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Sieve theoretic notation

I If A is a set of integers and P is a set of primes, then we define

S(A,P) = {a ∈ A | ∀p ∈ P, p - a}.

If z is a real number and P is the set of primes less than z , we
abbreviate this to

S(A, z) = {a ∈ A | ∀p < z , p - a}.

I For every squarefree d , we let Ad be the set of multiples of d
in A:

Ad = {a ∈ A | d | a}.

I This notation may be abused in various ways.



Sieve theoretic notation

I If A is a set of integers and P is a set of primes, then we define

S(A,P) = {a ∈ A | ∀p ∈ P, p - a}.

If z is a real number and P is the set of primes less than z , we
abbreviate this to

S(A, z) = {a ∈ A | ∀p < z , p - a}.

I For every squarefree d , we let Ad be the set of multiples of d
in A:

Ad = {a ∈ A | d | a}.

I This notation may be abused in various ways.



Sieve theoretic notation

I If A is a set of integers and P is a set of primes, then we define

S(A,P) = {a ∈ A | ∀p ∈ P, p - a}.

If z is a real number and P is the set of primes less than z , we
abbreviate this to

S(A, z) = {a ∈ A | ∀p < z , p - a}.

I For every squarefree d , we let Ad be the set of multiples of d
in A:

Ad = {a ∈ A | d | a}.

I This notation may be abused in various ways.



The dimension of a sieve

I Our running assumption is that there is a real number κ,
called the sifting dimension, together with a multiplicative
function, also called κ by abuse of notation, satisfying
0 ≤ κ(p) < p for all p and∑

p≤x
κ(p)

log(p)

p
= (κ+ o(1)) log(x),

and that z , y are such that for every squarefree integer d , all
of whose prime factors are less than z , we have∣∣∣|Ad | − κ(d)

y

d

∣∣∣ ≤ κ(d).

I This assumption may be weakened to∣∣∣|Ad | − κ(d)
y

d

∣∣∣ ≤ κ(d)
y

d log(y/d)2κ+ε

without affecting the quality of sieve-theoretic bounds.
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The dimension of a sieve: examples

I If A is an interval of length y , then we can take κ = 1, and for
any d we will have ∣∣∣|Ad | −

y

d

∣∣∣ ≤ 1.

So searching for primes in an interval corresponds to a sieve of
dimension 1.

I If A = {n(n + 2) | n ∈ [x , x + y)}, then |S(A,
√

x + y)| counts
the number of twin primes in the interval [x , x + y). This is a
sieve of dimension 2.

I Counting numbers which can be written as a sum of two
squares corresponds to a sieve with κ = 1

2 .
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Fundamental Lemma of sieve theory

I The näıve approximation, using the Principle of Inclusion and
Exclusion:

S(A, z) =
∑

d |
∏

p<z p

µ(d)|Ad |

≈
∑

d |
∏

p<z p

µ(d)κ(d)
y

d

= y
∏
p<z

(
1− κ(p)

p

)
.

I If y = zs with s fixed, this is within a constant factor of the
truth!
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Fundamental Lemma of sieve theory

Lemma (Selberg)

Define functions fκ(s),Fκ(s) with fκ(s) as large as possible and
Fκ(s) as small as possible such that if y = zs with s fixed and z
going to infinity, then

fκ(s) + o(1) ≤ S(A, z)

y
∏

p<z

(
1− κ(p)

p

) ≤ Fκ(s) + o(1)

for any weighted set A satisfying our basic assumption.

Then the functions fκ(s),Fκ(s) are finite, continuous, monotone,
and computable for s > 1, and they tend to 1 exponentially as s
goes to infinity.



What are the sifting functions fκ,Fκ?

I The precise values of fκ,Fκ are only known in two cases:
κ = 1

2 and κ = 1.

I When κ = 1, writing f = f1 and F = F1, we have

F (s) =
2eγ

s
1 ≤ s ≤ 3

d

ds
(sF (s)) = f (s − 1) s ≥ 3

f (s) =
2eγ log(s − 1)

s
2 ≤ s ≤ 4

d

ds
(sf (s)) = F (s − 1) s ≥ 2
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Sifting Limit

I Often we are interested in proving a nontrivial lower bound on
the size of the set S(A, z) (for instance, we would like to
prove that twin primes exist). In other words, we want to
show that fκ(s) > 0.

