# New Sifting Iterations <br> (bringing the combinatorics back) 

Zarathustra Brady

## Sieve theoretic notation

- If $A$ is a set of integers and $\mathcal{P}$ is a set of primes, then we define

$$
\mathcal{S}(A, \mathcal{P})=\{a \in A \mid \forall p \in \mathcal{P}, p \nmid a\} .
$$

If $z$ is a real number and $\mathcal{P}$ is the set of primes less than $z$, we abbreviate this to

$$
\mathcal{S}(A, z)=\{a \in A \mid \forall p<z, p \nmid a\} .
$$

## Sieve theoretic notation

- If $A$ is a set of integers and $\mathcal{P}$ is a set of primes, then we define

$$
\mathcal{S}(A, \mathcal{P})=\{a \in A \mid \forall p \in \mathcal{P}, p \nmid a\} .
$$

If $z$ is a real number and $\mathcal{P}$ is the set of primes less than $z$, we abbreviate this to

$$
\mathcal{S}(A, z)=\{a \in A \mid \forall p<z, p \nmid a\} .
$$

- For every squarefree $d$, we let $A_{d}$ be the set of multiples of $d$ in $A$ :

$$
A_{d}=\{a \in A|d| a\} .
$$

## Sieve theoretic notation

- If $A$ is a set of integers and $\mathcal{P}$ is a set of primes, then we define

$$
\mathcal{S}(A, \mathcal{P})=\{a \in A \mid \forall p \in \mathcal{P}, p \nmid a\} .
$$

If $z$ is a real number and $\mathcal{P}$ is the set of primes less than $z$, we abbreviate this to

$$
\mathcal{S}(A, z)=\{a \in A \mid \forall p<z, p \nmid a\} .
$$

- For every squarefree $d$, we let $A_{d}$ be the set of multiples of $d$ in $A$ :

$$
A_{d}=\{a \in A|d| a\} .
$$

- This notation may be abused in various ways.


## The dimension of a sieve

- Our running assumption is that there is a real number $\kappa$, called the sifting dimension, together with a multiplicative function, also called $\kappa$ by abuse of notation, satisfying $0 \leq \kappa(p)<p$ for all $p$ and

$$
\sum_{p \leq x} \kappa(p) \frac{\log (p)}{p}=(\kappa+o(1)) \log (x)
$$

and that $z, y$ are such that for every squarefree integer $d$, all of whose prime factors are less than $z$, we have

$$
\left|\left|A_{d}\right|-\kappa(d) \frac{y}{d}\right| \leq \kappa(d)
$$

## The dimension of a sieve

- Our running assumption is that there is a real number $\kappa$, called the sifting dimension, together with a multiplicative function, also called $\kappa$ by abuse of notation, satisfying $0 \leq \kappa(p)<p$ for all $p$ and

$$
\sum_{p \leq x} \kappa(p) \frac{\log (p)}{p}=(\kappa+o(1)) \log (x)
$$

and that $z, y$ are such that for every squarefree integer $d$, all of whose prime factors are less than $z$, we have

$$
\left|\left|A_{d}\right|-\kappa(d) \frac{y}{d}\right| \leq \kappa(d)
$$

- This assumption may be weakened to

$$
\left|\left|A_{d}\right|-\kappa(d) \frac{y}{d}\right| \leq \kappa(d) \frac{y}{d \log (y / d)^{2 \kappa+\epsilon}}
$$

without affecting the quality of sieve-theoretic bounds.

## The dimension of a sieve: examples

- If $A$ is an interval of length $y$, then we can take $\kappa=1$, and for any $d$ we will have

$$
\left|\left|A_{d}\right|-\frac{y}{d}\right| \leq 1
$$

So searching for primes in an interval corresponds to a sieve of dimension 1.

## The dimension of a sieve: examples

- If $A$ is an interval of length $y$, then we can take $\kappa=1$, and for any $d$ we will have

$$
\left|\left|A_{d}\right|-\frac{y}{d}\right| \leq 1
$$

So searching for primes in an interval corresponds to a sieve of dimension 1.

- If $A=\{n(n+2) \mid n \in[x, x+y)\}$, then $|\mathcal{S}(A, \sqrt{x+y})|$ counts the number of twin primes in the interval $[x, x+y)$. This is a sieve of dimension 2.


## The dimension of a sieve: examples

- If $A$ is an interval of length $y$, then we can take $\kappa=1$, and for any $d$ we will have

$$
\left|\left|A_{d}\right|-\frac{y}{d}\right| \leq 1
$$

So searching for primes in an interval corresponds to a sieve of dimension 1.

- If $A=\{n(n+2) \mid n \in[x, x+y)\}$, then $|\mathcal{S}(A, \sqrt{x+y})|$ counts the number of twin primes in the interval $[x, x+y)$. This is a sieve of dimension 2.
- Counting numbers which can be written as a sum of two squares corresponds to a sieve with $\kappa=\frac{1}{2}$.


## Fundamental Lemma of sieve theory

- The naïve approximation, using the Principle of Inclusion and Exclusion:

$$
\begin{aligned}
\mathcal{S}(A, z) & =\sum_{d \mid \prod_{p<z} p} \mu(d)\left|A_{d}\right| \\
& \approx \sum_{d \mid \prod_{p<z} p} \mu(d) \kappa(d) \frac{y}{d} \\
& =y \prod_{p<z}\left(1-\frac{\kappa(p)}{p}\right)
\end{aligned}
$$

## Fundamental Lemma of sieve theory

- The naïve approximation, using the Principle of Inclusion and Exclusion:

$$
\begin{aligned}
\mathcal{S}(A, z) & =\sum_{d \mid \prod_{p<z} p} \mu(d)\left|A_{d}\right| \\
& \approx \sum_{d \mid \prod_{p<z} p} \mu(d) \kappa(d) \frac{y}{d} \\
& =y \prod_{p<z}\left(1-\frac{\kappa(p)}{p}\right) .
\end{aligned}
$$

- If $y=z^{s}$ with $s$ fixed, this is within a constant factor of the truth!


