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0.1 General Outline

These notes were born from a multi-year learning seminar at MIT1. Each of the early sections
corresponds roughly to a one-hour talk from the seminar, with details filled in, while the later
sections were written after the seminar had completed. The subsections that occur after some of
the sections consist of optional extra material that wasn’t covered in the learning seminar due to
time constraints. The appendices consist of longer portions of optional material - summaries of
famous universal algebraic theories that are useful to know about in order to navigate the literature.

In the next section we give a teaser for the sorts of results we’ll try to prove here, mainly
to convince the reader that there are highly nontrivial results in this area, and that it is not
just abstract nonsense. The text proper begins in Chapter 1, which consists of the foundational
abstractions we need later, together with several fundamental examples illustrating three different
behaviors of CSPs that need to be understood in order to understand the general case.

In Chapter 2, we go over the breakthrough theory of algebras few subpowers, which lead to the
first truly nontrivial algorithmic result in this area. In Chapter 3, we go over the more technically
challenging theory of absorbing subalgebras and its application to CSPs of “bounded width” -
although the algorithms used to solve CSPs in this chapter are much simpler than the ones from
the previous chapter, the algebraic machinery necessary to prove that these algorithms always
succeed is much more difficult (but more broadly applicable). Chapters 2 and 3 do not necessarily
need to be read in order, as the algebraic approaches used are quite different. In Chapter 4 we
move to trying to understand the general case of finite Taylor algebras, starting with the simpler
case of conservative Taylor algebras to introduce a few of the new ideas that will be necessary to
handle the general case.

Currently these notes are in an unfinished state - maybe half way through the material needed
for the CSP dichotomy for finite structures, with much more planned if that is ever finished.

0.2 Introduction / Advertisement

In this section we’ll state many of the results and motivating questions that we’ll try to understand
in these notes. If you don’t understand something written here right away, don’t despair - we’ll go
over everything in more detail later. The impatient reader can safely skip ahead to Section 1.1.

The story starts with a result of Schaefer [151] on a problem he called “Generalized Satisfiabil-
ity”.

Definition 0.2.1. If Γ is a set of relations on {0, 1}, then GenSAT(Γ) is the decision problem
which takes as input a set of variables V and a collection of constraints, where each constraint is
of the form “the relation R(v1, ..., vk) must be satisfied” where (v1, ..., vk) is a tuple of variables

1This material is based upon work supported by the NSF Mathematical Sciences Postdoctoral Research Fellowship
under Grant No. (DMS-1705177). Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
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of V and R is a relation from Γ of arity k, and where the desired output is whether or not it is
possible to assign values in {0, 1} to the variables such that the assignment satifies all of the given
constraints.

Theorem 0.2.2 (Schaefer [151]). If GenSAT(Γ) is not NP-complete, then Γ is contained in one
of the following sets of relations:

• the set of relations containing the all-0s vector,

• the set of relations containing the all-1s vector,

• the set of relations which can be written as an intersection of Horn clauses, where a Horn
clause is a disjunction of literals such that at most one variable appears positively,

• the set of relations which can be written as an intersection of dual-Horn clauses, where a
dual-Horn clause is a disjunction of literals such that at most one variable appears negatively,

• the set of relations which can be written as an intersection of relations involving at most two
variables,

• the set of relations which can be written as solution sets to systems of linear equations over
F2.

In each of these cases, GenSAT(Γ) can be solved in polynomial time.

The next result of this form is due to Hell and Nešetril [78], on a generalization of n-coloring
which they call “H-coloring”.

Definition 0.2.3. If H is a graph, then H-coloring is the decision problem which takes a graph G
as input, and where the desired output is whether or not there is a graph homomorphism from G
to H.

Note that if we take H = Kn, then Kn-coloring is equivalent to n-coloring.

Theorem 0.2.4 (Hell, Nešetril [78]). H-coloring is in P if H is bipartite, and it is NP-complete
otherwise.

These two results led Feder and Vardi [69] to ask whether there is a general dichotomy between
P and NP. However, any such dichotomy has to avoid Ladner’s [116] anti-dichotomy result.

Theorem 0.2.5 (Ladner [116]). If P ̸= NP, then there are problems in NP which are neither in P
nor NP-complete.

In order to avoid Ladner’s result, Feder and Vardi focused on a special type of problem: “con-
straint satisfaction problems” (abbreviated as CSPs) with a fixed “template”.

Definition 0.2.6. A CSP-template T consists of a finite set D together with a finite collection
Γ = (R1, ..., Rn) of relations on D - equivalently, we can think of T as a relational structure
(D,R1, ..., Rn). The decision problem CSP(T ) takes as input a list of variables V and for each i ≤ n
a list of tuples Ci of variables of V which are required to satisfy the constraint Ri, and accepts if
there exists an assignment of variables to values in the set D satisfying the given constraints.
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Example 0.2.1. The problem k-COLORING (given a graph, determine if it can be colored with k
colors) is equivalent to CSP({1, ..., k}, ̸=) = CSP(Kk), where Kk is the complete graph of k vertices
(considered as a relational structure).

Example 0.2.2. The problem 2-SAT is equivalent to CSP({0, 1},≤, ̸=). This problem is in P - in
fact, it is known to be NL-complete (NL stands for nondeterministic logspace), and it can be solved
in linear time.

Example 0.2.3. The problem 3-SAT can be thought of as CSP({0, 1}, R(0,0,0), ..., R(1,1,1)), where
R(i,j,k) = {0, 1}3\{(i, j, k)}. We can also simplify this to the equivalent problem CSP({0, 1}, {0, 1}3\
{(0, 0, 0)}, ̸=).

Example 0.2.4. The problem NAE-SAT is CSP({0, 1}, NAE), whereNAE = {0, 1}3\{(0, 0, 0), (1, 1, 1)}
is the relation that states that the three variables in question are not all equal. This CSP template
is known to be NP-complete.

Example 0.2.5. The problem 1-IN-3 SAT is CSP({0, 1}, {(0, 0, 1), (0, 1, 0), (1, 0, 0)}). This CSP
template is known to be NP-complete.

Example 0.2.6. The problem HORN-SAT is CSP({0, 1}, {0}, {1}, {0, 1}3 \ {(1, 1, 0)}) (the third
constraint is (x ∧ y) =⇒ z). This problem is known to be P-complete, and it can be solved in
linear time.

Example 0.2.7. The problem XOR-SAT is CSP({0, 1}, {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}, ̸=). This
problem is in P - in fact, it can be solved in deterministic time nlog2(7) and randomized quadratic
time [160] (it is unknown if it can be solved in linear time).

Generalizing the XOR-SAT example to a larger domain, we have the following very general
family of problems which can be thought of as the natural generalization of systems of linear
equations, over a possibly noncommutative group.

Example 0.2.8. Let G be a finite group, and consider the CSP template with domain G, and with a
relation gH for every subgroup H ≤ Gn and every element g ∈ Gn, for every n. Note that strictly
speaking, this is not a CSP (as we have defined it) since the set of relations is infinite. Feder and
Vardi [69] prove that this general subgroup problem is polynomially solvable.

Based on the examples they knew at the time, Feder and Vardi guessed that tractable CSPs fall
into two types: “bounded width” problems, which are solved by local propagation of information,
and problems with “the ability to count” such as the subgroup problems above. They further
divided the bounded width problems into two main subclasses: problems with “width 1” (such as
HORN-SAT) and problems with “bounded strict width” (such as 2-SAT).

The bounded width problems can be defined formally in terms of a logic programming language
called Datalog (a simple subset of the programming language Prolog), where a program consists
of rules for updating a database of known facts about tuples of variables by adding new facts if
certain preconditions are met. For instance, a program to determine whether a graph is connected
might have two predicates, one for the edges of the graph and another for connectivity, and a
rule that says “if connected(a,b) and edge(b,c), then add connected(a,c) to the database”. This
example program maintains facts about pairs of variables, but has rules that involve examining
three variables at a time.

Definition 0.2.7. A CSP has width (l, k), k ≥ l if it can be solved by a Datalog program which
keeps track of facts about tuples of at most l variables, and updates its database by using rules
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that examine at most k variables at a time. We say that it has width l if there exists any k such
that it has width (l, k).

In some cases we want to consider CSPs with relations of arbitrarily large arities. In these cases,
one uses the concept of relational width, introduced by Bulatov [43], where our Datalog program is
also allowed to update its database of facts about l-tuples of variables by using rules that examine
any set of variables which is contained in the scope of some constraint relation, and to shrink our
constraint relations based on facts about l-tuples of variables.

As it turns out, there is a canonical Datalog program for solving problems of width (l, k), which
correctly solves every instance of a CSP if and only if the CSP has width (l, k). This program just
keeps track of the set of all possible assignments to each tuple of at most l variables, and eliminates
possibilities from these lists by brute-forcing the set of possible assignments to each k-tuple of
variables in turn (checking for consistency with each subset of these variables of size ≤ l), until it
can no longer eliminate any further possible assignments from its database. If there are n variables,
this runs in time O(nk) and space O(nl).

A slight weakening of the above canonical Datalog program with width 1, in which we only
consider one relation at a time in order to remove potential values for the variables, is called “arc-
consistency”, or sometimes “generalized arc-consistency” if the relations have arity greater than 2.
CSPs which can be solved by arc-consistency have a special property called “tree-duality”, which
says that an instance has a solution if and only its “universal cover” has a solution (the universal
cover is an instance with variables and constraints forming an infinite tree that corresponds to the
universal cover of the (hyper-)graph of variables and constraints of the original instance).

The width of a CSP can also be defined in terms of a two player game (see [5]), in which one
player (the Prover) tries to convince the other player (the Verifier) that an instance of the CSP has
a solution. The game goes as follows: in each round of the game, the Prover has assigned values to a
certain tuple of at most l variables (at the beginning of the game, this tuple is empty). The Verifier
then picks a superset of the previous tuple of size at most k, and challenges the Prover to extend
their assignment to this larger collection of variables. After this the Verifier selects any subset of
the variables of size at most l, restricting the assignment to that subset, and the next round begins.
The Verifier wins if at any point the Prover’s assignment fails to satisfy some constraint of the
CSP. Then a CSP has width (l, k) if the Prover has a winning strategy only when the problem has
a valid global solution.

Definition 0.2.8. A CSP has strict width l if, whenever a partial solution to an instance of the
CSP has no extension to a full solution, there exists a subset of the partial solution of size at most l,
such that this subset already has no extension to a full solution. Equivalently, for every instance of
the CSP, the projection of the solution set onto any set of k > l variables is completely determined
by the projections of the solution set onto subsets of those variables of size l.

As a consequence of the above definition, if a CSP has strict width l, then any constraint having
arity greater than l must be expressible as a conjunction of constraints involving at most l variables.
Feder and Vardi [69] prove that one can check whether a CSP has strict width l in time polynomial
in the size of the domain and the constraints (for a fixed l), and give a necessary and sufficient
criterion in terms of the existence of a near-unanimity operation of arity l + 1 which “preserves”
the constraints of the CSP.

In trying to understand the set of CSPs which do not have bounded width, Feder and Vardi [69]
introduced the concept of the ability to count. Their definition of this concept is quite technical,
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and it was later realized that it’s enough to focus on a simpler case: the affine CSP over an abelian
group.

Definition 0.2.9. For every abelian group A, we define the associated affine CSP to be the CSP
with domain A, with the ternary relation {(x, y, z) | x+y+z = a} and the unary singleton relation
{a} for each element a ∈ A.

In case the reader wants to see the general definition of the ability to count, we have reproduced
it below.

Definition 0.2.10. A CSP has the ability to count if there are elements 0, 1 in the domain
and there are relations C,Z in the library of constraints such that C is ternary, Z is unary,
(0, 0, 1), (0, 1, 0), (1, 0, 0) ∈ C, 0 ∈ Z, and any instance of the CSP which satisfies the following
properties has no solution:

• the instance only uses the constraints C,Z,

• the constraints of the instance can be partitioned into two parts A,B such that each variable
of the instance shows up in exactly one constraint from A and exactly one constraint from
B, and

• A contains exactly one more copy of the constraint C than B does.

Following an argument of Razborov for bipartite matching, Feder and Vardi prove the following.

Theorem 0.2.11 (Feder, Vardi [69]). Any CSP with the ability to count can’t be solved by polyno-
mial size monotone circuits. A CSP with the ability to count can never have bounded width.

They then make the following two outrageous conjectures.

Conjecture 0.2.1. Any CSP which can’t “simulate” a CSP which has the ability to count does
have bounded width.

Conjecture 0.2.2. Any CSP which can’t “simulate” 1-IN-3 SAT can be solved in polynomial time.

Shockingly, despite seeming hopelessly vague and intractable, both of these conjectures were
recently proven to be correct ! In fact, the conjecture about the ability to count holds even if we
only require that our CSP can’t simulate any affine CSP.

The examples of subgroup problems given above together with the concept of the ability to
count also prompt the following question.

Problem 0.2.1. What is the largest possible generalization of the Gaussian elimination algorithm?

Feder and Vardi [69] made a first attempt at answering this by introducing the concept of
near-subgroups of a group, and conjectured that they also lead to CSPs that could be solved in
polynomial time. Using a result of Aschbacher [4], Feder [68] later succeeded in showing that
near-subgroup problems can be solved in polynomial time.

In this case, however, they could have asked for more. Hubie Chen [53] studied the “expressive
rate” of a constraint language Γ, which is defined as the function that takes n to the logarithm
of the number of n-variable relations which can be defined as solutions sets to CSPs over Γ. He
observed that on a two element domain, this expressive rate always either grows as a polynomial
or as an exponential function, and that the cases where it grows polynomially are exactly the cases
where the class of relations which can be defined from Γ is “polynomially learnable”. The same
conjecture occurs in chapter 10 of Vı́ctor Dalmau’s thesis [56], in an algebraic form.
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Conjecture 0.2.3. For any constraint language Γ, the logarithm of the number of distinct n-
variable relations which can be defined by primitive positive formulas over Γ always either grows as
a polynomial or as an exponential function. In the case of polynomial growth this class of relations
is efficiently learnable and the associated CSP can be solved in polynomial time.

This conjecture was resolved via the theory of algebras with “few subpowers”, which classi-
fies CSPs such that the solution sets always have “compact representations”, and gives general
procedures for manipulating these compact representations.

In order to approach these questions, the key conceptual ingredient turned out to be a Galois
duality from universal algebra, relating a family of relations to the set of operations which “preserve”
the relations. This allows us to view CSPs as algebraic structures in disguise, and to use algebraic
techniques to study the structure of their solution sets and to design algorithms. However, the
algebraic structures we end up studying are much less structured than groups or lattices - they are
in a sense the most basic algebraic structures that have any good properties at all.

The new framework was introduced by Jeavons [89], who reinterpreted an instance of a CSP as
a homomorphism problem between relational structures.

Definition 0.2.12. An instance of the general combinatorial problem, or GCP, is a pair of relational
structures ⟨A,B⟩ having the same signature (a relational structure is a set together with a family of
named relations on that set, and the signature of a relational structure is a list of names of relations
together with specifications of their arities). The question is whether there exists a homomorphism
from A to B.

Example 0.2.9. Suppose that T is a CSP template (in the sense of Feder and Vardi above), inter-
preted as a relational structure (D,R1, ..., Rn). To any instance of the CSP, we can associate a
relational structure X = (V,C1, ..., Cn), where V is the set of variables of the instance, and each
Ci is a list of those tuples of variables of V which are required to satisfy the constraint Ri. Then a
homomorphism of relational structures X→ T is the same as an assignment of values in D to each
variable in V , such that each tuple of variables in each Ci is mapped to an element of Ri. In other
words, the GCP instance ⟨X,T⟩ is equivalent to the instance of CSP(T) corresponding to X.

Jeavons also gives a few ways for other well-known problems (not CSPs) to be realized as
instances of his general combinatorial problem.

Example 0.2.10. If G is a graph and Kq is a clique with q vertices, then the GCP instance ⟨Kq, G⟩
is the q-CLIQUE problem. Note that in this case, the target of the homomorphism is the main
variable, while the source stays fixed (aside from the parameter q).

Example 0.2.11. Let G = (V,E) be a graph on n vertices, and let Cn = (W,F ) be a cycle on n
vertices. Then the GCP instance ⟨(W,F, ̸=), (V,E, ̸=)⟩ is the problem of determining whether G
has a Hamiltonian circuit.

These other sorts of problems, where the target of the homomorphism varies arbitrarily and the
source varies according to some parameter can be studied from the point of view of parametrized
complexity and fixed parameter tractability. It turns out that hardness and easiness in this alter-
native setting is determined by the treewidth of the source structures [75]. We won’t discuss this
research direction much.

After demonstrating the generality of the framework, Jeavons [89] restricts to studying homo-
morphism problems with a fixed target structure T. He calls this GCP(Γ), where Γ is the list of
relations of T, but we will call it CSP(T) in these notes. Note that this is the same problem as the
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CSP defined in the sense of Feder and Vardi above, but the instances are now treated as relational
structures (which is useful notationally), and the new perspective in terms of homomorphisms gives
a hint of a more algebraic approach. For instance, the homomorphism point of view prompts the
following definition.

Definition 0.2.13. Two relational structures A,B with the same signature are homomorphically
equivalent if there exist homomorphisms A→ B,B→ A.

The homomorphism point of view now makes it obvious that if A and B are homomorphically
equivalent, then CSP(A) and CSP(B) are equivalent problems - that is, a “yes” instance of one will
always be a “yes” instance of the other. For instance, every bipartite graph H having at least one
edge is homomorphically equivalent to the complete graph K2 on two vertices, so if H is bipartite
then the H-coloring problem is trivial.

Jeavons [89] points out that for a given CSP template, one can introduce new relations without
changing the complexity of the CSP so long as these new relations are built out of the old relations
in certain ways. Specifically, Jeavons shows that up to logspace reductions, we may as well assume
that the collection of relations Γ contains the equality relation, and is closed under the following
four operations:

• permutation of inputs,

• adding dummy variables (extra variables which are ignored by the relation),

• existential projection onto a subset of the variables, and

• intersection.

Note that any new relation which can be built out of these four operations can be viewed as the
solution set to some instance of CSP(Γ), projected onto some subset of the variables. We can
also think of the new relation as being defined by a primitive positive formula, that is, a formula
built out of the existential quantifier ∃, the relations Ri of Γ (and equality), and conjunctions ∧,
but which does not involve negation, disjunction, implication, or universal quantification (such a
formula is called a conjunctive query in database theory).

Example 0.2.12. The template we gave for HORN-SAT did not contain all possible Horn clauses -
it stopped at the 3-ary Horn clause x ∧ y =⇒ z. The 4-ary Horn clause x ∧ y ∧ z =⇒ w can be
represented by the following primitive positive formula:

∃u (x ∧ y =⇒ u) ∧ (u ∧ z =⇒ w).

The Horn clauses of higher arity can be represented by primitive positive formulas over HORN-SAT
in a similar way.

Definition 0.2.14. A set of relations Γ on a fixed domain D is called a relational clone if it contains
the equality relation, and is closed under permutations, adding dummy variables, projection, and
intersections. Equivalently, a relational clone is a set of relations which is closed under defining
new relations via primitive positive formulas.

The connection to algebra comes from the following fundamental result.
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Theorem 0.2.15. There is a Galois duality between relational clones and clones. In particular, a
relational clone is completely determined by its set of “polymorphisms”, that is, the set of functions
that “preserve” all of the relations of Γ.

In order to understand this result we must define clones, polymorphisms, and the concept of a
function preserving a relation.

Definition 0.2.16. A set of functions Dk → D, k ∈ N is called a clone if it contains the projections
πki : Dk → D which satisfy πki (x1, ..., xk) = xi (generally the superscript k is omitted when it is
clear), and is closed under composition, the operation which takes a k-ary function f and k l-ary
functions g1, ..., gk to the function

(f ◦ (g1, ..., gk)) : (x1, ..., xl) 7→ f(g1(x1, ..., xl), ..., gk(x1, ..., xl)).

The reader should play with the above definition in order to convince themself that every natural
method of building new functions from old functions can be described in terms of the composition
operation given above together with the projections πki . For instance, the function f(x, g(y, x)) can
be built out of f and g as follows:

(f ◦ (π1, g ◦ (π2, π1)))(x, y) = f(x, g(y, x)).

Definition 0.2.17. A k-ary function f is said to preserve an m-ary relation R, written f � R, if
for every choice of k m-tuples in R, applying f componentwise produces a new m-tuple which is
also in R. If we think of elements of R as column vectors, we can write this asx11...

x1m

 , ...,
xk1...
xkm

 ∈ R =⇒ f


x11...
x1m

 , ...,
xk1...
xkm


 =

 f(x11, ..., xk1)
...

f(x1m, ..., xkm)

 ∈ R.
A function f is a polymorphism of a relational structure (D,Γ) or of a relational clone Γ if f
preserves Ri for each relation Ri ∈ Γ.

The concept of preservation can be understood in two different ways. From the relational point
of view, we have f�R iff f : Dk → D is a homomorphism of relational structures (D,R)k → (D,R),
where (D,R)k is the categorical kth power of the relational structure (D,R) (the kth power of
(D,R) has underlying set Dk and relation Rk given by listing all m-tuples of k-tuples such that
the m-tuple of ith coordinates is in R for each i ≤ k). From the algebraic point of view, we have
f � R iff the subset R ⊆ Dm is a subalgebra of the algebraic structure (D, f)m, where (D, f)m is
the categorical mth power of the algebraic structure (D, f), where the basic operation is simply f
acting componentwise on Dm.

The Galois duality between relational clones and clones prompts a shift in ones way of thinking
about CSPs. Instead of studying a CSP template, one studies an algebraic structure whose oper-
ations are the polymorphisms of the original CSP template. Constraints that can be expressed in
terms of the original library of relations become subalgebras of powers of this algebraic structure.
Instances of a CSP become questions about whether intersections of various subalgebras of a power
of the original algebra are empty or not.
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Example 0.2.13. Suppose A = (Z/p, f) is the algebraic structure with basic operation f : (x, y, z) 7→
x−y+z (mod p) for some prime p. Then a subalgebra of An - that is, a subset which is closed under
f - is exactly the same as an affine linear subspace of (Z/p)n (recall that affine linear subspaces
are like vector subspaces, but that they might not pass through the origin). Checking whether a
collection of affine linear subspaces has a nonempty intersection is equivalent to solving a system
of linear equations (mod p).

By using an old result classifying the minimal (nontrivial) clones on the domain {0, 1} (under
the Galois duality, a minimal clone of functions corresponds to a maximal relational clone), Jeavons
[89] was able to give a new and relatively simple proof of Schaefer’s dichotomy theorem [151]. The
algebraic structures corresponding to the basic polynomial time solvable problems are as follows.

Example 0.2.14. If Γ = ({0}, {1}, {0, 1}3 \ {1, 1, 0}) is the template corresponding to HORN-SAT,
then the clone of polymorphisms is generated by the function min : {0, 1}2 → {0, 1}. This operation
is an example of a semilattice operation.

Example 0.2.15. If Γ = (≤, ̸=) is the template corresponding to 2-SAT, then the clone of polymor-
phisms is generated by the majority (or median) function maj : {0, 1}3 → {0, 1}.
Example 0.2.16. If Γ = ({(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}, ̸=) is the template corresponding to
XOR-SAT, then the clone of polymorphisms is generated by the affine linear function (x, y, z) 7→
x− y + z (mod 2) (this function is sometimes referred to as the minority function).

Early results focused on generalizing these basic examples, and developing the algebraic per-
spective further:

• If all polymorphisms of Γ are unary, then CSP(Γ) is NP-hard by a gadget reduction from
NAE-SAT (if the domain has size 2) or k-coloring (if the domain has size k ≥ 3).

• Generalized arc-consistency solves any CSP which has an associative, commutative, idempo-
tent polymorphism. These types of operations were called ACI operations at the time, but
are now generally referred to as semilattice operations.

• Later, Dalmau and Pearson [62] showed that generalized arc-consistency solves a CSP iff it
has a “set” polymorphism, also known as a family of “totally symmetric” polymorphisms,
where the output depends only on the set of inputs and not on their order or multiplicity.

• Already in Feder and Vardi’s work [69], it was shown that a CSP has strict width l iff it has
an l+1-ary “near-unanimity” polymorphism, that is, an operation such that whenever all but
one of the inputs are equal, their common value is the output. This fact is closely connected
to a result in universal algebra known as the Baker-Pixley theorem [7].

• Bulatov and Dalmau [41] gave an algorithm generalizing Gaussian elimination as well as the
algorithm for the general subgroup problem introduced by Feder and Vardi to the case of
CSPs with a Mal’cev polymorphism p(x, y, z), that is, a polymorphism satisfying the identity
p(x, y, y) = x = p(y, y, x) for all x, y. In the case of groups such an operation is given by
(x, y, z) 7→ xy−1z, but such operations also exist in quasigroups, making this a very wide
generalization.

• One can restrict to the case where Γ contains a unary relation for every singleton subset of
the domain. On the algebraic side, this corresponds to restricting to the case of idempotent
algebras (that is, algebras where every singleton subset forms a subalgebra).
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• At this point multiple authors started to realize that whether a CSP is hard or not doesn’t
depend on the particular polymorphisms, but rather on the identities that are satisfied by
the polymorphisms. One of the first papers to point this out was a paper by Bulatov and
Jeavons [49] which also introduced a notion of polymorphisms for multisorted relations, as
well as the use of “tame congruence theory” from universal algebra.

• In particular, it was shown that if no finite subset of the identities satisfied by the polymor-
phisms imply that the polymorphisms can’t be unary, then CSP(Γ) is NP-hard by a gadget
reduction from NAE-SAT or k-coloring. It was conjectured that this is an if and only if, that
is, if a CSP has a family of polymorphisms that satisfy a nontrivial set of identities, then the
CSP can always be solved in polynomial time.

• Identities which do not involve composing functions with each other were singled out as
special (such identities are called linear identities, or identities of height at most 1). In [90], a
simple procedure was given to transform the search for polymorphisms of Γ into an equivalent
indicator instance of CSP(Γ) - and a simple modification of this procedure can be used to
search for the polymorphisms which satisfy a given collection of linear identities. In order to
attack the meta-problem (which takes the set of relations Γ as input, and determines whether
a given type of algorithm can solve CSP(Γ) as output), one then only has to find a way to
solve the corresponding type of indicator instance.

The first big result was a comprehensive generalization of Gaussian elimination, generalizing
the algorithm for Mal’cev operations as far as was reasonably possible. The basic idea here is to
represent the solution space of all the constraints processed so far by giving a small generating
set for that solution space, considered as a subalgebra of a power of the domain. In order for any
algorithm along these lines to exist, there must first be a guarantee that every subalgebra of any
power of the domain actually has a small generating set.

Theorem 0.2.18 (Few Subpowers [27], [88]). The following are equivalent for an algebraic structure
A on a finite domain:

• the number of subalgebras of An grows like 2O(nk) for some fixed k,

• every subalgebra of An has a (nice) generating set of size O(nk) for some fixed k, called a
compact representation,

• A has a k-edge term for some k, that is, a term satisfying the “shepherd’s crook” identity

f




y y x x · · · x
y x y x · · · x
x x x y · · · x
...

...
...

...
. . .

...
x x x x · · · y



 =


x
x
x
...
x

 ,

where all but the first column has exactly one y and k − 1 xs, and

• a Gaussian-elimination-like algorithm solves CSP(A) in polynomial time (the degree of the
polynomial may depend on k).
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Note that when k = 2, a k-edge term is the same as a Mal’cev operation (up to permuting
the inputs). Additionally, if a k-edge term ignores its first input, then it is a k-ary near-unanimity
term. So few subpowers algebras generalize both subgroup CSPs and CSPs with bounded strict
width. There is still an important open question connected to few subpowers algebras, related to
the following algebraic problem.

Problem 0.2.2 (Subpower Membership Problem). Given a finite subset S ⊆ An and an element
x ∈ An, determine if x is in the subalgebra of An generated by S.

A result of Kozik [110] shows that for general algebraic structures, this problem can be EXPTIME-
complete. A recent result of Shriner [152] showed that this problem remains hard even if we restrict
ourselves to congruence distributive algebras.

Conjecture 0.2.4. If A has few subpowers, then the subpower membership problem can be solved
in polynomial time.

Peter Mayr [127] has shown that this conjecture holds for nilpotent Mal’cev algebras of prime
power order (and for expansions of such algebras). In a different direction, a recent result of
Bulatov, Mayr, and Szendrei [42] has proved the conjecture in the special case that the algebra A
is “residually small” (for those with a little universal algebra background, this means that every
subdirectly irreducible algebra in the variety it generates has size bounded by some fixed cardinal
- in the case of groups, it is equivalent to all Sylow subgroups being abelian). In the same paper,
they also show that the subpower membership problem for algebras with few subpowers is always
in NP. As far as I know, the above conjecture is still open even for the special case of quasigroups.

The second big result in this story was the classification of CSPs with bounded width, together
with a surprising “collapse” of the bounded width hierarchy. The ideas used in the proof of this
result - especially the theory of absorbing subalgebras - led to a number of breakthrough results in
universal algebra.

Theorem 0.2.19 (Bounded Width Algebras [44], [12], [20], [119], [21], [113], [111]). For an idem-
potent algebra on a finite domain, the following are equivalent:

• CSP(A) has bounded width,

• CSP(A) can’t simulate any CSP which has the ability to count,

• CSP(A) has relational width (2, 3),

• CSP(A) can be solved by a “cycle consistency” algorithm, which checks arc-consistency and
checks that every “cycle” of constraints has a valid solution extending each possible value of
every variable in the cycle,

• A has terms f, g of arity 3 satisfying the identities

g(x, x, y) = g(x, y, x) = g(y, x, x) = f(x, x, y) = f(x, y, x) = f(x, y, y),

• CSP(A) can be “robustly” solved by the basic semidefinite programming relaxation (i.e., if an
ϵ-portion of the constraints are garbled, then the basic SDP can be used to find an assignment
that satisfies all but an f(ϵ)-portion of the constraints, where f(ϵ)→ 0 as ϵ→ 0).
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Furthermore, there is a polynomial time algorithm for checking whether a relational structure
(which has all unary singleton relations) has bounded width, and to find terms f, g as in the above
theorem if it does. This algorithm leverages the fact that the canonical width-(2, 3) Datalog program
will correctly solve any instance of any bounded width CSP in polynomial time, and constructs a
CSP whose solution corresponds to a pair of polymorphisms satisfying a nice set of identities. A
similar algorithm is not known to exist for checking that a CSP has width 1.

The third big result of the subject was a nice classification of the algebras which were conjectured
to correspond to CSPs with polynomial time algorithms. This result was proved with the absorption
theory that had been developed for the study of bounded width algebras.

Theorem 0.2.20 (Cyclic Terms for Taylor Algebras [19]). For an idempotent algebraic structure
A on a finite domain, the following are equivalent:

• there is a finite set of identities satisfied by the operations of A which can’t be satisfied by
essentially unary functions,

• for every prime p > |A|, A has a “cyclic term” f of arity p, that is, a term which satisfies
the identity

f(x1, ..., xp−1, xp) = f(x2, ..., xp, x1),

• A has a 4-ary term t which satisfies the identity

t(x, x, y, z) = t(y, z, z, x).

With this in hand, the main conjecture of the subject was finally possible to state simply:
“CSP(A) is in P iff A has a cyclic term.”

The fourth big result of the subject concerns a generalization of CSPs to “valued constraints”.

Definition 0.2.21. A valued constraint on k variables is a cost function from Dk to (−∞,∞]. An
instance of a valued CSP (abbreviated VCSP) consists of a sum of valued constraints applied to
various tuples of the variables, possibly with nonnegative coefficients. The goal is to minimize the
sum of the cost functions. The associated CSP to a VCSP is the problem of finding an assignment
that makes all of the costs finite.

The Galois duality between clones and relational clones can be generalized to a duality between
VCSP templates and “fractional polymorphisms” - essentially just formal convex combinations of
ordinary polymorphisms, with the property that when they are applied to any tuple of elements of
Dk, on average they decrease the cost assigned by any cost function from the VCSP template.

The standard example of a valued constraint with an interesting fractional polymorphism is a
submodular function, that is, a cost function c defined on a lattice (or a power of a lattice) which
satisfies the inequality

1
2c(A) + 1

2c(B) ≥ 1
2c(A ∨B) + 1

2c(A ∧B).

It is well known that submodular cost functions can be minimized using a linear programming
relaxation.

Theorem 0.2.22 (VCSP Dichotomy [114], [108]). If a VCSP has its associated CSP in P and has
a cyclic fractional polymorphism, then by using the algorithm for the associated CSP as a black
box to get the set of “feasible” values for each variable and applying the basic linear programming
relaxation to the restriction of the VCSP to the feasible values we get the minimum cost solution.
If the VCSP has no cyclic fractional polymorphisms, then it is NP-hard.
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Finally, the biggest result of all was recently proved independently by Bulatov and by Zhuk.

Theorem 0.2.23 (CSP Dichotomy [48], [164]). A finite algebra A has a cyclic term iff CSP(A) is
in P (assuming P ̸= NP).

A major open problem is whether one can test if CSP(Γ) is in P in time polynomial in the size
of the description of the constraints of Γ (given that Γ contains all singleton unary relations). Zhuk
tells me that he conjectures it to be NP-hard to test for the existence of cyclic terms. If so, perhaps
this could lead to a new form of public key cryptography, where the private key is a cyclic term,
and the public key is a CSP template which is preserved by that cyclic term...

The story has not ended with the proof of the main conjecture. There are at least six interesting
research directions that are still being actively investigated: qualitative CSPs, counting complexity,
promise problems, quantified CSPs, “hybrid” tractability (combining restrictions on both the source
and the target relational structures), and planar CSPs.

Qualitative CSPs come from allowing the domain of the CSP to be infinite. Of course, this
immediately leads to problems, for instance, how can one even specify a set of relations on an infinite
domain? The idea, capturing good old fashioned AI intuition about “qualitative” reasoning, is to
require that the specific values of the solutions are not important, just the qualitative relationships
between them. To make this more precise, we require our domain (and the relations on it) to have
a very large automorphism group.