I We define the sifting limit, βκ, to be

βκ = inf{s | fκ(s) > 0}.

If βκ < 2, then we win!

I β 1
2

= 1, β1 = 2. For 1
2 < κ < 1, we have βκ < 2κ.

I Selberg: if κ is sufficiently large, then β < 2κ+ 0.4454.

I Diamond-Halberstam-Richert: β 3
2
≤ 3.11582...,

β2 ≤ 4.26645....



Sifting Limit

I Often we are interested in proving a nontrivial lower bound on
the size of the set S(A, z) (for instance, we would like to
prove that twin primes exist). In other words, we want to
show that fκ(s) > 0.

I We define the sifting limit, βκ, to be

βκ = inf{s | fκ(s) > 0}.

If βκ < 2, then we win!

I β 1
2

= 1, β1 = 2. For 1
2 < κ < 1, we have βκ < 2κ.

I Selberg: if κ is sufficiently large, then β < 2κ+ 0.4454.

I Diamond-Halberstam-Richert: β 3
2
≤ 3.11582...,

β2 ≤ 4.26645....



Sifting Limit

I Often we are interested in proving a nontrivial lower bound on
the size of the set S(A, z) (for instance, we would like to
prove that twin primes exist). In other words, we want to
show that fκ(s) > 0.

I We define the sifting limit, βκ, to be

βκ = inf{s | fκ(s) > 0}.

If βκ < 2, then we win!

I β 1
2

= 1, β1 = 2. For 1
2 < κ < 1, we have βκ < 2κ.

I Selberg: if κ is sufficiently large, then β < 2κ+ 0.4454.

I Diamond-Halberstam-Richert: β 3
2
≤ 3.11582...,

β2 ≤ 4.26645....



Sifting Limit

I Often we are interested in proving a nontrivial lower bound on
the size of the set S(A, z) (for instance, we would like to
prove that twin primes exist). In other words, we want to
show that fκ(s) > 0.

I We define the sifting limit, βκ, to be

βκ = inf{s | fκ(s) > 0}.

If βκ < 2, then we win!

I β 1
2

= 1, β1 = 2. For 1
2 < κ < 1, we have βκ < 2κ.

I Selberg: if κ is sufficiently large, then β < 2κ+ 0.4454.

I Diamond-Halberstam-Richert: β 3
2
≤ 3.11582...,

β2 ≤ 4.26645....



Sifting Limit

I Often we are interested in proving a nontrivial lower bound on
the size of the set S(A, z) (for instance, we would like to
prove that twin primes exist). In other words, we want to
show that fκ(s) > 0.

I We define the sifting limit, βκ, to be

βκ = inf{s | fκ(s) > 0}.

If βκ < 2, then we win!

I β 1
2

= 1, β1 = 2. For 1
2 < κ < 1, we have βκ < 2κ.

I Selberg: if κ is sufficiently large, then β < 2κ+ 0.4454.

I Diamond-Halberstam-Richert: β 3
2
≤ 3.11582...,

β2 ≤ 4.26645....



Buchstab iteration

I When κ ≤ 1, the best known sieves are based on Buchstab’s
identity:

S(A, z) = |A| −
∑
p<z

S(Ap, p).

I This leads to the inequalities

sκfκ(s) ≥ sκ − κ
∫
t>s

tκ−1(Fκ(t − 1)− 1)dt,

sκFκ(s) ≤ sκ + κ

∫
t>s

tκ−1(1− fκ(t − 1))dt.

I Iterative application of these inequalities leads to the β-sieve.

I When κ is 1
2 or 1, we have equality!



Buchstab iteration

I When κ ≤ 1, the best known sieves are based on Buchstab’s
identity:

S(A, z) = |A| −
∑
p<z

S(Ap, p).

I This leads to the inequalities

sκfκ(s) ≥ sκ − κ
∫
t>s

tκ−1(Fκ(t − 1)− 1)dt,

sκFκ(s) ≤ sκ + κ

∫
t>s

tκ−1(1− fκ(t − 1))dt.