## Fundamental Lemma of sieve theory

## Lemma (Selberg)

Define functions $f_{\kappa}(s), F_{\kappa}(s)$ with $f_{\kappa}(s)$ as large as possible and $F_{\kappa}(s)$ as small as possible such that if $y=z^{s}$ with $s$ fixed and $z$ going to infinity, then

$$
f_{\kappa}(s)+o(1) \leq \frac{\mathcal{S}(A, z)}{y \prod_{p<z}\left(1-\frac{\kappa(p)}{p}\right)} \leq F_{\kappa}(s)+o(1)
$$

for any weighted set $A$ satisfying our basic assumption.
Then the functions $f_{\kappa}(s), F_{\kappa}(s)$ are finite, continuous, monotone, and computable for $s>1$, and they tend to 1 exponentially as $s$ goes to infinity.

What are the sifting functions $f_{\kappa}, F_{\kappa}$ ?

- The precise values of $f_{\kappa}, F_{\kappa}$ are only known in two cases: $\kappa=\frac{1}{2}$ and $\kappa=1$.

What are the sifting functions $f_{\kappa}, F_{\kappa}$ ?

- The precise values of $f_{\kappa}, F_{\kappa}$ are only known in two cases: $\kappa=\frac{1}{2}$ and $\kappa=1$.
- When $\kappa=1$, writing $f=f_{1}$ and $F=F_{1}$, we have

$$
\begin{aligned}
F(s) & =\frac{2 e^{\gamma}}{s} & 1 \leq s & \leq 3 \\
\frac{d}{d s}(s F(s)) & =f(s-1) & s & \geq 3 \\
f(s) & =\frac{2 e^{\gamma} \log (s-1)}{s} & 2 \leq s & \leq 4 \\
\frac{d}{d s}(s f(s)) & =F(s-1) & s & \geq 2
\end{aligned}
$$

## Sifting Limit

- Often we are interested in proving a nontrivial lower bound on the size of the set $\mathcal{S}(A, z)$ (for instance, we would like to prove that twin primes exist). In other words, we want to show that $f_{\kappa}(s)>0$.


## Sifting Limit

- Often we are interested in proving a nontrivial lower bound on the size of the set $\mathcal{S}(A, z)$ (for instance, we would like to prove that twin primes exist). In other words, we want to show that $f_{\kappa}(s)>0$.
- We define the sifting limit, $\beta_{\kappa}$, to be

$$
\beta_{\kappa}=\inf \left\{s \mid f_{\kappa}(s)>0\right\}
$$

If $\beta_{\kappa}<2$, then we win!

## Sifting Limit

- Often we are interested in proving a nontrivial lower bound on the size of the set $\mathcal{S}(A, z)$ (for instance, we would like to prove that twin primes exist). In other words, we want to show that $f_{\kappa}(s)>0$.
- We define the sifting limit, $\beta_{\kappa}$, to be

$$
\beta_{\kappa}=\inf \left\{s \mid f_{\kappa}(s)>0\right\}
$$

If $\beta_{\kappa}<2$, then we win!

- $\beta_{\frac{1}{2}}=1, \beta_{1}=2$. For $\frac{1}{2}<\kappa<1$, we have $\beta_{\kappa}<2 \kappa$.


## Sifting Limit

- Often we are interested in proving a nontrivial lower bound on the size of the set $\mathcal{S}(A, z)$ (for instance, we would like to prove that twin primes exist). In other words, we want to show that $f_{\kappa}(s)>0$.
- We define the sifting limit, $\beta_{\kappa}$, to be

$$
\beta_{\kappa}=\inf \left\{s \mid f_{\kappa}(s)>0\right\}
$$

If $\beta_{\kappa}<2$, then we win!

- $\beta_{\frac{1}{2}}=1, \beta_{1}=2$. For $\frac{1}{2}<\kappa<1$, we have $\beta_{\kappa}<2 \kappa$.
- Selberg: if $\kappa$ is sufficiently large, then $\beta<2 \kappa+0.4454$.


## Sifting Limit

- Often we are interested in proving a nontrivial lower bound on the size of the set $\mathcal{S}(A, z)$ (for instance, we would like to prove that twin primes exist). In other words, we want to show that $f_{\kappa}(s)>0$.
- We define the sifting limit, $\beta_{\kappa}$, to be

$$
\beta_{\kappa}=\inf \left\{s \mid f_{\kappa}(s)>0\right\}
$$

If $\beta_{\kappa}<2$, then we win!

- $\beta_{\frac{1}{2}}=1, \beta_{1}=2$. For $\frac{1}{2}<\kappa<1$, we have $\beta_{\kappa}<2 \kappa$.
- Selberg: if $\kappa$ is sufficiently large, then $\beta<2 \kappa+0.4454$.
- Diamond-Halberstam-Richert: $\beta_{\frac{3}{2}} \leq 3.11582 \ldots$, $\beta_{2} \leq 4.26645$....