Definition 0.2.24. A permutation group G acting on a set S is oligomorphic if Sn has finitely
many G-orbits for every n ≥ 1.

A standard example of an oligomorphic group is the group of order-preserving bijections on
the rational numbers. Relations invariant under this group give rise to “temporal” CSPs, where
the goal is to find some assignment of variables to times satisfying constraints about their relative
ordering.

Bodirsky, in his habilitation thesis [33] introduced qualitative CSPs and gave a number of
classification results. Before beginning a classification, he first chooses an oligomorphic group G
acting on a countable set S. He then uses results from model theory (specifically, ω-categorical
theories and Fräıssé limits) as well as structural Ramsey theory (and the theory of extremely
amenable groups) to understand the relations which are invariant underG and their polymorphisms,
and for several groups G he succeeds in finding a complete classification of problems into “easy”
and “hard”. The main three cases considered by Bodirsky [33] are the following:

• the automorphism group of (Q, <), corresponding to temporal CSPs,

• the automorphism group of the random graph, for which he proves “Schaefer’s Theorem
for graphs” (such CSPs can be interpreted as problems where the variables correspond to
decisions about whether certain pairs of vertices of an unknown graph are connected by an
edge or not), and

• the automorphism group of an infinite branching tree structure (L, |), where | is a 3-ary
relation where ab|c means that the youngest common ancestor of a, b lies below the youngest
common ancestor of b, c - the invariant relations correspond to “branching time constraints”,
or “phylogeny constraints”, and the associated CSPs could in principle be of interest to
biologists.
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Recent results on infinite CSPs indicate that the difficulty of the classification results seems to
be related to the orbit growth function of the oligomorphic group G, which takes n to the number
of orbits of n-tuples under G [34]. For sufficiently small orbit growth functions, a dichotomy result
has been proven (using the finite case as a black box). The main conjecture in this field is the
following somewhat technical statement.

Conjecture 0.2.5 ([26]). Let A be the core of a reduct of a finitely bounded homogeneous struc-
ture. Then CSP(A) is in P iff A has a 6-ary polymorphism s and unary polymorphisms α, β
satisfying the “pseudo-Siggers” identity:

α ◦ s(x, y, x, z, y, z) = β ◦ s(y, x, z, x, z, y).

Otherwise, CSP(A) is NP-complete.

The most recent development in the study of CSPs is the study of promise problems. Promise
problems are similar in spirit to approximation algorithms, but much more amenable to an algebraic
approach. A promise problem is defined here to be a pair of problems, one more restrictive than
the other, where the goal is to give an algorithm which correctly says “yes” if the less restrictive
problem has a solution and says “no” if the more restrictive problem has no solution (if neither
case holds, any output is allowable).

Definition 0.2.25. If A,B are relational structures such that a homomorphism A → B exists,
then PCSP(A,B) is the following problem. The input is a relational structure C s.t. there exists a
homomorphism C→ A (the promise), although this map is not revealed to us. The desired output
is a homomorphism from C to B.

A typical strategy for proving tractability of PCSP(A,B) is to find a relational structure X
such that there exist homomorphisms A→ X→ B and such that CSP(X) is in P.

Example 0.2.17. Let A be 1-IN-3 SAT and let B be NAE-SAT (where the 1-IN-3 relation and
the NAE relation have the same name in the signature). The identity map on the domain gives a
homomorphism A→ B since the 1-IN-3 relation is contained in the NAE relation. Although both
problems are NP-complete, the PCSP associated to the pair is tractable: let X = (Z, x+y+z = 1),
note that the inclusion map A→ X is a homomorphism, and that the map sgn : Z→ {0, 1} given
by

sgn(x) =

{
0 x ≤ 0

1 x ≥ 1

defines a homomorphism X→ B. The CSP associated to X is tractable (even though it is defined
over an infinite domain), since it boils down to solving a system of linear equations over the integers.
It is not possible to find a finite relational structure X with polynomial time CSP that fits between
1-IN-3 SAT and NAE-SAT (see [9] for a proof).

The relevant algebraic object in this context is Pol(A,B), the set of homomorphisms Ak → B.
At first this structure doesn’t seem algebraic at all, since there is no way to compose elements of
Pol(A,B). However, one can still write down “minor identities” between the functions in Pol(A,B)
such as f(x, x, y) = g(y, x), and compare the set of minor identities obtained to the identities that
occur in polymorphism algebras of tractable CSPs. This approach of studying minor identities has
been surprisingly useful, and has led to the proposal to call sets of functions such as Pol(A,B)
“minions” (a competing proposed name is “clonoid”).
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Unlike the situation for CSPs, it is still quite hard to prove hardness results for PCSPs. The
following basic problem is still wide open.

Conjecture 0.2.6. For any k ≥ l ≥ 3, the promise problem PCSP(Kl,Kk) is NP-hard (this
problem is the problem of k-coloring a graph which is promised to be l-colorable).

One of the first results in this direction concerned a PCSP called (2+ϵ)-SAT, where one is given
clauses of 2k + 1 variables and wants to satisfy the associated instance of SAT given the promise
that it is possible to find an assignment in which every clause has at least k satisfied literals. The
(2 + ϵ)-SAT problem was proven to be NP-hard [6], and this result was slightly generalized and put
into the PCSP framework in [38].

Recent results in the study of PCSPs include a result of Barto, Bulin, Opršal, and Krokhin [9]
in which they used minion techniques to show that PCSP(Kd,K2d−1) is NP-hard for every d ≥ 3,
reducing from the hypergraph promise problem PCSP(NAE2,NAEk). The hypergraph coloring
problem PCSP(NAE2,NAEk) was itself shown to be hard via a reduction from a variant of the
PCP theorem [65]. The big result in PCSPs is the following result which connects computational
complexity to height 1 identities satisfied by the minion of polymorphisms.

Theorem 0.2.26 (Barto, Bulin, Opršal, Krokhin [9]). If there is a “minion homomorphism” from
Pol(A1,B1) to Pol(A2,B2), then PCSP(A2,B2) has a logspace reduction to PCSP(A1,B1).

Remark 0.2.1. For those who like category theory, an abstract minion is just a covariant functor
from the category of (finite) sets to the category of sets, and a minion homomorphism is just a
natural transformation of functors. We could say that a “representation” of an abstract minion
over A,B is a natural transformation to the functor I 7→ Hom(AI , B).

PCSP(A,B) ends up being logspace equivalent to the problem of distinguishing between dia-
grams in the category of sets of size at most N (N any fixed large enough number) which have a
nonempty limit (“yes” instances), and diagrams such that the image under the minion Pol(A,B)
has an empty limit (“no” instances) (this is the “promise satisfaction of a minor condition” problem
of [9]).

0.3 Incomplete list of Notation and Definitions

Most of the notation is either standard, or will be defined as it is introduced. In this section we
record some of the definitions so that the reader can refer back to it if necessary. (Much more
comprehensive background on structures can be found in [83] or [84].)

Definition 0.3.1. A (single sorted, first order) structure A is a tuple (A, {fi}, {Rj}) such that A is
a set (called the underlying set of A), each fi is a function of some arity ni on A, i.e. fi : Ani → A,
and each Rj is a relation of some arity mj on A, i.e. Rj ⊆ Amj . We sometimes write ar(fi) for ni
and ar(Rj) for mj .

The signature of a first order structure is the assignment of each function symbol fi to an arity
ni together with an assignment of each relation symbol Rj to some arity mj . If two structures A,B
share the same signature, then we sometimes write fAi , RA

j to refer to the interpretations of the

function and relation symbols in A, and fBi , R
B
j to refer to the interpretations of the same function

and relation symbols in B.
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If A,B are structures with the same signature, then a homomorphism φ : A → B is a map
φ : A→ B of the underlying sets, such that for each function symbol fi we have

φ(fAi (a1, ..., ani)) = fBi (φ(a1), ..., φ(ani))

for all a1, ..., ani ∈ A, and such that for each relation symbol Rj we have

(a1, ..., amj ) ∈ RA
j =⇒ (φ(a1), ..., φ(amj )) ∈ RB

j

for all a1, ..., amj ∈ A. A homomorphism φ : A → B is called an isomorphism if there is a
homomorphism ψ : B→ A such that ψ ◦ φ = idA and φ ◦ ψ = idB.

A subset B ⊆ A is called a subuniverse of the structure A = (A, {fi}, {Rj}) if B is closed
under each function fi. If B is a subuniverse of A, then the corresponding induced substructure
B is defined to be (B, {fi|B}, {Rj ∩Bar(Rj)}) - note that the inclusion map B ↪→ A automatically
defines a homomorphism B ↪→ A.

A structure is called a relational structure if it has no functions in its signature, and a structure
is called an algebraic structure or an algebra if it is nonempty and has no relations in its signature.
We usually write a relational structure with the bold font, i.e. A, while we usually write an algebraic
structure with the blackboard bold font, i.e. A (note that many authors reverse this convention).

We define the total size of a relational structure A = (A, {Rj}), written ∥A∥, to be

∥A∥ :=
∑
j

mj |Rj |.

Note that the number of bits needed to describe A is larger than ∥A∥ by a factor of about log2 |A|,
ignoring the overhead needed to describe the signature of A.

When convenient, we often abuse notation to treat a structure A like its underlying set A: we
write a ∈ A to mean that a ∈ A, we write |A| for |A|, etc.

We will also need to consider a certain restricted type of multisorted relational structures.

Definition 0.3.2. A multisorted relational structure A is defined to be a tuple ({Ai}i∈I , {Rj}j∈J),

where for each j ∈ J there is a tuple ij = (ij1, ..., i
j
mj ) ∈ Imj such that

Rj ⊆ Aij1 × · · · ×Aijmj
.

The sets Ai are called the sorts of the structure A, and the Rjs are the multisorted relations of A.
The signature of a multisorted relational structure A consists of the set I of indices of sorts of

A, together with the map J 7→
⋃
m≥0({m} × Im) which sends each relation symbol to its arity mj

and tuple ij ∈ Imj of sorts (which is sometimes called the type of the relation symbol).
If A,B are multisorted relational structures of the same signature, then a homomorphism

φ : A→ B is a collection of maps φi : Ai → Bi, such that for each relation symbol Rj we have

(a1, ..., amj ) ∈ RA
j =⇒ (φ

ij1
(a1), ..., φijmj

(amj )) ∈ RB
j .

Note that it is possible to make a much more general definition of a multisorted first order
structure: for instance, it would be natural to consider a vector space as a multisorted structure
with scalars as one sort of element and vectors as another sort of element, along with a binary

18



multiplication operation which has a signature specifying that multiplication must be defined for
pairs of scalars (producing a scalar) as well as for scalars and vectors (producing a vector) but not
for vectors and vectors (unless one of the vectors happens to also be a scalar). We won’t need
such a general concept in these notes: multisorted relational structures and collections of algebras
sharing a common signature will suffice for most of what we do.

Definition 0.3.3. A subalgebra of an algebra A is an algebraic structure B with the same signature
such that the underlying set B of B is a subset of the underlying set A of A, and such that the
inclusion map ι : B ↪→ A defines a homomorphism ι : B → A (in which case B is a subuniverse
of A, and B is the induced substructure). In this case we write B ≤ A. If S ⊆ A, then we define
SgA(S), the subalgebra generated by S, to be the smallest subalgebra of A whose underlying set
contains S.

If A,B are structures with the same signature, then we define their product A × B to be the
structure with underlying set A×B where A,B are the underlying sets of A,B, with each function
symbol fi interpreted by

fA×B
i

([
a1
b1

]
, ...,

[
ani

bni

])
=

[
fAi (a1, ..., ani)
fBi (b1, ..., bni)

]
,

and with each relation symbol Rj interpreted by([
a1
b1

]
, ...,

[
amj

bmj

])
∈ RA×B

j ⇐⇒ (a1, ..., amj ) ∈ RA
j ∧ (b1, ..., bmj ) ∈ RB

j .

Arbitrarily large products
∏
i∈I Ai of structures Ai all having the same signature are defined simi-

larly. (This definition matches with the category-theoretic definition of the product, in the category
of structures with a fixed signature.)

A homomorphic image of A is defined to be any B of the same signature such that there is a
surjective homomorphism φ : A ↠ B. An algebraic structure A is called simple if every surjective
homomorphism A↠ B is either an isomorphism, or has |B| = 1.

Definition 0.3.4. A congruence on an algebraic structure A is an equivalence relation θ on A
which is also a subalgebra: θ ≤ A2. The set of all congruences of A is written as Con(A). If S is
some collection of ordered pairs (a, b) ∈ A2, then the congruence generated by S, written CgA(S),
is the least congruence of A which contains S. We generally use greek letters for congruences.

If θ ∈ Con(A) and a ∈ A, then we write a/θ for the congruence class of a with respect to θ,
that is, a/θ = {b | (a, b) ∈ θ}. We say that a, b are congruent with respect to θ if (a, b) ∈ θ, and we
may write this in symbols in several different ways:

(a, b) ∈ θ ⇐⇒ b ∈ a/θ ⇐⇒ a ≡ b (mod θ) ⇐⇒ a ≡θ b ⇐⇒ a θ b.

If θ ∈ Con(A), then we write A/θ for the set of equivalence classes of θ considered as an algebraic
structure, with

f
A/θ
i (a1/θ, ..., ani/θ) = fAi (a1, ..., ani)/θ.

The algebra A/θ is called a quotient of A, and there is a canonical quotient map A ↠ A/θ which
takes each element of A to its equivalence class in θ.

If φ : A → B is a homomorphism, then we define the kernel of φ, written kerφ, as the
equivalence relation on A given by (x, y) ∈ kerφ iff φ(x) = φ(y). The kernel of a homomorphism
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is always a congruence, and if φ is surjective then A/ kerφ is isomorphic to B. In particular, every
homomorphic image of A is isomorphic to a quotient of A.

For α, β ∈ Con(A), we define their meet α ∧ β to be their intersection, and we define their
join α ∨ β to be the congruence generated by α ∪ β. We define the least congruence 0A to be the
equivalence relation on A where each equivalence class is a singleton, and we define the greatest
congruence 1A to be the equivalence relation on A consisting of just one equivalence class.

Definition 0.3.5. If R ⊆ A1 × · · · × An is a (possibly multisorted) relation, then for any I ⊆
{1, ..., n} we define the projection map πI : R →

∏
i∈I Ai in the obvious way. A relation R ⊆

A1 × · · · ×An is subdirect if πi(R) = Ai for all i.
If A1, ...,An are algebraic structures with the same signature, then any subalgebra R ≤ A1 ×

· · · × An is called a (multisorted) relation on the Ais. If πi(R) = Ai for all i then we say that R is
subdirect, and we write this in symbols as R ≤sd A1 × · · · × An.

Definition 0.3.6. A tolerance S on an algebraic structure A is a binary relation S ≤ A × A
which is symmetric and contains the diagonal. Note that the transitive closure of any tolerance is
automatically a congruence. We say that a tolerance is connected if its transitive closure is the full
congruence 1A.

If R ≤sd A1 × · · · × An, then we define the ith link tolerance of R to be the binary relation

{(b, c) | ∃aj s.t. (a1, ..., ai−1, b, ai+1, ..., an), (a1, ..., ai−1, c, ai+1, ..., an) ∈ R}

on Ai. A binary relation is called linked if its link tolerances are connected.

Definition 0.3.7. If R ⊆ A×B is a binary relation, then we define its reverse R− ⊆ B ×A by

R− = {(b, a) | (a, b) ∈ R}.

If R ⊆ A×B and S ⊆ B × C, then we define their relational composition R ◦ S ⊆ A× C by

R ◦ S = {(a, c) | ∃b ∈ B s.t. (a, b) ∈ R ∧ (b, c) ∈ S}.

If R ⊆ A×B and U ⊆ A, then we define the sum U +R ⊆ B by

U +R = {b | ∃a ∈ U s.t. (a, b) ∈ R},

and for V ⊆ B we define the difference V − R ⊆ A by V − R = V + R−. Note that we have
(U +R) + S = U + (R ◦ S) for U ⊆ A, R ⊆ A×B, S ⊆ B × C.

Definition 0.3.8. If {Rj} is some collection of relations, then a primitive positive formula over
the Rjs is defined to be a formula of the form

∃y1 · · · ∃yn s.t.
∧
i∈I

φi(x1, ..., xm, y1, ..., yn),

where I is a finite set, and each φi is either some relation Rj applied to some of the variables
x1, ..., xm, y1, ..., yn, or is the equality relation applied to some pair of variables.

A relation R is primitively positively definable over the Rjs if there is a primitive positive
formula φ such that the elements of R are exactly the tuples of values (x1, ..., xm) that satisfy φ.
For instance, the relational composition R ◦ S is primitively positively definable over R and S.

A relational clone is a collection of relations (on a common domain) which is closed under
primitive positive definitions. The smallest relational clone which contains {Ri} is written as
⟨{Ri}⟩.
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The algebraic analogue of primitive positive formulas is the concept of terms.

Definition 0.3.9. If {fi} is a collection of function symbols in some fixed signature, then we define
a term inductively as follows:

• each variable xj is a term, corresponding to the operation πj , and

• if fi is function symbol of arity k and t1, ..., tk are terms, then fi(t1, ..., tk) is also a term,
corresponding to the operation fi ◦ (t1, ..., tk).

For instance, if f is binary and g is ternary, then the expression

f(g(x, y, f(x, z)), f(u, v))

is a term. Every term can be visualized as a labeled ordered tree, where every leaf is labeled by a
variable and where every internal vertex is labeled by a function whose arity is equal to the number
of children of that vertex. The height of a term is the largest distance between the root of this tree
and any leaf.

In some cases, it may be more efficient to visualize terms via directed acyclic graphs, to avoid
repeatedly drawing many copies of a common subtree - to distinguish these points of view, a tree
representation of a term is called a formula, while a directed acyclic graph representation of a term
is called a circuit. In written math, a circuit representation of a term corresponds to a sequence of
definitions of subterms in terms of function symbols applied to previously defined subterms. For
instance, the formula

t(x, y) := f(f(f(f(x, y), f(y, x)), f(f(y, x), f(x, y))), f(f(f(y, x), f(x, y)), f(f(x, y), f(y, x))))

corresponds to the circuit

g(x, y) := f(f(x, y), f(y, x)),

g(y, x) := f(f(y, x), f(x, y)),

h(x, y) := f(g(x, y), g(y, x)),

h(y, x) := f(g(y, x), g(x, y)),

t(x, y) := f(h(x, y), h(y, x)),

where we have included the redundant definitions of g(y, x) and h(y, x) since they would correspond
to additional nodes in a computation graph used to compute t.

The collection of all terms in a given signature σ defines the term algebra Fσ({xj}), with each
function symbol fi of arity k interpreted as the operation

f
Fσ({xj})
i : (t1, ..., tk) 7→ fi(t1, ..., tk),

where the right hand side is interpreted as an abstract term. The term algebra is also called the
absolutely free algebra in the signature σ.

Definition 0.3.10. An identity is just a pair of terms s, t with the symbol ≈ in between them:

s ≈ t.
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The identity s ≈ t has height 1 if both terms s and t have height 1, and the identity s ≈ t is called
linear if both s and t have height at most 1.

An algebraic structure satisfies the identity s ≈ t, written A |= s ≈ t, if

∀x1, ..., xk ∈ A, sA(x1, ..., xk) = tA(x1, ..., xk),

where x1, ..., xk is a list of all of the variables which occur in s or t.

Definition 0.3.11. If T is a set of identities in the signature σ, then we define the variety V(T )
to be the collection of all algebraic structures A with signature σ such that A |= T .

If {Ai} is a collection of algebraic structures in the signature σ, then the variety generated by
{Ai}, written V({Ai}), is the variety V(T ) where T is the collection of all identities s ≈ t which
are satisfied in every single Ai.

Definition 0.3.12. If V = V(T ) is a variety with signature σ and defining identities T , then we
define the congruence ≈V on the absolutely free algebra Fσ({xj}) to be the congruence generated
by the set of pairs of terms (s ◦ (u1, ..., uk), t ◦ (u1, ..., uk)) such that s ≈ t ∈ T , where u1, ..., uk is
an arbitrary list of terms which we use to replace the variables x1, ..., xk which occur in s and t.
The algebraic structure

Fσ({xj})/≈V

is called the free algebra on the generators {xj} in the variety V, and is written as FV({xj}). By
construction, the free algebra FV({xj}) satisfies every identity in T . In the language of category
theory, the functor

FV : S 7→ FV({xj}j∈S)

is adjoint to the forgetful functor from algebras in V to their underlying sets:

HomSet(S,A) = HomV(FV(S),A)

when A ∈ V is an algebraic structure with underlying set A.
We define a term operation of a variety V to be an equivalence class t/≈V together with a set

of variables containing all variables which occur in t. If A is an algebraic structure, then we define
the term operations of A to be the collection of interpretations tA of terms t as operations on A -
these are easily seen to correspond with the term operations of the variety V(A) generated by A.

Viewing each k-ary term operation tA : Ak → A as an element of AAk
, we get an alternative

construction of the free algebra FV(A)(x1, ..., xk):

FV(A)(x1, ..., xk) = {k-ary term operations t of V(A)}
∼= {k-ary term operations tA of A}
∼= SgAAk{π1, ..., πk}.

More generally, if V = V({Ai}i∈I), then FV(x1, ..., xk) is isomorphic to a subalgebra of
∏
i∈I A

Ak
i

i .

Definition 0.3.13. If A is an algebraic structure, then the clone of A, written as Clo(A), is the
collection of all term operations of A. If {fi} is a collection of operations on the domain A, then we
write ⟨{fi}⟩ for the clone of the algebraic structure (A, {fi}). Alternatively, a clone on a domain
A is just a collection of operations of A which is closed under composition.
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If V is a variety, then the clone of V, written as Clo(V), is defined to be the collection of free
algebras

FV(x1, ..., xk),

together with the rules for composing a k-ary term operation t ∈ FV(x1, ..., xk) with k-tuples of m-
ary term operations u1, ..., uk ∈ FV(x1, ..., xm) to produce the m-ary term operation t ◦ (u1, ..., uk).

An abstract clone is a collection of function symbols {fi} in a signature σ which is closed under
a composition law ◦ which takes a function symbol f of arity k and a k-tuple of function symbols
g1, ..., gk of arity m as input and produces a function symbol f ◦ (g1, ..., gk) of arity m as output,
satisfying a generalized associativity law:

(f ◦ (g1, ..., gk)) ◦ (h1, ..., hm) = f ◦ (g1 ◦ (h1, ..., hm), ..., gk ◦ (h1, ..., hm)),

with special “projection” function symbols πki of every arity k which satisfy

πki ◦ (g1, ..., gk) = gi

and
f ◦ (πk1 , ..., π

k
k) = f.

Note that in any abstract clone, the collection of function symbols of arity 1 always forms a
semigroup under ◦ with identity element π11.

A clone homomorphism is a map ξ from the function symbols of one abstract clone to the
function symbols of another abstract clone which preserves arities, sends the projections πki to
themselves, and respects composition:

ξ(f ◦ (g1, ..., gk)) = ξ(f) ◦ (ξ(g1), ..., ξ(gk)).

A height 1 clone homomorphism, also known as a minion homomorphism, is a map ξ which preserves
arities and respects composition with projections:

ξ(f ◦ (πmi1 , ..., π
m
ik

)) = ξ(f) ◦ (πmi1 , ..., π
m
ik

).

Definition 0.3.14. A poset is a relational structure (P,≤) such that ≤ is a partial order - that
is, a reflexive and transitive relation which satisfies a ≤ b ∧ b ≤ a =⇒ a = b. More generally,
a quasiorder (also called a preorder) is any reflexive and transitive relation. We usually use ⪯
to denote a quasiorder and ≤ to denote a partial order. If ⪯ is a quasiorder, then we define an
associated equivalence relation ∼ by

a ∼ b ⇐⇒ a ⪯ b ∧ b ⪯ a.

For any a ≤ b ∈ P , we define the interval between a and b, written Ja, bK, to be the set of
c ∈ P such that a ≤ c ≤ b. (We use this notation to avoid confusion with the commutator, which
is written as [·, ·].)

We say that b is a cover of a, written a ≺ b (if there is no danger of confusion with a strict
quasiorder), if a < b and there is no c ∈ P such that a < c < b, that is, if Ja, bK = {a, b}. If a has
exactly one cover, then we will write a∗ to refer to the unique cover of a.
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Definition 0.3.15. A lattice is either an algebraic structure L = (L,∧,∨) which satisfies the
identities

x ∧ x ≈ x, x ∨ x ≈ x,
x ∧ y ≈ y ∧ x, x ∨ y ≈ y ∨ x,
x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z, x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z,
x ∧ (x ∨ y) ≈ x, x ∨ (x ∧ y) ≈ x,

or it is a poset L = (L,≤) such that every pair of elements {a, b} ⊆ L has a least upper bound a∨ b
and a greatest lower bound a ∧ b, or it is a first-order structure L = (L,∧,∨,≤) which satisfies

a ≤ b ⇐⇒ a = a ∧ b ⇐⇒ a ∨ b = b

as well as the algebraic identities above. Note that the operations ∧,∨ are determined by ≤, and
the partial order ≤ is determined by either of the operations ∧ or ∨. A 0, 1-lattice is a lattice with
named constants 0, 1 which are repectively the least and greatest elements of L.

A lattice homomorphism is a homomorphism of the algebraic structure (L,∧,∨). Note that
there may be some homomorphisms of the relational structure (L,≤) which do not count as lattice
homomorphisms - a map which respects the partial order ≤ is just called a monotone map.
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Chapter 1

Initial Intuition

1.1 The Inv-Pol Galois connection

We begin by recalling some definitions from the introduction.

Definition 1.1.1. A set of relations Γ on a fixed domain D is called a relational clone if it con-
tains the equality relation, and is closed under permutations, adding dummy variables, existential
projection, and intersections. Equivalently, a relational clone is a set of relations which is closed
under defining new relations via primitive positive formulas.

Definition 1.1.2. A set of functions Dk → D, k ∈ N is called a clone if it contains the projections
πki : Dk → D which satisfy πki (x1, ..., xk) = xi (generally the superscript k is omitted when it is
clear), and is closed under composition, the operation which takes a k-ary function f and k l-ary
functions g1, ..., gk to the function

(f ◦ (g1, ..., gk)) : (x1, ..., xl) 7→ f(g1(x1, ..., xl), ..., gk(x1, ..., xl)).

Definition 1.1.3. A k-ary function f is said to preserve an m-ary relation R, written f �R, if for
every choice of k m-tuples in R, applying f componentwise produces a new m-tuple which is also
in R. If we think of elements of R as column vectors, we can write this asx11...

x1m

 , ...,
xk1...
xkm

 ∈ R =⇒ f


x11...
x1m

 , ...,
xk1...
xkm


 =

 f(x11, ..., xk1)
...

f(x1m, ..., xkm)

 ∈ R.
A function f is a polymorphism of a relational structure (D,Γ) or of a relational clone Γ if f
preserves Ri for each relation Ri ∈ Γ.

We can write the condition for f � R more compactly as M ∈ Rk =⇒ f(M) ∈ R, where
M ∈ Rk means that M is a matrix with k columns, each of which belongs to R, and f(M) is the
column vector obtained by applying f to the rows of M .

In order to state the Galois connection, we need a few additional definitions.

Definition 1.1.4. If Γ is any set of relations on a domain D, then we define ⟨Γ⟩ to be the relational
clone generated by Γ (that is, ⟨Γ⟩ is the smallest relational clone which contains Γ). Similarly, if
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O is any set of operations on D, we define ⟨O⟩ to be the clone generated by O. If A = (D,O)
is an algebraic structure, we let Clo(A) be the clone generated by the basic operations of A, so
Clo(A) = ⟨O⟩.

Definition 1.1.5. If Γ is any set of relations on a domain D, then we define Pol(Γ) to be the the
set of operations on D that preserve every relation of Γ. If O is any set of operations on D, we
define Inv(O) to be the set of relations which are preserved by every operation in O. If we want to
restrict to operations or relations of a specific arity, we use the notations

Polk(Γ) = {f : Dk → D | ∀R ∈ Γ, f �R},
Invm(O) = {R ⊆ Dm | ∀f ∈ O, f �R}.

It is worth thinking about what sort of information about an algebraic structure (D,O) can be
found in Inv(O).

Example 1.1.1. If A = (D,O) is an algebraic structure, then Inv2(O) determines (among other
things)

• the lattice of subalgebras of A,

• Aut(A), the automorphism group of A,

• End(A), the semigroup of endomorphisms of A,

• Con(A), the lattice of congruences on A,

• the set of partial orders on D which are compatible with the operations of A, and

• Inv2(B) for any subalgebra B ⊂ A or quotient B = A/∼.

It is easy to see that for all Γ, Pol(Γ) will be a clone, and that for all O, Inv(O) will be a
relational clone. As a consequence, we have ⟨Γ⟩ ⊆ Inv(Pol(Γ)) and ⟨O⟩ ⊆ Pol(Inv(O)). The next
two results show that these inclusions are actually equalities.

Before diving into the proof, the following concrete example will be useful for understanding
the notation. Consider what it means for a ternary function f to preserve the binary relation ≤
(functions which preserve ≤ are often called monotone). Since 0 ≤ 0, 0 ≤ 1, and 1 ≤ 1, we have[

0
0

]
,

[
0
1

]
,

[
1
1

]
∈ ≤ =⇒

[
f(0, 0, 1)
f(0, 1, 1)

]
∈ ≤,

that is, f(0, 0, 1) ≤ f(0, 1, 1). It’s convenient to abbreviate the above as follows:[
0 0 1
0 1 1

]
∈ ≤3 =⇒ f

([
0 0 1
0 1 1

])
∈ ≤ .

Theorem 1.1.6. If Γ is a set of relations on a finite domain D, then Inv(Pol(Γ)) = ⟨Γ⟩. In fact,
if a relation S ⊆ Dm is preserved by Pol(Γ) and can be generated by k elements of Dm (using
operations of Pol(Γ)), then S can be defined by a primitive positive formula over Γ which involves
at most |D|k auxiliary variables.
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Proof. Suppose that S is generated by elements x1, ..., xk ∈ Dm, and let X be the matrix having
the xis as columns. Then S = {f(X) | f ∈ Polk(Γ)}, so as a starting point we will construct a
primitive positive formula Φ that describes Polk(Γ).

Note that DDk
is naturally interpreted as the set of functions f : Dk → D: if f ∈ DDk

, then
the (a1, ..., ak)-coordinate of f is f(a1, ..., ak). We can now give a positive primitive formula for

Polk(Γ) ⊆ DDk
:

Φ(f) :=
∧
R∈Γ

∧
M∈Rk

f(M) ∈ R.

If Γ is infinite, the outer
∧

will be an infinite conjunction. However, since there are only finitely

many possible subsets of DDk
, some finite subset Φ′ of the inner conjunctions will define the same

subset of DDk
.

Finally, to define S we use the primitive positive formula

S(a) := ∃f ∈ DDk
Φ′(f) ∧ (f(X) = a).

Theorem 1.1.7. If O is a set of operations on a finite domain D, then Pol(Inv(O)) = ⟨O⟩.

Proof. Suppose that f ∈ Pol(Inv(O)) is a k-ary function. Let F(k) ⊆ DDk
be the subalgebra of

the algebraic structure (D,O)D
k

generated by the functions πi : Dk → D, πi(x1, ..., xk) = xi. Then
F(k), interpreted as a set of functions from Dk to D, is exactly the set of k-ary functions in ⟨O⟩.

Since f ∈ Pol(Inv(O)) and F(k) ∈ Inv(O), we must have f � F(k), so in particular we must

have f(π1, ..., πk) ∈ F(k). But f(π1, ..., πk) is exactly f thought of as an element of DDk
, so this

means that f ∈ ⟨O⟩.

Corollary 1.1.8. There is an order reversing bijection between clones and relational clones, given
by the operations Inv and Pol.

Remark 1.1.1. The map {1, ..., k} → DDk
given by i 7→ πi, where πi : Dk → D is given by

πi(x1, ..., xk) = xi, shows up in the theory of approximation algorithms as the long code, which
is the longest way of encoding {1, ..., k} over the alphabet D which doesn’t have any redundant
coordinates.

Example 1.1.2. In the next section we will prove the following three correspondences between clones
and relational clones on the domain {0, 1}:

• ⟨2-SAT⟩ = ⟨≤, ̸=⟩ corresponds to ⟨maj⟩ (the majority function on three inputs),

• ⟨HORN-SAT⟩ = ⟨{0}, {1}, x∧ y =⇒ z⟩ corresponds to ⟨min⟩ (the minimum function on two
inputs), and

• ⟨XOR-SAT⟩ = ⟨{1}, x+ y + z ≡ 0 (mod 2)⟩ corresponds to ⟨x− y + z (mod 2)⟩.

Definition 1.1.9. If A,A′ are two algebraic structures on the same domain such that every basic
operation of A′ is in Clo(A), then we say that A′ is a reduct of A and that A is an expansion of A′.
If Clo(A) = Clo(A′), then A and A′ are called term equivalent.

The lattice of clones on the domain {0, 1} has been completely described - it has countably
many elements, and is known as Post’s lattice [142] (see also chapter II.3 of [120]). It is known
that on a domain of size ≥ 3, there are uncountably many clones [162], [163] (see also chapter II.8
of [120]). In particular, we see that most clones and relational clones can’t be generated by finitely
many functions or relations.
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Definition 1.1.10. A clone O is said to be finitely generated if there is a finite set S of operations
such that O = ⟨S⟩. It is said to be finitely related if there is a finite set of relations Γ such that
O = Pol(Γ).

Example 1.1.3. The clone on {0, 1} generated by the binary implication function →, given by
→(x, y) = ¬x ∨ y, is finitely generated but not finitely related. One quick way to prove this is to
show that for every n ≥ 3, the n-ary threshold function tn2 defined by

tn2 (x1, ..., xn) =

{
1

∑
i xi ≥ 2

0
∑

i xi ≤ 1

is not in ⟨→⟩, but every way of identifying two coordinates of tn2 gives a function which is in ⟨→⟩
(exercise: why does this prove that ⟨→⟩ can not be finitely related?). Inv(→) is generated by the
infinite sequence of relations R1, R2, ... given by Rn = {0, 1}n \ {(0, ..., 0)}, and ⟨→⟩ consists of all
functions of the form f(x1, ..., xn) ∨ xi.

