S(A−d , w) +O

(
y

log(z)2

)
.

Since nonsquarefree numbers don’t have a large contribution to either side, and since A+
d is sup-

ported on numbers with an odd number of prime factors while A−d is supported on numbers with
an even number of prime factors, this follows from condition (O). �

We can describe the sieve weights produced by an iteration rule as follows. For every u, let
(λ+
u , θ

+
u ) be an upper bound sieve with sifting limit u and let (λ−u , θ

−
u ) be a lower bound sieve with

sifting limit u. Let (λit, θit) be our iteration rule sieve, with λit supported on sets contained in
[1
t ,

1
s ]. Then the resulting upper bound sieve (λ, θ) is given by

λ(S) =

λ
it(S ∩ [1

t ,
1
s ])λ+

t−tΣ(S∩[ 1
t
, 1
s

])
(S \ [1

t ,
1
s ]) if λit(S ∩ [1

t ,
1
s ]) ≥ 0,

λit(S ∩ [1
t ,

1
s ])λ−

t−tΣ(S∩[ 1
t
, 1
s

])
(S \ [1

t ,
1
s ]) if λit(S ∩ [1

t ,
1
s ]) ≤ 0.

In particular, for a singleton set we have

θ(x) =


θ+
t (x) if 0 ≤ x < 1

t ,

θit(x) if 1
t ≤ x ≤

1
s ,

1 else.
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4. The range 5
2 ≤ s ≤ 3

We will assume throughout that we are working with an optimal upper bound sieve (λ, θ) with
sifting limit 5

2 ≤ s ≤ 3 satisfying conditions (O), (A), (F), and trying to maximize the quantity

a1 =
∫ 1

2
0 θ(x)dxx subject to these constraints. By Theorem 1, we only need to consider the constraints

involving sets S contained in [1− 2
s ,

1
s ].

By condition (F), if S ⊆ [1− 2
s ,

1
s ] and λ(S) 6= 0, then |S| < 4 since 4(1− 2

s ) ≥ 2
s for s ≥ 5

2 . By

condition (A) we have λ(S) ≤ 0 if |S| = 3, so if for some x, y, z ∈ [1 − 2
s ,

1
s ] we had λ(x, y, z) < 0,

then we would have

θ({k · x, k · y, k · z}) =
∑

0≤a,b,c≤k

(
k

a

)(
k

b

)(
k

c

)
λ({a · x, b · y, c · z}) ≤ k3λ(x, y, z) +O(k2) < 0

for k sufficiently large, a contradiction. Thus λ(x, y, z) = 0 for x, y, z ∈ [1− 2
s ,

1
s ].

Note that for any x, y, z ∈ [1− 2
s ,

1
s ], λ(x, y, z) = 0 implies that

θ(x, y, z) = θ(x, y) + θ(x, z) + θ(y, z)− θ(x)− θ(y)− θ(z) + 1.

Applying Proposition 2 (which used condition (O)) to the set {x, y} of size 2, we find

x+ y ≤ 1− 1

s
=⇒ θ(x, y) = 0.

Using condition (O) directly, we also have

x+ y + z = 1, x, y, z ≤ 1

s
=⇒ θ(x) + θ(y) + θ(z) = θ(x, y) + θ(x, z) + θ(y, z) + 1.

It’s convenient to replace the interval [1− 2
s ,

1
s ] by the interval [0, 1]. Let rs(x) = 1− 2

s + (3
s − 1)x.

Let f(x) = θ(rs(x)), and let g(x, y) = θ(rs(x), rs(y)). Note that rs(
2
3) = 1

3 , so if x+ y+ z = 2 then
rs(x) + rs(y) + rs(z) = 1.

Theorem 2. Suppose f : [0, 1]→ R≥0 and g : [0, 1]2 → R≥0 are nonnegative functions such that

x+ y ≤ 1 =⇒ g(x, y) = 0,

∀x, y, z ∈ [0, 1] f(x) + f(y) + f(z) ≤ g(x, y) + g(x, z) + g(y, z) + 1,

and

x+ y + z = 2 =⇒ f(x) + f(y) + f(z) = g(x, y) + g(x, z) + g(y, z) + 1.

Then we have

a) f is nondecreasing,
b) for every integer n > 1,

f( 1
n) + · · ·+ f(n−1

n )

n− 1
≤ 1

3
≤
f( 0

n) + · · ·+ f(nn)

n+ 1
,

c) f is integrable and
∫ 1

0 f(x)dx = 1
3 ,

d) g is nondecreasing in either argument, and moreover satisfies the inequality

w ≤ x, y ≤ z =⇒ g(x, z)− g(w, z) ≥ g(x, y)− g(w, y),

e) if f, g are continuous then they come from a symmetric probability distribution µ supported
on the simplex {a, b, c ∈ [0, 1]3 | a+ b+ c = 2}, according to the formulae

f(x) = Pµ(a,b,c)[a ≤ x], g(x, y) = Pµ(a,b,c)[a ≤ x ∧ b ≤ y]?
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Proof. Part a): suppose 0 ≤ a < b ≤ 1, we will show that f(a) ≤ f(b). Choose a nonnegative
integer k such that

2a− b < k(b− a) < b.