## Buchstab iteration

- When $\kappa \leq 1$, the best known sieves are based on Buchstab's identity:

$$
\mathcal{S}(A, z)=|A|-\sum_{p<z} \mathcal{S}\left(A_{p}, p\right)
$$

## Buchstab iteration

- When $\kappa \leq 1$, the best known sieves are based on Buchstab's identity:

$$
\mathcal{S}(A, z)=|A|-\sum_{p<z} \mathcal{S}\left(A_{p}, p\right)
$$

- This leads to the inequalities

$$
\begin{aligned}
& s^{\kappa} f_{\kappa}(s) \geq s^{\kappa}-\kappa \int_{t>s} t^{\kappa-1}\left(F_{\kappa}(t-1)-1\right) d t \\
& s^{\kappa} F_{\kappa}(s) \leq s^{\kappa}+\kappa \int_{t>s} t^{\kappa-1}\left(1-f_{\kappa}(t-1)\right) d t
\end{aligned}
$$

## Buchstab iteration

- When $\kappa \leq 1$, the best known sieves are based on Buchstab's identity:

$$
\mathcal{S}(A, z)=|A|-\sum_{p<z} \mathcal{S}\left(A_{p}, p\right)
$$

- This leads to the inequalities

$$
\begin{aligned}
& s^{\kappa} f_{\kappa}(s) \geq s^{\kappa}-\kappa \int_{t>s} t^{\kappa-1}\left(F_{\kappa}(t-1)-1\right) d t \\
& s^{\kappa} F_{\kappa}(s) \leq s^{\kappa}+\kappa \int_{t>s} t^{\kappa-1}\left(1-f_{\kappa}(t-1)\right) d t
\end{aligned}
$$

- Iterative application of these inequalities leads to the $\beta$-sieve.


## Buchstab iteration

- When $\kappa \leq 1$, the best known sieves are based on Buchstab's identity:

$$
\mathcal{S}(A, z)=|A|-\sum_{p<z} \mathcal{S}\left(A_{p}, p\right)
$$

- This leads to the inequalities

$$
\begin{aligned}
& s^{\kappa} f_{\kappa}(s) \geq s^{\kappa}-\kappa \int_{t>s} t^{\kappa-1}\left(F_{\kappa}(t-1)-1\right) d t \\
& s^{\kappa} F_{\kappa}(s) \leq s^{\kappa}+\kappa \int_{t>s} t^{\kappa-1}\left(1-f_{\kappa}(t-1)\right) d t
\end{aligned}
$$

- Iterative application of these inequalities leads to the $\beta$-sieve.
- When $\kappa$ is $\frac{1}{2}$ or 1 , we have equality!


## Equality case: the parity problem

- Define weighted sets $A^{+}, A^{-}$, supported on $[1, y]$, so that the weight $A^{+}$assigns to $n$ is $1-\lambda(n)$ and the weight $A^{-}$assigns to $n$ is $1+\lambda(n)$.


## Equality case: the parity problem

- Define weighted sets $A^{+}, A^{-}$, supported on $[1, y]$, so that the weight $A^{+}$assigns to $n$ is $1-\lambda(n)$ and the weight $A^{-}$assigns to $n$ is $1+\lambda(n)$.
- These weighted sets satisfy Buchstab-like identities: for any $w \leq z$, we have

$$
\mathcal{S}\left(A^{+}, z\right)=\mathcal{S}\left(A^{+}, w\right)-\sum_{w<p<z} \mathcal{S}\left(A_{p}^{-}, p\right)
$$

and

$$
\mathcal{S}\left(A^{-}, z\right)=\mathcal{S}\left(A^{-}, w\right)-\sum_{w<p<z} \mathcal{S}\left(A_{p}^{+}, p\right)
$$

## Equality case: the parity problem

- Define weighted sets $A^{+}, A^{-}$, supported on $[1, y]$, so that the weight $A^{+}$assigns to $n$ is $1-\lambda(n)$ and the weight $A^{-}$assigns to $n$ is $1+\lambda(n)$.
- These weighted sets satisfy Buchstab-like identities: for any $w \leq z$, we have

$$
\mathcal{S}\left(A^{+}, z\right)=\mathcal{S}\left(A^{+}, w\right)-\sum_{w<p<z} \mathcal{S}\left(A_{p}^{-}, p\right)
$$

and

$$
\mathcal{S}\left(A^{-}, z\right)=\mathcal{S}\left(A^{-}, w\right)-\sum_{w<p<z} \mathcal{S}\left(A_{p}^{+}, p\right)
$$

- For $1<s<3$, we have

$$
\mathcal{S}\left(A^{+}, z\right)=2(\pi(y)-\pi(z))=\frac{2 e^{\gamma}}{s} \frac{y}{e^{\gamma} \log (z)}+O\left(\frac{y}{\log (z)^{2}}\right)
$$

## Equality case: the parity problem

- By iteratively applying the Buchstab-like identities for $A^{+}, A^{-}$, we can inductively prove that

$$
\mathcal{S}\left(A^{+}, z\right)=F(s) \frac{y}{e^{\gamma} \log (z)}+O\left(\frac{y}{\log (z)^{2}}\right)
$$

and

$$
\mathcal{S}\left(A^{-}, z\right)=f(s) \frac{y}{e^{\gamma} \log (z)}+O\left(\frac{y}{\log (z)^{2}}\right)
$$

for all $s>1$.