Matthew Moore [131] has shown that determining whether a given finitely generated clone is
finitely related is a Turing-complete problem, and therefore undecidable in general. It is conjectured
that determining whether a given finitely related clone is finitely generated is also undecidable in
general.

Remark 1.1.2. The Galois connection between relational clones and clones on a finite set was
originally discovered by Geiger in 1968 [72], and Reinhard Pöschel investigated the general case
(where the domain may be infinite) in [141] - in the infinite case, the main difference is that clones
must also be taken to be closed in the topology of pointwise convergence. (Jeavons reproved one
direction of the connection - that relational clones on a finite domain are determined by their
polymorphisms - in [89].)

Remark 1.1.3. The Galois connection presented here, between operations and relations, can be
viewed as being induced by the two-sorted preservation relation �. In general, whenever one has
a two-sorted binary relation R on a pair of sets A,B, one can define operations F,G on the power
sets of A,B respectively by

F (S) = {b ∈ B | ∀a ∈ S aRb},
G(T ) = {a ∈ A | ∀b ∈ T aRb}.

The abstract order-theoretic properties of such a pair F,G are

• F and G are antitone: S ⊆ S′ =⇒ F (S) ⊇ F (S′), and similarly for G, and

• for any S ∈ P(A) and T ∈ P(B), we have

T ⊆ F (S) ⇐⇒ S ⊆ G(T ).

Actually the first property listed is redundant, as we have

(S ⊆ S′) ∧ (F (S′) ⊆ F (S′)) =⇒ S ⊆ S′ ⊆ G(F (S′)) =⇒ F (S′) ⊆ F (S),

and either of F,G is determined by the other together with the second property: F (S) =
⋃
S⊆G(T ) T .

Additionally, the second property follows from the first property together with S ⊆ G(F (S)) and
T ⊆ F (G(T )): for one direction, we have

T ⊆ F (S) =⇒ S ⊆ G(F (S)) ⊆ G(T ).
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Any such pair F,G determines the binary relation R, since

(a, b) ∈ R ⇐⇒ b ∈ F ({a}) ⇐⇒ a ∈ G({b}),

and F,G are both determined by the second property and their restrictions to singletons, since

b ∈ F (S) ⇐⇒ ∀a ∈ S, a ∈ G({b}) ⇐⇒ ∀a ∈ S, b ∈ F ({a}).

Then one can define closure operators G ◦ F, F ◦G on subsets of A and B. When we say these
are “closure operators”, we mean that the images of these operators form collections of “closed”
sets, such that any intersection of closed sets is closed, and for S ⊆ A, G ◦ F (S) is equal to the
smallest closed set which contains S. All of these properties are easy to show directly in terms of
the binary relation R, but they can also be proved order theoretically.

For the order theoretic proof, note that

F (S) ⊆ F (S) =⇒ S ⊆ G ◦ F (S),

and similarly for F ◦G, and so we have

F (S) ⊆ F ◦G(F (S)) = F (G ◦ F (S)) ⊆ F (S),

and we see that a set in X ⊆ B is closed iff it is of the form F (S) for some S ⊆ A. For the
intersection property, note that

S ⊆ G(X) ∩G(Y ) ⇐⇒ X ∪ Y ⊆ F (S) ⇐⇒ S ⊆ G(X ∪ Y ),

and for the characterization of the closure of S we have

G ◦ F (S) ⊆ G(Y ) ⇐⇒ Y ⊆ F ◦G ◦ F (S) = F (S) ⇐⇒ S ⊆ G(Y ).

Then F and G will provide a Galois correspondence between the closed subsets of A and the closed
subsets of B. The nontrivial thing to do is to describe the closure operators explicitly.

In our case, the relation R was given by �, and the sets A,B were the sets of operations
and relations on a given domain. Our main difficulty was in proving that the closure operators
G◦F = Pol ◦ Inv and F ◦G = Inv ◦Pol were concretely described by the closure operators O 7→ ⟨O⟩
for clones and Γ 7→ ⟨Γ⟩ for relational clones, respectively. In ordinary Galois theory, the sets A,B are
taken to be a field and a group of automorphisms of the field, and the relation R determines whether
a given element of the field is fixed by a given automorphism (exercise: find the corresponding
closure operations).

1.1.1 Galois connection for multisorted relational clones

While single-sorted CSPs might seem cleaner from a theoretical point of view, any attempt to
describe algorithms for CSPs on larger domains ends up needing to consider the multisorted case.
The main reason for this is that most algorithms make progress by showing that some of the
variables must take their values within a smaller subset of their original domain - as soon as we
restrict some of the variables to smaller domains and not others, we end up with a problem that is
most naturally described in the framework of multisorted CSPs.
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A multisorted CSP template consists of a list of domains D1, D2, ... for the sorts, together with
a library of relations

Rj ⊆ Dij1
× · · · ×D

ijmj
.

For each relation Rj , we keep track of both its arity mj as well as its type: the tuple of sorts

(ij1, ..., i
j
mj ) which tells us what sorts of variables we are allowed to apply this relation to. Note

that a multisorted CSP template is exactly the same thing as a multisorted relational structure (as
defined in Section 0.3).

In order to describe an instance of the multisorted CSP over the template ({Di}, {Rj}), we first
need a list of sets of variables V1, V2, ..., where Vi is the set of variables whose values must be taken
in the domain Di. If x ∈ Vi, then we say that Di is the variable domain for the variable x. Next,
we give a list of sets of constraints Cj , where for each j,

Cj ⊆ Vij1 × · · · × Vijmj

is a list of tuples (x1, ..., xmj ) of variables which we will require to be contained in the corresponding
constraint relation Rj from the template.

The careful reader may have noticed that an instance of the multisorted CSP over the template
({Di}, {Rj}) is exactly the same thing as a multisorted relational structure ({Vi}, {Cj}) sharing
the same signature as the template. A solution to the instance is then the same thing as a homo-
morphism from the instance to the template, that is, a mapping from variables to elements of their
variable domains so that each tuple of variables which is related by a constraint gets mapped to a
tuple which lies in the corresponding constraint relation.

Just as in the single-sorted case, we are interested in the whole collection of all multisorted
relations which can be expressed as projections (onto a subset of the variables) of solution sets to
instances of the multisorted CSP with a given template ({Di}, {Rj}). These correspond to formulas
built out of bounded existential quantifiers (i.e. ∃x ∈ Di), conjunctions, and relations Rj , where
each existential quantifier must have some sort Di associated with the variable it binds, and each
relation must be applied to a tuple of variables of the correct sorts for that relation. For instance,
if R1 was a binary relation

R1 ⊆ D1 ×D2

and R2 was a ternary relation
R2 ⊆ D2 ×D1 ×D2,

then the formula
∃x ∈ D1 ∃y ∈ D2 s.t. (x, y) ∈ R1 ∧ (y, x, z) ∈ R2

describes a unary relation on z which can be applied to variables of sort 2. On the other hand, the
formula

(x, x, x) ∈ R2

would be considered invalid for this CSP template, since x would be forced to have sort 1 and sort
2 simultaneously.

In the singly sorted case, there was no harm in also allowing the binary equality relation = into
our library of constraints. In the multisorted case, it doesn’t make sense to do this since we haven’t
specified the type of the equality relation. Instead, we introduce a different equality relation =i for
each sort Di of the domain:

x =i y ⇐⇒ x, y ∈ Di ∧ x = y.
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Now adding the equality relations =i into our constraint library causes no harm. The multisorted
primitive positive formulas over ({Di}, {Rj}) can now be defined as formulas built out of bounded
existential quantifiers (with associated sorts), conjunctions, relationsRj (from the template) applied
to tuples of variables of the correct sorts, and equality relations =i applied to pairs of variables of
the same sort i.

Taking the closure of a multisorted library of constraint relations leads us to the definition of a
multisorted relational clone.

Definition 1.1.11. A collection Γ of multisorted relations with sorts {Di} is called a multisorted
relational clone if it contains an equality relation =i for each sort Di, and is closed under permuting
variables (in tandem with their sorts), adding dummy variables (of any sorts), existential projection
onto subsets of the variables, and intersection (of relations of the same arity and type).

Equivalently, a multisorted relational clone is a collection of multisorted relations which is closed
under defining new relations via multisorted primitive positive formulas.

What is the algebraic counterpart of a multisorted relational clone? Our first guess might be
a multisorted algebraic structure, but the usual definition of a multisorted algebraic structure will
not do what we want. The purpose of the algebraic operations is for us to be able to apply them
coordinatewise to solutions to instances of CSPs in order to produce new solutions. This means
that each of our algebraic operations must make sense when applied to values of any given sort, as
long as all of its arguments have the same sort. Following Romov [148], we will call these “vectors
of operations”.

Definition 1.1.12. A vector of operations on {Di} of arity k is a tuple f = (fD1 , fD2 , ...) where
each fDi is an operation on Di of arity k:

fDi : Dk
i → Di.

For any j ≤ k, we define the vector of operations πkj by

(πkj )Di(x1, ..., xk) = xj

for x1, ..., xk ∈ Di, and we call πkj a projection.
For f a vector of operations of arity k, and for g1, ..., gk a collection of k vector operations of

arity l, we define their composition by

(f ◦ (g1, ..., gk))
Di : (x1, ..., xl) 7→ fDi(gDi

1 (x1, ..., xl), ..., g
Di
l (x1, ..., xl))

for x1, ..., xl ∈ Di.
A multi-clone is defined to be a collection of vectors of operations on a collection of sorts {Di}

which contains the projections and is closed under composition.

Definition 1.1.13. If f is a vector of operations on the sorts {Di} of arity k, and if

R ⊆ Di1 × · · · ×Dim

is a multisorted relation of arity m and type (i1, ..., im), then we say that f preserves R, written
f �R, if for every choice of k m-tuples of Rx11...

x1m

 , ...,
xk1...
xkm

 ∈ R,
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we have

f


x11...
x1m

 , ...,
xk1...
xkm


 :=

 fDi1 (x11, ..., xk1)
...

fDim (x1m, ..., xkm)

 ∈ R.
A vector of operations f on {Di} is a polymorphism of a multisorted relational structure ({Di},Γ)
or of a multisorted relational clone Γ on {Di} if f preserves Rj for each relation Rj ∈ Γ.

Note that a collection of vectors of operations fn on {Di} defines a collection of algebraic
structures (Di, {fDi

n }) which all share the same signature. So the “correct” algebraic counterpart
to a multisorted relational structure ends up being a collection of algebraic structures which share
a common signature.

Definition 1.1.14. For Γ a collection of multisorted relations on {Di}, we define ⟨Γ⟩ to be the
multisorted relational clone generated by Γ. Similarly, if O is a collection of vectors of operations
on {Di}, then we define ⟨O⟩ to be the multi-clone generated by O.

If {Di} = {(Di, {fDi
n })} is a collection of algebraic structures which share a common signature,

then we define Clo({Di}) to be the multi-clone ⟨{fn}⟩ generated by the vectors fn of basic operations
of {Di}.

We extend the definitions of Inv and Pol to the multisorted case in the obvious way.

Definition 1.1.15. If Γ is any collection of multisorted relations on {Di}, then we define Pol(Γ)
to be the the collection of vectors of operations on {Di} that preserve every relation of Γ. If O is
any collection of vectors of operations on {Di}, we define Inv(O) to be the collection of multisorted
relations which are preserved by every operation in O.

Now we can state and prove the Galois connection for the multisorted case.

Theorem 1.1.16 (Romov [148]). If Γ is a collection of multisorted relations on a (possibly infinite)
collection of finite domains {Di}, then Inv(Pol(Γ)) = ⟨Γ⟩.

Proof. Suppose that
S ⊆ Di1 × · · · ×Dim

is generated by elements x1, ..., xk ∈
∏
j Dij , and let X be the matrix having the xjs as columns.

Then S = {f(X) | f ∈ Polk(Γ)}, so as a starting point we will construct a primitive positive
formula Φ that describes Polk(Γ).

Note that
∏
iD

Dk
i

i is naturally interpreted as the set of vectors of functions fDi : Dk
i → Di:

if f ∈
∏
iD

Dk
i

i , then the (i, (a1, ..., ak))-coordinate of f is fDi(a1, ..., ak). We can now give an

infinitary positive primitive formula for Polk(Γ) ⊆
∏
iD

Dk
i

i :

Φ(f) :=
∧
R∈Γ

∧
M∈Rk

f(M) ∈ R.

If Γ is infinite, the outer
∧

will be an infinite conjunction, and if there are infinitely many sorts
Di then the number of variables of Φ(f) will also be infinite. However, since there are only finitely
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many possible subsets of
∏
j≤mD

Dk
ij

ij
, and since D

Dk
i′

i′ is also finite for each i′ ̸∈ i1, ..., im, by König’s

Lemma some finite subset Φ′ of the inner conjunctions will have

∃{fDi′ | i′ ̸∈ i1, ..., im} Φ(f) = ∃{fDi′ | i′ ̸∈ i1, ..., im} Φ′(f).

Note that only finitely many operations fDi′ actually show up in Φ′(f), so the right hand side can
be interpreted as a finite primitive positive formula.

Finally, to define S we use the primitive positive formula

S(a) := ∃f ∈
∏
i

D
Dk

i
i Φ′(f) ∧ (f(X) = a).

Remark 1.1.4. The same proof can be used to show that if we allow the domains Di to be infinite,
Inv(Pol(Γ)) will be equal to the collection of multisorted relations which can be written as increasing
unions of multisorted relations which can be defined by infinitary primitive positive formulas over
Γ which have finitely many free variables.

Theorem 1.1.17 (Romov [148]). If O is a collection of vectors of operations on a finite collection
of finite domains (D1, ..., Dn), then Pol(Inv(O)) = ⟨O⟩.

Proof. Suppose that f ∈ Pol(Inv(O)) is a vector of k-ary operations. Let F(k) ⊆
∏
i≤nD

Dk
i

i be

the subalgebra of the algebraic structure
∏
i(Di,ODi)D

k
i generated by the projections πj , which are

given by
πDi
j : Dk

i → Di, πDi
j (x1, ..., xk) = xj .

Then F(k), interpreted as a set of vectors of functions from Dk
i to Di, is exactly the set of k-ary

vectors of operations in ⟨O⟩.
Since f ∈ Pol(Inv(O)) and F(k) ∈ Inv(O), we must have f � F(k), so in particular we must

have f(π1, ..., πk) ∈ F(k). But f(π1, ..., πk) is exactly f thought of as an element of
∏
iD

Dk
i

i , so
this means that f ∈ ⟨O⟩.

Remark 1.1.5. The same argument can be used to give a multisorted generalization of Reinhard
Pöschel’s result from [141] characterizing polymorphism clones on infinite domains. We say that a
vector of operations f of arity k is inO, the closure of O under the topology of pointwise convergence,
if for every finite collection of tuples {(ij , (aj1, ..., a

j
k))} ⊆

⊔
iD

k
i , there is some g ∈ O which satisfies

∀j gDij (aj1, ..., a
j
k) = fDij (aj1, ..., a

j
k).

Then the general result is that Pol(Inv(O)) = ⟨O⟩, even if we have infinitely many infinite domains.

Remark 1.1.6. There are several ways to try to force the multisorted setting into the single sorted
straitjacket. One approach is to start from a multisorted relational structure ({Di}, {Rj}), and to
make a new single sorted relational structure with domain

D =
⊔
i

Di

out of it, with each of the original relations Rj interpreted as relations on D in the obvious way,
and with each sort Di interpreted as a unary relation on D. Although this approach works, it is
inelegant for the following reasons:
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• the equality relation = onD doesn’t correspond to anything natural in the original multisorted
structure, and

• a polymorphism f of the new relational structure is forced to assign values to tuples (a1, ..., ak) ∈
Dk which don’t necessarily all come from the same sort, but the value of f(a1, ..., ak) is irrel-
evant to every natural question we might ask unless there is some i with {a1, ..., ak} ⊆ Di.

If the number of domains Di is small, a more elegant approach was described in Bulatov and
Jeavons [49]. They define a single-sorted relational structure with domain

D =
∏
i

Di,

with each relation Rj ⊆ Dij1
× · · · ×D

ijmj
interpreted as the mj-ary relation on D given by

(x1, ..., xmj ) ∈ RDj ⇐⇒ (π
ij1

(x1), ..., πijmj
(xmj )) ∈ Rj ,

and with extra binary equivalence relations ∼i ⊆ D2 given by

x ∼i y ⇐⇒ πi(x) = πi(y).

On the algebraic side of the picture, this corresponds to replacing the collection {Di} of algebras
(all sharing a common signature) with their product

D =
∏
i

Di.

Let’s verify that the polymorphisms of the single-sorted relational structure (D, {RDj }∪{∼i}) really
correspond to the vectors of operations in Pol({Di}, {Rj}).

• If f ∈ Pol({Di}, {Rj}), then we define fD by

πi(f
D(a1, ..., ak)) = fDi(πi(a1), ..., πi(ak)).

That this fD preserves each relation RDj and each equivalence relation ∼i can be checked by
unwinding the definitions.

• If f ∈ Pol(D, {RDj }∪{∼i}), then since f preserves ∼i we can define fDi by arbitrarily picking
reference elements b1, ..., bk ∈

∏
j ̸=iDj , and setting

fDi(a1, ..., ak) = πi(f((a1, b1), ..., (ak, bk)))

for a1, ..., ak ∈ Di, and the resulting functions fDi will not depend on the choice of b1, ..., bk.
Then we can check that the vector of operations i 7→ fDi preserves Rj iff f preserves RDj by
unwinding the definitions.

Throughout the rest of these notes, we will drop the distinction between operations and vectors
of operations, as well as the distinction between multi-clones and clones.

34



1.2 Three basic examples

We start with the correspondence between 2-SAT and majority.

Theorem 1.2.1. Suppose that a relation R ⊆ {0, 1}m is preserved by the majority function maj :
{0, 1}3 → {0, 1}. Then R is bijunctive, that is, R can be written as a conjunction of binary and
unary relations.

Proof. We prove this by induction on m. If m ≤ 2 then there is nothing to prove. Otherwise, for
each i ≤ 3 let Ri be the existential projection of R onto all variables except for the ith. We will
show that R is equivalent to

Φ(x1, ..., xm) := R1(x2, x3, ..., xm) ∧R2(x1, x3, ..., xm) ∧R3(x1, x2, ..., xm),

and the result will then follow by the induction hypothesis. It is clear that R ⊆ Φ, so sup-
pose (x1, ..., xm) ∈ Φ. Then by the definitions of R1, R2, R3, there exist x′1, x

′
2, x

′
3 such that

(x′1, x2, x3, ..., xm), (x1, x
′
2, x3, ..., xm), (x1, x2, x

′
3, ..., xm) ∈ R, and applying maj to these three tu-

ples we see that (x1, ..., xm) ∈ R as well.

Definition 1.2.2. An operation f : {0, 1}k → {0, 1} is called monotone if it preserves the relation
≤. It is called self-dual if it preserves the relation ̸=.

Theorem 1.2.3. Suppose that a function f : {0, 1}k → {0, 1} is monotone and self-dual. Then
f ∈ ⟨maj⟩.

Proof. We prove this by induction on k. It’s easy to check that there are no monotone self-dual
functions of arity≤ 2 other than the projections, so assume that k ≥ 3. By the induction hypothesis,
any function we can make by identifying two variables of f is in ⟨maj⟩. We claim that we have

f(x, y, z, ...) = maj(f(x, y, y, ...), f(z, y, z, ...), f(x, x, z, ...)),

where the ... always represent the remaining k − 3 variables. To see this, note that the formula is
trivially true when x = y = z, so we only need to check it when one of the variables is different
from the other two. We will check it in the case (x, y, z) = (0, 1, 0), since every other case is
analogous (via cyclically permuting x, y, z or swapping 0s and 1s throughout). In this case, since f
is monotone we have

f(0, 1, 1, ...) ≥ f(0, 1, 0, ...) ≥ f(0, 0, 0, ...),

so the median of these three values will be f(0, 1, 0, ...) = f(x, y, z, ...), and the majority is equal to
the median on {0, 1}.

Examining the proof, we see that every n-ary monotone self-dual function f can be written in
terms of maj as a term of depth at most n− 2, such that every subterm is obtained by identifying
some of the variables of f .

Corollary 1.2.4. For any odd n, the n-ary function mn given by

mn(x1, ..., xn) :=

{
1

∑
i xi >

n
2 ,

0
∑

i xi <
n
2
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is in the clone generated by maj. In fact, we may write mn as a term of depth at most n− 2, such
that every subterm is also a linear threshhold function, where for a ∈ Nn with

∑
i ai = n we define

the n-ary linear threshhold function ta by

ta(x1, ..., xn) :=

{
1

∑
i aixi >

n
2 ,

0
∑

i aixi <
n
2 .

For the majority function mn, we can actually find a substantially smaller term using a prob-
abilistic construction. (A deterministic construction, based on sorting networks, can be found in
[109].)

Proposition 1.2.5 (Valiant [159]). For any odd n, the majority function mn can be represented
by a term of depth O(log(n)) and size O(n4.3).

Proof. We’ll follow Goldreich’s exposition [73]. Consider the completely generic formula fℓ(y1, ..., y3ℓ)
of depth ℓ, defined recursively by f0 = π1, f1 = maj, and

fℓ+1(y) := maj(fℓ(y1, ..., y3ℓ), fℓ(y3ℓ+1, ..., y2·3ℓ), fℓ(y2·3ℓ+1, ..., y3ℓ+1)).

Then define a random function gℓ(x1, ..., xn) by replacing each yi in fℓ with a random choice of
xji , where the ji are independently and uniformly randomly chosen from the set {1, ..., n}. For any
particular input x ∈ {0, 1}n, if pi is the probability that gi(x) = mn(x), then we have

p0 ≥
1

2
+

1

2n

and

pi+1 = 3(1− pi)p2i + p3i

= 0.5 + (1.5− 2(pi − 0.5)2)(pi − 0.5)

= 1− (3− 2(1− pi))(1− pi)2.

A little computation then shows that for ℓ ≈ (1 + 1/ log2(1.5)) log2(n) ≈ 2.71 log2(n) we have
1 − pℓ < 2−n, so a union bound shows that for this choice of ℓ at least one assignment to the yis
has gℓ(x) = mn(x) for all x ∈ {0, 1}n.

Monotone self-dual functions can be interpreted as voting functions. They also have a combi-
natorial interpretation in terms of maximal “intersecting families” of sets.

Definition 1.2.6. Let S be a set. A family F ⊆ P(S) is called an intersecting family of subsets
of S if A,B ∈ F implies A ∩B ̸= 0.

Proposition 1.2.7. An intersecting family of subsets of a set S is maximal (with respect to con-
tainment) if and only if for every set A ⊆ S we have either A ∈ F or (S \A) ∈ F . For every n ≥ 1
there is a bijection between maximal intersecting families F of subsets of {1, ..., n} and monotone
self-dual boolean functions f : {0, 1}n → {0, 1}.

We can describe a maximal intersecting family of subsets of a set more compactly by describing
its collection of minimal elements. We can mutate an intersecting family by taking one of its
minimal elements A, deleting it, and replacing it with its complement - this is called “switching”
the subset A with its complement.
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Definition 1.2.8. For every n, we define an undirected graphMn whose vertices are the maximal
intersecting families of subsets of {1, ..., n}, and whose edges are the pairs of families F ,G such that
|F \ G| = 1.

The graph M4 is depicted below, with vertices labeled by the minimal elements of the corre-
sponding intersecting families as well as the corresponding monotone self-dual functions (written
in terms of the majority function, which we abbreviate as m).

{1,2},{1,3},{2,3}
m(x,y,z)

{1,3},{2,3},{3,4},{1,2,4}
m(z,w,m(x,y,z))

{3}
z

{4}
w

{1,4},{2,4},{3,4},{1,2,3}
m(z,w,m(x,y,w))

{1,4},{2,4},{3,4}
m(x,y,w)

{1}
x

{1,2},{1,3},{1,4},{2,3,4}
m(x,y,m(x,z,w))

{1,3},{1,4},{3,4}
m(x,z,w)

{2,3},{2,4},{3,4}
m(y,z,w)

{1,2},{2,3},{2,4},{1,3,4}
m(x,y,m(y,z,w))

{2}
y

The graph Mn is always connected: given two maximal intersecting families F ,G, there will
always be some minimal element of F which is not contained in G, and switching this set with its
complement gives us a maximal intersecting family F ′ which is adjacent to F and has one more
element in common with G than F does. For more about maximal intersecting families of sets, see
[130].

Next we move to the correspondence between HORN-SAT and the minimum operation.

Theorem 1.2.9. Suppose that a relation R ⊆ {0, 1}m is preserved by the minimum function
min : {0, 1}2 → {0, 1}. Then R can be written as a conjunction of Horn clauses.

Proof. Write R =
∧
iCi in conjunctive normal form, such that each clause Ci is minimal. Note

that this means that for each literal l in Ci, there is some assignment to the variables that satisfies
R, and has the rest of the literals in Ci other than l set to 0.

Suppose, for a contradiction, that some clause Ci has at least two non-negated variables in it, and
assume without loss of generality that Ci = x1∨· · ·∨xp∨x̄p+1∨· · ·∨x̄p+q, p ≥ 2. By the minimality of
Ci, there are assignments a, b which satisfy R and such that a2 = · · · = ap = āp+1 = · · · = āp+q = 0
and b1 = · · · = bp−1 = b̄p+1 = · · · = b̄p+q = 0. But then min(a, b) fails to satisfy Ci, and hence fails
to satisfy R.

37



Theorem 1.2.10. Suppose that a function f : {0, 1}k → {0, 1} preserves the relations {0}, {1},
and x∧y =⇒ z. Then there is a nonempty subset I ⊆ {1, ..., k} such that f(x1, ..., xk) = mini∈I xi.

Proof. Since f preserves {0} and {1}, we have f(0, ..., 0) = 0 and f(1, ..., 1) = 1. Since ≤ is in the
relational clone generated by x ∧ y =⇒ z, f must be monotone.

For each subset I ⊆ {1, ..., k}, let χI be the indicator vector of I. Suppose that I, J have
f(χI) = f(χJ) = 1, then from χI ∧ χJ =⇒ χI∩J (coordinatewise) we see that we must have
f(χI∩J) = 1 as well. Thus, there is a unique minimum subset I∗ satisfying f(χI∗) = 1. Since f is
monotone, we have f(χJ) = 1 ⇐⇒ J ⊇ I∗.

Remark 1.2.1. The fact that min-closed relations on the domain {0, 1} can always be written as
intersections of Horn clauses has the following useful consequence in logic.

Suppose that P1, ..., Pm is a list of logical statements about some type of structure M in some
collection of structures M. Suppose that for every pair of structures M1,M2 ∈ M there is a
structure M ′ ∈ M such that for each i, Pi holds in M ′ iff Pi holds in both M1 and M2. Then
there is a collection of Horn clauses ϕ1, ..., ϕn in the propositions P1, ..., Pm such that an assignment
of true/false values to the Pis can be realized by some M ∈ M iff the assignment satisfies the
collection of Horn-clauses ϕ1, ..., ϕn.

Finally, we come to the affine linear case. We leave the proofs of the following two results to
the reader.

Theorem 1.2.11. Suppose that a relation R ⊆ (Z/p)m is preserved by the ternary operation x−y+z
(mod p). Then R is an affine linear subspace of (Z/p)m - that is, a vector subspace of (Z/p)m offset
by a fixed vector - and R ∈ ⟨{1}, x+ y ≡ z (mod p)⟩.

Theorem 1.2.12. Suppose that a function f : (Z/p)k → Z/p preserves the relations {1} and
x + y ≡ z (mod p). Then f is an affine linear function - that is, a linear function such that
the sum of the coefficients is 1 - and f ∈ ⟨x − y + z (mod p)⟩. If p is odd, we have ⟨x − y + z
(mod p)⟩ = ⟨x+y2 (mod p)⟩.

1.3 Varieties, Birkhoff’s HSP theorem, and the hardness proof

From here on we switch over to the algebraic language. To a relational structure A = (D,Γ) we
associate an algebraic structure A = (D,O) with ⟨O⟩ = Pol(Γ). We let CSP(A) be another name
for CSP(A) = CSP(Inv(A)).

Remark 1.3.1. Suppose A,B are two algebraic structures with associated relational structures A,B.
It is tempting to think that a homomorphism A→ B will correspond to a homomorphism A→ B,
or vice versa. Unfortunately, this is total nonsense - if the (functional) signatures of A and B match,
the (relational) signatures of A and B will likely have nothing to do with each other!

In a similar vein, the automorphism groups Aut(A) and Aut(A) have almost nothing to do with
each other. A trivial but illuminating example is the case where A has no functions at all, so that
Aut(A) is the full symmetric group - in this case, A has every possible relation in its signature,
including named singleton unary relations for every element of the domain. Thus, if A is trivial,
then A is rigid, with Aut(A) = {1}.

We will now use the algebraic language to relate the complexities of CSPs with different domains.
This will finally clarify what we meant by one CSP “simulating” another CSP in the introduction
(well, there is one more method of simulation that will be introduced in the next section).
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Theorem 1.3.1. If A is an algebraic structure, and B is either

• a subalgebra of A,

• a power of A, or

• a quotient of A,

then there is a logspace reduction from CSP(B) to CSP(A).

Proof. If B is a subalgebra of A, we can convert any instance of CSP(B) into an instance of CSP(A)
by simply adding an extra unary constraint for each variable corresponding to the relation B ⊆ A1.

If B = An for some n, then we can convert an instance of CSP(B) to an instance of CSP(A)
by replacing each variable with an n-tuple of variables, and using the fact that every subalgebra of
(An)m is a subalgebra of Amn.

If B = A/∼ for some congruence ∼ ⊆ A2 on A, then every relation R ⊆ Bm lifts to a relation
R̃ ⊆ Am by the rule x ∈ R̃ ⇐⇒ x/∼ ∈ R.

More generally, if we have several algebras A1,A2, ... in the same (functional) signature, we can
define CSP({A1,A2, ...}) to be the problem where each variable comes with a sort - that is, a specific
algebra Ai that it lives in - and each relation is multisorted, where a multisorted relation is “allowed”
if it cuts out a subalgebra of the relevant product of the Ais. This sort of multisorted relation was
considered by Bulatov and Jeavons [49]. In this framework, there is a logspace equivalence between
CSP(A1 × A2) and CSP({A1,A2}).

So we see that we are naturally led to study families of finite algebras (all sharing a signature)
which are closed under taking finite products, subalgebras, and quotients. This leads us to the
concept of a variety (or pseudovariety, if the family of finite algebras is not finitely generated).
Lurking in the background here is a new Galois connection, this time between families of identities
and families of algebras.

Definition 1.3.2. A term (in a given functional signature) is either a variable name or a k-ary
function symbol applied to a k-tuple of previously constructed terms. An identity is a formal
expression s ≈ t, where s and t are terms. An algebra A satisfies an identity s ≈ t, written
A |= s ≈ t, if

∀x1, ..., xn ∈ A s(x1, ..., xn) = t(x1, ..., xn)

(here we are assuming that the variables of s and t are drawn from x1, ..., xn).

The ≈ notation is confusing at first, since in the context of universal algebra it is viewed as a
statement which is stronger than ordinary equality. The idea here is that approximate equality is
never considered in universal algebra, so there should be no confusion in repurposing the symbol ≈
into an abbreviation for universal quantifiers. For instance, the intended meaning of the expression
“f(x, y) ≈ f(y, x)” is “∀x, y f(x, y) = f(y, x)”. An alternate point of view is that ≈ refers to the
congruence on the absolutely free algebra corresponding to the identities which are satisfied by the
algebras we are interested in.

Definition 1.3.3. The variety V(T ) determined by a set of identities T is the set of algebras that
satisfy all of the identities in T . If A1,A2, ... is a collection of algebras, then V(A1,A2, ...) is the
variety associated to the set of all identities that hold simultaneously in all of the algebras Ai.
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Birkhoff [28] introduced a convenient notation for manipulating sets (strictly speaking these are
classes, not sets) of algebras: if S is a set of algebras, then PS is the set of products of algebras
from S (possibly infinite - Pfin is the notation if one restricts to finite products), SS is the set of
subalgebras of algebras from S, and HS is the set of quotients (homomorphic images) of algebras
from S.

Theorem 1.3.4 (Birkhoff’s HSP Theorem [28]). For any collection S of algebras, we have V(S) =
HSP (S), that is, an algebra A satisfies every identity which is satisfied in every element of S if and
only if it is the homomorphic image of a subalgebra of a product of elements of S. Furthermore, if S
is a finite collection of finite algebras, then the set of finite algebras in V(S) is equal to HSPfin(S).

Proof. It is easy to check that if A,B |= s ≈ t, then A× B |= s ≈ t, and similarly every subalgebra
and quotient of A also satisfies s ≈ t. Thus HSP (S) ⊆ V(S).

For the other containment, suppose that A ∈ V(S), and suppose that A is generated by a subset
I ⊆ A. We let P be the product of all the algebras of S, and define the “free algebra” F(I) to be the

subalgebra of PPI
which is generated by the projection functions πi for i ∈ I, given by πi(x) = xi.

We claim that there is a surjective homomorphism h : F(I)↠ A with h(πi) = i.

Suppose not. Then there are two terms s, t with s(πi1 , ..., πin) = t(πi1 , ..., πin) in PPI
, but

s(i1, ..., in) ̸= t(i1, ..., in) in A. But then s ≈ t is satisfied by P, and hence by every algebra in S,
and is not satisfied in A, contradicting our assumption that A ∈ V(S).

For the last claim, note that if A,S, and every element of S are finite, then so are I,P,PI , and
PPI

.