I Iterative application of these inequalities leads to the β-sieve.

I When κ is 1
2 or 1, we have equality!



Buchstab iteration

I When κ ≤ 1, the best known sieves are based on Buchstab’s
identity:

S(A, z) = |A| −
∑
p<z

S(Ap, p).

I This leads to the inequalities

sκfκ(s) ≥ sκ − κ
∫
t>s

tκ−1(Fκ(t − 1)− 1)dt,

sκFκ(s) ≤ sκ + κ

∫
t>s

tκ−1(1− fκ(t − 1))dt.

I Iterative application of these inequalities leads to the β-sieve.

I When κ is 1
2 or 1, we have equality!



Buchstab iteration

I When κ ≤ 1, the best known sieves are based on Buchstab’s
identity:

S(A, z) = |A| −
∑
p<z

S(Ap, p).

I This leads to the inequalities

sκfκ(s) ≥ sκ − κ
∫
t>s

tκ−1(Fκ(t − 1)− 1)dt,

sκFκ(s) ≤ sκ + κ

∫
t>s

tκ−1(1− fκ(t − 1))dt.

I Iterative application of these inequalities leads to the β-sieve.

I When κ is 1
2 or 1, we have equality!



Equality case: the parity problem
I Define weighted sets A+,A−, supported on [1, y ], so that the

weight A+ assigns to n is 1− λ(n) and the weight A− assigns
to n is 1 + λ(n).

I These weighted sets satisfy Buchstab-like identities: for any
w ≤ z , we have

S(A+, z) = S(A+,w)−
∑

w<p<z

S(A−p , p)

and
S(A−, z) = S(A−,w)−

∑
w<p<z

S(A+
p , p).

I For 1 < s < 3, we have

S(A+, z) = 2(π(y)− π(z)) =
2eγ

s

y

eγ log(z)
+ O

(
y

log(z)2

)
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Equality case: the parity problem

I By iteratively applying the Buchstab-like identities for A+,A−,
we can inductively prove that

S(A+, z) = F (s)
y

eγ log(z)
+ O

(
y

log(z)2

)
and

S(A−, z) = f (s)
y

eγ log(z)
+ O

(
y

log(z)2

)
for all s > 1.

I There is a similar construction for κ = 1
2 .
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New upper bound iteration rule

I Theorem
For any w ≤ z, we have

S(A, z) ≤ S(A,w)− 2

3

∑
w≤p<z

S(Ap,w) +
1

3

∑
w≤q<p<z

S(Apq,w).

I Proof.

1− 2

3
k +

1

3

(
k

2

)
=

(
1− k

2

)(
1− k

3

)
≥ 0.

I In practice, the optimal choice of w appears to be w = y
zβ

.
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New upper bound iteration rule

I Corollary

For any real t ≥ s ≥ 2, we have

sκFκ(s) ≤ tκFκ(t)− 2

3
κ

∫
1
t
<x< 1

s

tκfκ(t(1− x))
dx

x

+
1

3
κ2

∫∫
1
t
<y<x< 1

s

tκFκ(t(1− x − y))
dx

x

dy

y
.

I Taking w = y
zβ

corresponds to taking t = s
s−β .

I Comparing t = s
s−β with the requirement t ≥ s ≥ 2, we see

that this upper bound iteration tends to be useful only for
2 ≤ s ≤ β + 1.
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New lower bound iteration rule

I Theorem
For any w ≤ z2, we have

S(A, z) ≥ S
(

A,
√

w
)
−

∑
√
w≤p<z

S
(

Ap,
w

p

)
+

5

6

∑
w
p
≤q<p<z

S
(

Apq,
w

p

)
− 2

3

∑
w
p
≤r<q<p<z
qr<w

S
(

Apqr ,
w

p

)
− 1

2

∑
w
q
≤r<q<p<z

S
(

Apqr ,
w

p

)
.

I This is loosely based on the identity

1− k +
5

6

(
k

2

)
− 1

2

(
k

3

)
= (1− k)

(
1− k

3

)(
1− k

4

)
.