## Equality case: the parity problem

- By iteratively applying the Buchstab-like identities for $A^{+}, A^{-}$, we can inductively prove that

$$
\mathcal{S}\left(A^{+}, z\right)=F(s) \frac{y}{e^{\gamma} \log (z)}+O\left(\frac{y}{\log (z)^{2}}\right)
$$

and

$$
\mathcal{S}\left(A^{-}, z\right)=f(s) \frac{y}{e^{\gamma} \log (z)}+O\left(\frac{y}{\log (z)^{2}}\right)
$$

for all $s>1$.

- There is a similar construction for $\kappa=\frac{1}{2}$.


## New upper bound iteration rule

- Theorem

For any $w \leq z$, we have

$$
\mathcal{S}(A, z) \leq \mathcal{S}(A, w)-\frac{2}{3} \sum_{w \leq p<z} \mathcal{S}\left(A_{p}, w\right)+\frac{1}{3} \sum_{w \leq q<p<z} \mathcal{S}\left(A_{p q}, w\right)
$$

## New upper bound iteration rule

- Theorem

For any $w \leq z$, we have

$$
\mathcal{S}(A, z) \leq \mathcal{S}(A, w)-\frac{2}{3} \sum_{w \leq p<z} \mathcal{S}\left(A_{p}, w\right)+\frac{1}{3} \sum_{w \leq q<p<z} \mathcal{S}\left(A_{p q}, w\right) .
$$

- Proof.

$$
1-\frac{2}{3} k+\frac{1}{3}\binom{k}{2}=\left(1-\frac{k}{2}\right)\left(1-\frac{k}{3}\right) \geq 0
$$

## New upper bound iteration rule

- Theorem

For any $w \leq z$, we have

$$
\mathcal{S}(A, z) \leq \mathcal{S}(A, w)-\frac{2}{3} \sum_{w \leq p<z} \mathcal{S}\left(A_{p}, w\right)+\frac{1}{3} \sum_{w \leq q<p<z} \mathcal{S}\left(A_{p q}, w\right) .
$$

- Proof.

$$
1-\frac{2}{3} k+\frac{1}{3}\binom{k}{2}=\left(1-\frac{k}{2}\right)\left(1-\frac{k}{3}\right) \geq 0
$$

- In practice, the optimal choice of $w$ appears to be $w=\frac{y}{z^{\beta}}$.


## New upper bound iteration rule

- Corollary

For any real $t \geq s \geq 2$, we have

$$
\begin{aligned}
s^{\kappa} F_{\kappa}(s) \leq & t^{\kappa} F_{\kappa}(t)-\frac{2}{3} \kappa \int_{\frac{1}{t}<x<\frac{1}{s}} t^{\kappa} f_{\kappa}(t(1-x)) \frac{d x}{x} \\
& +\frac{1}{3} \kappa^{2} \iint_{\frac{1}{t}<y<x<\frac{1}{s}} t^{\kappa} F_{\kappa}(t(1-x-y)) \frac{d x}{x} \frac{d y}{y} .
\end{aligned}
$$

## New upper bound iteration rule

- Corollary

For any real $t \geq s \geq 2$, we have

$$
\begin{aligned}
s^{\kappa} F_{\kappa}(s) \leq & t^{\kappa} F_{\kappa}(t)-\frac{2}{3} \kappa \int_{\frac{1}{t}<x<\frac{1}{s}} t^{\kappa} f_{\kappa}(t(1-x)) \frac{d x}{x} \\
& +\frac{1}{3} \kappa^{2} \iint_{\frac{1}{t}<y<x<\frac{1}{s}} t^{\kappa} F_{\kappa}(t(1-x-y)) \frac{d x}{x} \frac{d y}{y} .
\end{aligned}
$$

- Taking $w=\frac{y}{z^{\beta}}$ corresponds to taking $t=\frac{s}{s-\beta}$.


## New upper bound iteration rule

- Corollary

For any real $t \geq s \geq 2$, we have

$$
\begin{aligned}
s^{\kappa} F_{\kappa}(s) \leq & t^{\kappa} F_{\kappa}(t)-\frac{2}{3} \kappa \int_{\frac{1}{t}<x<\frac{1}{s}} t^{\kappa} f_{\kappa}(t(1-x)) \frac{d x}{x} \\
& +\frac{1}{3} \kappa^{2} \iint_{\frac{1}{t}<y<x<\frac{1}{s}} t^{\kappa} F_{\kappa}(t(1-x-y)) \frac{d x}{x} \frac{d y}{y}
\end{aligned}
$$

- Taking $w=\frac{y}{z^{\beta}}$ corresponds to taking $t=\frac{s}{s-\beta}$.
- Comparing $t=\frac{s}{s-\beta}$ with the requirement $t \geq s \geq 2$, we see that this upper bound iteration tends to be useful only for $2 \leq s \leq \beta+1$.