Birkhoff’s HSP theorem gives one half of the Galois connection between identities and algebras.
The other half is a result from model theory, which explains why elementary results in algebra can
always be proved by writing down a long string of equalities.

Theorem 1.3.5. If T is a family of identities, then the set of identities which hold in V(T ) is
equal to the closure of T ∪ {x ≈ x} under:

• substituting a term for a variable in an identity,

• applying a k-ary function to both sides of a k-tuple of identities,

• deducing s ≈ t from t ≈ s, and

• deducing s ≈ u from s ≈ t and t ≈ u.

Proof. Define the free algebra FT (x1, ...) on countably many variables by taking the set of all terms
on these variables, and then taking the quotient of this term algebra by the congruence generated
by the images under all possible substitutions of the identities in T . The result will be an algebra
satisfying all of the identities of T , and one can check directly from the definition of a congruence
that the identities that hold in this free algebra are exactly the ones described in the theorem
statement.

Using Birkhoff’s theorem, we can give a criterion for NP-completeness.

Theorem 1.3.6. If CSP(A) is not NP-complete, then there is a finite set of identities si ≈ ti
which are satisfied by A, which can’t be satisfied by assigning each function symbol to a projection
of the same arity.
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Proof. If V(A) contains an algebra B of size at least 2 where each function symbol acts as a
projection, then CSP(B) is NP-complete and has a logspace reduction to CSP(A). Such an algebra
B will exist if there is a way to assign the function symbols to projections that satisfies every identity
satisfied by A. To see that we only have to consider finite sets of identities, we use a compactness
argument: each function symbol has only a finite number of projections it can be assigned to, so
we can apply Kőnig’s Lemma.

Example 1.3.1. Consider the algebra A = ({0, 1},min), and use the binary function symbol s to
abbreviate min. Then V(A) = SP (A) = V(Tsemi), where Tsemi is the following set of identities:

s(x, x) ≈ x, s(x, y) ≈ s(y, x), s(x, s(y, z)) ≈ s(s(x, y), z).

The second identity above, s(x, y) ≈ s(y, x), can’t be satisfied by assigning s to either of the
projections π1, π2.

An algebra in V(Tsemi) is called a semilattice, and can be visualized as a poset where every
nonempty finite subset has a greatest lower bound (if we visualize it this way, we often call it a
meet semilattice).

Any finite meet semilattice which has a greatest element can be extended to a lattice, since every
finite subset will also have a least upper bound (just take the greatest lower bound of the collection
of all upper bounds, which is nonempty by the assumption that there is a greatest element). Since
we can always adjoin a new “top” element to any finite meet semilattice, we see that every finite
semilattice is isomorphic to a subalgebra of the meet semilattice reduct of some lattice (in fact, this
is also true for infinite semilattices).

Alternatively, a semilattice can be thought of as a poset where every nonempty finite subset
has a least upper bound, if we are thinking in terms of an operation like max - if we are visualizing
it in this way, we call it a join semilattice. (I generally prefer to visualize semilattices as join
semilattices, but most authors prefer to visualize semilattices as meet semilattices.)

Since it is often confusing when people who think of semilattices as meet semilattices try to talk
to people who think of them as join semilattices (i.e. minimal elements in one language become
maximal elements in the other language), it is useful to have some vocabulary which is agnostic to
the meet/join distinction. We say that an element a is absorbing with respect to s if it satisfies

s(a, x) = s(x, a) = a

for all x, and we say that an element b is neutral with respect to s if it satisfies

s(b, x) = s(x, b) = x

for all x. Every two-element semilattice has a neutral element and an absorbing element, and
knowing which is which determines the semilattice operation. In general, every finite semilattice
has an absorbing element, but might not have a neutral element (for instance, the free semilattice
on two generators has absorbing element s(x, y) and has no neutral element). In a meet semilattice,
the absorbing element will be the bottom and the neutral element (if it exists) will be the top, while
in a join semilattice, the absorbing element will be the top and the neutral element (if it exists)
will be the bottom.
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Example 1.3.2. Consider the algebra A = ({0, 1},maj), and use the ternary function symbol m to
abbreviate maj. Then V(A) = SP (A) = V(Tmed), where Tmed is the following set of identities:

m(x, y, z) ≈ m(y, z, x) ≈ m(x, z, y),

m(x, x, y) ≈ x,
m(m(x, y, z), u, v) ≈ m(x,m(y, u, v),m(z, u, v)).

The identity m(x, y, z) ≈ m(y, z, x) can’t be satisfied by assigning m to one of the projections
π1, π2, π3.

An algebra in V(Tmed) is called a median algebra. A finite median algebra corresponds to a
median graph, that is, a graph with the property that for every three vertices x, y, z there exists a
unique vertex which lies on a shortest path connecting every pair of x, y, z (to recover the graph
structure, we draw an edge from x to y whenever m(x, y, z) ∈ {x, y} for all z). Examples of median
graphs are paths, trees, planar grids, “squaregraphs”, hypercubes, Hasse diagrams of distributive
lattices, and the graph Mn of maximal intersecting families from the last section. For more about
the theory of median algebras, see [147] or [35].

Median algebras are very closely connected to distributive lattices. It isn’t hard to show that
in any distributive lattice, the following identity holds:

(x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) ≈ (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x),

and in fact this identity is equivalent to the lattice being distributive. The common value of both
sides is called the median operation m(x, y, z) on the lattice - the reader can easily check that it
satisfies the identities Tmed. In fact, if a median algebra has two elements 0, 1 with m(0, x, 1) = x for
all x, then it forms a distributive lattice under the operations x∧y = m(0, x, y) and x∨y = m(x, y, 1),
and the median operation m can be recovered from ∧,∨ via the above formula [31].

Example 1.3.3. The operation m(x, y, z) = x−y+z (mod p) satisfies the identity m(x, y, y) ≈ x ≈
m(y, y, x), and this identity can’t be satisfied by assigning m to one of the projections π1, π2, π3.

Similarly, if p is odd, the operation m(x, y) = x+y
2 (mod p) satisfies the identity m(x, y) ≈

m(y, x), which can’t be satisfied by projections.

As with clones and relational clones, there are several natural finiteness questions that come up
with varieties.

Definition 1.3.7. A variety V is finitely generated if there is a finite list of finite algebras A1, ...,An
such that V = V(A1, ...,An). A variety V is locally finite if the free algebra on n generators
FV(x1, ..., xn) is finite for every n. A variety V is finitely based if there is a finite set of equations
T such that V = V(T ).

A variety V is locally finite iff for all A ∈ V and for all finite subsets {a1, ..., an} ⊆ A, the
subalgebra of A generated by a1, ..., an is finite. Every finitely generated variety is locally finite
(by the proof of the HSP Theorem). In general, determining whether a given finitely generated
variety is finitely based, or vice versa, is a very difficult problem. For instance, the famous Burnside
problem is the problem of determining whether the variety of groups satisfying the identity xn ≈ e
is locally finite.

Remark 1.3.2. Sometimes we want to consider infinite families of finite algebras with a finite func-
tional signature, closed under finite products, subalgebras, and homomorphisms. Such a family of
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algebras is called a pseudovariety. There are two different ways to describe pseudovarieties in terms
of identities.

Eilenberg and Schützenbérger [67] show that a pseudovariety is determined by an infinite se-
quence of identities, such that a finite algebra is contained in the pseudovariety iff it satisfies all but
finitely many of the identities in the sequence. The trick is to sort the isomorphism classes of finite
algebras by their sizes, and for each size k write down a finite set of identities in k variables which
characterizes the free algebra on k generators in the subvariety generated by the set of algebras of
size at most k.

Reiterman [146] shows that a pseudovariety is determined by identities between “implicit oper-
ations”: operations which aren’t defined from terms directly, but which can still be defined on any
particular finite algebra in a way that is compatible with homomorphisms. Examples of implicit
operations in the language of a unary function f are

f∞ = lim
n→∞

f◦n!, f∞−1 = lim
n→∞

f◦(n!−1),

where the limits are taken pointwise (note that the functions f◦n! stabilize once n exceeds the
size of the domain). For any function f on a finite domain, f∞ will always satisfy the identity
f∞(f∞(x)) ≈ f∞(x), while the pseudovariety of invertible functions on finite sets is cut out by the
identities

f(f∞−1(x)) ≈ f∞−1(f(x)) ≈ x.

For those who like category theory, a k-ary implicit operation of a pseudovariety V with un-
derlying set functor S : V → Set is a natural transformation from Sk to S. If a free algebra on k
elements exists in V, then a standard argument shows that every k-ary implicit operation of V is
actually explicit, that is, a term operation of V. In general, every finite subset of V will generate
a locally finite subvariety of V, which shows that the restriction of any implicit operation to this
subset agrees with some term operation of V. Reiterman [146] puts a metric structure on the set of
implicit operations of a pseudovariety such that the collection of implicit operations becomes the
completion of the collection of explicit operations.

1.4 Cores and Idempotent Reducts

In this section we briefly return to the relational point of view, and the concept of homomor-
phic equivalence, to provide one last algebraic ingredient: the restriction to idempotent algebraic
operations.

Definition 1.4.1. Two relational structures A,B with the same signature are homomorphically
equivalent if there exist homomorphisms A→ B,B→ A.

The prototypical example of homomorphic equivalence is a (non-surjective) endomorphism from
a relational structure to itself, providing a homomorphic equivalence between the original relational
structure and the restriction of the relational structure to a proper subset of its domain. On the
algebraic side, this manifests as a unary operation which is not invertible. The algebraic implications
of such unary operations in the polynomial clone of an algebra are at the heart of the subject called
“tame congruence theory”, which was introduced to give the first structure theory for finite algebras
in the book by Hobby and McKenzie [82].
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Example 1.4.1. Consider the relational structure A corresponding to the binary implication algebra
A = ({0, 1},→). This relational structure has as basic relations Rn = {0, 1}n \ {(0, ..., 0)} =
x1 ∨ · · · ∨ xn. The unary algebraic operation →(x, x) of A takes every element to 1, and defines
an endomorphism of relational structures A→ A whose image is {1}. Together with the inclusion
relation, we get a homomorphic equivalence between A and the one-element relational structure
with domain {1} and relations Rn |{1}n= {1}n, whose CSP is clearly trivial.

As the example shows, non-surjective endomorphisms provide trivial ways to simplify CSPs.

Definition 1.4.2. A relational structure on a finite domain A is called a core if every endomorphism
of A is also an automorphism of A. If A is not a core, then B is called a core of A if B is a core
and B is homomorphically equivalent to A.

Example 1.4.2. Every complete graph Kn = ([n], ̸=) is a core.

Example 1.4.3. If G is a bipartite graph with at least one edge, then the core of G is K2, the
complete graph on two vertices.

Remark 1.4.1. In the infinite case, the definition of a core must be modified: an infinite relational
structure is called a core if every endomorphism is an embedding, i.e. an injective map that is an
isomorphism onto the restriction of the target relational structure to its image. An example of an
infinite core is (Q, <). See section 3.6 of [33] for more information about cores of infinite structures.

Proposition 1.4.3. Every relational structure on a finite domain A has a core. Any two cores of
A are isomorphic.

Proof. The first statement follows directly from induction on the size of A: if A is not a core,
then it is homomorphically equivalent to its restriction to some proper subset of itself. For the
second statement, note that if B,B′ are two cores of A then they are homomorphically equivalent,
and composing the maps B → B′, B′ → B gives us endomorphisms of B,B′ which must both be
invertible by the definition of a core.

Note that although restricting our attention to cores seems like a trivial step, we are sweeping
the following problem under the rug.

Problem 1.4.1. Given a finite relational structure A as input, determine whether or not A is a
core.

Obviously there is a brute-force approach to checking if A is a core: simply write down every
possible endomorphism, and go through them one by one. Since we only have to do this brute
force once for a given CSP template, this is not as bad as it sounds, but it is still far from ideal.
Unfortunately, as it turns out, a brute force approach is pretty much the best one can do.

Theorem 1.4.4 (Hell, Nešetřil [79]). Determining whether a given undirected graph is a core is
NP-complete, even if the graph is assumed to be 3-colorable (with a given 3-coloring).

The next main idea comes from “self-reducibility”: often, when solving a CSP, one makes a
guess (or deduces) that a certain variable should have a certain value. We would like to be able
to express a CSP together with some constraints stating that certain variables have certain values
using the language of the original CSP. If this is possible, then an algorithm for deciding whether
the CSP has a solution can be directly converted into an algorithm for finding a solution to the
CSP.
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Definition 1.4.5. A relational structure A is a rigid core if it has no endomorphisms other than
the identity. (In general, a structure is called rigid if it has no automorphisms.)

Theorem 1.4.6. A relational structure A on a finite domain D is a rigid core if and only if it
has the following property: for every element a ∈ D, the unary relation {a} is contained in the
relational clone generated by the relations of A.

Proof. This follows directly from the Inv-Pol Galois connection: {a} ∈ ⟨A⟩ iff {a} is closed under
Pol(A), and since {a} is generated by a single element, we only need to check that it is closed under
Pol1(A), which is exactly the set of endomorphisms of A.

We can also give a direct proof, by unraveling the proof of the Inv-Pol connection in this special
case, as follows. Define a CSP with a variable fa for each a ∈ D. For every relation R ⊆ Dm of A
and every tuple (a1, ..., am) ∈ R, we impose the constraint (fa1 , ..., fam) ∈ R on our CSP. Now the
solution-set to our CSP exactly corresponds to the set of endomorphisms of A, and if A is a rigid
core then existentially projecting onto the variable fa produces the unary relation {a}.

So it is very desirable to restrict our attention to rigid cores. Most of the example CSPs from
the introduction were rigid cores, with the notable exceptions of k-coloring and NAE-SAT. The
k-coloring problem is an excellent toy example: the reader may be already be aware of the fact that
CSP({1, ..., k}, ̸=) (the k-coloring problem) is logspace equivalent to CSP({1, ..., k}, ̸=, {1}, ..., {k})
- the rigid core obtained by adjoining the unary singleton relations to k-coloring. It is worth
examining the proof of that equivalence and understanding how the next result generalizes it.

Theorem 1.4.7. Suppose that A = (D,Γ) is a core on a finite domain D, and let Arig be the
rigid core obtained by adjoining all singleton unary relations to A. Then CSP(A) is equivalent to
CSP(Arig) under logspace reductions.

Proof. We need to find a way to convert an instance of CSP(Arig) to an instance of CSP(A) without
changing whether it has a solution. As in the previous result, introduce a set of variables fa for
each element a ∈ D, and define a primitive positive formula Φ by

Φ(f) :=
∧
R∈Γ

∧
(a1,...,am)∈R

R(fa1 , ..., fam).

Suppose that our instance of CSP(Arig) has the form

Ψ(x) = ∃xn+1, ..., xn+m Ψ0(x) ∧
∧

(i,a)∈E

xi ∈ {a},

where Ψ0 is a primitive positive formula using the relations of Γ, and E is a set describing the
additional unary singleton constraints of Ψ. Let Ψ′ be the following formula:

Ψ′(x) := ∃f ∃xn+1, ..., xn+m Φ(f) ∧Ψ0(x) ∧
∧

(i,a)∈E

xi = fa.

We claim that the instance Ψ′ of CSP(A) has a solution iff the instance Ψ of CSP(Arig) has a
solution. Suppose that f, x solves Ψ′, then by the construction of Φ(f) f describes an endomorphism
f : A → A, and since A is a core this endomorphism must have an inverse f−1. Then f−1(x)
satisfies Ψ0 (since f−1 is an endomorphism of A), and for (i, a) ∈ E we have f−1(xi) = f−1(fa) = a,
so f−1(x) is a solution to Ψ(x).
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Now we look at what the restriction to rigid cores means on the algebraic side.

Definition 1.4.8. A function f : Dk → D is idempotent if it satisfies the identity f(x, x, ..., x) ≈ x.
An algebraic structure A = (D,O) is idempotent if every f ∈ O is idempotent. Equivalently, A is
idempotent if every singleton subset of D is a subalgebra of A.

Definition 1.4.9. If A = (D,O) is an algebraic structure, then the idempotent reduct Aid of A
has the same domain, and has as its operations the set of all idempotent functions f ∈ ⟨O⟩ (or,
alternatively, some smaller generating set of idempotent functions).

Example 1.4.4. If A = (Z/p,+, 0, 1), then Aid has as its operations the set of all affine linear
functions on Z/p, and one can take {x− y+ z (mod p)} as a generating set of basic operations (or,
if p is odd, one can alternatively take {x+y2 (mod p)} as a generating set of basic operations).

Proposition 1.4.10. If A is a core corresponding to the algebraic structure A, then the rigid core
Arig corresponds to the idempotent reduct Aid. In particular, every CSP is equivalent up to logspace
reductions to CSP(A) for some idempotent algebra A.

The reader might be worried that there is no obvious way to generate the collection of all
idempotent operations contained in a given clone. For core structures this is not an issue: the
polymorphisms of a core structure always decompose neatly into idempotent parts and invertible
unary parts.

Proposition 1.4.11. Suppose that O is a clone such that all of the unary operations in O are
invertible. Then for every k-ary function f ∈ O, if we define the unary function fun by

fun(x) := f(x, ..., x)

and the k-ary function fid by

fid(x1, ..., xk) := f−1
un (f(x1, ..., xk)),

then fid is idempotent and
f = fun ◦ fid.

In particular, if G is the group of unary operations in O, then for every k there are precisely |G|
times as many k-ary operations in O as there are k-ary idempotent operations in O.

If O is generated by the functions f1, ..., fm of arities k1, ..., km, then the set of idempotent
operations of O is generated by the functions

(fi ◦ (g1, ..., gki))id,

over all choices of i and all choices of g1, ..., gki ∈ G. In particular, the set of idempotent operations
of O is finitely generated if and only if the full clone O is finitely generated.

Example 1.4.5. There is an example of a core structure A which has polymorphisms satisfying a
nontrivial system of identities, but such that its rigidification Arig has no such polymorphisms and
is therefore NP-complete. This example is due to Ross Willard and can be found in [26].
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The underlying set of A is the set of expressions ai with a ∈ {1, 2, 3} and i ∈ {0, 1}. The
relations of A are given by

R(ai, bj) := (i = j) ∧ (a ̸= b),

S(ai, bj) := i ̸= j.

It is easy to check that this structure is a core.
Polymorphisms of A include the unary automorphism α(ai) = a1−i and the ternary function s

given by

s(ai, bj , ck) =

{
ck i = j,

ai i ̸= j.

These polymorphisms satisfy the identity

s(x, x, y) ≈ s(y, α(y), x) ≈ y,

which can’t be satisfied by projections.
Since the unary relation {ai | i = 0} is definable in Arig, we see that polymorphisms of Arig

restrict to idempotent polymorphisms of the triangle K3. We will show that K3 has no nontrivial
idempotent polymorphisms: in fact, we’ll show that every polymorphism of K3 is the composition
of a projection with an automorphism of {1, 2, 3}.

To see that all polymorphisms of K3 are essentially unary, suppose that f : Kn
3 → K3 depends

nontrivially on its first coordinate, that is, that there are x, y ∈ Kn
3 with xi = yi for all i > 1

with f(x) ̸= f(y). By composing with automorphisms of {1, 2, 3}, we may assume without loss of
generality that

f(1, 1, ..., 1) = 1, f(2, 1, ..., 1) = 2.

Since f preserves the ̸= relation, we must then have

f(3, 2, ..., 2) = f(3, 3, ..., 3) = 3.

These imply that
f({1, 2}n) ⊆ {1, 2}, f({1, 2} × {1, 3}n−1) ⊆ {1, 2}.

For any z2, ..., zn, we can find x2, ..., xn ∈ {1, 2} and y2, ..., yn ∈ {1, 3} with xi, yi, zi all distinct.
Thus we must have

f(3, z2, ..., zn) = 3

for all z2, ..., zn, and in particular f(3, 1, ..., 1) = 3. Now we can repeat the argument with 1 or 2 in
place of 3 to see that f(x1, ..., xn) = x1 for all x1, ..., xn, that is, f = π1.

Alternatively, we could have shown that Pol(Krig
3 ) is trivial by instead showing that every

relation on {1, 2, 3} is primitively positively definable from the singleton relations together with ̸=.
We leave this as an exercise for the reader (hint: once you have all ternary relations of the form
(x = a) ∧ (y = b) =⇒ (z = c), it’s easy to construct the rest).
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1.4.1 Reflections and Height 1 Identities

Let’s recap the various methods we have used to reduce different CSPs to each other:

• Reduce the set of basic relations Γ of a relational structure A = (A,Γ) to some collection of
relations Γ′ ⊆ ⟨Γ⟩. Equivalently, expand the collection of basic operations O in an algebraic
structure A = (A,O) to a collection of operations O′ with O ⊆ ⟨O′⟩. The collection of
algebraic structures A′ = (A,O′) with O ⊆ O′ is called the collection of expansions of A, and
we use the notation E({A}) for it in analogy with Birkhoff’s HSP operations.

• Each of Birkhoff’s algebraic HSP operations, on the algebraic side: we can replace an algebraic
structure A by any power An, any subalgebra B ≤ A, or any quotient A/∼ to get a CSP
which is no harder than CSP(A).

• Homomorphic equivalence of relational structures: when there are homomorphisms A → B
and B → A, then CSP(A) = CSP(B), since a relational structure X will have a homomor-
phism to A iff X has a homomorphism to B. We mainly use this to reduce the general case
to the case where A is a core relational structure.

• Starting from a core relational structure A, we showed that the rigidification Arig which we
get by adding each singleton unary relation to the basic relations of A has CSP(Arig) no
harder than CSP(A). On the algebraic side, this lets us reduce the general case to the case
where every basic operation of A is idempotent.

Barto, Opršal, and Pinsker [25] find it unsatisfactory to have so many unrelated methods
of proving reductions between CSPs, and looked for a single framework which could encompass
all known techniques for proving reductions. They show that every single method of proving a
reduction between CSP(A) and CSP(B) introduced so far can be described by combining just two
basic cases:

• if B is a “pp-power” (defined below) of A, then CSP(B) has a logspace reduction to CSP(A),
and

• if B is homomorphically equivalent to A then CSP(B) = CSP(A).

Furthermore, they show that even if we chain several such reductions together, we can always find
an equivalent reduction where the pp-power step is taken before the homomorphic equivalence step.

Definition 1.4.12. A pp-power of a relational structure A is a relational structure B with domain
An for some n, such that every relation of B can be defined by a primitive positive formula using
the relations of A (note that the signatures of A and B will generally be different).

Proposition 1.4.13. If B is homomorphically equivalent to a pp-power of A, then there is a
reduction from CSP(B) to CSP(A) which can be computed in linear time and logarithmic space.

Definition 1.4.14. We say that A pp-constructs B if B is homomorphically equivalent to some
pp-power of A.

For most of the reductions we have described so far, it is easy to see how we can express them
in the pp-constructability framework. For instance, in order to simulate the relational structure
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corresponding to A/∼, we first construct the relational structure A′ whose basic relations consist
of all subpowers R ≤ Am which are compatible with the congruence ∼ (using the special case of the
pp-power construction where the power n is equal to 1), and then we follow up with a homomorphic
equivalence from A′ to a relational structure where each equivalence class of ∼ is collapsed to a
single element. The only really tricky reduction is the last one: adding singleton unary relations to
a core structure.

Here is how we can go about adding a singleton unary relation {a} to a core A in the pp-
constructability framework. Let B be the relational structure which has the new unary relation
{a} (along with all of the original relations which A had). We will define a relational structure C
which will be a pp-power of A having domain A2, and show that C is homomorphically equivalent
to B.

Let O be the orbit of a under Aut(A) - note that O is in the relational clone defined by A -
and for every m-ary relation R of A, make a corresponding relation R̃ of C by

((x1, y1), ..., (xm, ym)) ∈ R̃ ⇐⇒ (x1, ..., xm) ∈ R ∧ y1 = · · · = ym ∈ O.

For the relation {a} of B, we make a corresponding relation S of C given by

(x, y) ∈ S ⇐⇒ x = y ∈ O.

To show that B and C are homomorphically equivalent, we just need to exhibit a pair of homo-
morphisms between them. The homomorphism B → C is given by x 7→ (x, a). To define the
homomorphism from C to B, we need to choose an automorphism gy of A with gy(y) = a for every
y ∈ O. Then the homomorphism C → B is given by (x, y) 7→ gy(x) if y ∈ O (and (x, y) maps to
an arbitrary element if y ̸∈ O).

Now let’s check that pp-constructability is transitively closed.

Proposition 1.4.15 (From [25]). If A pp-constructs B and B pp-constructs C, then A pp-
constructs C.

Proof. It’s easy to check that homomorphic equivalence is an equivalence relation, and that a pp-
power of a pp-power is a pp-power of the original structure. We just need to check that if A is
homomorphically equivalent to B and C is a pp-power of B, then there is some C′ such that C′ is
a pp-power of A and C′ is homomorphically equivalent to C.

Suppose that C is a pp-power of B with power n, so that the underlying set C of C is equal
to Bn. We will construct the pp-power C′ of A using the same power n, with the same relational
signature as C, as follows. For each m-ary relation symbol R of C, by the definition of a pp-power
there is some primitive positive formula in terms of relations Si of B which defines R as an mn-ary
relation on B:

x = (x1, ..., xm) = ((x11, ..., x1,n), ..., (xm1, ..., xmn)) ∈ R ⇐⇒ ∃y1, ..., yk ∈ B s.t.
∧
i

πIi(x, y) ∈ Si.

Then since A and B have the same relational signature (this is part of our assumption that they are
homomorphically equivalent), we can interpret each relation symbol Si in A to define an mn-ary
relation on A, which we will use to give an interpretation of the relation symbol R in C′:

x = (x1, ..., xm) = ((x11, ..., x1,n), ..., (xm1, ..., xmn)) ∈ RC′ ⇐⇒ ∃y1, ..., yk ∈ A s.t.
∧
i

πIi(x, y) ∈ SA
i .
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It is now easy to check that any homomorphism φ : A→ B defines a homomorphism φn : C′ → C
by simply letting φ act componentwise on elements of C ′ = An. Similarly, any homomorphism
B→ A defines a homomorphism C→ C′, so C and C′ are homomorphically equivalent.

Barto, Opršal, and Pinsker [25] also characterize what happens on the algebraic side of the
picture when one relates two relational structures by a pp-power or a homomorphic equivalence.
The new thing here is really the homomorphic equivalence: if g : A→ B and h : B→ A, then there
is a relationship between Pol(A) and Pol(B) which they call a reflection, which takes a function
f ∈ Polk(A) to the operation

ξ(f) : (x1, ..., xk) 7→ g(f(h(x1), h(x2), ..., h(xk)))

in Polk(B). Note that ξ does not respect composition: ξ(f0 ◦ (f1, ..., fk)) is not in general equal to
ξ(f0) ◦ (ξ(f1), ..., ξ(fk)). However, ξ does preserve height 1 identities.

Definition 1.4.16. An identity is called a height 1 identity, or a minor identity, if it has the form
f(x1, ..., xk) ≈ g(y1, ..., yl), where the xis and yjs are (not necessarily distinct) variables. A map
Pol(A)→ Pol(B) (taking functions to functions) which respects height 1 identities is called a height
1 clone homomorphism or a minion homomorphism.

Definition 1.4.17. If A = (A,O) is an algebraic structure and B is a set, and maps g : A → B,
h : B → A are given, then the reflection of A induced by g, h is defined to be the algebraic
structure B with domain B and the same signature as A, with the operation g ◦ f ◦ (h, ..., h) on B
corresponding to the operation f ∈ O.

Proposition 1.4.18. B is homomorphically equivalent to a pp-power of A iff Pol(B) contains a
reflection of Pol(A)n for some n (by Pol(A)n we mean the clone of operations of Pol(A) acting on
a power of the domain).

Proof. We prove the non-obvious direction. Let A,B be the underlying sets of A,B, and suppose
that g : An → B and h : B → An induce a reflection ξ : Pol(A)n → Pol(B). We will construct
a pp-power C of A with underlying set An which is homomorphically equivalent to B. For every
relation R of B, let R̃ be the relation

R̃ := {f(h(r1), ..., h(rk)) | f ∈ Polk(A), r1, ..., rk ∈ R}.

By definition, R̃ is the closure of h(R) under Pol(A), so R̃ is defined by a primitive positive formula
over A. We use R̃ as the relation corresponding to R in C. Finally, we just need to check that
g : C→ B and h : B→ C are homomorphisms. That h is a homomorphism follows from h(R) ⊆ R̃.
To check that g is a homomorphism, note that if x = f(h(r1), ..., h(rk)) ∈ R̃ with r1, ..., rk ∈ R,
then g(x) = ξ(f)(r1, ..., rk) is an element of R since ξ(f) ∈ Pol(B) by assumption.

Theorem 1.4.19 (ERP Theorem [25]). Pol(B) contains a reflection of Pol(A)n for some n iff
there is a height 1 clone homomorphism Pol(A)→ Pol(B).

Proof. We prove the non-obvious direction. Let A = (A,Pol(A)) be the algebraic structure corre-
sponding to A, and suppose ξ : Pol(A)→ Pol(B) is a height 1 clone homomorphism. Let F be the

subalgebra of AAB
generated by the operations πb : AB → A given by πb : x 7→ xb. Note that F is

secretly the free algebra over A on |B| generators.
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Define maps g : AAB → B and h : B → AAB
by h(b) = πb and

g(f(πb1 , ..., πbk)) = ξ(f)(b1, ..., bk)

for f ∈ Polk(A), and define g(x) arbitrarily for x ̸∈ F . To see that g is well-defined, note that if
f0(πb1 , ..., πbk) = f1(πc1 , ..., πcl), then f0, f1 are related by a height 1 identity in A which implies
that

ξ(f0)(b1, ..., bk) = ξ(f1)(c1, ..., cl).

Finally, we see that g, h induce ξ as a reflection from AAB
:

ξ(f)(b1, ..., bk) = g(f(πb1 , ..., πbk)) = g(f(h(b1), ..., h(bk))).

As a consequence, we see that the complexity of a CSP only depends on the set of height 1
identities satisfied by its polymorphisms, and that identities involving composition of functions are
in a sense superfluous. We also have the following result.

Corollary 1.4.20. Let A be a relational structure with core B, and let Brig be B together with any
finite collection of singleton unary relations. Then a system of height 1 identities can be satisfied
in Pol(A) iff it can be satisfied in Pol(Brig).

Remark 1.4.2. A height 1 clone homomorphism Pol(A) → Pol(B) is completely determined by
its restriction to polymorphisms of A of arity at most |B|, since every operation f : Bk → B is
determined by its |B|-ary minors. So there are only finitely many candidates for height 1 clone
homomorphisms from Pol(A) to Pol(B): if the underlying sets are A,B, then there are at most∣∣∣Pol|B|(B)Pol|B|(A)

∣∣∣ ≤ |B||B||B|·|A||A||B|

candidates. Less obviously, requiring that these candidates respect minors of arity ≤ |B| brings the
number of candidates down to just ∣∣∣BPol|B|(A)

∣∣∣ ≤ |B||A||A||B|
.

Unwinding the proofs of the ERP Theorem 1.4.19 and Proposition 1.4.18, each of these corresponds
to a candidate pp-construction of B.

More explicitly, suppose that

ξ|B| : Pol|B|(A)→ Pol|B|(B)

defines our candidate height 1 homomorphism and respects minors. Then we define maps g :
AAB → B and h : B → AAB

as in the proof of the ERP Theorem 1.4.19, but with the definition of
g slightly modified: we set

g(f(πb1 , ..., πb|B|)) = ξ|B|(f)(b1, ..., b|B|)

for |B|-ary polymorphisms f ∈ Pol|B|(A), with b1, ..., b|B| a fixed enumeration of the elements of
B. For each basic m-ary relation R of B, we define the corresponding relation

R̃ ⊆
(
AAB

)m
= {f(h(r1), ..., h(rk)) | f ∈ Polk(A), r1, ..., rk ∈ R}

= Sg
(AAB )m

{h(r) | r ∈ R},
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exactly as in the proof of Proposition 1.4.18. Each R̃ is pp-definable from the basic relations of
A, so the relational structure C with underlying set AAB

and basic relations given by the R̃s is
a pp-power of A with the same relational signature as B. By construction, the map h : B → C
will be a homomorphism, so the only challenge is to check whether or not g : C→ B is actually a
homomorphism, that is, to check whether or not

g(R̃)
?
⊆ R

for each basic relation R of B. In fact, we can forget about the height 1 homomorphism ξ|B| and
just search for g : C→ B - in other words, we treat C as an instance of CSP(B) with |Pol|B|(A)|
variables that actually participate in any constraints, and A will pp-construct B if and only if the
instance C has a solution.

If B has only finitely many basic relations, then we can test each candidate pp-construction in
finite time, so in this case there is an effective procedure to decide whether or not A pp-constructs
B. (Note that each R̃ is determined by the collection of |R|-ary polymorphisms of A, so this
argument also shows that in order to check that ξ|B| extends to a height 1 clone homomorphism
from Pol(A) to Pol(B), we just need to check that it extends to a height 1 clone homomorphism
from Polk(A) to Polk(B) for k = max |R| over the basic relations R of B.)

1.5 Taylor Algebras

Once we restrict to idempotent algebras, we can start playing games with identities involving
nesting functions to simplify our criterion for NP-completeness.

Definition 1.5.1. An algebra A is a Taylor algebra if it has an idempotent term t that satisfies a
system of identities of the form

t



x ? · · · ?
? x · · · ?
...

...
. . .

...
? ? · · · x


 ≈ t



y ? · · · ?
? y · · · ?
...

...
. . .

...
? ? · · · y


 ,

where the ?s are filled in somehow with xs and ys. Such an operation t is called a Taylor term, and
a variety with a Taylor term is called a Taylor variety.

Note that by the defining identities of any Taylor term t, t can’t be any projection (unless the
algebra in question has only one element).

Theorem 1.5.2 (Taylor [156]). If an idempotent algebra A satisfies any set of identities that can’t
be satisfied by projections, then it has a Taylor term. Equivalently, an idempotent variety is Taylor
iff it does not contain a two element algebra having no nontrivial operations.