I Again, the optimal choice of w appears to be w = y
zβ

.
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New lower bound iteration rule

Corollary

For any real s ≥ t with 2t ≥ s ≥ 3, we have

sκfκ(s) ≥ (2t)κfκ(2t)− κ
∫

1
2t
<x< 1

s

1

(1t − x)κ
Fκ
( 1− x

1
t − x

)dx

x

+
5

6
κ2

∫∫
1
t
−x<y<x< 1

s

1

(1t − x)κ
fκ
(1− x − y

1
t − x

)dx

x

dy

y

− 2

3
κ3

∫∫∫
1
t
−x<z<y<x< 1

s

1

(1t − x)κ
Fκ
(1− x − y − z

1
t − x

)dx

x

dy

y

dz

z

+
1

6
κ3

∫∫∫
1
t
−y<z<y<x< 1

s

1

(1t − x)κ
Fκ
(1− x − y − z

1
t − x

)dx

x

dy

y

dz

z
.



Miracle at κ = 1

I When κ = 1, if we take t = s
s−2 , then the new upper bound

iteration rule has equality in the range

5

2
< s < 3,

and the new lower bound iteration rule has equality in the
range

7

2
< s < 4.

I What is going on here?
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Miracle at κ = 1

I In the case of the upper bound iteration, when 5
2 < s < 3 and

t = s
s−2 we have 3 < t < 5, so the claimed identity

sF (s) = tF (t)− 2

3

∫
1
t
<x< 1

s

tf (t(1− x))
dx

x

+
1

3

∫∫
1
t
<y<x< 1

s

tF (t(1− x − y))
dx

x

dy

y

becomes, using F (s) = 2eγ

s for s ≤ 3 and f (s) = 2eγ log(s−1)
s

for 2 ≤ s ≤ 4,

1 =
tF (t)

2eγ
−2

3

∫
1
t
<x< 1

s

log(t(1− x))

1− x

dx

x
+

1

3

∫∫
1
t
<y<x< 1

s

1

1− x − y

dx

x

dy

y

I You can check this integral identity by hand, but a similar
strategy for the lower bound iteration is hopeless.
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1 =
tF (t)

2eγ
−2

3

∫
1
t
<x< 1

s

log(t(1− x))

1− x

dx

x
+

1

3

∫∫
1
t
<y<x< 1

s

1

1− x − y

dx

x

dy

y

I You can check this integral identity by hand, but a similar
strategy for the lower bound iteration is hopeless.



The real reason for the miracle

I Recall the equality case sets A+,A− have

S(A+, z) = F (s)
y

eγ log(z)
+ O

(
y

log(z)2

)
,

S(A−, z) = f (s)
y

eγ log(z)
+ O

(
y

log(z)2

)
.

I So to check we have equality in the upper bound sieve

iteration, we just need to check that when z
5
2 < y < z3, we

have

S(A+, z) = S(A+,
y

z2
)− 2

3

∑
y

z2
≤p<z

S(A−p ,
y

z2
)

+
1

3

∑
y

z2
≤q<p<z

S(A+
pq,

y

z2
) + O

(
y

log(z)2

)
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I Every element of A+ has an odd number of prime factors, so
if d ∈ A+ is counted more times on the right than the left
then d must either be a prime between z and y

z2
, be

nonsquarefree, or have at least five prime factors, all greater

than y
z2
> z

1
2 (making d > (z

1
2 )5 > y).

I A similar (but more difficult) analysis shows that the lower
bound iteration is also optimal at κ = 1 when 7

2 < s < 4.
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Numerical results at κ = 3
2

I Best previous bound for β 3
2

was given by the

Diamond-Halberstam-Richert sieve: β 3
2
≤ 3.11582.... This

sieve is constructed by applying Buchstab iteration to the
Selberg sieve.

I Applying the new upper bound iteration to the DHR sieve
(with t = s

s−3.1158...) and using Buchstab iteration for the
lower bound, this improves to β 3

2
< 3.11570.

I Applying the new lower bound iteration directly to the DHR
sieve with s ≈ 4.85, t ≈ 5.52, we get β 3

2
< 3.11554.

I Applying both iteration rules repeatedly with various choices
of the parameters, we get β 3

2
< 3.11549.
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Thank you for your attention.