## New lower bound iteration rule

- Theorem

For any $w \leq z^{2}$, we have

$$
\begin{aligned}
\mathcal{S}(A, z) \geq & \mathcal{S}(A, \sqrt{w})-\sum_{\sqrt{w} \leq p<z} \mathcal{S}\left(A_{p}, \frac{w}{p}\right)+\frac{5}{6} \sum_{\frac{w}{p} \leq q<p<z} \mathcal{S}\left(A_{p q}, \frac{w}{p}\right) \\
& -\frac{2}{3} \sum_{\substack{\frac{w}{p} \leq r<q<p<z \\
q r<w}} \mathcal{S}\left(A_{p q r}, \frac{w}{p}\right)-\frac{1}{2} \sum_{\frac{w}{q} \leq r<q<p<z} \mathcal{S}\left(A_{p q r}, \frac{w}{p}\right) .
\end{aligned}
$$

## New lower bound iteration rule

- Theorem

For any $w \leq z^{2}$, we have

$$
\begin{aligned}
\mathcal{S}(A, z) \geq & \mathcal{S}(A, \sqrt{w})-\sum_{\sqrt{w} \leq p<z} \mathcal{S}\left(A_{p}, \frac{w}{p}\right)+\frac{5}{6} \sum_{\frac{w}{p} \leq q<p<z} \mathcal{S}\left(A_{p q}, \frac{w}{p}\right) \\
& -\frac{2}{3} \sum_{\substack{\frac{w}{p} \leq r<q<p<z \\
q r<w}} \mathcal{S}\left(A_{p q r}, \frac{w}{p}\right)-\frac{1}{2} \sum_{\frac{w}{q} \leq r<q<p<z} \mathcal{S}\left(A_{p q r}, \frac{w}{p}\right) .
\end{aligned}
$$

- This is loosely based on the identity

$$
1-k+\frac{5}{6}\binom{k}{2}-\frac{1}{2}\binom{k}{3}=(1-k)\left(1-\frac{k}{3}\right)\left(1-\frac{k}{4}\right) .
$$

## New lower bound iteration rule

- Theorem

For any $w \leq z^{2}$, we have

$$
\begin{aligned}
\mathcal{S}(A, z) \geq & \mathcal{S}(A, \sqrt{w})-\sum_{\sqrt{w} \leq p<z} \mathcal{S}\left(A_{p}, \frac{w}{p}\right)+\frac{5}{6} \sum_{\frac{w}{p} \leq q<p<z} \mathcal{S}\left(A_{p q}, \frac{w}{p}\right) \\
& -\frac{2}{3} \sum_{\substack{\frac{w}{p} \leq r<q<p<z \\
q r<w}} \mathcal{S}\left(A_{p q r}, \frac{w}{p}\right)-\frac{1}{2} \sum_{\frac{w}{q} \leq r<q<p<z} \mathcal{S}\left(A_{p q r}, \frac{w}{p}\right) .
\end{aligned}
$$

- This is loosely based on the identity

$$
1-k+\frac{5}{6}\binom{k}{2}-\frac{1}{2}\binom{k}{3}=(1-k)\left(1-\frac{k}{3}\right)\left(1-\frac{k}{4}\right) .
$$

- Again, the optimal choice of $w$ appears to be $w=\frac{y}{z^{\beta}}$.


## New lower bound iteration rule

## Corollary

For any real $s \geq t$ with $2 t \geq s \geq 3$, we have

$$
\begin{aligned}
s^{\kappa} f_{\kappa}(s) \geq & (2 t)^{\kappa} f_{\kappa}(2 t)-\kappa \int_{\frac{1}{2 t}<x<\frac{1}{s}} \frac{1}{\left(\frac{1}{t}-x\right)^{\kappa}} F_{\kappa}\left(\frac{1-x}{\frac{1}{t}-x}\right) \frac{d x}{x} \\
& +\frac{5}{6} \kappa^{2} \iint_{\frac{1}{t}-x<y<x<\frac{1}{s}} \frac{1}{\left(\frac{1}{t}-x\right)^{\kappa}} f_{\kappa}\left(\frac{1-x-y}{\frac{1}{t}-x}\right) \frac{d x}{x} \frac{d y}{y} \\
& -\frac{2}{3} \kappa^{3} \iiint_{\frac{1}{t}-x<z<y<x<\frac{1}{s}} \frac{1}{\left(\frac{1}{t}-x\right)^{\kappa}} F_{\kappa}\left(\frac{1-x-y-z}{\frac{1}{t}-x}\right) \frac{d x}{x} \frac{d y}{y} \frac{d z}{z} \\
& +\frac{1}{6} \kappa^{3} \iiint_{\frac{1}{t}-y<z<y<x<\frac{1}{s}} \frac{1}{\left(\frac{1}{t}-x\right)^{\kappa}} F_{\kappa}\left(\frac{1-x-y-z}{\frac{1}{t}-x}\right) \frac{d x}{x} \frac{d y}{y} \frac{d z}{z} .
\end{aligned}
$$

## Miracle at $\kappa=1$

- When $\kappa=1$, if we take $t=\frac{s}{s-2}$, then the new upper bound iteration rule has equality in the range

$$
\frac{5}{2}<s<3
$$

and the new lower bound iteration rule has equality in the range

$$
\frac{7}{2}<s<4
$$

## Miracle at $\kappa=1$

- When $\kappa=1$, if we take $t=\frac{s}{s-2}$, then the new upper bound iteration rule has equality in the range

$$
\frac{5}{2}<s<3
$$

and the new lower bound iteration rule has equality in the range

$$
\frac{7}{2}<s<4
$$

- What is going on here?