For each 0 ≤ i ≤ k, set

x2i = 1− b+ (k − 2i)(b− a)

2
, x2i+1 = 1− b+ (2i− k)(b− a)

2
.

Note that by the choice of k we have a+x0 = a+x2k+1 < 1 and 1−b < xi < 1 for all 0 ≤ i ≤ 2k+1.
Furthermore, for each i we have b+x2i+x2i+1 = 2 and a+x2i−1 +x2i = 2. Thus, for each 0 ≤ i ≤ k
we have

f(b) + f(x2i) + f(x2i+1) = g(b, x2i) + g(b, x2i+1) + g(x2i, x2i+1) + 1,

f(a) + f(x2i) + f(x2i+1) ≤ g(a, x2i) + g(a, x2i+1) + g(x2i, x2i+1) + 1,

and for each 1 ≤ i ≤ k we have

f(b) + f(x2i−1) + f(x2i) ≤ g(b, x2i−1) + g(b, x2i) + g(x2i−1, x2i) + 1,

f(a) + f(x2i−1) + f(x2i) = g(a, x2i−1) + g(a, x2i) + g(x2i−1, x2i) + 1.

Adding together the inequalities and subtracting the equalities, we get

f(a) ≤ f(b) + g(a, x0) + g(a, x2k+1)− g(b, x0)− g(b, x2k+1)

= f(b)− g(b, x0)− g(b, x2k+1) ≤ f(b).

Part b): first we prove the left hand inequality. For every ordered triple of integers 0 < i, j, k < n
satisfying i+ j + k = 2n, we have an equality

f( in) + f( jn) + f( kn) = g( in ,
j
n) + g( in ,

k
n) + g( jn ,

k
n) + 1.

Also, for every ordered triple 0 < i, j, k < n satisfying i+ j + k = 2n− 1, we have the inequality

f( in) + f( jn) + f( kn) ≤ g( in ,
j
n) + g( in ,

k
n) + g( jn ,

k
n) + 1.

Adding the inequalities and subtracting the equalities, and using g( in ,
j
n) = 0 when i+ j = n, gives

the left hand inequality of b). For the right hand inequality of b) one uses equalities corresponding
to triples 0 ≤ i, j, k ≤ n with i+ j+k = 2n, and inequalities corresponding to triples 0 ≤ i, j, k ≤ n
with i+ j + k = 2n+ 1.

Part c) follows immediately from parts a) and b).
First we prove part d) in the case x − w = z − y. If x + y = w + z ≤ 1, it is immediate. If

x+ y = w + z ≥ 1, it follows from

f(x) + f(y) + f(2− x− y) = g(x, y) + g(x, 2− x− y) + g(y, 2− x− y) + 1,

f(w) + f(z) + f(2− x− y) = g(w, z) + g(w, 2− x− y) + g(z, 2− x− y) + 1,

f(w) + f(y) + f(2− x− y) ≤ g(w, y) + g(w, 2− x− y) + g(y, 2− x− y) + 1,

f(x) + f(z) + f(2− x− y) ≤ g(x, z) + g(x, 2− x− y) + g(z, 2− x− y) + 1.

Applying this repeatedly, we see that the inequality in part d) holds whenever x− w is a rational
multiple of z − y. TODO

Also: if a ≤ b, then

f(a) + f(1− b) + f(1) ≤ g(a, 1) + g(1− b, 1) + 1,

f(b) + f(1− b) + f(1) = g(b, 1) + g(1− b, 1) + 1,

so

f(b)− f(a) ≥ g(b, 1)− g(a, 1).
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Additionally:
f(0) + f(0) + f(1) ≤ 1.

I don’t know how to prove part e) yet, but numerical computation seems to confirm it. �

Thus θ(x) is increasing, and the average value of θ(x) on the interval [1 − 2
s ,

1
s ] is 1

3 . Since 1
x is

decreasing, in order to maximize
∫ 1
s

1− 2
s

θ(x)dxx we must take θ(x) = 1
3 identically on this interval.

In terms of λ, this is corresponds to taking λ(x) = −2
3 , λ(x, y) = 1

3 for all x, y ∈ [1 − 2
s ,

1
s ], which

we can easily check gives an optimal upper bound sieve iteration. For s = 5
2 the resulting sieve has

a1 =

∫ 1
2

0
θ(x)

dx

x
=

log(2)

3
+ log

(
5

4

)
≈ 0.454.
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