Bonus: attaching a probability distribution on the triangle
to upper bound sieves which are optimal at κ = 1

We can write a generic upper bound sieve in the form

S(A, z) ≤ |A|+
∑
p<z

λ
(
log(p)
log(y)

)
|Ap|+

∑
q<p<z

λ
(
log(p)
log(y) ,

log(q)
log(y)

)
|Apq|+· · ·

where λ (supported on tuples which sum to at most 1) is chosen
such that, setting

θ(S) =
∑
A⊆S

λ(A),

we have θ(S) ≥ 0 for every finite (multi-)subset S of the interval
[0, 1].
In order for this to be an optimal sieve at κ = 1, we need θ(S) = 0
whenever |S | is odd and the sum of the elements of S is equal to 1.



Bonus: attaching a probability distribution on the triangle
to upper bound sieves which are optimal at κ = 1

We restrict our attention to sets of size 1 and 2, and let
f (x) = θ(2x), g(x , y) = θ(2x , 2y).

Theorem
Suppose f : [0, 1]→ R≥0 and g : [0, 1]2 → R≥0 are nonnegative
functions such that there is some ε > 0 with

x + y ≤ 1 =⇒ g(x , y) = 0,

|x+y+z−2| ≤ ε =⇒ f (x)+f (y)+f (z) ≤ g(x , y)+g(x , z)+g(y , z)+1,

x+y+z = 2 =⇒ f (x)+f (y)+f (z) = g(x , y)+g(x , z)+g(y , z)+1.

Then there exists a symmetric probability distribution µ supported
on the triangle {a, b, c ∈ [0, 1]3 | a + b + c = 2} with

f (x) = Pµ(a,b,c)[a ≤ x ], g(x , y) = Pµ(a,b,c)[a ≤ x ∧ b ≤ y ]

away from a set of measure 0.



Bonus: attaching a probability distribution on the triangle
to upper bound sieves which are optimal at κ = 1

In this framework:

I The β-sieve corresponds to a probability distribution
supported on the center point (23 ,

2
3 ,

2
3) of the triangle.

I The Selberg sieve corresponds to a uniform probability
distribution over the triangle.

I The new upper bound sifting iteration rule corresponds to a
probability distribution with mass 1

3 at each of the vertices
(0, 1, 1), (1, 0, 1), (1, 1, 0) of the triangle.



Bonus: a first attempt at a new upper bound sieve for the
range 12

5 < s < 5
2

If every element of A has size at most y
13
12 and z

12
5 < y < z

5
2 :

S(A, z) ≤ S(A,
y

z2
)− 4

5

∑
y

z2
≤p< z3

y

S(Ap,
y

z2
)− 2

3

∑
z3

y
≤p< y2

z4

S(Ap,
y

z2
)

− 8

15

∑
y2

z4
≤p<z

S(Ap,
y

z2
) +

3

5

∑
y

z2
≤q<p< z3

y

S(Apq,
y

z2
)

+
7

15

∑
y

z2
≤q< z3

y
≤p< y2

z4

S(Apq,
y

z2
) +

1

3

∑
y

z2
≤q< z3

y

y2

z4
≤p<z

S(Apq,
y

z2
)

+
1

3

∑
z3

y
≤q<p< y2

z4

S(Apq,
y

z2
) +

4

15

∑
z3

y
≤q< y2

z4
≤p<z

S(Apq,
y

z2
)+



Bonus: a first attempt at a new upper bound sieve for the
range 12

5 < s < 5
2 (continued)

+
1

5

∑
y2

z4
≤q<p<z

S(Apq,
y

z2
)− 2

5

∑
y

z2
≤r<q<p< z3

y

pqr2<z2

S(Apqr ,
y

z2
)

− 4

15

∑
y

z2
≤r<q< z3

y
≤p< y2

z4

(
1− 3 log(qr)

8 log(y/p)

)
S(Apqr ,

y

z2
)

+
1

5

∑
y

z2
≤s<r<q<p< z3

y

pqr2<z2

S(Apqr ,
y

z2
)

+
1

10

∑
y

z2
≤s<r<q< z3

y
≤p< y2

z4

(
1− log(qrs)

log(y/p)

)
+

S(Apqr ,
y

z2
).