## Miracle at $\kappa=1$

- In the case of the upper bound iteration, when $\frac{5}{2}<s<3$ and $t=\frac{s}{s-2}$ we have $3<t<5$, so the claimed identity

$$
\begin{aligned}
s F(s)= & t F(t)-\frac{2}{3} \int_{\frac{1}{t}<x<\frac{1}{s}} t f(t(1-x)) \frac{d x}{x} \\
& +\frac{1}{3} \iint_{\frac{1}{t}<y<x<\frac{1}{s}} t F(t(1-x-y)) \frac{d x}{x} \frac{d y}{y}
\end{aligned}
$$

becomes, using $F(s)=\frac{2 e^{\gamma}}{s}$ for $s \leq 3$ and $f(s)=\frac{2 e^{\gamma} \log (s-1)}{s}$ for $2 \leq s \leq 4$,
$1=\frac{t F(t)}{2 e^{\gamma}}-\frac{2}{3} \int_{\frac{1}{t}<x<\frac{1}{s}} \frac{\log (t(1-x))}{1-x} \frac{d x}{x}+\frac{1}{3} \iint_{\frac{1}{t}<y<x<\frac{1}{s}} \frac{1}{1-x-y} \frac{d x}{x} \frac{d y}{y}$

## Miracle at $\kappa=1$

- In the case of the upper bound iteration, when $\frac{5}{2}<s<3$ and $t=\frac{s}{s-2}$ we have $3<t<5$, so the claimed identity

$$
\begin{aligned}
s F(s)= & t F(t)-\frac{2}{3} \int_{\frac{1}{t}<x<\frac{1}{s}} t f(t(1-x)) \frac{d x}{x} \\
& +\frac{1}{3} \iint_{\frac{1}{t}<y<x<\frac{1}{s}} t F(t(1-x-y)) \frac{d x}{x} \frac{d y}{y}
\end{aligned}
$$

becomes, using $F(s)=\frac{2 e^{\gamma}}{s}$ for $s \leq 3$ and $f(s)=\frac{2 e^{\gamma} \log (s-1)}{s}$ for $2 \leq s \leq 4$,

$$
1=\frac{t F(t)}{2 e^{\gamma}}-\frac{2}{3} \int_{\frac{1}{t}<x<\frac{1}{s}} \frac{\log (t(1-x))}{1-x} \frac{d x}{x}+\frac{1}{3} \iint_{\frac{1}{t}<y<x<\frac{1}{s}} \frac{1}{1-x-y} \frac{d x}{x} \frac{d y}{y}
$$

- You can check this integral identity by hand, but a similar strategy for the lower bound iteration is hopeless.


## The real reason for the miracle

- Recall the equality case sets $A^{+}, A^{-}$have

$$
\begin{aligned}
& \mathcal{S}\left(A^{+}, z\right)=F(s) \frac{y}{e^{\gamma} \log (z)}+O\left(\frac{y}{\log (z)^{2}}\right), \\
& \mathcal{S}\left(A^{-}, z\right)=f(s) \frac{y}{e^{\gamma} \log (z)}+O\left(\frac{y}{\log (z)^{2}}\right) .
\end{aligned}
$$

## The real reason for the miracle

- Recall the equality case sets $A^{+}, A^{-}$have

$$
\begin{aligned}
& \mathcal{S}\left(A^{+}, z\right)=F(s) \frac{y}{e^{\gamma} \log (z)}+O\left(\frac{y}{\log (z)^{2}}\right), \\
& \mathcal{S}\left(A^{-}, z\right)=f(s) \frac{y}{e^{\gamma} \log (z)}+O\left(\frac{y}{\log (z)^{2}}\right) .
\end{aligned}
$$

- So to check we have equality in the upper bound sieve iteration, we just need to check that when $z^{\frac{5}{2}}<y<z^{3}$, we have

$$
\begin{aligned}
\mathcal{S}\left(A^{+}, z\right)= & \mathcal{S}\left(A^{+}, \frac{y}{z^{2}}\right)-\frac{2}{3} \sum_{\frac{y}{z^{2}} \leq p<z} \mathcal{S}\left(A_{p}^{-}, \frac{y}{z^{2}}\right) \\
& +\frac{1}{3} \sum_{\frac{y}{z^{2}} \leq q<p<z} \mathcal{S}\left(A_{p q}^{+}, \frac{y}{z^{2}}\right)+O\left(\frac{y}{\log (z)^{2}}\right) .
\end{aligned}
$$

## The real reason for the miracle

- Need to check that when $z^{\frac{5}{2}}<y<z^{3}$, we have

$$
\begin{aligned}
\mathcal{S}\left(A^{+}, z\right)= & \mathcal{S}\left(A^{+}, \frac{y}{z^{2}}\right)-\frac{2}{3} \sum_{\frac{y}{z^{2}} \leq p<z} \mathcal{S}\left(A_{p}^{-}, \frac{y}{z^{2}}\right) \\
& +\frac{1}{3} \sum_{\frac{y}{z^{2}} \leq q<p<z} \mathcal{S}\left(A_{p q}^{+}, \frac{y}{z^{2}}\right)+O\left(\frac{y}{\log (z)^{2}}\right) .
\end{aligned}
$$

## The real reason for the miracle

- Need to check that when $z^{\frac{5}{2}}<y<z^{3}$, we have

$$
\begin{aligned}
\mathcal{S}\left(A^{+}, z\right)= & \mathcal{S}\left(A^{+}, \frac{y}{z^{2}}\right)-\frac{2}{3} \sum_{\frac{y}{z^{2}} \leq p<z} \mathcal{S}\left(A_{p}^{-}, \frac{y}{z^{2}}\right) \\
& +\frac{1}{3} \sum_{\frac{y}{z^{2}} \leq q<p<z} \mathcal{S}\left(A_{p q}^{+}, \frac{y}{z^{2}}\right)+O\left(\frac{y}{\log (z)^{2}}\right) .
\end{aligned}
$$

- Every element of $A^{+}$has an odd number of prime factors, so if $d \in A^{+}$is counted more times on the right than the left then $d$ must either be a prime between $z$ and $\frac{y}{z^{2}}$, be nonsquarefree, or have at least five prime factors, all greater than $\frac{y}{z^{2}}>z^{\frac{1}{2}}$ (making $d>\left(z^{\frac{1}{2}}\right)^{5}>y$ ).