Before we prove Taylor’s theorem, we will work through an example.

Example 1.5.1. Let f be an idempotent ternary term satisfying the identity

f(f(y, x, z), x, f(z, y, y)) ≈ f(x, y, z).
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Then
t(x1, ..., x9) := f(f(x1, x2, x3), f(x4, x5, x6), f(x7, x8, x9))

is a Taylor term, since it satisfies the identities

t(y, x, z, x, x, x, z, y, y) ≈ t(x, x, x, y, y, y, z, z, z) ≈ t(x, y, z, x, y, z, x, y, z),

and by specializing these identities (substituting x = y, y = z, or z = x) we can get a system of
Taylor identities for t.

Definition 1.5.3. If f : Dk → D and g : Dl → D, we define the star composition f ∗ g : Dkl → D
to be f ◦ (g, g, ..., g).

Proposition 1.5.4. If f, g are idempotent, then f, g ∈ ⟨f ∗ g⟩.

Proof. f(x1, ..., xk) ≈ f(g(x1, ..., x1), ..., g(xk, ...., xk)) and g(x1, ..., xl) ≈ f(g(x1, ..., xl), ..., g(x1, ..., xl)).

Definition 1.5.5. An identity is called a height 1 identity, or a minor identity, if it has the form
f(x1, ..., xk) ≈ g(y1, ..., yl), where the xis and yjs are (not necessarily distinct) variables.

Proposition 1.5.6. If an idempotent term satisfies a system of height 1 identities which can’t be
satisfied by projections, then it is a Taylor term.

Proof of Taylor’s Theorem. By a compactness argument, there is a finite set T of identities satisfied
by a finite set of operations f1, ..., fn of A which can’t be satisfied by projections. Let s = f1∗· · ·∗fn.
Then each fi ∈ ⟨s⟩, so we can convert T into a collection T ′ of identities in s which can’t be satisfied
by projections either.

The identities of T ′ might involve some amount of nesting of s within itself, that is, they may
not be height 1 identities. Let m be the greatest nesting depth occuring in T ′, and let t = s∗ · · · ∗s,
with m copies of s. Let T ′′ be the set of height 1 identities involving t only which are satisfied by
A. We claim that T ′′ can’t be satisfied by projections.

To see this, note first that for every k ≤ m, if we index the variables of t by m-tuples (i1, ..., im)
of indices for coordinates of s, and if we let xk be the tuple of variables given by

xk(i1,...,im) = yik

for all (i1, ..., im), then we have

t(x1) ≈ · · · ≈ t(xm) (≈ s(y)).

If this system of height 1 identities in t is satisfied by a projection π(i1,...,im), then we see that
we must have i1 = · · · = im = i, say, for some index i of the variables of s. But then there is
some identity of T ′ which is incompatible with s = πi, and this identity of T ′ can be modified
by replacing variables z by expressions s(z, ..., z) repeatedly until it becomes a height 1 identity
involving only t, which will then be incompatible with t = π(i,...,i).

Corollary 1.5.7. If A is an idempotent algebra and CSP(A) is not NP-complete, then A has a
Taylor term.
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When A is not Taylor, the above result lets us conclude that there is some two element algebra
B ∈ HSP (A) with no nontrivial operations, but it doesn’t give us a good bound on how large a
power of A we will need to take to find B. It turns out that, in fact, if such a B exists then it
already can be found inside HS(A). We will prove a slight generalization of this fact, which applies
to strictly simple algebras.

Definition 1.5.8. An algebra A is called strictly simple if A is simple and every subalgebra of A
either has size 1 or is equal to A.

Lemma 1.5.9. If A is an idempotent algebra and B ∈ HSPfin(A) is strictly simple, then B ∈
HS(A). Note that if A,B are both finite, then B ∈ HSPfin(A) iff B ∈ HSP (A).

More generally, if Ai are idempotent for all i ∈ I and if B ∈ HSPfin({Ai}i∈I) is strictly simple,
then B ∈ HS(Ai) for some i ∈ I.

Proof. (Following Zhuk [165]) We prove the first statement - the proof of the general case is nearly
identical, just slightly more notationally involved. Pick n minimal such that there is some S ≤ An
and some σ ∈ Con(S) with S/σ ∼= B. If there is any pair r, s ∈ S such that π1(r) = π1(s) but
r/σ ̸= s/σ, then if we set a = π1(r) and

S′ = π{2,...,n}(S ∩ ({a} × An−1)) ≤ An−1,

and define σ′ ∈ Con(S′) by restricting σ in the obvious way, then r′ = π{2,...,n}(r) and s′ = π{2,...,n}(s)
have r′/σ′ ̸= s′/σ′. Thus S′/σ′ is isomorphic to a subalgebra of a quotient of B of size at least 2, so
S′/σ′ ∼= B, contradicting the minimality of n.

Otherwise, if there is no such pair r, s, then there is a congruence σ1 ∈ Con(π1(S)) such that
for all r ∈ S, the congruence class r/σ is completely determined by π1(r)/σ1. But then we have

B ∼= S/σ ∼= π1(S)/σ1 ∈ HS(A).

Corollary 1.5.10. If A is finite and idempotent, then either A has a Taylor term, or there is some
two element algebra B ∈ HS(A) with no nontrivial operations.

Corollary 1.5.11. If A is finite, idempotent, and has no Taylor term, then there are nonempty
subalgebras B,C ≤ A such that B ∩ C = ∅ and (B ∪ C)3 \ (B3 ∪ C3) ≤ A3. In particular, CSP(A)
can simulate NAE-SAT in a trivial way.

Remark 1.5.1. A recent result of Oľsák simplifies the identities we need to consider even further.
Oľsák [132] proves that in any Taylor algebra, whether finite or infinite, there is always a 6-ary
weak 3-cube term t, that is, an idempotent term satisfying the identity

t(x, y, y, y, x, x) ≈ t(y, x, y, x, y, x) ≈ t(y, y, x, x, x, y).

The weak 3-cube term may be understood as saying that the ternary relation on the free algebra
FV(x, y) which is generated by the ternary Not-All-Equal relation on {x, y} has a diagonal element.

Oľsák’s proof that such a term exists first uses the theory of absorbing subalgebras to produce
a 12-ary term which he calls a double loop term, and then simplifies it down to a weak 3-cube term
by using an intricate collection of identities which are satisfied by binary idempotent operations.
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Remark 1.5.2. There is a curious connection between systems of two-variable height 1 identities
on ternary functions and the problem 1-IN-3 SAT. Suppose that you are given such a system of
identities T on ternary functions f1, ..., fn, and that you want to determine whether these identities
rule out projections.

f(y, x, y)

f(x, y, y) f(y, y, x)

g(x, y) g(y, x)
f

Define a set of binary functions f ji (x, y), j ≤ 3, by

f1i (x, y) = fi(x, y, y),

f2i (x, y) = fi(y, x, y),

f3i (x, y) = fi(y, y, x),

and identify any pair of f ji s which are indentified by T . Make a drawing of a hypergraph with

a vertex for every equivalence class of f ji s, with a zigzag edge connecting any pair of vertices
g, h with g(x, y) ≈ h(y, x) under T , and with a hyperedge for each fi connecting it to f1i , f

2
i , f

3
i .

An assignment of projections πj to the functions fi is the same as a choice j of 1-IN-3 of the
vertices on the hyperedge fi to be granted the value π1, while every zigzag edge of the hypergraph
corresponds to a ̸= constraint. (Oľsák’s paper [132] has one such picture, and I’ve found the
technique enormously helpful for visualizing large systems of identities on ternary functions.)

As a concrete example, take following collection of four ternary terms p, q, r, s defined in terms
of Oľsák’s weak 3-cube term:

p(x, y, z) = t(y, z, z, x, x, x),

q(x, y, z) = t(x, z, y, z, y, z),

r(x, y, z) = t(y, x, x, z, y, y),

s(x, y, z) = t(x, x, y, z, y, x).

Then the definitions together with the weak 3-cube identities imply the following system of identities
on p, q, r, s:

p(x, y, x) ≈ q(y, x, x),

p(x, x, y) ≈ r(y, x, x),

q(x, y, x) ≈ s(x, y, x),

r(x, x, y) ≈ s(x, x, y),

s(x, y, y) ≈ q(x, x, y) ≈ r(x, y, x).

It may not be apparent, at a glance, whether or not this system of identities can be satisfied
by projections. If we draw the associated 1-IN-3 SAT instance, we find that it has 7 vertices
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(corresponding to binary terms), 4 occurences of the 1-IN-3 SAT constraint (for the four ternary
terms p, q, r, s), and one occurence of the ̸= constraint (coming from the fact that the last identity
above relates s(x, y, y) to q(x, x, y)):

p

q r

s

It is now easy (well, as easy as solving a small instance of 1-IN-3 SAT) to verify that the associated
1-IN-3 SAT instance has no solution, so this system of identities can’t be satisfied by projections.

Remark 1.5.3. Taylor’s original reason for studying Taylor algebras was to try to deeply understand
the reason that π1 of a topological group is always abelian. Taylor [156] considers, for any variety
V, the category of topological V-objects, that is, topological algebraic structures satisfying the
identities of V. Taylor showed that the π1s of topological V-objects will share a nontrivial property
iff V has a Taylor term, and that this occurs iff π1 is always abelian. The fact that a Taylor
term must be taken to be idempotent is related to the fact that the fundamental group is really a
groupoid (in the sense of category theory), rather than a group, so only the idempotent operations
of V can constrain its structure (I’m slightly fuzzy on the details).

Aside from the topological details, this can be viewed as an analogue of the Eckmann-Hilton
principle [66] which states that a unital magma object in the category of unital magmas is necessarily
commutative and associative. In fact, the following result holds for Taylor algebras: if A is a Taylor
algebra, and m : A2 → A is a homomorphism such that there exists an element 0 ∈ A with
m(0, x) = m(x, 0) = x for all x, then m is commutative and associative.

Note that our assumption on m implies that m ∗m satisfies the identities

m(x, y) ≈ m ∗m(x, y, 0, 0) ≈ m ∗m(x, 0, y, 0) ≈ · · · ≈ m ∗m(0, 0, x, y),

where in each m ∗ m we always have the x occuring to the left of the y. Additionally, since
m ∗m : A4 → A is a homomorphism, for any n-ary operation t of A we can evaluate (m ∗m) ∗ t
on a 4× n matrix of variables in two different ways: we may either start by applying t to the rows
and then apply m ∗m to the resulting column vector, or we may first apply m ∗m to the columns
and then apply t to the resulting row vector - either way gives the same result.

Using these two observations together with the Taylor identities for an n-ary Taylor term t, we
prove that m is commutative by writing m(x, y) as (m ∗ m) ∗ t applied to a 4 × n matrix of 0s,
xs, and ys where every column has an x above a y, and manipulate this expression until every y is
above an x. The strategy is to always keep the xs in the middle two rows and the ys in the top or
bottom, and to move a y up a column whenever that column is free of xs. To temporarily move xs
out of the way, we apply the Taylor identities for t to swap them with 0s, possibly shifting the xs
up and down between the middle two rows to get to a configuration where the Taylor identities will
apply. A similar argument with m ∗m ∗m in the place of m ∗m can be used to prove associativity.
If t is a 6-ary weak 3-cube term, for instance, then a portion of the proof of the commutativity of
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m goes as follows:

m

([
x
y

])
= (m ∗m) ∗ t




0 0 0 0 0 0
x 0 0 0 x x
0 x x x 0 0
y y y y y y


 = (m ∗m) ∗ t




0 0 0 0 0 0
0 0 x x x 0
0 x x x 0 0
y y y y y y




= (m ∗m) ∗ t



y 0 0 0 0 y
0 0 x x x 0
0 x x x 0 0
0 y y y y 0


 = (m ∗m) ∗ t



y 0 0 0 0 y
x 0 0 0 x x
0 x x x 0 0
0 y y y y 0




= · · · = (m ∗m) ∗ t



y y y y y y
0 0 x x x 0
x x 0 0 0 x
0 0 0 0 0 0


 = m

([
y
x

])
,

where we have used the Taylor identity t(x, 0, 0, 0, x, x) ≈ t(0, 0, x, x, x, 0) satisfied by a weak 3-cube
term to temporarily move the first and last x out of the way.

1.6 Two simple algorithms (width 1 and bounded strict width)

Definition 1.6.1. A CSP template A = (D,Γ) has relational width 1 if the relational width (1, k)
algorithm below solves it for some k.

Algorithm 1 Relational width (1, k) algorithm

1: Set Sv ← D for each variable v.
2: repeat
3: for all v1, ..., vk do
4: Let X be the set of solutions to the restriction of the CSP to the variables v1, ..., vk

(projecting each constraint onto this subset of variables).
5: Set Svi ← πi(X ∩ (Sv1 × · · · × Svk)) for each i ≤ k.
6: For each constraint R which involves some vi, remove all tuples of R which are incom-

patible with Svi .

7: until the sets Sv stop changing.
8: If any Sv = ∅, there is no solution.

Compare this to the generalized arc-consistency algorithm, which is more popular (and more
efficient!) in practice. (After this section, I’ll usually refer to generalized arc-consistency as just
“arc-consistency” to save space.)

Theorem 1.6.2 (Feder, Vardi [69]). A CSP template A has relational width 1 iff it is solved by
the generalized arc-consistency algorithm.

Sketch. Suppose A has width (1, k), and let B be an instance of CSP(A). By a generalization
of the randomized construction of graphs with large girth and large chromatic number, there is a
relational structure B′ which has a map to B, has girth larger than k, and which has a map to
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Algorithm 2 Generalized arc-consistency algorithm

1: Set Sv ← D for each variable v.
2: while some constraint R on variables (v1, ..., vm) has πj(R ∩ (Sv1 × · · · × Svm)) ̸= Svj do
3: Set Svj ← πj(R ∩ (Sv1 × · · · × Svm)).

4: If any Sv = ∅, there is no solution.

A iff B has a map to A (alternatively, if Γ contains the equality relation, we can cheat by adding
long chains of equalities). Since B′ locally looks like a tree, the width (1, k) algorithm and the
generalized arc-consistency algorithm give the same results for B′, so if there is no homomorphism
from B to A, then generalized arc-consistency applied to B′ will correctly find that there is no
solution. But then generalized arc-consistency applied to B will also find that there is no solution,
since every deduction on B′ can be mimicked on B.

Definition 1.6.3. A connected relational structure is a tree if every collection of occurences of
relations with arities r1, ..., rk involves at least 1 +

∑
i(ri − 1) distinct elements. A relational

structure A has tree duality if for every B, there is a map B→ A iff every tree which maps to B
has a map to A.

Proposition 1.6.4. A has width 1 iff it has tree duality.

Proof. If generalized arc-consistency shows that there is no homomorphism B → A, then we can
make a proof tree that shows that some set Sv eventually becomes empty. Each node of the
proof tree corresponds to the fact that some variable w of B takes values from a set Sw, and the
hyperedges of the proof tree are labeled by relations of B. So the proof tree is actually a relational
structure with a map to B, and the same sequence of generalized arc-consistency deductions apply
to the proof tree to show that it has no map to A.

Remark 1.6.1. Essentially the same arguments apply for any width (l, k), with “trees” replaced by
“(l, k)-trees” (definition left as an exercise to the reader). Note that (l, k)-trees have tree-width
k − 1. When studying relational width, we replace “trees” by “(l, k)-reltrees” (defined in [58] for
k = l).

Remark 1.6.2. Dalmau has shown that any CSP with relational width (2, 2) is also solved by
generalized arc-consistency [58]. 2-SAT is an example of a CSP with width (2, 3) which is not
solved by arc-consistency, so Dalmau’s result is best possible.

Generalized arc-consistency has a close connection with the algebraic concept of a “subdirect
product”.

Definition 1.6.5. A subalgebra R ≤ A1 × · · · × An is called a subdirect product, written R ≤sd
A1 × · · · × An, if πi(R) = Ai for all i.

So an algebraic way of thinking of arc-consistency is that we shrink the domains of the variables
until we get to a situation where every relation is a subdirect product. It’s worth noting that as we
shrink our domains and relations, the new domains and relations we obtain will always be preserved
by any polymorphisms which preserved the original relations, since the new domains and relations
can be defined by primitive positive formulas from the original ones.
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We now find an algebraic characterization of CSP templates with width 1. The main idea is to
consider the “most generic” problem which arc-consistency requires to have a solution, and to ask
what such a solution must look like. This most generic problem will have a different variable for
each possible nonempty set S ⊆ D, and will have all relations which are consistent with these sets
imposed.

Definition 1.6.6. For A = (D,Γ) a relational structure, define P∅(A) to be the structure with
ground set P(D) \ {∅}, and for every m-ary relation R ∈ Γ let the corresponding relation P∅(R)
be the set of all m-tuples S1, ..., Sm ∈ P(D) \ {∅} such that there is some nonempty X ⊆ R with
πi(X) = Si for each i.

Note that P∅(R) can be equivalently defined as the set of m-tuples (S1, ..., Sm) such that πi(R∩
(S1 × · · · × Sm)) = Si for each i.

Definition 1.6.7. A homomorphism P∅(A)→ A is called a set polymorphism of A.

Definition 1.6.8. A function f : Dk → D is called totally symmetric if the value of f(a1, ..., ak)
only depends on {a1, ..., ak}. Note that this is stronger than being symmetric, since the multiplicity
of the ais is also ignored.

Theorem 1.6.9. The following are equivalent:

• A has width 1,

• A has a set polymorphism, and

• A has totally symmetric polymorphisms of every arity.

Proof. If A has width 1, then generalized arc-consistency applied to P∅(A) shows that there is a
homomorphism f : P∅(A) → A, since at every step the set associated to the variable S ⊆ D will
contain S (by induction on the number of steps and the definition of P∅(R)). So suppose that f is
a set polymorphism, and for every k ≥ 1, let fk be the totally symmetric function

fk(a1, ..., ak) = f({a1, ..., ak}).

We need to check that fk is a polymorphism of A. Suppose that x1, ..., xk ∈ R, then if X =
{x1, ..., xk}, fk(x1, ..., xk) has ith coordinate equal to f(πi(X)). Since (π1(X), ..., πm(X)) ∈ P∅(R)
by the definition of P∅(R), we see that fk(x1, ..., xk) = (f(π1(X)), ..., f(πm(X))) ∈ R.

Finally, suppose that A has totally symmetric polymorphisms fk of every arity, and let B be
a (finite) instance such that generalized arc-consistency stops after finding nonempty sets Sv for
every variable v ∈ B. Choose k at least as large as the largest number of tuples in any relation that
shows up in B, and let f be the function on sets of size ≤ k associated to fk. We claim that the
map v 7→ f(Sv) defines a homomorphism from B to A. To see this, let (v1, ..., vm) be a tuple with
the constraint R imposed, and let X = R∩ (Sv1 , ..., Svm) = {x1, ..., xk} (possibly with repeated xis
if |X| < k). Then fk(x1, ..., xk) = (f(π1(X)), ..., f(πm(X))) = (f(Sv1), ...f(Svm)) ∈ R since fk is a
polymorphism.

Corollary 1.6.10. A relational structure A has width 1 iff it is homomorphically equivalent to a
pp-power of HORN-SAT.
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Proof. Let f be a set polymorphism of A, and let fk be the associated totally symmetric poly-
morphism of arity k. We define a height 1 clone homomorphism from ⟨min⟩ → Pol(A) by sending
min(x1, ..., xk) to fk(x1, ..., xk). Now apply the ERP Theorem 1.4.19 and Proposition 1.4.18 from
the subsection on reflections.

Example 1.6.1. Suppose that A has a binary polymorphism s which is associative, commutative, and
idempotent (such an s is called a semilattice operation). Then we can define n-ary polymorphisms
sn inductively by sn(x1, ..., xn) = s(sn−1(x1, ..., xn−1), xn), and sn will be totally symmetric for
every n. Thus, every relational structure with a semilattice polymorphism has width 1.

Example 1.6.2. We give an example of a width 1 algebra which is not a semilattice. Let f be the
idempotent set operation on {a, b, c} given by

f({a, b}) = b, f({b, c}) = c, f({c, a}) = a, f({a, b, c}) = a,

and let fk be the associated totally symmetric polymorphism of arity k. We have fk ∈ ⟨f3⟩ for
every k, and in fact a k-ary function g which depends on all its inputs is in ⟨f3⟩ iff its restriction to
every two element subset of {a, b, c} is equal to the corresponding restriction of fk (tricky exercise).
The relational clone Inv(f3) is generated by the ternary relations Rab, Rbc, Rca, where Rab is defined
by

Rab(x, y, z) := (x ∈ {a, b}) ∧ (x = a =⇒ y = z),

and Rbc, Rca are defined similarly.

Example 1.6.3. Here we give a more surprising example, of a width 1 clone such that no finitely
generated subclone has width 1. Let f be the idempotent set operation on {−1, 0, 1} (which we
stylize as {−, 0,+}) given by

f({0,−}) = −, f({0,+}) = +, f({−,+}) = f({−, 0,+}) = 0,

and let fk be the associated totally symmetric polymorphism of arity k. The clone O generated
by the collection of all fk then has width 1. Every finitely generated subclone of O is contained in
⟨fk⟩ for some k. To see that O ≠ ⟨fk⟩, consider the k + 1-ary relation Rk given by

Rk(x0, ..., xk) :=
∧
i<j

(xi + xj ≥ 0) ∧ (x0, ..., xk) ̸= (0, ..., 0).

Then it is easy to check that Rk is preserved by fk, but is not preserved by fk+1. To see that ⟨fk⟩
does not have width 1, define R−

k similarly to Rk, but with each xi+xj ≥ 0 replaced by xi+xj ≤ 0.
Then for k ≥ 2 the instance

Rk(x0, ..., xk) ∧R−
k (x0, ..., xk)

of CSP(Inv(⟨fk⟩)) is arc-consistent (since both Rk and R−
k are subdirect) but has no solution.

The relational clone Inv(O) corresponding to this example is generated by the unary relation
{+}, the binary relations x = −y and x ≤ y, and the ternary relation (x ≥ 0)∧ (x = 0 =⇒ y = z).
The clone O is an example of a clone which is finitely related but not finitely generated.

Note that one doesn’t need to know what the set polymorphism of A is to apply the arc-
consistency algorithm. If A is a rigid core, we can use the self-reducibility of CSP(A) to find a
solution to every solvable instance B of CSP(A) in polynomial time. By applying this to P∅(A),
we can then find a set polymorphism of A - in time polynomial in the size of P∅(A), which is sadly
exponential in the size of A. The following problem is currently open.
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Problem 1.6.1. Given a rigid core A, can we determine whether it has width 1 in time polynomial
in the size of the description of A?

Now we move to the case of bounded strict width. This has a connection to an intriguing paper
of Dechter [63] which predates the algebraic approach to the CSP. The next definition follows
Dechter [63].

Definition 1.6.11. A partial assignment of values to variables is locally consistent if it satisfies
every constraint which only involves those variables. A CSP instance is strong i-consistent if every
locally consistent partial assignment to less than i variables can always be extended to a locally
consistent partial assignment of any containing set of i variables. An instance is globally consistent
if every locally consistent partial assignment extends to a global solution.

There is a straightforward polynomial time algorithm to enforce strong i-consistency for any
fixed i, introducing new constraints of arity < i by intersecting and existentially projecting old
constraints until no changes occur. It is desirable to have globally consistent problems, because
then a solution may be found greedily. Can we check if a given problem is globally consistent?

Theorem 1.6.12 (Dechter [63]). If a CSP with domain sizes bounded by n and all constraint
arities bounded by m is strong (n(m− 1) + 1)-consistent, then it is globally consistent.

Proof. Suppose for contradiction that some locally consistent partial assignment a1, ..., ak to v1, ..., vk
can’t be extended to vk+1, k ≥ n(m − 1) + 1. Then for every possible value a of vk+1, there is
some constraint Ca involving at most m−1 of the variables v1, ..., vk which is inconsistent with this
choice of a and whichever of the ais are relevant. Thus, there is a collection of at most n constraints
Ca involving at most n(m − 1) of the variables from v1, ..., vk together with the variable vk+1, for
which a locally consistent partial assignment of all but one of the variables can’t be extended. But
this contradicts the assumption of strong (n(m− 1) + 1)-consistency.

The trouble with applying Dechter’s result is that as we enforce strong consistency, we may
need to add constraints of higher and higher arities. To avoid this, we want to find situations in
which the newly introduced constraints can always be written as intersections of constraints of low
arity.

Definition 1.6.13. A CSP template A = (D,Γ) has strict width l if every strong (l+1)-consistent
instance of CSP(D, ⟨Γ⟩) which contains the projections of its relations onto subsets of size at most
l is globally consistent, and has its solution-set determined by the collection of relations of arity at
most l.

Note that the definition of strict width only makes sense in terms of the whole relational clone
generated by Γ, a hint that it is properly viewed as an algebraic condition. Algebraically, the
relevant result is the Baker-Pixley theorem [7].

Theorem 1.6.14 (Baker, Pixley [7]). The following are equivalent for an algebraic structure A:

• every subalgebra of An is equal to the intersection of its projections onto sets of at most l
coordinates, and
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• A has an (l + 1)-ary near-unanimity term, that is, a term t satisfying the identities

x ≈ t(y, x, ..., x) ≈ t(x, y, ..., x) ≈ t(x, x, ..., y),

where in each case all but one of the inputs to t is x.

If A is idempotent, then these are both equivalent to every subalgebra of Al+1 being equal to the
intersection of its projections onto sets of l coordinates.

Proof. Note that if |A| ≥ 2, then either condition implies l > 1 (consider the equality relation as
a subalgebra of A2). Suppose that the first condition holds, and consider the free algebra on l + 1

generators FA(l+ 1) ⊆ AAl+1
which is generated by the projections πi : Al+1 → A. Let Al+1

nu be the
set of tuples of elements in Al+1 which have all but at most one entry equal to each other, and let

X ⊆ AA
l+1
nu be the projection of FA(l + 1) onto these coordinate tuples.

We claim that X contains the tuple t of near-unanimous votes of the entries of the coordinate
tuples. By assumption, we just have to check that for every projection πx1,...,xl(X) onto at most
l coordinates x1, ..., xl ∈ Al+1

nu , there is some element f ∈ FA(l + 1) with πx1,...,xl(f) = πx1,...,xl(t).
But each tuple xi has at most one dissenting coordinate, so there must be some coordinate j ≤ l+1
such that each (xi)j is equal to the vote t(xi). Thus we can take f = πj to see that πx1,...,xl(πj) =
πx1,...,xl(t).

Now suppose that t is an (l+1)-ary near-unanimity term, and suppose that B ⊆ An. Let b ∈ An
be such that πI(b) ∈ πI(B) for every I ⊆ {1, ..., n} with |I| ≤ l, we will show by induction on |J |
that πJ(b) ∈ πJ(B) for every subset J ⊆ {1, ..., n}. For the inductive step, if |J | ≥ l + 1 then we
may set J1, ..., Jl+1 to be subsets of J formed by deleting different elements of J , and for each Ji
there is some bJi ∈ B with πJi(bJi) = πJi(b) by induction. But then bJ = t(bJ1 , ..., bJl+1

) ∈ B and
has πJ(bJ) = πJ(b) by the near-unanimity equations.

For the last claim, if A is idempotent and B ⊆ An with n > l + 1 and b ∈
⋂

|I|=l πI(B), then

B′ = π{1,...,n−1}(B ∩ (An−1 × {bn})) is a subalgebra of An−1, and we may induct on n to see that

B′ =
⋂

|I|=l πI(B′), while the assumption on subalgebras of Al+1 gives πI(b) ∈ πI(B′) for every I
with |I| = l.

Theorem 1.6.15. A relational structure A has strict width l iff it has an (l+1)-ary near-unanimity
polymorphism.

Proof. Let A be the associated algebraic structure. For any n and any B ⊆ An, the strong (l + 1)-
consistent instance formed via the relations B and πI(B) for all I ⊆ {1, ..., n} with |I| ≤ l together
with the definition of strict width l imply that B =

⋂
|I|≤l πI(B), so by the Baker-Pixley Theorem

A has an (l + 1)-ary near unanimity term.
For the other direction, suppose that t is an (l + 1)-ary near-unanimity term of A and that we

have a strong (l + 1)-consistent instance of CSP(A), which we may assume by the Baker-Pixley
Theorem to only involve relations of arity at most l. Suppose that we have a locally consistent
partial solution which assigns the values a1, ..., ak to the variables v1, ..., vk which we want to extend
to the variable vk+1. By strong (l + 1)-consistency, we can assume that k ≥ l + 1. By induction
on k, we can assume that for each i ≤ l + 1 there is some value aik+1 that we can assign the the
variable vk+1 such that if we ignore vi, we get a locally consistent partial solution.

We claim that assigning the value ak+1 = t(a1k+1, ..., a
l+1
k+1) to vk+1 gives a locally consistent

partial solution. To see this, consider some constraint C which involves the variable vk+1 and some
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variables from v1, ..., vk. For each i ≤ l + 1, by l-consistency and the fact that C has arity at
most l we can find a value a′i such that (a1, ..., a

′
i, ..., a

i
k+1) satisfies the constraint C. Applying t

to these l + 1 tuples, we see that the tuple (a1, ..., al+1, ..., t(a
1
k+1, ..., a

l+1
k+1)) also satisfies C, by the

near-unanimity identities and the fact that t is a polymorphism of C.

Algorithm 3 Strict width l algorithm

1: Replace each constraint with its projections onto all subsets of at most l variables.
2: repeat
3: for all sets {v1, ..., vk} of variables with k ≤ l + 1 do
4: Let X be the set of solutions to the restriction of the CSP to the variables v1, ..., vk.
5: If πI(X) is not implied by the restriction of the CSP to the variables in I for some
I ⊂ {v1, ..., vk}, add it as a new constraint.

6: until no new constraints are added.
7: Greedily assign values to variables until we find a global solution.

Example 1.6.4. 2-SAT has the ternary polymorphism maj, which is a near-unanimity operation.
Therefore 2-SAT has strict width 2, a fact which also follows from Dechter’s result above [63].

Example 1.6.5. Generalizing 2-SAT, let D be any domain, and let d : D3 → D be given by

d(x, y, z) =

{
x if y ̸= z,

y if y = z.

This function d is known as the dual discriminator, and for |D| ≠ 4 it is the only majority function
(up to permuting inputs) on D which preserves the graph of every bijection from D to itself.

A binary relation R ⊆ D2 is preserved by the dual discriminator iff it is a “0/1/all constraint”,
that is, a constraint such that when viewed as a bipartite graph on the disjoint union D⊔D, every
vertex which doesn’t have degree 0 or 1 connects to all vertices on the other side which have positive
degree. Typical 0/1/all constraints are displayed below.

For any a in D, a generating set of binary relations for Inv(d) is given by the graphs of a pair
of bijections which generate the symmetric group on |D| elements, the unary relation D \ {a}, and
the binary relation x = a ∨ y = a.

Example 1.6.6. For every n, the relational structure ({0, 1}, {0},≤, {0, 1}n \ {(0, ..., 0)}) has strict
width exactly n. A near-unanimity term for it is given by the threshold function

tn+1
2 (x1, ..., xn+1) =

{
1

∑
i xi ≥ 2,

0
∑

i xi ≤ 1.
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To see that it doesn’t have strict width less than n, note that the relation {0, 1}n \{(0, ..., 0)} is not
the intersection of its projections onto n− 1 coordinates. Note that this template also has width 1
(it is preserved by the semilattice operation max), so the strict width algorithm is far from being
the best way to solve it for n large.

Note that the existence of an (l + 1)-ary near-unanimity operation in Pol(A) is equivalent to
the solvability of the CSP instance Φ (of A together with singleton unary relations) with variables
indexed by elements of Al+1 described by the primitive positive formula

Φ(t) :=
∧
R∈Γ

∧
M∈Rl+1

t(M) ∈ R ∧
∧

a,b∈A
t(b, a, ..., a) = t(a, b, ..., a) = · · · = t(a, a, ..., b) ∈ {a}.

This instance may be solved in polynomial time by the strict width l algorithm, giving us an (l+1)-
ary near-unanimity term t as output. Note, however, that the number of variables is exponential
in l - what if we just want to know whether the structure A has bounded strict width, allowing l
to be arbitrarily large?

Problem 1.6.2. Given a relational structure A, determine whether it has bounded strict width.

The good news is that whether the structure is given as a finite relational structure or a finite
algebraic structure, the existence of a near unanimity term is at least decidable [124], [11], [166].
The bad news is that the minimal arity of a near-unanimity term may be very large.

Theorem 1.6.16 (Zhuk [166], Barto, Draganov [16], Corollary 3.8.18, Examples 3.8.2, 3.8.3). For
any relational structure A with |A| = n such that every basic relation of A has arity at most m, if
A has bounded strict width, then A has strict width at most

max(m− 1, 2)3
n−2n+1

+ 1.

Conversely, for each m ≥ 3 and n ≥ 2, there is an example of a relational structure with bounded
strict width such that every basic relation of A has arity at most m, which has no near-unanimity
polymorphism of arity at most

(m− 1)2
n−2

,

and for m = 2, n ≥ 3 there is an example with no near-unanimity polymorphism of arity at most

22
n−3

.

Luckily, it is possible to determine whether a relational structure has bounded strict width with-
out actually exhibiting a near-unanimity polymorphism. For instance, in [15] a nondeterministic
polynomial time algorithm, which only tests for the existence of certain chains of ternary polymor-
phisms of A, is given for deciding whether a given subset of A is an absorbing subalgebra (defined
later). Using the fact that cycle consistency solves CSPs which have bounded width (which we
will prove later), this can be converted into a polynomial time algorithm for testing whether A has
bounded strict width.
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1.6.1 The Basic Linear Programming relaxation of a CSP

Another simple algorithm for solving CSPs, which is closely related to generalized arc-consistency,
is the basic LP relaxation. If the domain of each variable v is Dv, we replace the set of potential
values Dv with its formal convex hull, which we can think of as the set of probability distributions
on Dv. We represent the probability distribution corresponding to a variable v as a tuple of real
numbers pv,a, one for each a ∈ Dv, satisfying

0 ≤ pv,a ≤ 1,
∑
a∈Dv

pv,a = 1.