## The real reason for the miracle

- Need to check that when $z^{\frac{5}{2}}<y<z^{3}$, we have

$$
\begin{aligned}
\mathcal{S}\left(A^{+}, z\right)= & \mathcal{S}\left(A^{+}, \frac{y}{z^{2}}\right)-\frac{2}{3} \sum_{\frac{y}{z^{2}} \leq p<z} \mathcal{S}\left(A_{p}^{-}, \frac{y}{z^{2}}\right) \\
& +\frac{1}{3} \sum_{\frac{y}{z^{2}} \leq q<p<z} \mathcal{S}\left(A_{p q}^{+}, \frac{y}{z^{2}}\right)+O\left(\frac{y}{\log (z)^{2}}\right) .
\end{aligned}
$$

- Every element of $A^{+}$has an odd number of prime factors, so if $d \in A^{+}$is counted more times on the right than the left then $d$ must either be a prime between $z$ and $\frac{y}{z^{2}}$, be nonsquarefree, or have at least five prime factors, all greater than $\frac{y}{z^{2}}>z^{\frac{1}{2}}$ (making $d>\left(z^{\frac{1}{2}}\right)^{5}>y$ ).
- A similar (but more difficult) analysis shows that the lower bound iteration is also optimal at $\kappa=1$ when $\frac{7}{2}<s<4$.


## Numerical results at $\kappa=\frac{3}{2}$

- Best previous bound for $\beta_{\frac{3}{2}}$ was given by the Diamond-Halberstam-Richert sieve: $\beta_{\frac{3}{2}} \leq 3.11582 \ldots$ This sieve is constructed by applying Buchstab iteration to the Selberg sieve.


## Numerical results at $\kappa=\frac{3}{2}$

- Best previous bound for $\beta_{\frac{3}{2}}$ was given by the Diamond-Halberstam-Richert sieve: $\beta_{\frac{3}{2}} \leq 3.11582 \ldots$. This sieve is constructed by applying Buchstab iteration to the Selberg sieve.
- Applying the new upper bound iteration to the DHR sieve (with $t=\frac{s}{s-3.1158 \ldots}$ ) and using Buchstab iteration for the lower bound, this improves to $\beta_{\frac{3}{2}}<3.11570$.


## Numerical results at $\kappa=\frac{3}{2}$

- Best previous bound for $\beta_{\frac{3}{2}}$ was given by the Diamond-Halberstam-Richert sieve: $\beta_{\frac{3}{2}} \leq 3.11582 \ldots$. This sieve is constructed by applying Buchstab iteration to the Selberg sieve.
- Applying the new upper bound iteration to the DHR sieve (with $t=\frac{s}{s-3.1158 \ldots}$ ) and using Buchstab iteration for the lower bound, this improves to $\beta_{\frac{3}{2}}<3.11570$.
- Applying the new lower bound iteration directly to the DHR sieve with $s \approx 4.85, t \approx 5.52$, we get $\beta_{\frac{3}{2}}<3.11554$.


## Numerical results at $\kappa=\frac{3}{2}$

- Best previous bound for $\beta_{\frac{3}{2}}$ was given by the Diamond-Halberstam-Richert sieve: $\beta_{\frac{3}{2}} \leq 3.11582 \ldots$. This sieve is constructed by applying Buchstab iteration to the Selberg sieve.
- Applying the new upper bound iteration to the DHR sieve (with $t=\frac{s}{s-3.1158 \ldots \ldots}$ ) and using Buchstab iteration for the lower bound, this improves to $\beta_{\frac{3}{2}}<3.11570$.
- Applying the new lower bound iteration directly to the DHR sieve with $s \approx 4.85, t \approx 5.52$, we get $\beta_{\frac{3}{2}}<3.11554$.
- Applying both iteration rules repeatedly with various choices of the parameters, we get $\beta_{\frac{3}{2}}<3.11549$.


## Thank you for your attention.

Bonus: attaching a probability distribution on the triangle to upper bound sieves which are optimal at $\kappa=1$

We can write a generic upper bound sieve in the form
$\mathcal{S}(A, z) \leq|A|+\sum_{p<z} \lambda\left(\frac{\log (p)}{\log (y)}\right)\left|A_{p}\right|+\sum_{q<p<z} \lambda\left(\frac{\log (p)}{\log (y)}, \frac{\log (q)}{\log (y)}\right)\left|A_{p q}\right|+\cdots$
where $\lambda$ (supported on tuples which sum to at most 1 ) is chosen such that, setting

$$
\theta(S)=\sum_{A \subseteq S} \lambda(A)
$$

we have $\theta(S) \geq 0$ for every finite (multi-)subset $S$ of the interval $[0,1]$.
In order for this to be an optimal sieve at $\kappa=1$, we need $\theta(S)=0$ whenever $|S|$ is odd and the sum of the elements of $S$ is equal to 1 .