We also replace each constraint with its convex hull. That is, if the constraint C imposes the relation
R = RC on the variables v1, ..., vm, then we require the existence of a probability distribution pC,r,
on the tuples r of R such that

0 ≤ pC,r ≤ 1,
∑
r

pC,r = 1,

and which is compatible with the probability distributions on the individual variables in the sense
that

pvi,a =
∑
ri=a

pC,r.

If a problem is known not to be fully satisfiable, we can relax it further by extending the
probability distributions over relations R ⊆ Dv1 × · · · × Dvm to probability distributions over all
of Dv1 × · · · × Dvm , and then try to maximize the sum of the probabilities that tuples which are
supposed to be in R are actually in r:

1
#C

∑
C

∑
r∈RC

pC,r.

This system of linear equations and inequalities, with the optimization target above, is known as
the basic LP relaxation of a given CSP instance.

Theorem 1.6.17 (Kun, O’Donnell, Tamaki, Yoshida, Zhou [115]). For any relational structure A,
the following are equivalent:

• the basic LP relaxation correctly solves every instance of CSP(A),

• A has symmetric polymorphisms of every arity.

Furthermore, if A has width 1 then the basic LP relaxation can be used to robustly solve CSP(A),
that is, if we are given an instance which is 1 − ϵ satisfiable, then we can find a solution which
satisfies a 1−O(1/ log(1/ϵ)) fraction of the constraints.

Proof. Suppose first that the basic LP solves CSP(A), and consider the (by now standard) instance
Φ that describes the existance of a symmetric polymorphism of arity n:

Φ(s) :=
∧
R∈Γ

∧
M∈Rn

s(M) ∈ R ∧
∧

a1,...,an∈A

∧
σ∈Sn

s(a1, ..., an) = s(aσ(1), ..., aσ(n)).

By the assumption that the basic LP decides CSP(A), we just need to exhibit a fractional solution to
this CSP. This is achieved by taking s = 1

nπ1+· · ·+ 1
nπn: as a convex combination of polymorphisms,
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it satisfies the relaxation of the first collection of constraints, and since it is a symmetric convex
combination of its inputs it satisfies the second collection of constraints.

For the other direction, suppose that an instance of the CSP has a fractional solution to its
basic LP relaxation, with probability distributions pv,a for each variable/value and pC,r for each
constraint/tuple. We may assume that these probabilities are all rational (since the defining system
of linear equations and inequalities had rational coefficients), and that they have a common de-
nominator n. By assumption A has a symmetric polymorphism s of arity n, which we can think of
as a function from probability distributions with denominator n over the domain of A to elements
of A.

Applying s to each pv,· gives an element av ∈ A, and applying it to each probability distribution
pC,· gives a tuple rC in the associated relation R (since s is a polymorphism). Furthermore, the
compatibility equations between the distributions pvi,· and pC,· that we get when vi is the ith
coordinate of the constraint C, together with the symmetry of s, imply that avi = (rC)i for each i,
so (av1 , ..., avm) = rC ∈ R. Thus the avs form a valid solution to the CSP instance.

Finally, assume that A has width 1, with set polymorphism f , and suppose that our original
instance was 1− ϵ satisfiable. Then the basic LP finds a fractional solution with value ≥ 1− ϵ. We
will use the polymorphism f to make a randomized rounding scheme. First, we immediately give
up on any constraints C that the LP only satisfies with value ≤ 1−

√
ϵ - these can form at most a√

ϵ fraction of the constraints by Markov’s inequality. Second, we will choose a threshold θ ≤ 1
|A| ,

and for each variable v we assign the value

av = f({a ∈ A | pv,a ≥ θ}).

Note that the restriction θ ≤ 1
|A| ensures that the sets on the right hand side are nonempty. We

will show that if θ is chosen from a certain probability distribution, then on average we will obtain
a good solution to the CSP, and deduce from this that some specific choice of θ works at least as
well. For this we need the following claim.

Claim. If C is the constraint (v1, ..., vm) ∈ R which is satisfied with value ≥ 1 −
√
ϵ, and if

2
√
ϵ ≤ θ ≤ 1

|A| is such that

θ ̸∈ (pvi,a/(2|R|), pvi,a]
for any pair i ≤ m, a ∈ A, then (av1 , ..., avm) satisfies C.

Proof of Claim. For each v, let Sv = {a | pv,a ≥ θ}, so av = f(Sv). In order to show that
(av1 , ..., avm) satisfies R, we just need to check that this colection of sets Svi together with R form
a generalized arc-consistent instance. Let a ∈ Svi for some i, then we have pvi,a ≥ θ ≥ 2

√
ϵ by the

definition of Svi . From ∑
r∈R,ri=a

pC,r ≥ pvi,a −
√
ϵ ≥ pvi,a/2,

we see that there must be some r ∈ R with ri = a and pC,r ≥ pvi,a/(2|R|). Since pvi,a ≥ θ, by the
assumption on θ we have pvi,a/(2|R|) ≥ θ, so pC,r ≥ θ. But then pvj ,rj ≥ pC,r ≥ θ for all j, so
rj ∈ Svj for all j, and we see that a extends to a solution of R ∩ (Sv1 × · · · × Svm).

To finish the proof, we choose θ uniformly at random from the set { 1
|A| ,

1
|A|T , ...

1
|A|T b }, where T

is twice the maximum number of tuples in any relation R and b = ⌊log(1/2|A|
√
ϵ)/ log(T )⌋. Note

that b grows like log(1/ϵ), that’s the only important thing to keep track of in the mess. Then every
constraint of arity m which we hadn’t given up on is satisfied with probability at least 1−m|A|/b
(since there are at most m|A| bad choices of θ where the claim doesn’t apply), and asymptotically
that looks like 1−O(1/ log(1/ϵ)).
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Remark 1.6.3. The dependence of the error in 1 − O(1/ log(1/ϵ)) on ϵ in the previous theorem is
best possible in the case of HORN-SAT: Guruswami and Zhou [77] show that there are integrality
gap instances even for the SDP relaxation (see Example 3.16.3), and by a fundamental result of
Raghavendra [144] they deduce that under the Unique Games conjecture it is NP-hard to find an
assignment satisfying a 1−o(1/ log(1/ϵ)) fraction of the constraints of a HORN-SAT instance which
is promised to be 1− ϵ solvable.

Remark 1.6.4. In [115], it is also claimed that the basic LP solves every instance of CSP(A) if and
only if A has width 1. The proof has a subtle error, however. The following counterexample, due
to Kun, can be found in [61].

Example 1.6.7. Let A = ({−1, 0, 1}, R+, R−), where R+ = {(a, b, c) | a + b + c ≥ 1} and R− =
{(a, b, c) | a+ b+ c ≤ −1}. Then for every h, n with h < n

3 , the function

sh,n(x1, ..., xn) =


1

∑
i xi > h

0 −h ≤
∑

i xi ≤ h
−1

∑
i xi < −h

is a symmetric polymorphism of A. Thus CSP(A) is solved by the basic LP relaxation. However,
A has no totally symmetric polymorphism of arity 3, since such a polymorphism would necessarily
map the matrices −1 1 1

1 −1 1
1 1 −1

 ∈ R3
+,

 1 −1 −1
−1 1 −1
−1 −1 1

 ∈ R3
−

to the same diagonal tuple, so A does not have width 1.

Example 1.6.8. The previous example can be generalized to a much larger relational structure on
{−1, 0, 1} as follows. Set sn = s0,n, then it isn’t hard to show that sn ∈ Clo(s2) for all n (hint:
start by defining tn(x1, ..., xn) = s2(x1, sn−1(x2, ..., xn))), so Inv(s2) also defines a CSP template
which is solved by the basic LP relaxation.

s2 − 0 +

− − − 0
0 − 0 +
+ 0 + +

Inv(s2) is generated by the unary relation {1}, the binary relation x = −y, and the set of odd
cycle relations, where the m-th odd cycle relation Rm is defined by

Rm(x1, ..., x2m−1, y, z) := (x1+x2 ≥ 0)∧· · ·∧(x2m−1+x1 ≥ 0)∧(x1 = · · · = x2m−1 = 0 =⇒ y = z).

(I found this set of generating relations by a technique I learned from Zhuk [167], in which we
search for “key” relations R, for which there is some “key tuple” x ̸∈ R such that the relation R is
maximal among those relations of Inv(s2) which do not contain x. It isn’t hard to show that any key
tuple must consist mostly of 0s, and using the negation symmetry we can assume that R contains
all tuples in {0, 1}n aside from the key tuple. Then we look at the set of pairs of coordinates that
can’t simultaneously be set to −1, and prove that the resulting graph can’t be bipartite...)
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The clone ⟨s2⟩ is not finitely related. To see this, define an operation s′n for n odd by the rule

s′n(x1, ..., xn) =

{
s0,n(x1, ..., xn) if some xi = 0,

s1,n(x1, ..., xn) if all xi ∈ {−1, 1}.

For every odd n = 2m − 1, the operation s′n ̸∈ ⟨s2⟩ - since it does not preserve the relation Rm -
but the function s′n(x, x, y3, ..., yn) we get by identifying two of its inputs is in ⟨s2⟩ (exercise for the
reader), so it preserves every relation in Inv(s2) which contains strictly less than n tuples.

The clone ⟨s2⟩ is strictly contained in the width 1 clone from Example 1.6.3, and corresponds
to a strictly larger relational clone with a tractable CSP. Later we will see that this relational clone
can be enlarged further, such that the CSP remains solvable by bounded width reasoning.

Currently it is unknown if the following problem can be solved using at most an exponential
amount of time - we will show that it is at least decidable later in these notes (see Corollary 3.17.13).

Problem 1.6.3. Given a finite relational structure A, determine if it has symmetric polymorphisms
of every arity.

An interesting result in this direction is proved in [51]: an algebraic structure A has symmetric
term operations of all arities iff there is no B ∈ HSP (A) which has a pair of automorphisms in
Aut(B) having no common fixed point (in fact, if A has no symmetric term operation of arity n,
we can take B to be the free algebra on n variables in the variety generated by A). If HSP (A)
could be replaced by HS(A) in their result, then this would imply that it is enough to check for
the existence of symmetric polymorphisms of arities up to |A|.

Later we will prove that any Taylor algebra has cyclic term operations of all arities which have
no small prime factors, so we might hope that we could use these to help construct symmetric
polymorphisms of higher arity. More ingredients are likely needed for such an argument, however:
in [51], an example is given of a relational structure which has cyclic polymorphisms of every arity,
but which has no symmetric polymorphism of arity 5.

1.7 Mal’cev algebras

The goal in this section and the next is to generalize group theoretic algorithms (such as the
algorithm for solving XOR-SAT) by isolating the special feature of groups which makes them so
nice. First we should connect groups to CSPs, by defining the correct analogue of “affine spaces”
for general groups.

Proposition 1.7.1. If G is a group, then a nonempty subset H ⊆ Gn is preserved by the ternary
operation (x, y, z) 7→ xy−1z iff H is a coset of a subgroup of Gn.

Proof. Let U be the subgroup of Gn generated by expressions of the form y−1z for y, z ∈ H. Then
H is preserved under (x, y, z) 7→ xy−1z iff H is closed under the right action of U , so H is a union
of left cosets of U . To see that H is just a single coset, note that for x, y ∈ H, we have x−1y ∈ U
and x(x−1y) = y.

Conversely, ifH = hU for some subgroup U ofGn, thenHH−1H = hU(hU)−1hU = hUUh−1hU =
hUUU = hU = H.
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The idempotent operation (x, y, z) 7→ xy−1z was isolated by universal algebraists who wanted
to understand the underlying reason for the fact that normal subgroups commute: if K,N � G
are normal subgroups of a group G, then KN = NK and KN is also a normal subgroup of G.
Of course this is easy to verify in the context of groups, but from the point of view of universal
algebra it is really saying something interesting about congruences of groups. If K,N correspond to
congruences α, β on G, then we can view this equality as the statement that α ◦ β = β ◦α = α∨ β,
where composition of binary relations is defined as follows.

Definition 1.7.2. Let R,S be binary relations R ⊆ A × B,S ⊆ B × C. Then we define their
composition R ◦S to be the subset of A×C consisting of pairs (a, c) such that there exists a b ∈ B
with aRb and bSc. As a primitive positive formula, we can write this as

R ◦ S(a, c) := ∃b ∈ B R(a, b) ∧ S(b, c).

In general, it is not the case that congruences commute. In order to find the smallest congruence
containing a pair of congruences in a general algebraic structure, one uses the following fact.

Proposition 1.7.3. If α, β are congruences on an algebraic structure A, then their least upper
bound α ∨ β is the transitive closure of α ◦ β, that is,

α ∨ β =
⋃
n≥0

(α ◦ β)◦n.

If α, β do commute, then the above formula simplifies to α ∨ β = α ◦ β. So it is natural to try
to understand the collection of all algebraic structures with commuting congruences. Of course,
a structure with no congruences at all has this property - but we want to understand algebraic
structures that have a reason for their congruences to commute, so rather than studying algebras
in isolation we study varieties with this property.

Definition 1.7.4. We say that a variety V is congruence permutable if for all A ∈ V and all
α, β ∈ Con(A) we have α ◦ β = β ◦ α.

Theorem 1.7.5. A variety V is congruence permutable iff V has a ternary term p which satisfies
the identity

p(x, y, y) ≈ p(y, y, x) ≈ x.

Proof. Suppose first that V is congruence permutable. Let F = FV(x, y, z) be the free algebra on
three generators in V. Define a congruence α on F to be the least congruence with x/α = y/α,
that is, α is the kernel of the homomorphism FV(x, y, z) → FV(x, z) given by x, y 7→ x, z 7→ z.
Similarly, let β be the least congruence on F with y/β = z/β.

Then (x, z) ∈ α ◦β, so if V has commuting congruences, then there must be some p(x, y, z) ∈ F
such that x/β = p(x, y, z)/β and p(x, y, z)/α = z/α. But this is equivalent to the pair of identities
x ≈ p(x, y, y), p(x, x, z) ≈ z.

Conversely, suppose such a term p exists, and let A ∈ V and α, β ∈ Con(A). Then for any a, b, c
with a/α = b/α and b/β = c/β we have

p(a, b, c)/β = p(a, b, b)/β = a/β

and
p(a, b, c)/α = p(a, a, c)/α = c/α,

so (a, c) ∈ β ◦ α.
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Definition 1.7.6. A ternary term p is called a Mal’cev term if it satisfies the identity p(x, y, y) ≈
p(y, y, x) ≈ x. An algebra with a Mal’cev term is called a Mal’cev algebra, and a variety with a
Mal’cev term is called a Mal’cev variety.

One reason universal algebraists like congruence permutability is that it implies that the con-
gruence lattice is modular, a property first isolated by Dedekind in his investigation of the lattice
of submodules of a module over a ring.

Definition 1.7.7. A lattice L is modular if for all α, β, γ ∈ L, we have

α ≤ β =⇒ α ∨ (γ ∧ β) = (α ∨ γ) ∧ β.

Equivalently, a lattice L is modular if it has no five element sublattice isomorphic to the lattice N5

whose Hasse diagram is a pentagon: consider the sublattice generated by α′ = α ∨ (γ ∧ β), β′ =
(α ∨ γ) ∧ β, and γ, with top element α ∨ γ = α′ ∨ γ and bottom element γ ∧ β = γ ∧ β′, and note
that we always have α′ ≤ β′.

α ∨ γ

α

β

γ

γ ∧ β

α ∨ (γ ∧ β)

(α ∨ γ) ∧ β

Proposition 1.7.8. If A has permuting congruences, then Con(A) is a modular lattice.

Proof. We just have to check that if α ≤ β, then α ◦ (γ ∧ β) ≥ (α ◦ γ) ∧ β. Suppose that
(x, z) ∈ (α ◦ γ) ∧ β, and choose y such that (x, y) ∈ α, (y, z) ∈ γ. Then (y, x) ∈ α ⊆ β and
(x, z) ∈ β, so (y, z) ∈ β ◦ β = β, so (y, z) ∈ γ ∧ β, so (x, z) ∈ α ◦ (γ ∧ β).

An unexpectedly large example of a Mal’cev variety is the variety of quasigroups.

Definition 1.7.9. A binary operation on a finite set is called a quasigroup if its multiplication
table is a Latin square (i.e. each element appears exactly once in each row and column). The
variety of quasigroups has three basic operations ·, /, \, which satisfy the following identities:

(a · b)/b ≈ a, (a/b) · b ≈ a, b\(b · a) ≈ a, b · (b\a) ≈ a.

Note that in the finite case, if · is a quasigroup operation, then the operations /, \ can be defined
in terms of · by an iteration argument (for any invertible unary function f on an n element set,
f−1 = f◦(n!−1)). For infinite quasigroups, they have to be introduced into the language explicitly.

Proposition 1.7.10. If A = (A, ·, /, \) is a quasigroup, then p : (x, y, z) 7→ (x/y) · ((y/y)\z) is a
Mal’cev term.
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Proof. Plugging in x = y we get

p(y, y, z) = (y/y) · ((y/y)\z) ≈ z,

and plugging in z = y we get

p(x, y, y) = (x/y) · ((y/y)\y) ≈ (x/y) · ((y/y)\((y/y) · y)) ≈ (x/y) · y ≈ x.

The corresponding property on the CSP side of the picture is something known as the parallel-
ogram property (some authors call this rectangularity, although the definition of rectangularity is
often slightly weaker in the case of relations of higher arity).

Definition 1.7.11. A binary relation R ⊆ A × B has the parallelogram property if whenever
(a, b), (c, b), (c, d) ∈ R, we also have (a, d) ∈ R. A relation of higher arity is said to have the
parallelogram property if every way of grouping its coordinates into two groups gives a binary
relation with the parallelogram property.

Theorem 1.7.12. A finite algebraic structure A has a Mal’cev term p iff every relation R ∈ Inv(A)
has the parallelogram property.

Proof. Suppose first that A has a Mal’cev term p, let B,C ∈ V(A) and let R ≤ B×C be a subalgebra
of their product. Suppose that (a, b), (c, b), (c, d) ∈ R. Then[

a
d

]
= p

([
a
b

]
,

[
c
b

]
,

[
c
d

])
∈ R,

so R has the parallelogram property.
Conversely, suppose that every relation in Inv(A) has the parallelogram property. Let π1, π2 ∈

AA2
be the elements corresponding to the functions πi : (a1, a2) 7→ ai. Let R ≤ (AA2

)2 be the sub-
algebra generated by the three pairs (π1, π1), (π2, π1), (π2, π2). Then since R has the parallelogram
property, we must have (π1, π2) ∈ R, so there must be a ternary term p such that[

π1
π2

]
= p

([
π1
π1

]
,

[
π2
π1

]
,

[
π2
π2

])
.

But then this p is a Mal’cev term for A.

If we want to test whether an algebra has a Mal’cev term, then the above result would make it
seem like we need to test whether relations of arbitrarily large arity have the parallelogram property.
As it turns out, for idempotent algebras we only need to test whether all binary relations have the
parallelogram property.

Theorem 1.7.13 ([86], [98], [157], [97], [165]). A finite idempotent algebra A has a Mal’cev term
if and only if every binary relation R ∈ Inv2(A) has the parallelogram property. More explicitly,
this occurs if and only if we have [

a
d

]
∈ SgA2

{[
a
b

]
,

[
c
b

]
,

[
c
d

]}
for all a, b, c, d ∈ A.
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Proof. (Following [165]) Suppose that A is not Mal’cev, and consider a relation R ∈ Inv(A) of
minimal arity n among those which do not have the parallelogram property. If n = 2, we are
done. Otherwise, we will try to use R to define a relation of lower arity which also fails to have the
parallelogram property.

Suppose that R fails to have the parallelogram property when considered as a binary relation on
Ak×An−k, and assume without loss of generality that k ≥ 2. Since R fails to have the parallelogram
property, there are tuples a, c ∈ Ak and tuples b, d ∈ An−k such that (a, b), (c, b), (c, d) ∈ R but
(a, d) ̸∈ R. Write a1 = π1(a) and a′ = π2,...,k(a), and define c1, c

′ similarly. Define R′ ≤ Ak−1×An−k
by

(x′, y) ∈ R′ ⇐⇒ ∃x1 ∈ A ((x1, x
′), y) ∈ R ∧ ((x1, x

′), b) ∈ R.

Then we have (a′, b), (c′, b), (c′, d) ∈ R′, so if R′ has the parallelogram property then we must
have (a′, d) ∈ R′. Thus there is some e1 ∈ A such that ((e1, a

′), b), ((e1, a
′), d) ∈ R. Now define

R′′ ≤ A× An−k by
(x1, y) ∈ R′′ ⇐⇒ ((x1, a

′), y) ∈ R.

Then we have (a1, b), (e1, b), (e1, d) ∈ R′′, so if R′′ has the parallelogram property then we must
have (a1, d) ∈ R′′, which means that (a, d) ∈ R, a contradiction.

Remark 1.7.1. In [97], the authors give an explicit polynomial time procedure to construct a Mal’cev
term out of a collection of idempotent “local Mal’cev terms” tabcd satisfying

tabcd(a, b, b) = a, tabcd(c, c, d) = d.

The construction consists of two stages. In the first stage we construct, for each a, b, a term tab
which satisfies

tab(a, b, b) = a, tab(y, y, x) ≈ x.

To do this, we pick an ordering (ci, di) of the set of ordered pairs (c, d), and inductively define terms
tiab by t0ab(x, y, z) := x and

ti+1
ab (x, y, z) := tabuidi(t

i
ab(x, y, z), tiab(y, y, z), z),

where ui = tiab(ci, ci, di). These terms will satisfy tiab(a, b, b) = a and tiab(cj , cj , dj) = dj for all j < i.

We finish the first stage by taking tab := tn
2

ab , where n is the number of elements in our algebra.
The second stage of the construction is similar. We first pick an ordering (ai, bi) of the set of

ordered pairs (a, b), and then inductively define terms ti by t0(x, y, z) := z and

ti+1(x, y, z) := taivi(x, ti(x, y, y), ti(x, y, z)),

where vi = ti(ai, bi, bi). These terms will satisfy ti(y, y, x) ≈ x and ti(aj , bj , bj) = aj for all j < i.
The term p(x, y, z) := tn2(x, y, z) will then be a Mal’cev term.

Definition 1.7.14. If R ≤sd A × B is a subdirect binary relation, then the linking congruence
of R can refer to any of the following three congruences: the congruence kerπ1 ∨ kerπ2 on R, the
congruence α on A generated by pairs a, a′ ∈ A such that there exists a b ∈ B with (a, b), (a′, b) ∈ R,
or the similar congruence β defined on B. The relation R is called linked if these congruences are
full.
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Note that in the above definition, we have α = π1(kerπ1 ∨ kerπ2), β = π2(kerπ1 ∨ kerπ2), and

A/α ∼= R/(kerπ1 ∨ kerπ2) ∼= B/β.

A more visual way to understand the linking congruence is to think of the relation R as a bipartite
graph on A⊔B, and to define the congruence classes to be the connected components of this graph.
In particular, R is linked iff this bipartite graph is connected.

Proposition 1.7.15 (Goursat’s Lemma). A subdirect binary relation R ≤sd A×B has the parallel-
ogram property iff there are congruences α, β on A,B respectively and an isomorphism f : A/α →
B/β such that, writing πα, πβ for the quotient maps, we have R = π−1

α ◦ f−1 ◦πβ (treating πα, πβ, f
as binary relations with inputs on the right and outputs on the left).

Proof. Thinking of R as a bipartite graph on A ⊔ B, we just have to prove that every connected
component of R is a complete bipartite graph. Suppose a ∈ A and b ∈ B are in the same connected
component of R, and let a = a1, b1, ..., ak, bk = b be a path from a to b with (ai, bi) ∈ R and
(ai+1, bi) ∈ R for each i. We will show that (a1, bi) ∈ R by induction on i:[

a1
bi

]
,

[
ai+1

bi

]
,

[
ai+1

bi+1

]
∈ R =⇒

[
a1
bi+1

]
∈ R.

Despite the trivial nature of binary relations with the parallelogram property, higher arity
relations can encode more complicated global information.

Example 1.7.1. Consider the affine algebra A = (Z/p, x− y + z), and let R ≤sd An be the relation
x1 + · · ·+ xn ≡ 0 (mod p). Then if we think of R as a (subdirect) binary relation on A× An−1, it
is the graph of the homomorphism An−1 → A given by (x2, ..., xn) 7→ −x2 − · · · − xn (mod p).

More generally, for any i, if we think of R as a subdirect binary relation on Ai×An−i, then the
linking congruence gives homomorphisms Ai → A← An−i: (x1, ..., xi) 7→ x1 + · · ·+xi (mod p) and
(xi+1, ..., xn) 7→ −xi+1 − · · · − xn (mod p).

Ternary relations on simple Mal’cev algebras have a particularly interesting structure.

Proposition 1.7.16. Let A1,A2,A3 be simple idempotent Mal’cev algebras, and suppose that R ≤sd
A1 × A2 × A3 has πi,j(R) = Ai × Aj for each i ̸= j but that R ̸= A1 × A2 × A3. Then for each
a ∈ A1, the relation

Ra = π2,3(R ∩ ({a} × A2 × A3))

is the graph of an isomorphism between A2 and A3, and for every b ∈ A2, c ∈ A3 there is a unique
a ∈ A1 such that (b, c) ∈ Ra.

Proof. Consider R as a subdirect relation on A1× (A2×A3). Since the linking congruence on A1 is
not full (else R would be the full relation by the parallelogram property), it must be trivial (since
A1 is simple), so R is the graph of a homomorphism from A2 × A3 to A1, which proves the last
assertion.

Similarly, R may be viewed as the graph of a homomorphism from A1 × A2 to A3, so Ra
is the graph of a surjective homomorphism from A2 to A3 for any a ∈ A1 (surjective because
π1,3(R) = A1 × A3), and by simplicity of A2 this homomorphism must be an isomorphism.
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If we fix an isomorphism A1
∼= A2

∼= A3
∼= A coming from the above proposition, then the

kernel of the associated homomorphism A× A ∼= A2 × A3 → A1 contains the diagonal of A× A as
a congruence class. In this case - that is, the case where A × A has the diagonal as a congruence
class of some congruence - A is called an abelian algebra.

Example 1.7.2. Let An = ({0, ..., n− 1}, p), where p is the ternary Mal’cev operation defined by

p(x, y, z) =


z if x = y,

y if x = z,

x if x ̸∈ {y, z}.

For n ≥ 3, An is simple and non-abelian (i.e. the diagonal is not a congruence class of any congruence
on A2

n). Inv(An) is generated by a pair of graphs of permutations of {0, ..., n − 1} which generate
the full symmetric group, the unary relation x ̸= 0, and the ternary relation

(x, y, z ∈ {0, 1}) ∧ (x+ y + z ≡ 0 (mod 2)).

It is a good exercise to prove that the above relations generate Inv(An).

Example 1.7.3. Here we describe an example of a three element Mal’cev algebra which is “solvable”,
but which is not abelian. Let A = ({0, 1, ∗}, p), where p is the ternary Mal’cev operation defined
by

p(x, y, z) =


x if y = z,

y if x = z,

z if x = y,

∗ if {x, y, z} = {0, 1, ∗}.

Every two element subset of A is a subalgebra isomorphic to the idempotent reduct of Z/2, and A
has a congruence θ corresponding to the partition {0, 1}, {∗} such that A/θ is also isomorphic to
the idempotent reduct of Z/2.

Along with the binary relations on A, which can be described by applying Goursat’s Lemma
1.7.15 to A and its subalgebras, there is also the ternary relation

(x = y = z = ∗) ∨ (x, y, z ∈ {0, 1} ∧ x+ y + z ≡ 0 (mod 2)),

whose elements correspond to the columns of the matrix∗ 0 0 1 1
∗ 0 1 0 1
∗ 0 1 1 0

 .
That this relation forms a subalgebra of A3 is related to the fact that θ can be considered to be an
“abelian congruence” (in a sense we will define later). Finding primitive positive definitions of the
other ternary relations on A from the relations described above, and showing that they generate all
of Inv(A), are left as exercises (if these exercises are too difficult, it may be helpful to come back
to them after reaching Theorem 2.3.10).
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1.8 Mal’cev algorithm and compact representations

The algorithm for solving CSPs invariant under a Mal’cev operation, due to Bulatov and Dalmau
[41], is based on the fact that any Mal’cev constraint has a small generating set. More specifically,
we will show that any subset of a relation R which has the same projection to each factor and
contains representatives of all of the “forks” of R actually generates R.

Definition 1.8.1. If R ⊆ A1 × · · · × An, then we define the signature of R, written Sig(R), to
be the set of triples (i, a, b) with i ∈ {1, ..., n}, a, b,∈ Ai such that there are some ta, tb ∈ R with
π1,...,i−1(ta) = π1,...,i−1(tb) and πi(ta) = a, πi(tb) = b. In this case we say that the pair ta, tb witnesses
the triple (i, a, b).

Theorem 1.8.2. Suppose that a relation R ≤ A1 × · · · ×An is preserved by a Mal’cev term p, and
that S ⊆ R is a subset with Sig(S) = Sig(R). Then R is generated by S (using only p).

Proof. Let S be the subset of R generated by S using p. We will prove by induction on i that
π1,...,i(S) = π1,...,i(R).

Suppose that t ∈ R. By the induction hypothesis, there is some t′ ∈ S with π1,...,i−1(t) =
π1,...,i−1(t

′). Let a = πi(t
′), b = πi(t). Since S ⊆ R, we have (i, a, b) ∈ Sig(R) = Sig(S), so there

must be a pair ta, tb ∈ S witnessing the triple (i, a, b). Define t′′ ∈ S by

t′′ = p(t′, ta, tb).

Then from π1,...,i−1(ta) = π1,...,i−1(tb) and the fact that p is Mal’cev, we have

π1,...,i−1(t
′′) = π1,...,i−1(p(t

′, ta, ta)) = π1,...,i−1(t
′) = π1,...,i−1(t).

Additionally, from πi(t
′) = πi(ta) = a and the fact that p is Mal’cev, we have

πi(t
′′) = p(a, a, b) = b = πi(t),

so π1,...,i(t
′′) = π1,...,i(t).

Definition 1.8.3. A subset S ⊆ R is called a compact representation of a Mal’cev relation R if
Sig(S) = Sig(R) and |S| ≤ 2| Sig(R)|.

Proposition 1.8.4. Every Mal’cev relation R ≤ A1 × · · · × An has a compact representation S.
We always have |S| ≤ 2n ·maxi |Ai|2.

Now we need some subroutines for manipulating compact representations. The first such proce-
dure is called Nonempty: it takes as input a compact representation R of a relation R ≤ A1×· · ·×An
and any description of a relation S ≤ Ai1 × · · · × Aik on a small subset {i1, ..., ik} of the indices,
and it tells us whether R ∩ S ̸= ∅. In the case R ∩ S ̸= ∅, Nonempty returns an element of the
intersection.

Proposition 1.8.5. Nonempty correctly determines whether R ∩ S ̸= ∅ in time polynomial in n,
|R|, and |πi1,...,ik(R)| ≤

∏
j≤k |Aij |.

Proof. Since R is generated by R using p, we also have πi1,...,ik(R) generated by πi1,...,ik(R) using
p. To see the bound on the running time, note that in each iteration of the while loop, the set
πi1,...,ik(R′) gains a new element, and its size is clearly bounded by |πi1,...,ik(R)|.
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Algorithm 4 Nonempty(R, i1, ..., ik,S), p a Mal’cev term, R a compact representation of R ≤
A1 × · · · × An, S ≤ Ai1 × · · · × Aik .

1: Set R′ ← R.
2: while πi1,...,ik(R′) is not closed under p and R′ ∩ S = ∅ do
3: Pick t1, t2, t3 ∈ R′ with πi1,...,ik(p(t1, t2, t3)) ̸∈ πi1,...,ik(R′).
4: Set R′ ← R′ ∪ {p(t1, t2, t3)}.
5: if R′ ∩ S ̸= ∅ then
6: return any element of R′ ∩ S.
7: else
8: return ∅.

The next subroutine for manipulating compact representations is Fix-values. Fix-values

converts a compact representation R of R ≤ A1 × · · · × An to a compact representation of

R ∧ (x1 = a1) ∧ · · · ∧ (xm = am),

for any choice of m ≤ n and ai ∈ Ai for all i. Fix-values is really the core of the algorithm,
the other steps are mostly formal (in fact, Nonempty and Fix-values are the only two subroutines
which use the Mal’cev term p).

Algorithm 5 Fix-values(R, a1, ..., am), p a Mal’cev term, R a compact representation of R ≤
A1 × · · · × An.
1: Set R0 ← R.
2: for j from 1 to m do
3: if (j, aj , aj) ̸∈ Sig(Rj−1) then
4: return ∅.
5: else
6: Set Rj ← {t}, where t ∈ Rj−1 and the pair t, t witnesses the triple (j, aj , aj).

7: for all (i, a, b) ∈ Sig(Rj−1) with i > j do
8: Let ta, tb ∈ Rj−1 witness the triple (i, a, b).
9: Let t← Nonempty(Rj−1, j, i, {(aj , a)}).

10: if t ̸= ∅ then
11: Set Rj ← Rj ∪ {t, p(t, ta, tb)}.
12: return Rm.

Proposition 1.8.6. Fix-values correctly returns a compact representation of Rm = R ∧ (x1 =
a1) ∧ · · · ∧ (xm = am) in polynomial time.

Proof. We prove by induction on j that Rj is a compact representation of Rj for each j ≤ m.
Note that for any (i, a, b) ∈ Sig(Rj), if a ̸= b then we must have i > j. For i ≤ j, we have
(i, ai, ai) ∈ Sig(Rj) iff Rj ̸= ∅ by how we initialize Rj .

If i > j, then (i, a, b) ∈ Sig(Rj) implies (i, a, b) ∈ Sig(Rj−1), witnessed by some pair ta, tb ∈ Rj−1.
Additionally, if (i, a, b) ∈ Sig(Rj), then there is certainly some t ∈ Rj with πi(t) = a, so the call to
Nonempty inside the loop will succeed. Then

π1,...,i−1(p(t, ta, tb)) = π1,...,i−1(p(t, ta, ta)) = π1,...,i−1(t),
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so from i > j we have p(t, ta, tb) ∈ Rj . From πi(t) = a, πi(p(t, ta, tb)) = p(a, a, b) = b, we see that
the pair t, p(t, ta, tb) witnesses the triple (i, a, b).

To see that Fix-values runs in polynomial time, note that every call to Nonempty involves a
constraint on two variables.

Corollary 1.8.7. Given a compact representation R of a relation R ≤ A1 × · · · × An which is
preserved by a given Mal’cev operation p, and given a tuple t ∈ A1 × · · · × An, we can determine
whether t ∈ R in polynomial time.

The next subroutine will give a compact representation for the intersection of a relation R given
by a compact representation R and a relation S of small arity. In [41] this subroutine was called
Next-beta, so we will copy that notation here.

Algorithm 6 Next-beta(R, i1, ..., ik,S), R a compact representation of R ≤ A1 × · · · × An, S ≤
Ai1 × · · · × Aik .

1: Set R′ ← ∅.
2: for all (i, a, b) ∈ Sig(R) do
3: Set ta ← Nonempty(R, i1, ..., ik, i,S× {a}).
4: if ta ̸= ∅ then
5: Set tb ← Nonempty(Fix-values(R, π1(ta), ..., πi−1(ta)), i1, ..., ik, i,S× {b}).
6: if tb ̸= ∅ then
7: Set R′ ← R′ ∪ {ta, tb}.
8: return R′.

Proposition 1.8.8. Next-beta correctly finds a compact representation of R∩S in time polynomial
in n, |R|, and |πi1,...,ik(R)| ·maxi |Ai| ≤

∏
j≤k |Aij | ·maxi |Ai|.

Bulatov and Dalmau [41] then go on to define a subroutine Next which calls Next-beta on larger
and larger projections of S, ensuring that |πi1,...,ik(R)| ≤ |S| ·maxi |Ai| every time that Next-beta

is called. A better approach, leading to a more powerful algorithm, was found by Maróti [125].
The subroutine Intersect takes two compact representations R,S of relations R, S as input and
returns a compact representation of R ∩ S as output.

Algorithm 7 Intersect(R, i1, ..., ik, S), R a compact representation of R ≤ A1 × · · · × An, S a
compact representation of S ≤ Ai1 × · · · × Aik .

1: Let tR ∈ R and tS ∈ S be any tuples.
2: Set R′ ← (R× {tS}) ∪ ({tR} × S) ⊆ A1 × · · ·An × Ai1 × · · · × Aik .
3: for j ≤ k do
4: Set R′ ← Next-beta(R′, ij , n+ j,=Aij

).

5: return a minimal subset of π1,...,n(R′) which witnesses every triple (i, a, b) ∈ Sig(π1,...,n(R′)).

Theorem 1.8.9. Any CSP which is preserved by a Mal’cev operation, where the relations are given
by their compact representations, can be solved in time polynomial in the number of variables, the
number of relations, and the size of the largest domain. In fact, we can find a compact representation
of the solution set in polynomial time.
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Proof. We start with any compact representation of A1×· · ·×An, and simply apply the subroutine
Intersect repeatedly to find a compact representation of the intersection of all the constraint
relations. To see that Intersect works correctly and efficiently, note that R′ is initialized as a
compact representation of R×S and ends as a compact representation of R∩S followed by k repeated
coordinates. To see that Intersect runs in polynomial time, note that each call of Next-beta

involves a relation of arity 2.

Corollary 1.8.10. For any primitive positive formula φ in a collection of relations Ri, if we are
given compact representations of each Ri then we can efficiently find a compact representation of
the relation described by φ.

Proof. If we are given a compact representation of a relation and we permute its variables, we
can efficiently find a compact representation for the permuted relation by using the Intersect

subroutine with R equal to a full relation. To handle projections, note that we can project onto
any initial segment of the variables by just projecting our compact representation and pruning
it.

While this might appear to be a fully satisfactory theory, there is still one big question remaining:
what happens if instead of having relations described by compact representations, we have relations
which are instead described by an arbitrary set of generators? It’s clear that we just need to find a
way to compute a compact representation of SgAn(S) for any small set S ⊆ An, and a little thought
shows that this can be reduced to the following problem.

Problem 1.8.1. Let A be a fixed Mal’cev algebra. Given a subset S ⊆ An, and given a tuple
t ∈ An, can we determine whether t ∈ SgAn(S) in time polynomial in |S| and n?

This is a special case of the Subpower Membership Problem 2.4.1. Even this special case is open
(the answer is conjectured to be yes). In the case of groups, the famous Schreier-Sims algorithm
gives a positive solution (see [71] for a straightforward exposition).

Remark 1.8.1. The proof of correctness of the subroutine Nonempty and the algorithm for Fix-values
are both directly connected to the proof of Theorem 1.8.2. The subroutines Next-beta and
Intersect use the subroutines Nonempty and Fix-values as black boxes and don’t involve the
algebraic structure at all. Thus, in order to generalize the Mal’cev algorithm to more general
algebraic structures, the only new ingredient needed is a proof of a generalization of Theorem 1.8.2.

1.8.1 Near-subgroups

In this subsection, we will describe the maximal polynomial-time solvable extension G∗ of the
relational clone G of cosets of subgroups of Gm, where G is a finite group. The relational clone G∗

will turn out to have a Mal’cev polymorphism, so the algorithm for Mal’cev algebras can be used
to prove the dichotomy for extensions of G.

First, consider the simple case where G = Z/n is cyclic of order n at least 3. It’s easy to see
that if we add the unary relation {0, 1} to Z/n, then we can simulate 1-IN-3 SAT via the primitive
positive formula

x+ y + z = 1 ∧ x, y, z ∈ {0, 1}.
Using an inductive argument with this as the base case, Feder and Vardi [69] show that if we adjoin
any unary relation to Z/n which isn’t a coset of a subgroup, then we can simulate 1-IN-3 SAT as
well.
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Proposition 1.8.11 (Feder, Vardi [69]). If we adjoin any unary relation K to the relational
structure G = (Z/n, {1}, x+ y = z), then the resulting CSP is NP-complete unless K is a coset of
a subgroup of Z/n.

Proof. Using the binary relation y = x+i for constants i ∈ Z/n, we see that K−i is in the relational
clone generated by K and G. Thus we may assume without loss of generality that 0 ∈ K, and by
possibly restricting to a subgroup we may assume that ⟨K⟩ = Z/n. By applying an automorphism
of Z/n, we may also assume that 1 ∈ K.

We induct on |K|, n. If there is an i ̸= 0 with i, i+ 1 ∈ K, then K ∩ (K − i) also contains 0, 1,
and will be strictly smaller than K unless K = K − i, in which case we may take the quotient by
⟨i⟩. Thus we may assume that i, i+ 1 are not both in K for any i ̸= 0.

If K contains some i with neither of i, i − 1 relatively prime to n, then by induction K ∩ ⟨i⟩
and (K − 1) ∩ ⟨i − 1⟩ are subgroups, so 2i, 2i − 1 ∈ K and we must have 2i − 1 ≡ 0 (mod n),
contradicting the assumption that i has a common factor with n.

If K contains i ̸= 1 with i relatively prime to n, then K ∩ (i−K) contains 0, i but not 1, and
we may apply the induction hypothesis to get a contradiction. Similarly, if K contains i ̸= 0 with
i − 1 relatively prime to n, then (K − 1) ∩ (i −K) contains 0 and i − 1 but not −1, and we may
apply the induction hypothesis.

Thus the only case to consider is the case K = {0, 1}, and we have already seen that in this
case we can simulate 1-IN-3 SAT (unless n = 2, in which case K = Z/n).

Next, consider the case where G is the Klein four-group (Z/2)2. The only unary relations which
aren’t already cosets of subgroups of (Z/2)2 are the relations with three elements. If we adjoin any
three element unary relation to (Z/2)2, then we can again simulate 1-IN-3 SAT: if we adjoin the
relation K = {(0, 0), (0, 1), (1, 0)}, for instance, then we can use the primitive positive formula

∃t (x, y, z ∈ {(0, 0), (0, 1)} ∧ x+y+z = (0, 1) ∧ (x, t) ∈ {((0, 0), (0, 0)), ((0, 1), (1, 0))} ∧ y+t ∈ K),

which is satisfied iff exactly one of x, y, z is (0, 1) and the other two are (0, 0).
Now consider the case where G is any finite abelian group, and K ⊆ G is a unary relation which

can be added without creating NP-completeness. Then if any a, a+b ∈ K, we must have a+ib ∈ K
for all i ∈ Z by the cyclic case. By the Klein four-group case, if we have subgroups N ≤ M ≤ G
with M/N ∼= (Z/2)2, then if K meets any three elements of M/N it must also meet the fourth.

Proposition 1.8.12. Suppose that G is an abelian group and that K ⊆ G has 0 ∈ K, has the
property that if a, a+ b ∈ K then a+ ⟨b⟩ ⊆ K, and the property that for any subgroups N ≤M ≤ G
with M/N ∼= (Z/2)2, we have |(K ∩M)/N| ≠ 3. Then K must be a subgroup of G.

Proof. From the first assumption, for any a, b ∈ K we must have −ia, jb ∈ K, so

ia+ 2jb = jb− (−ia− jb) ∈ jb+ ⟨−ia− jb⟩ ⊆ K,

and similarly 2ja+ ib ∈ K for all i, j ∈ Z.
Thus, if we take M = ⟨a, b⟩ and N = ⟨2a, 2b⟩, we see that either |M/N| < 4 in which case a+ b ∈

⟨a, b⟩ ⊆ K, or M/N ∼= (Z/2)2 and |(K∩M)/N| ≥ 3. In the latter case, the second assumption implies
that there are i, j such that (2i+1)a+(2j+1)b ∈ K. Then a+b = (2i+1)a+(2j+1)b−2ia−2jb ∈ K
by repeated application of the first assumption. Either way, a + b ∈ K, so K is closed under
addition.
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Corollary 1.8.13. If G is a finite abelian group and G the associated relational structure, then
for any m-ary relation K which is not a coset of a subgroup of Gm, the CSP we get by adding K
to G is NP-complete.

Proof. Apply the previous proposition to the abelian group Gm.

In the case of nonabelian groups, however, we may be able to adjoin interesting new constraints.
Note that if we adjoin any constraint, then we automatically adjoin all of its cosets, since for any
constant b ∈ G the relation y = bx is a left coset of the diagonal subgroup of G2. So by the abelian
case, the only possibilities for new relations are those described by the following definition.

Definition 1.8.14. A subset K ⊆ G is a near subgroup of G if it contains 1, and for any b ∈ K−1,
any M ≤ G and any N�M with M/N abelian, the quotient set (bK ∩M)/N is a subgroup of M/N.

Proposition 1.8.15. If H ≤ G is a subgroup and K ⊆ H is a near subgroup of H, then K is a
near subgroup of G. Similarly, if φ : G↠ H is a surjective group homomorphism and K ⊆ H is a
near subgroup of H, then φ−1(K) is a near subgroup of H.

Theorem 1.8.16 (Aschbacher [4]). The intersection of two near subgroups of a finite group is a
near subgroup.

Corollary 1.8.17 (Feder [68]). Let G be a finite group, and let G∗ be the relational structure on
the underlying set of G having as relations all cosets of all near subgroups of Gn. Then G∗ has a
Mal’cev polymorphism.

Proof. Consider the “free near subgroup generated by two elements”, that is, the smallest near
subgroup K of GG2

which contains π1, π2 (a smallest such near subgroup exists since the intersection
of all of them is guaranteed to be a near subgroup as well). Let N be the commutator subgroup
of the group generated by π1, π2. Since ⟨π1, π2⟩/N is abelian, there must be some c ∈ N with
π1π2c ∈ K by the definition of a near subgroup.

We define a binary operation g by g = π1π2c, that is, g(x, y) = xyc(x, y), where c ∈ GG2
is

interpreted as a function c : G2 → G. Since for all x, y we know that c(x, y) is contained in the
commutator subgroup of ⟨x, y⟩, we have c(x, 1) = c(1, x) = 1 for all x, so g(x, 1) = g(1, x) = x.
Now we define a Mal’cev operation p by

p(x, y, z) = yg(y−1x, y−1z) = xy−1zc(y−1x, y−1z).

That p is Mal’cev follows directly from the fact that g satisfies the identities g(1, x) ≈ g(x, 1) ≈ x.
To see that p is really a polymorphism of G∗, let X be any coset of any near subgroup of Gn,

and let x, y, z ∈ X. Then y−1X is a near subgroup of Gn. Since g = π1π2c ∈ K, g preserves
every near subgroup of Gn (since for any a, b ∈ Gn, K is contained in the near subgroup of GG2

obtained by taking the preimage of the map φ from the subgroup generated by π1, π2 to Gn which
sends π1 7→ a, π2 7→ b). Thus from y−1x, y−1z ∈ y−1X we have g(y−1x, y−1z) ∈ y−1X, and
p(x, y, z) = yg(y−1x, y−1z) ∈ X, so p does indeed preserve X.

In order to prove Aschbacher’s Theorem 1.8.16, we first need a more convenient characterization
of near-subgroups.

Definition 1.8.18. A subset K of a finite group G is a twisted subgroup if 1 ∈ K and x, y ∈ K =⇒
xyx ∈ K.
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Proposition 1.8.19. If K is a twisted subgroup and x ∈ K, then ⟨x⟩ ⊆ K, so in particular
K = K−1. If b ∈ K, then bK is also a twisted subgroup.

Proof. For the first statement, for any x ∈ K we have xk·1·xk, xk·x·xk ∈ K for all k ≥ 0, so ⟨x⟩ ⊆ K.
For the second statement, if x, y ∈ bK and b ∈ K, then b−1(x·y ·x) = (b−1x)·(b·b−1y ·b)·(b−1x) ∈ K,
so xyx ∈ bK.

Proposition 1.8.20. A subset K ⊆ G is a near-subgroup iff it is a twisted subgroup such that
for any b ∈ K−1, any M ≤ G and any N � M with M/N isomorphic to the Klein four-group,
|(bK ∩M)/N| ≠ 3.

Proof. We just need to check that K being a twisted subgroup is equivalent to ⟨x⟩ ⊆ bK for all
x, b with x ∈ bK, b ∈ K−1. The previous proposition proves one direction of the equivalence. For
the other direction, if x, y ∈ K, then yx ∈ yK and y−1 ∈ ⟨y⟩ ⊆ K, so (yx)2 ∈ ⟨yx⟩ ⊆ yK, which is
equivalent to xyx = y−1(yx)2 ∈ K.

Example 1.8.1. An explicit example of a near-subgroup which is not a subgroup is given in [69].
Let G be the Heisenberg group of order p3 (p odd):

G =


1 a c

0 1 b
0 0 1

 s.t. a, b, c ∈ Z/p

 ≤ SL3(Z/p).

Let K ⊆ G be given by

K =


1 a ab

2
0 1 b
0 0 1

 s.t. a, b ∈ Z/p

 .

Since G has odd order, to check that K is a near subgroup we just need to check that it is a twisted
subgroup, i.e. that it contains the identity and is closed under the binary operation x, y 7→ xyx.
This can be checked by direct calculation: for any a, b, c, d ∈ Z/p we have1 a ab

2
0 1 b
0 0 1

1 c cd
2

0 1 d
0 0 1

1 a ab
2

0 1 b
0 0 1

 =

1 2a+ c (2a+c)(2b+d)
2

0 1 2b+ d
0 0 1

 .
That K is not a subgroup follows from1 0 0

0 1 1
0 0 1

1 1 0
0 1 0
0 0 1

 =

1 1 0
0 1 1
0 0 1

 ̸∈ K.
That we needed to take p odd in the above example is no coincidence, as the next proposition

shows.

Proposition 1.8.21. If G is a 2-group, then any near-subgroup of G is a subgroup of G.

Proof. We prove this by induction on the order of G. Let K be a near-subgroup of G, and assume
without loss of generality that ⟨K⟩ = G.
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Let z ∈ Z(G) be a nontrivial involution in the center of G, which must exist since every 2-group
has a nontrivial center, and every nontrivial element of the center has a power which is a nontrivial
involution. By induction we have K/⟨z⟩ = G/⟨z⟩.

If z ∈ K then for any g ∈ G \K, we have gz ∈ K, and from ⟨gz, z⟩ abelian and gz, z ∈ K we
have ⟨gz, z⟩ ⊆ K, so in particular g = gz · z ∈ K. Thus if z ∈ K we have G = K.

Thus we may assume that z ̸∈ K, and in fact that Z(G)∩K = 1. Let M be a maximal subgroup
of G containing ⟨z⟩, then by induction we have M∩K a subgroup of M. Since (M∩K)/⟨z⟩ = M/⟨z⟩,
we have M ∼= (M ∩K)× ⟨z⟩.

Let Φ(M) be the Frattini subgroup of M, which for 2-groups is given by Φ(M) = M2[M,M]
(where by M2 we mean the collection of all squares a2 for a ∈ M). Then from Φ(⟨z⟩) = 1 we
have Φ(M) = Φ(M ∩ K), and since M � G we have Φ(M) � G. Thus if Φ(M) ̸= 1 then by
considering parities of the sizes of the orbits of elements of Φ(M) under conjugation we see that
Φ(M ∩ K) = Φ(M) contains a nontrivial element of Z(G), contradicting K ∩ Z(G) = 1. Thus
Φ(M) = 1, so M has exponent 2. Since this holds for every maximal subgroup of G which contains
⟨z⟩, we see that G has exponent 2, so G is abelian.

Next we show that we can reduce to the situation where ⟨K⟩ has an automorphism of order
two which sends k to k−1 for all k ∈ K.

Definition 1.8.22. If K is a twisted subgroup, we define the K-radical ΞK to be the set of elements
of the form k1 · · · kn with ki ∈ K such that k−1

1 · · · k−1
n = 1.

Proposition 1.8.23. If K is a twisted subgroup and ΞK is the K-radical, then ΞK is a normal
subgroup of ⟨K⟩, and for any x ∈ K we have xΞK ⊆ K.

Proof. To see that ΞK is normal in ⟨K⟩, just note that for any b ∈ K we have

k−1
1 · · · k

−1
n = 1 ⇐⇒ b−1k−1

1 · · · k
−1
n b = 1 =⇒ bk1 · · · knb−1 ∈ ΞK ,

so bΞKb
−1 ⊆ Ξk.

For the second statement, note that k−1
1 · · · k−1

n = 1 ⇐⇒ kn · · · k1 = 1, so if x ∈ K then we
have

x(k1 · · · kn) = (kn · · · k1)x(k1 · · · kn) = kn(· · · (k1xk1) · · · )kn ∈ K.

Proposition 1.8.24. If K is a twisted subgroup with ΞK = 1, and if τ satisfies τ2 = 1, τkτ = k−1

for k ∈ K, then τK is preserved under conjugation by elements of ⟨K, τ⟩.

Proof. If x, y ∈ K, then x−1τyx = τxyx ∈ τK, and τ−1τyτ = τy−1 ∈ τK.

Proposition 1.8.25. A twisted subgroup K ⊆ G is a near-subgroup of G iff the intersection bK∩S
is a subgroup of S for every 2-Sylow subgroup S of G and every b ∈ K−1.

Proof. Suppose for contradiction that M ≤ G, N�M with M/N isomorphic to the Klein four-group,
and b ∈ K−1 with |(bK ∩M)/N| = 3. We may assume without loss of generality that M = ⟨K⟩∩M
and N = ⟨K⟩ ∩ N, that G = ⟨K⟩, that b = 1, and that ΞK = 1. From ΞK = 1, we see that there is
an order 2 automorphism τ of G = ⟨K⟩ with kτ = k−1 for all k ∈ K, so we work in the semidirect
product of G and ⟨τ⟩, with τ2 = 1 and τgτ = gτ for g ∈ G.

Let x, y ∈ K be representatives of the nontrivial elements of (K ∩ M)/N. We may assume
without loss of generality that x, y have orders equal to powers of 2, since otherwise we may
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replace them with odd powers of themselves. Let Sx,Sy be 2-Sylow subgroups of M⟨τ⟩ containing
⟨x, τ⟩, ⟨y, τ⟩, respectively, then by the Sylow theorems there is some g ∈ M⟨τ⟩ with g−1Syg = Sx.
Then x, τ, g−1yg, g−1τg ∈ Sx, and our strategy is to show that x, g−1yg ∈ K ∩ Sx.

We have g−1τyg ∈ τK by the previous proposition, so τg−1τyg ∈ K ∩ Sx, and similarly
τg−1τg ∈ K ∩ Sx. Since K ∩ Sx is assumed to be a subgroup, we have

xg−1yg = x(τg−1τg)−1(τg−1τyg) ∈ K ∩ Sx.

Then since M/N is abelian and τyτ = y−1 ≡N y, we have xg−1yg ≡N xy, contradicting the
assumption |(K ∩M)/N| = 3.

Proof of Theorem 1.8.16. If K,K ′ are near-subgroups of G, then they are both twisted subgroups
and so their intersection K ∩K ′ is also a twisted subgroup. Now let S be any 2-group contained in
G, then for any b ∈ K ∩K ′ we see that bK ∩ bK ′ ∩ S = (bK ∩ S) ∩ (bK ′ ∩ S) is an intersection of
subgroups of S, so it is a subgroup of S, and the previous proposition shows that this implies that
K ∩K ′ is a near-subgroup of G.

1.9 Abelian Mal’cev algebras are affine

In this section we will prove that abelian Mal’cev algebras are affine. This is an important step in
the proof that problems which do not have the “ability to count” have bounded width. First we
will carefully define what an affine algebra is, starting with the more basic concept of a quasi-affine
algebra.

Definition 1.9.1. An algebra A is called quasi-affine if there is an abelian group G = (G, 0,+,−)
with underlying set G containing the underlying set of A, such that the restriction of the 4-ary
relation x+ y = z + w to A is preserved by all the operations of A.

We want to relate this to the more familiar concept of a module over a ring.

Definition 1.9.2. If R is a ring and M is a module over R with underlying group (M, 0,+,−),
then we consider M to be a universal algebraic object (M, 0,+,−, {ϕr}r∈R), where for each r ∈ R
the unary operation ϕr : M→M is given by ϕr : m 7→ rm.

In general, a universal algebraic object is called a module if it is an expansion of an abelian
group by any collection of unary operations that distribute over addition.

The way these concepts are related is a coarser notion than term equivalence, known as polyno-
mial equivalence (warning: in some older references, “polynomial equivalence” means term equiv-
alence and “functional equivalence”/“algebraic equivalence” means polynomial equivalence).

Definition 1.9.3. If O is any set of operations, then the polynomial clone generated by O is the
clone generated by O together with the constant functions (one for each element of the underlying
set). Two algebras or clones on the same underlying set are called polynomially equivalent if they
have the same polynomial clones.

Proposition 1.9.4. An algebra A is quasi-affine iff it is a subalgebra of a reduct of the polynomial
clone of a module.

83



Proof. Let A be a quasi-affine algebra, and let G = (G, 0,+,−) be the corresponding group. We
may assume without loss of generality that 0 ∈ A, and that G is the abelian group with the
following presentation: the generators are the elements of A \ {0}, and the relations are given by
x+ y − z − w = 0 for every quadruple of elements x, y, z, w ∈ A such that x+ y = z + w in G.

Suppose that f is any n-ary operation of A, and for each i ≤ n let ϕi : A → G be the unary
operation given by

ϕi(x) = f(0, ..., 0, x, 0, ..., 0)− f(0, ..., 0),

with the x in the ith position. Since f preserves the relation x+ y = z + w on A, we have

ϕi(x) + ϕi(y) = ϕi(z) + ϕi(w)

for any x, y, z, w ∈ A such that x+y = z+w in G. Thus ϕi is compatible with the defining relations
of G, so the map ϕi : A→ G extends to a unique homomorphism ϕi : G→ G.

To finish, we just need to prove that

f(x1, ..., xn) = ϕ1(x1) + · · ·+ ϕn(xn) + f(0, ..., 0)

for all x1, ..., xn ∈ A, since f(0, ..., 0) is a constant operation.
We prove this by induction on the number k of nonzero values among x1, ..., xn. The base

cases k = 0, 1 follow from the definition of the ϕi. For the inductive step, assume without loss
of generality that the nonzero values of the xis are x1, ..., xk+1. Since f preserves the relation
x+ y = z + w, we have

f(x1, ..., xk+1, 0, ..., 0) + f(0, ..., 0) = f(x1, ..., xk, 0, 0, ..., 0) + f(0, ..., 0, xk+1, 0, ..., 0),

so by the inductive hypothesis and the definition of ϕk+1 we have

f(x1, ..., xk+1, 0, ..., 0) = ϕ1(x1) + · · ·+ ϕk(xk) + f(0, ..., 0) + ϕk+1(xk+1).

Definition 1.9.5. An algebra A is called affine if it is polynomially equivalent to a module.

Proposition 1.9.6. An algebra is affine iff it is quasi-affine and has a Mal’cev term.

Proof. The hardest step is showing that every affine algebra A has a Mal’cev term. Since A is
polynomially equivalent to a module, there must be some n + 3-ary term t and some constants
a1, ..., an ∈ A such that

t(x, y, z, a1, ..., an) = x− y + z

for all x, y, z. Since any affine algebra is quasi-affine, we can write t in the form

t(x, y, z, u1, ..., un) = x− y + z +
∑
i

ϕi(ui) + c

for some unary ϕi and some constant c. Define p(x, y, z) by

p(x, y, z) = t(x, t(y, y, y, x, ..., x), z, x, ..., x).

Then p is a term of A, and we have

p(x, y, z) = x−
(
y − y + y +

∑
i

ϕi(x) + c
)

+ z +
∑
i

ϕi(x) + c = x− y + z,
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so p is Mal’cev.
For the converse, if A is quasi-affine and has a Mal’cev term p, then p(x, y, y) ≈ p(y, y, x) ≈ x

imply that p(x, 0, 0) = x, p(0, 0, z) = z, and p(y, y, 0) = y + p(0, y, 0) = 0, so we must have
p(x, y, z) = x − y + z. Thus x + z = p(x, 0, z) and x − y = p(x, y, 0) are polynomial operations
of A, and therefore for each term f of A the unary function ϕ(x) = f(x, 0, ..., 0) − f(0, ..., 0) is a
polynomial operation of A as well.

It is less trivial to give a universal algebraic definition of what it means to be abelian. We will
give several different definitions and prove that they are equivalent to each other, and that they
restrict to the right concept in the special case of groups.

Definition 1.9.7. An algebraic structure A is called abelian if there is a congruence Θ on A× A
such that the diagonal ∆A = {(a, a) | a ∈ A} is one of the congruence classes of Θ.

Proposition 1.9.8. A group is abelian iff it is commutative.

Proof. A group G is abelian iff the diagonal ∆G is a normal subgroup of G×G. To check that ∆G
is normal, we just need to check that it is closed under conjugation by elements of the form (1, b)
for all b ∈ G. Since

(1, b)(a, a)(1, b)−1 = (a, bab−1),

the normality of ∆G is equivalent to the identity a ≈ bab−1, which is equivalent to ab ≈ ba.
Alternatively, we can argue as follows. The group G is commutative iff the map G → G given

by x 7→ x−1 is a homomorphism, and if this occurs then there is a homomorphism G × G → G
such that the restriction G × {1} → G is the identity, and such that the diagonal maps to {1}.
Conversely, if the diagonal is a normal subgroup, then every coset intersects G× {1} and {1} ×G
exactly once, so the quotient G × G/∆G is isomorphic to G in two different ways, and composing
these isomorphisms we obtain the map x 7→ x−1, so G is commutative.

Now we give a second definition of abelian, which is phrased in a way which is closely related
to the concept of a “commutator” of congruences in a general algebraic structure.

Definition 1.9.9. We say that an algebraic structure A satisfies the term condition if for all terms
t ∈ Clon+1(A) and all u, v ∈ A, ai, bi ∈ A for i ≤ n, we have

t(u, a1, ..., an) = t(u, b1, ..., bn) ⇐⇒ t(v, a1, ..., an) = t(v, b1, ..., bn).

Proposition 1.9.10. An algebra A is abelian iff it satisfies the term condition.

Proof. We think of congruences on A2 as subalgebras of A2×2, the set of 2×2 matrices with entries
in A (here elements of A2 are visualized as column vectors, and an element of A2×2 is viewed as a
row vector of column vectors). To understand the smallest congruence on A2 with ∆A contained
in a congruence class, we consider the relation M ≤ A2×2 generated by matrices of the form[

u v
u v

]
,

[
a a
b b

]
,

where the first type of matrix corresponds to the fact that any two elements of ∆A are congruent,
while the second type of matrix corresponds to the fact that every element of A2 is congruent to
itself. Then considering M as a binary relation on A2, the transitive closure of M is a congruence
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Θ on A2, and it is clearly as small as possible given that ∆A is contained in a congruence class of
Θ.

To understand whether ∆A is a congruence class of Θ, it’s enough to check whether ∆A meets any
element of A2\∆A in M. This occurs (that is, A is nonabelian) iff there is some term t ∈ Polm+n(A)
and some ui, vi ∈ A for i ≤ m, ai, bi ∈ A for i ≤ n such that

t(u1, ..., um, a1, ..., an) = t(u1, ..., um, b1, ..., bn)

but
t(v1, ..., vm, a1, ..., an) ̸= t(v1, ..., vm, b1, ..., bn).

So if A is abelian, then it certainly satisfies the term condition (just take m = 1 in the above).
Conversely, if A satisfies the term condition, then we will show that the above situation can’t
happen by induction on m. We just note that by the induction hypothesis, we have

t(u1, ..., um, a1, ..., an) = t(u1, ..., um, b1, ..., bn) =⇒ t(v1, ..., vm−1, um, a1, ..., an) = t(v1, ..., vm−1, um, b1, ..., bn),

and then by the term condition applied to a version of t with variables permuted so that the mth
variable becomes the first, this implies that

t(v1, ..., vm, a1, ..., an) = t(v1, ..., vm, b1, ..., bn).

Proposition 1.9.11. Every quasi-affine algebra satisfies the term condition and is therefore abelian.

Proof. If t is an n+ 1-ary term of a quasi-affine algebra, then we can write t in the form

t(x0, ..., xn) = ϕ0(x0) + · · ·+ ϕn(xn) + c,

where the ϕi are unary and c is a constant. Then for any u ∈ A, ai, bi ∈ A, we have

t(u, a1, ..., an) = t(u, b1, ..., bn) ⇐⇒ ϕ1(a1) + · · ·+ ϕn(an) = ϕ1(b1) + · · ·+ ϕn(bn),

and this is a condition which does not depend on the value of u.

Example 1.9.1. If a group is commutative, then it is affine, so it satisfies the term condition.
Conversely, if a group satisfies the term condition for the binary term t(x, y) = yxy−1, then the
group is commutative, since we have t(1, 1) = t(1, y) ⇐⇒ t(x, 1) = t(x, y), that is, 1 = yy−1 ⇐⇒
x = yxy−1.

Example 1.9.2. A ring is abelian in the sense of universal algebra iff it is a zero ring, that is, a ring
satisfying the identity xy ≈ 0. To see the necessity, we apply the term condition with the term
t(x, y) = xy and the pairs (u, v) = (0, x) and (a, b) = (0, y), to see that 0 ·0 = 0 ·y ⇐⇒ x ·0 = x ·y.
To see the sufficiency, note that every zero ring is affine.

Example 1.9.3. The quasigroup with multiplication table

· 0 1 2 3

0 3 2 0 1
1 2 3 1 0
2 1 0 2 3
3 0 1 3 2
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is abelian, but is neither commutative nor associative. In fact it is affine, with underlying group
equal to the Klein four-group: the multiplication can be written as x · y = x⊕ ϕ(y)⊕ 3, where ϕ is
the transposition (2 3). This example is from [70].

In terms of congruence lattices, the main important feature of an affine algebra A is that
Con(A× A) contains the following five element sublattice.

1A2

kerπ1 Θ kerπ2

0A2

The abstract five element lattice corresponding to this picture is known as the diamond latticeM3.
The lattice M3 has a special role in lattice theory: every modular lattice which isn’t distributive
contains a sublattice which is isomorphic to M3 (see Proposition A.4.2 in the appendix).

Theorem 1.9.12. If A is an abelian Mal’cev algebra, and if Θ is any congruence of A2 which
contains the diagonal ∆A as a congruence class, then the congruences Θ, kerπ1, kerπ2 generate a
five element sublattice of Con(A2) isomorphic toM3.

Proof. In general, we always have kerπ1 ∨ kerπ2 = 1A2 and kerπ1 ∧ kerπ2 = 0A2 . Since every
element of A is congruent under kerπ1 to an element of the diagonal ∆A, we have kerπ1∨Θ = 1A2 ,
and similarly kerπ2 ∨Θ = 1A2 .

All that remains is to check that Θ ∧ kerπ1 = Θ ∧ kerπ2 = 0A2 , and this is where we will use
the assumption that A has a Mal’cev term p. If (a, b) is congruent to (c, d) modulo Θ∧kerπ1, then
we must have a = c. Then[

b
d

]
= p

([
b
b

]
,

[
a
b

]
,

[
a
d

])
≡Θ p

([
b
b

]
,

[
a
b

]
,

[
a
b

])
=

[
b
b

]
∈ ∆A,

so (b, d) ∈ ∆A, that is, b = d. So from (a, b) ≡Θ∧kerπ1 (c, d) we have shown (a, b) = (c, d), that is,
we have Θ ∧ kerπ1 = 0A2 .

The idea now is to study the equivalence class geometry on A2, where points are elements of
A2, lines correspond to congruence classes of congruences, and two lines are considered parallel if
they are both congruence classes of the same congruence. The three congruences kerπ1,Θ, kerπ2
on an abelian Mal’cev algebra give us a particularly nice type of combinatorial geometry.