Bonus: attaching a probability distribution on the triangle to upper bound sieves which are optimal at $\kappa=1$

We restrict our attention to sets of size 1 and 2, and let $f(x)=\theta(2 x), g(x, y)=\theta(2 x, 2 y)$.
Theorem
Suppose $f:[0,1] \rightarrow \mathbb{R}_{\geq 0}$ and $g:[0,1]^{2} \rightarrow \mathbb{R}_{\geq 0}$ are nonnegative functions such that there is some $\epsilon>0$ with

$$
\begin{gathered}
x+y \leq 1 \Longrightarrow g(x, y)=0 \\
|x+y+z-2| \leq \epsilon \Longrightarrow f(x)+f(y)+f(z) \leq g(x, y)+g(x, z)+g(y, z)+1 \\
x+y+z=2 \Longrightarrow f(x)+f(y)+f(z)=g(x, y)+g(x, z)+g(y, z)+1
\end{gathered}
$$

Then there exists a symmetric probability distribution $\mu$ supported on the triangle $\left\{a, b, c \in[0,1]^{3} \mid a+b+c=2\right\}$ with

$$
f(x)=\mathbb{P}_{\mu(a, b, c)}[a \leq x], g(x, y)=\mathbb{P}_{\mu(a, b, c)}[a \leq x \wedge b \leq y]
$$

away from a set of measure 0 .

## Bonus: attaching a probability distribution on the triangle

 to upper bound sieves which are optimal at $\kappa=1$In this framework:

- The $\beta$-sieve corresponds to a probability distribution supported on the center point $\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$ of the triangle.
- The Selberg sieve corresponds to a uniform probability distribution over the triangle.
- The new upper bound sifting iteration rule corresponds to a probability distribution with mass $\frac{1}{3}$ at each of the vertices $(0,1,1),(1,0,1),(1,1,0)$ of the triangle.

Bonus: a first attempt at a new upper bound sieve for the range $\frac{12}{5}<s<\frac{5}{2}$

If every element of $A$ has size at most $y^{\frac{13}{12}}$ and $z^{\frac{12}{5}}<y<z^{\frac{5}{2}}$ :

$$
\begin{aligned}
\mathcal{S}(A, z) \leq & \mathcal{S}\left(A, \frac{y}{z^{2}}\right)-\frac{4}{5} \sum_{\frac{\frac{y}{z^{2}} \leq p<\frac{z^{3}}{y}}{y}} \mathcal{S}\left(A_{p}, \frac{y}{z^{2}}\right)-\frac{2}{3} \sum_{\frac{z^{3}}{\frac{z^{3}}{y} \leq p<\frac{y^{2}}{z^{4}}}} \mathcal{S}\left(A_{p}, \frac{y}{z^{2}}\right) \\
& -\frac{8}{15} \sum_{\frac{\frac{y}{2}^{2}}{z^{4} \leq p<z}} \mathcal{S}\left(A_{p}, \frac{y}{z^{2}}\right)+\frac{3}{5} \sum_{\frac{y}{z^{2}} \leq q<p<\frac{z^{3}}{y}} \mathcal{S}\left(A_{p q}, \frac{y}{z^{2}}\right) \\
& +\frac{7}{15} \sum_{\frac{y}{z^{2}} \leq q<\frac{z^{3}}{y} \leq p<\frac{y^{2}}{z^{4}}} \mathcal{S}\left(A_{p q}, \frac{y}{z^{2}}\right)+\frac{1}{3} \sum_{\substack{\frac{y}{z^{2}} \leq q<\frac{z^{3}}{y}}} \mathcal{S}\left(A_{p q}, \frac{y}{z^{2}}\right) \\
& +\frac{1}{3} \sum_{\frac{z^{\frac{3}{2}}}{\frac{z^{2}}{y}} \leq q<p<z} \mathcal{S}\left(A_{p q}, \frac{y}{z^{2}}\right)+\frac{4}{15} \sum_{\frac{z^{\frac{3}{2}}}{y} \leq q<\frac{y^{2}}{z^{4}} \leq p<z} \mathcal{S}\left(A_{p q}, \frac{y}{z^{2}}\right)+
\end{aligned}
$$

Bonus: a first attempt at a new upper bound sieve for the range $\frac{12}{5}<s<\frac{5}{2}$ (continued)

$$
\begin{aligned}
& +\frac{1}{5} \sum_{\substack{\frac{y^{2}}{z^{4}} \leq q<p<z}} \mathcal{S}\left(A_{p q}, \frac{y}{z^{2}}\right)-\frac{2}{5} \sum_{\substack{\frac{y}{z^{2}} \leq r<q<p<\frac{z^{3}}{y} \\
p q r^{2}<z^{2}}} \mathcal{S}\left(A_{p q r}, \frac{y}{z^{2}}\right) \\
& -\frac{4}{15} \sum_{\substack{\frac{y}{z^{2}} \leq r<q<\frac{z^{3}}{y} \leq p<\frac{y^{2}}{z^{4}}}}\left(1-\frac{3 \log (q r)}{8 \log (y / p)}\right) \mathcal{S}\left(A_{p q r}, \frac{y}{z^{2}}\right) \\
& +\frac{1}{5} \sum_{\substack{\frac{y}{z^{2}} \leq s<r<q<p<\frac{z^{3}}{y} \\
p q r^{2}<z^{2}}} \mathcal{S}\left(A_{p q r}, \frac{y}{z^{2}}\right) \\
& +\frac{1}{10} \sum_{\substack{\frac{y}{z^{2}} \leq s<r<q<\frac{z^{3}}{y} \leq p<\frac{y^{2}}{z^{4}}}}\left(1-\frac{\log (q r s)}{\log (y / p)}\right)_{+} \mathcal{S}\left(A_{p q r}, \frac{y}{z^{2}}\right) .
\end{aligned}
$$