Definition 1.9.13. An S-3-system is a set of points S together with three parallel classes of lines
Θ1,Θ2,Θ3 on S, which satisfy the following properties:

• for any point p ∈ S and any i ≤ 3, there is exactly one line li of Θi which contains p, and

• if li, lj are lines of Θi,Θj , respectively, with i ̸= j, then their intersection li ∩ lj contains
exactly one point p ∈ S.

Equivalently, an S-3-system is a relational structure (S,Θ1,Θ2,Θ3) such that:
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• each Θi is an equivalence relation on S,

• for i ̸= j we have Θi ∧Θj = 0S , and

• for i ̸= j we have Θi ◦Θj = 1S .

The assumption Θi∧Θj = 0S says that any pair of non-parallel lines intersect in at most one point,
while the assumption Θi ◦Θj = 1S says that any pair of non-parallel lines intersect in at least one
point.

Corollary 1.9.14. If A is an abelian Mal’cev algebra and Θ is any congruence of A2 with the
diagonal as a congruence class, then (A2, kerπ1, kerπ2,Θ) is an S-3-system with a Mal’cev poly-
morphism.

From here on we will classify S-3-systems which have Mal’cev polymorphisms, following Gumm’s
approach [137]. As a preliminary result, we will show that every S-3-system has a coordinate system
which describes the three parallel classes of lines in terms of a loop (recall that a loop is just a
quasigroup which has an identity).

Lemma 1.9.15. If (S,Θ1,Θ2,Θ3) is an S-3-system, and e is any point of S, then there is a loop
L = (L, ·, 1) and a bijection L× L→ S with (1, 1) 7→ e, such that for any x, y, x′, y′ ∈ L we have

(x, y) ≡Θ1 (x′, y′) ⇐⇒ x = x′,

(x, y) ≡Θ2 (x′, y′) ⇐⇒ y = y′,

(x, y) ≡Θ3 (x′, y′) ⇐⇒ x · y = x′ · y′,

where we have implicitly identified S with L× L.

Proof. Take L to be the line l1 through e in the parallel class Θ1, and take 1 = e. Let l2 be the line
through e in the parallel class Θ2. Then there is a bijection between elements of l1 and elements of
l2, taking x ∈ l1 to y ∈ l2 when x, y are on a line l3 in the parallel class Θ3: each x is in a unique
such line l3, and each l3 intersects l2 in a unique y. Using this bijection, we identify the elements
of l2 with L as well.

Now we note that for any point p ∈ S, there is a unique pair of lines l′1 ∈ Θ1, l
′
2 ∈ Θ2 with

l′1 ∩ l′2 = {p}. So we can uniquely identify the point p by describing the point x ∈ l1 ∩ l′2 and the
point y ∈ l2 ∩ l′1 - this gives us the desired bijection between L× L and S.

e xx · y

y
p↔ (x, y)

Finally, to define the multiplication · on L, note that for every x, y ∈ L there is a point p ∈ S
corresponding to (x, y), and this point p is in a unique line l3 ∈ Θ3. We then define x · y to be
the element of L corresponding to the point l3 ∩ l1, or alternatively to the point l3 ∩ l2 (which
corresponds to the same element of L by the way we identified points of l2 with points of l1).
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The key observation is that the Mal’cev operation is completely determined by the geometry of
the configuration.

Lemma 1.9.16. If an S-3-system S = (S,Θ1,Θ2,Θ3) has a Mal’cev polymorphism p, then p is
completely determined by S. In fact, p(x, y, z) can be “geometrically constructed” from the points
x, y, z.

Proof. First consider the special case where x, y lie on a line l1 and y, z lie on a different line l2.
Suppose that l1 ∈ Θ1 and l2 ∈ Θ2. Then p(x, y, z) ≡Θ1 p(y, y, z) = z and p(x, y, z) ≡Θ2 p(x, y, y) =
x, so if we draw the line l′2 ∈ Θ2 through x and the line l′1 ∈ Θ1 through z, we see that p(x, y, z) is
the intersection point l′1 ∩ l′2.

y x

z p(x, y, z)

Next consider the special case where x, y, z lie on a line l1, and suppose l1 ∈ Θ1. Draw the line
l2 ∈ Θ2 through y and the line l3 ∈ Θ3 through x, and let y′ ∈ l2 ∩ l3 be their point of intersection.
Draw the line l′1 through y′ parallel to l1, draw the line l′2 through z parallel to l2, and let z′ ∈ l′1∩ l′2
be their point of intersection. Finally, draw the line l′3 through z′ parallel to the line l3, and let p
be the intersection point of l1 and l′3.

x y z

y′ z′

p

We claim that p = p(x, y, z). To see this, note that x ≡Θ3 y
′, so p(x, y, z) ≡Θ3 p(y

′, y, z), and
p(y′, y, z) = z′ by the first case we considered. Thus p(x, y, z) ≡Θ3 z

′, i.e. p(x, y, z) ∈ l′3, and since
x ≡Θ1 y ≡Θ1 z, we have p(x, y, z) ≡Θ1 p(x, x, x) = x, i.e. p(x, y, z) ∈ l1. Thus p(x, y, z) ∈ l1 ∩ l′3, so
p(x, y, z) = p. (Alternatively, we could have used p(x, y, z) ≡Θ2 p(x, y

′, z′) = p, by the first case.)

x

y

z

x1y1 z1

x2

y2

z2

p(x1, y1, z1)

p(x2, y2, z2) p(x, y, z)

For the general case, we can pick any lines l1 ∈ Θ1, l2 ∈ Θ2, set x1, y1, z1 to be the projections
of x, y, z onto l1 via lines in Θ2 and define x2, y2, z2 ∈ l2 similarly, and note that p(x, y, z) ≡Θ2

p(x1, y1, z1) and p(x, y, z) ≡Θ1 p(x2, y2, z2), and we can construct p(x1, y1, z1), p(x2, y2, z2) using the
second case considered.
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Corollary 1.9.17. If p is a Mal’cev polymorphism of an S-3-system, then p(x, y, z) ≈ p(z, y, x).

Proof. The term p(z, y, x) is also a Mal’cev polymorphism, so by the Lemma it must be identical
to p(x, y, z).

Corollary 1.9.18. If p is a Mal’cev polymorphism of an S-3-system (S,Θ1,Θ2,Θ3), then the graph
Γp of p, considered as a 4-ary relation on S, is primitively positively definable from Θ1,Θ2,Θ3.

Corollary 1.9.18 can also be interpreted as saying that the map p : S3 → S is a homomorphism
of the algebraic structure S whose basic operations consist of all polymorphisms of the relational
structure S. In particular, p “commutes with itself”, that is, the two ways of computing p ∗ p on a
3 × 3 grid of variables (columns first or rows first) agree with each other. We can summarize this
fact by saying that the Mal’cev operation p is central.

Definition 1.9.19. An n-ary term t of an algebraic structure A is called central if the map
t : An → A is a homomorphism.

Now we relate the Mal’cev polymorphism to the coordinate loop L. First we will show that L
is associative.

Lemma 1.9.20. If S = (S,Θ1,Θ2,Θ3) is an S-3-system with a Mal’cev polymorphism p, and if L
is a coordinate loop of S, then L satisfies

(x1 · y1 = x2 · y2) ∧ (x1 · y3 = x2 · y4) ∧ (x3 · y1 = x4 · y2) =⇒ (x3 · y3 = x4 · y4).

In particular, L is associative, that is, L is a group.

Proof. For those who prefer a purely algebraic proof, this follows from[
x3
y3

]
= p

([
x1
y3

]
,

[
x1
y1

]
,

[
x3
y1

])
≡Θ3 p

([
x2
y4

]
,

[
x2
y2

]
,

[
x4
y2

])
=

[
x4
y4

]
.

To see that this implies the associativity of L, let x, y, z be any elements of L, and plug in
(x1, x2, x3, x4) = (1, y, x, x · y), (y1, y2, y3, y4) = (y, 1, y · z, z). Then we get

(1 · y = y · 1) ∧ (1 · (y · z) = y · z) ∧ (x · y = (x · y) · 1) =⇒ (x · (y · z) = (x · y) · z).

For a geometric way to visualize the proof, note that the stated property of L corresponds to
the existence of the dashed line in the following picture.

b

b′

a

a′

c

c′

p(a, b, c)

p(a′, b′, c′)

x1
1

x2
y

x3
x

x4
x · y

y y1

1 y2

y · z y3

z y4
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If we set a = (x1, y3), etc. as in the picture, then the existence of the dashed line follows from
the fact that p preserves the congruence Θ3 and the fact that p(a, b, c) completes the parallelogram
through a, b, c and p(a′, b′, c′) completes the parallelogram through a′, b′, c′.

Lemma 1.9.21. If S = (S,Θ1,Θ2,Θ3) is an S-3-system with a Mal’cev polymorphism p, and if L
is a coordinate group of S, then for x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈ S, p(x, y, z) is given by

p

([
x1
x2

]
,

[
y1
y2

]
,

[
z1
z2

])
=

[
x1 · y−1

1 · z1
x2 · y−1

2 · z2

]
.

Proof. It’s enough to consider the case where x, y, z are along the line l1 ∈ Θ1 with Θ1-coordinate
1. Consider the diagram

(1, x) (1, y) (1, z)

(u, y) (u, z)

(1, p)

which we used to construct p(x, y, z). Then from (1, x) ≡Θ3 (u, y) we have 1 · x = u · y, and from
(1, p) ≡Θ3 (u, z) we have 1 · p = u · z. Solving for u we get u = xy−1, and solving for p we get
p = xy−1z.

Corollary 1.9.22. If S = (S,Θ1,Θ2,Θ3) is an S-3-system with a Mal’cev polymorphism p, and if
L is a coordinate group of S, then L is commutative.

Proof. From p(x, y, z) ≈ p(z, y, x) we get xy−1z ≈ zy−1x in L, and plugging in y = 1 gives xz ≈ zx,
so L is commutative.

Putting all of this together, we have the main result of this section.

Theorem 1.9.23. Any abelian Mal’cev algebra A is affine.

Proof. By Theorem 1.9.12 and its corollary, S = (A2, kerπ1, kerπ2,Θ) is an S-3-system with Mal’cev
polymorphism p, where p is the Mal’cev term of A and Θ is a congruence on A2 with the diagonal
as a congruence class. By Lemma 1.9.15, there is a loop structure L on the underlying set of A
which describes S. By Lemma 1.9.20, Lemma 1.9.21, and its corollary, L is an abelian group and
p is given by p(x, y, z) = x− y + z (writing the abelian group operation additively).

By Corollary 1.9.18, the relation x−y+z = p is primitively positively definable from kerπ1, kerπ2,Θ,
so the relation x+ z = y + p is preserved by all operations of A, that is, A is quasi-affine. Since A
was assumed to be Mal’cev, this means that A is affine.

We have proved the hardest part of the Fundamental Theorem of Abelian Algebras. For the
sake of completeness, we include the rest of it.

Theorem 1.9.24 (Fundamental Theorem of Abelian Algebras). For an algebraic structure A, the
following are equivalent:

(1) A is affine,
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(2) A is abelian and has a Mal’cev polynomial,

(3) A has a central Mal’cev polynomial.

Proof. That (1) implies (2) and (3) is clear. For (2) implies (1) and (3), note that any polynomial of
A preserves every congruence of A2, so the polynomial clone of A is also abelian and we may apply
the previous theorem. For (3) =⇒ (1), we just need to show that any Mal’cev operation p which
commutes with itself comes from an abelian group, since then the fact that p(x, y, z) = x − y + z
is central will imply that A is quasi-affine.

So suppose that p is a Mal’cev operation which commutes with itself, and pick any element to
call 0 in A. We define addition and negation on A by

x+ y := p(x, 0, y), −x := p(0, x, 0).

That 0 is an identity element for + follows from the Mal’cev identities p(x, 0, 0) = p(0, 0, x) = x.
To see that + is associative, we evaluate the expression

p ∗ p

x 0 y
0 0 0
0 0 z


in two ways: evaluating it by rows first, we get (x+ y) + z, and evaluating it by columns first, we
get x+ (y + z).

To see that − computes the inverse, we evaluate the expression

p ∗ p

x 0 0
0 0 x
0 0 0


in two ways: by rows we get p(x, x, 0) = 0, and by columns we get x + (−x). A similar argument
shows that (−x) + x = 0.

For commutativity of +, we evaluate the expression

p ∗ p

y 0 x
y y x
x y y


in two ways: by rows we get p(y + x, x, x) = y + x, and by columns we get p(x, 0, y) = x+ y.

Finally, to express p in terms of the group operations +,−, we evaluate the expression

p ∗ p

 x y z
0 y 0
−y 0 0


in two ways: by rows we get p(p(x, y, z),−y,−y) = p(x, y, z), and by columns we get p(x−y, 0, z) =
x− y + z.

The method of visualizing algebraic arguments via the geometry of equivalence classes was ex-
tended to congruence modular varieties by Gumm in his book “Geometrical methods in congruence
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modular algebras” [76], where he used it to show that any abelian algebra in a congruence modular
variety is affine. This was extended further by Hobby and McKenzie [82], who used tame con-
gruence theory to show that any finite abelian algebra in a Taylor variety is affine (in the infinite
case, Kearnes and Szendrei [104] show that any abelian Taylor algebra is quasi-affine - the example
(R, x+y2 ) shows that an additional assumption is needed for it to be affine). Later we will go over
a simpler proof of the fact that finite abelian Taylor algebras are affine, from [23].

Remark 1.9.1. If we leave the context of Taylor varieties, we can no longer expect abelian algebras
to be affine, since they could fail to have any interesting operations at all. But we can still ask
whether abelian algebras are quasi-affine. The following problem is open.

Problem 1.9.1. Under what conditions are abelian algebras quasi-affine? Is it true that every
idempotent abelian algebra is quasi-affine?

It is known that if we drop idempotence, then some extra condition is needed: Quackenbush
[143] gives an example of an infinite, non-idempotent algebra which is abelian but not quasi-affine.
Quackenbush’s example is a slight modification of the completely free algebra on 8 elements with a
single binary operation, where the modification is that x1 ·x2 = x5 ·x6, x3 ·x4 = x7 ·x8, x1 ·x4 = x5 ·x8,
but x3 · x2 ̸= x7 · x6. Another example with just five elements is given in Example B.3.2.

Kearnes [103] has shown that any simple idempotent abelian algebra is quasi-affine - in fact, he
shows that any simple idempotent algebra which has a skew congruence (that is, a congruence on
some power An which is not the kernel of some projection) either has a strongly absorbing element
(that is, an element a such that every term t which depends on its first variable has t(a, ...) = a)
or is a subalgebra of a simple reduct of a module.

There are a few other contexts in which it is known that abelian implies quasi-affine. In [101],
Kearnes shows that any abelian algebra with a central binary polynomial which is cancellative is
quasi-affine, and in [154] this is extended to the result that any abelian algebra with a commutative
cancellative polynomial is quasi-affine. In [91], it is shown that abelian quandles are quasi-affine.

1.9.1 Commutators

In this subsection we define an extension of the commutator from group theory to a commutator on
congruences of general algebraic structures. The purpose of the commutator is to detect situations
where the operations of an algebraic structure behave linearly. The theory of the commutator works
best in congruence modular varieties, but it still has some use in general Taylor varieties, although
slight differences in the technical details of the definition become important outside the world of
congruence modular varieties. The commutator we will be discussing is called the term condition
commutator.

Definition 1.9.25. If α, β, δ ∈ Con(A), we say that α centralizes β modulo δ, written C(α, β; δ)
(or C(α, β) if δ = 0A), if for every n + 1-ary term t ∈ Clon+1(A), for any (u, v) ∈ α, and for any
(a1, b1), ..., (an, bn) ∈ β, we have

t(u, a1, ..., an) ≡δ t(u, b1, ..., bn) ⇐⇒ t(v, a1, ..., an) ≡δ t(v, b1, ..., bn).

The smallest δ which satisfies C(α, β; δ) is called the commutator of α, β, and is written as [α, β].
If θ ≤ α, β, then we also define the relative commutator [α, β]θ to be the least δ ≥ θ which satisfies
C(α, β; δ).
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As with the criterion for abelianness, the term condition implies a seemingly stronger version
where more variables change at once.

Proposition 1.9.26. If α centralizes β modulo δ, then for every m+ n-ary term t ∈ Clom+n(A),
for any (u1, v1), ..., (um, vm) ∈ α, and for any (a1, b1), ..., (an, bn) ∈ β, we have

t(u1, ..., um, a1, ..., an) ≡δ t(u1, ..., um, b1, ..., bn) ⇐⇒ t(v1, ...vm, a1, ..., an) ≡δ t(v1, ..., vm, b1, ..., bn).

Before we go on, let’s check that this matches the usual commutator from group theory.

Proposition 1.9.27. If M,N are normal subgroups of a group G, [M,N] is the (normal) subgroup
generated by commutators [m,n] = mnm−1n−1 for m ∈ M, n ∈ N, and θM, θN, θ[M,N] are the
associated congruences, then θ[M,N] = [θM, θN].

Proof. We will show that θM centralizes θN iff every element of M commutes with every element of
N - this will finish the proof, since [M,N] is the smallest normal subgroup K of G such that every
element of M/K commutes with every element of N/K in G/K.

First suppose that θM centralizes θN. Let t be the binary term t(x, y) = yxy−1, then for any
m ∈M, n ∈ N, by the term condition applied to (1,m) ∈ θM, (1, n) ∈ θN, we have

1 = nn−1 ⇐⇒ m = nmn−1,

so m and n commute.
Now suppose that every element of M commutes with every element of N, and consider an

arbitrary n+ 1-ary term t ∈ Clon+1(G) and any (u, v) ∈ θM, (a1, b1), ..., (an, bn) ∈ θN with

t(u, a1, ..., an) = t(u, b1, ..., bn).

Thinking of t(ux, a1y1, ...., anyn) as a function of x, y1, ..., yn with parameters u, a1, ..., an, we may
rearrange it into the form

t(ux, a1y1, ...., anyn) = t′(x, y1, ..., yn)t(u, a1, ..., an)

for some t′ in the clone generated by the group operations together with the unary conjugation
operations ϕc : x 7→ cxc−1, so we may rewrite our assumption as

t′(1, 1, ..., 1) = t′(1, a−1
1 b1, ..., a

−1
n bn).

To show that
t(v, a1, ..., an) = t(v, b1, ..., bn),

we just need to show that

t′(u−1v, 1, ..., 1) = t′(u−1v, a−1
1 b1, ..., a

−1
n bn),

which follows from the assumed equality together with the fact that for each c, d ∈ G and each i,
ϕc(u

−1v) ∈M commutes with ϕd(a
−1
i bi) ∈ N.

Example 1.9.4. In the case of rings, the term condition commutator applied to a pair of ideals I, J
gives [I, J ] = IJ + JI. Note that this is a bit different from what we might have expected (it has
nothing to do with the Lie bracket), but it makes more sense when we remember that we only
consider a ring to be abelian if it is a zero ring.
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Example 1.9.5. In a majority algebra, the commutator is given by [α, β] = α ∧ β. To see this,
suppose (a, b) ∈ α ∧ β, and apply the term condition to the majority operation to see that

m( a , a, a) = m( a , a, b) =⇒ m( b , a, a) [α, β] m( b , a, b),

so (a, b) ∈ [α, β]. A similar argument shows that the commutator is given by intersection in any
variety with a near-unanimity term.

Example 1.9.6. In a semilattice, the commutator is given by [α, β] = α∧β. Let s be the semilattice
operation, and let s3 be the term given by s3(x, y, z) = s(x, s(y, z)). Then for (a, b) ∈ α ∧ β, we
have

s3( a , a, b) = s3( a , b, b) =⇒ s3( b , a, b) [α, β] s3( b , b, b),

so s(a, b) [α, β] b, and similarly s(a, b) [α, β] a, so (a, b) ∈ [α, β].

Sometimes it is helpful to visualize the term condition via 2× 2 matrices.

Definition 1.9.28. For α, β ∈ Con(A), we define the algebra M(α, β) ≤ A2×2 to be the subalgebra
of 2× 2 matrices which is generated by the matrices of the form[

u u
v v

]
with (u, v) ∈ α,

[
a b
a b

]
with (a, b) ∈ β.

Proposition 1.9.29. If α, β, δ ∈ Con(A), then α centralizes β modulo δ iff for all[
a b
c d

]
∈M(α, β)

we have
a ≡δ b ⇐⇒ c ≡δ d.

The usual picture which is drawn to represent the term condition for C(α, β; δ) is this:

t(u, a) t(u, b)

t(v, a) t(v, b)

β
α

β

α

δ

δ

where the positioning of the four corners matches with the way we have laid out the 2× 2 matrices
in M(α, β). A mnemonic for remembering where the δ edges go is that in the term condition
C(α, β; δ), “δ is next to β”.

We now list a few elementary properties of the commutator which hold in general, which are
given as exercises in Hobby and McKenzie’s book [82].

Proposition 1.9.30. For α, β, δ ∈ Con(A), we have

(a) if C(α, β; δi) for i ∈ I, then C(α, β;
∧
i∈I δi), so [α, β] and [α, β]θ are well-defined,

(b) if (α ∨ (β ∧ δ)) ∧ β ≤ δ then C(α, β; δ) holds, so [α, β] ≤ α ∧ β,
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(c) if α′ ≤ α, β′ ≤ β, then C(α, β; δ) =⇒ C(α′, β′; δ), so [α′, β′] ≤ [α, β],

(d) for any γ we have C(α, β; δ) =⇒ C(α ∧ γ, β; δ ∧ γ),

(e) if C(αi, β; δ) holds for all i ∈ I then C(
∨
i∈I αi, β; δ) holds,

(f) if θ ≤ α, β, δ then C(α, β; δ) holds iff C(α/θ, β/θ; δ/θ) holds in A/θ, so [α/θ, β/θ] = [α, β]θ/θ,

(g) if B ≤ A then C(α, β; δ) =⇒ C(α|B, β|B; δ|B), so [α|B, β|B] ≤ [α, β]|B,

(h) if [α, α] = 0A, then any congruence class of α which is also a subalgebra of A is an abelian
subalgebra.

Proof. Parts (a), (c), (d), (f), (g), (h) follow immediately from the definitions. For (b), note

that for any

[
a b
c d

]
∈ M(α, β) with a ≡δ b, we have c ≡α a ≡β∧δ b ≡α d and c ≡β d, so

(c, d) ∈ (α ◦ (β ∧ δ) ◦ α) ∧ β, which is a subset of δ by assumption.
For (e), we string together several instances of the term condition: if (u, v) ∈

∨
i αi, (ai, bi) ∈ β,

and t(u, a) ≡δ t(u, b), then if we let u = u0, u1, ..., un = v be a sequence of elements of A with
(ui, ui+1) ∈ αji for some ji ∈ I, then by the term condition C(αji , β; δ) we have

t(ui, a) ≡δ t(ui, b) =⇒ t(ui+1, a) ≡δ t(ui+1, b),

so by inducting on i we get t(v, a) ≡δ t(v, b).

Corollary 1.9.31. If an idempotent algebra A has any congruences α, β ∈ Con(A) with [α, β] ̸=
α ∧ β, then some subalgebra of some quotient of A is a nontrivial abelian algebra.

Proof. Let δ = α ∧ β, then from δ ≤ α, β we have [δ, δ] ≤ [α, β] < α ∧ β = δ. Thus δ′ = δ/[δ, δ] is
a nontrivial congruence on A/[δ, δ] with [δ′, δ′] = [δ, δ]/[δ, δ] = 0A/[δ,δ], so there is some nontrivial
congruence class B of δ′ and B is an abelian subalgebra of A/[δ, δ].

Proposition 1.9.32. If [α, β] = α ∧ β for all α, β ∈ Con(A), then Con(A) satisfies the meet-
semidistributive law:

α ∧ β = α ∧ γ =⇒ α ∧ (β ∨ γ) = α ∧ β.

Proof. If α, β, γ ∈ Con(A) satisfy α ∧ β = α ∧ γ, then C(β, α;α ∧ β) and C(γ, α;α ∧ β) hold, so
C(β ∨ γ, α;α ∧ β) holds, so α ∧ (β ∨ γ) = [β ∨ γ, α] ≤ α ∧ β.

Definition 1.9.33. An algebra A is congruence meet-semidistributive, written SD(∧) for short, if
for all α, β, γ ∈ Con(A) with α ∧ β = α ∧ γ, we have α ∧ (β ∨ γ) = α ∧ β. A variety V is SD(∧) if
every algebra A ∈ V is SD(∧).

The next corollary is the key to classifying CSPs which do not have the “ability to count” - as
we will see later, a finite idempotent algebra generates an SD(∧) variety if and only if the associated
CSP has bounded width.

Corollary 1.9.34. If an idempotent variety does not contain any nontrivial abelian algebras, then
it is congruence meet-semidistributive. Conversely, a congruence meet-semidistributive variety does
not contain any nontrivial affine algebra.
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Proof. For the converse statement, note that if A is affine, then Con(A2) contains a copy of the
diamond lattice M3, and M3 doesn’t satisfy the meet-semidistributive law.

Now we consider some definitions which are useful in the case where the commutator is not
trivial (i.e., not given by [α, β] = α ∧ β).

Definition 1.9.35. Suppose that α ≤ β ∈ Con(A). We say that β is abelian over α if the term
condition C(β, β;α) holds. We say that β is solvable over α if there is a chain of congruences
α = α0 ≤ · · · ≤ αn = β such that αi+1 is abelian over αi for each i.

A congruence α is called abelian if it is abelian over 0A (equivalently [α, α] = 0A), and similarly
α is called solvable if α is solvable over 0A. An algebra A is called solvable if 1A is solvable.

The center of an algebra A is defined to be the largest ζ such that C(ζ, 1A) holds (equivalently,
the largest ζ with [ζ, 1A] = 0A). For β a congruence, we define the centralizer of β, written (0 : β),
to be the largest congruence α such that [α, β] = 0, and more generally for any δ we define the
relative centralizer (δ : β) to be the largest α such that C(α, β; δ) holds.

Proposition 1.9.36. For congruences on A, we have the following:

(a) for any β, δ there exists a largest α such that C(α, β; δ) holds, so (δ : β) (and, in particular,
the center of A) is well-defined,

(b) if γ is solvable over β and β is solvable over α, then γ is solvable over α,

(c) if β is solvable (abelian) over α, then β ∧ γ is solvable (abelian) over α ∧ γ for any γ,

(d) if θ ≤ α ≤ β, then β is solvable (abelian) over α iff β/θ is solvable (abelian) over α/θ,

(e) A/θ is solvable (abelian) iff 1A is solvable (abelian) over θ.

Proof. Part (a) follows from Proposition 1.9.30(e), part (b) is obvious, part(c) follows from Propo-
sition 1.9.30(d), part (d) follows from Proposition 1.9.30(f), and part (e) is part (d) specialized to
the case β = 1A, α = θ.

If our algebra is finite, then solvability has a surprisingly simple alternative characterization
based on tame congruence theory, which is described in Appendix B.6. To take the general theory
further, we need to make an additional assumption on our variety, such as congruence modularity.
The interested reader can find the (surprisingly deep) theory of commutators in congruence modular
varieties in Appendix A.

A weaker assumption which is still good enough to prove most of the basic properties of com-
mutators is the existence of a ternary term known as a difference term, generalizing the Gumm
difference term found in congruence modular varieties, which acts like a Mal’cev term on abelian
algebras.

Definition 1.9.37. A ternary term p is called a difference term for a variety, if it satisfies the
identity p(y, y, x) ≈ x, and for every (x, y) ∈ θ for θ a congruence, we always have p(x, y, y) ≡[θ,θ] x.

Example 1.9.7. Any SD(∧) variety has a difference term: just take p(x, y, z) = z. That this works
relies on the fact that [α, β] = α∧β in SD(∧) varieties, which we haven’t proved - this can be found
in [104].
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One property of a difference term is that it forces several alternative commutators to match
with the term condition commutator, and one of these commutators is clearly symmetric.

Definition 1.9.38. For any n ≥ 1, we define the n-cycle commutator [α, β]n to be the least
congruence δ such that for any cycle of n matrices[

a1 b1
c1 d1

]
,

[
a2 b2
c2 d2

]
, ...,

[
an bn
cn dn

]
∈M(α, β)

such that bi ≡δ ai+1 for all i < n, bn ≡δ a1, and di ≡δ ci+1 for all i < n, we have additionally that
dn ≡δ c1.

If A is affine, then it is easy to check that [1A, 1A]n = 0A for every n. Note that for n = 1, we
have [α, β]1 = [α, β]. Additionally, since we can take the nth matrix in the cycle to have a pair of
equal columns, we have [α, β]i ≤ [α, β]i+1 for all i.

Quackenbush’s famous example of an abelian algebra which is not quasi-affine from [143] is an
example of an algebra where [1A, 1A]1 = 0A but [1A, 1A]2 ̸= 0A.

For n = 2, the 2-cycle commutator is clearly symmetric: [α, β]2 = [β, α]2. Since it is defined
via two matrices in M(α, β), and since each matrix comes from some term, the commutator [α, β]2
is also called the two term commutator. The two term condition is illustrated in the following
diagram.

t(u, a) t(u, b)

t(v, a)
t(v, b)

s(x, c)
s(x, d)

s(y, c) s(y, d)

β

α

β

α

δ δ

δ δ

If we have a difference term, then all of the n-cycle commutators turn out to be equal.

Theorem 1.9.39 (Lipparini [121]). In a variety with a difference term, we have [α, β]n = [α, β]
for all n. In particular, we have [α, β] = [β, α].

Proof. Suppose that p is a difference term. We will show that [α, β] satisfies the n-cycle term

condition by induction on n. Suppose that matrices

[
ai bi
ci di

]
∈ M(α, β) for i ≤ n are as in the

definition of the n-cycle condition for δ = [α, β]. Applying the difference term, we have

p

([
ai bi
ci di

]
,

[
b1 b1
d1 d1

]
,

[
a1 a1
c1 c1

])
=

[
p(ai, b1, a1) p(bi, b1, a1)
p(ci, d1, c1) p(di, d1, c1)

]
∈M(α, β)

for 2 ≤ i ≤ n− 1, and

p

([
an bn
cn dn

]
,

[
b1 a1
d1 c1

]
,

[
a1 a1
c1 c1

])
=

[
p(an, b1, a1) p(bn, a1, a1)
p(cn, d1, c1) p(dn, c1, c1)

]
∈M(α, β).
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The reader can check that these form a system of matrices as in the definition of the n − 1-cycle
condition for δ = [α, β], so by the inductive hypothesis we have

p(c2, d1, c1) ≡[α,β] p(dn, c1, c1).

From c2 ≡[α,β] d1 and the fact that p is a difference term, the left hand side is congruenct to c1
modulo [α, β]. From the fact that c1 ≡β dn and (c1, dn) ∈ α ◦ [α, β] ◦ α = α, we have (c1, dn) ∈
α ∧ β, so from the fact that p is a difference term we have p(dn, c1, c1) ≡[α∧β,α∧β] dn, and from
[α ∧ β, α ∧ β] ≤ [α, β] we get c1 ≡[α,β] dn.

In fact, substantially more is true in varieties with a difference term. Kearnes [102] shows that
almost all properties of the commutator which hold in congruence modular varieties generalize to
varieties with a difference term, other than [α1 ∨ α2, β] = [α1, β] ∨ [α2, β]. This property must be
weakened, but it is at least true that if [α1, β] = [α2, β] then [α1 ∨ α2, β] = [α1, β] in varieties with
difference terms.

If we go beyond varieties with a difference term, the commutator may no longer be symmetric.
For instance, in the algebra A = ({0, 1, 2, ∗}, ·) with · given by

· 0 1 2 ∗
0 0 2 1 ∗
1 2 1 0 ∗
2 1 0 2 ∗
∗ ∗ ∗ ∗ ∗

,

if we let θ ∈ Con(A) be the congruence corresponding to the partition {0, 1, 2}, {∗}, then we have

[θ, 1A] = 0A, [1A, θ] = θ.

The simplest way to fix this asymmetry is to make the following definition from [104].

Definition 1.9.40. If α, β ∈ Con(A), then we define their symmetric commutator, written [α, β]s,
to be the least congruence δ such that both C(α, β; δ) and C(β, α; δ) hold.

To see that [α, β]s is well-defined, we use Proposition 1.9.30(a) to see that the intersection of
any collection of congruences that simultaneously satisfy C(α, β; δ) and C(β, α; δ) will also sat-
isfy this pair of term conditions. Since the two-term commutator satisfies C(α, β; [α, β]2) and
C(β, α; [α, β]2), we always have [α, β]s ≤ [α, β]2.

We can also go in the other direction, and define a more general commutator by trying to
directly think about what an algebra needs to satisfy to be quasi-affine. This leads to the following
definition.

Definition 1.9.41. If α, β ∈ Con(A), then we define their linear commutator, written [α, β]ℓ, as
follows. Define a group G with the following presentation: the generators of G are the elements of
A, and the relations are given by[

a b
c d

]
∈M(α, β) =⇒ a+ d = b+ c in G.

Then we define the equivalence relation [α, β]ℓ to be the kernel of the natural map A→ G.
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Proposition 1.9.42. The linear commutator [α, β]ℓ always defines a congruence of A, we have
[α, β]n ≤ [α, β]ℓ for each n and [α, β]ℓ ≤ α ∧ β, and [1A, 1A]ℓ = 0A iff A is quasi-affine.

Proof. The linear commutator can be defined combinatorially as follows. For each matrix M =[
a b
c d

]
∈M(α, β), call a, d the “positive” corners of the matrix M , and b, c the “negative” corners of

M . Then (x, y) ∈ [α, β]ℓ iff there is some collection of matrices Mi ∈M(α, β) and a way to pair off
values in the positive corners of the matrices Mi to equal values in negative corners of the matrices,
so that the only unpaired values are x and y, with one occuring in a positive corner of some matrix
and the other occuring in a negative corner of some matrix. This defines the linear commutator
[α, β]ℓ as the union of a directed limit of relations defined by primitive positive formulas in M(α, β),
so the equivalence relation [α, β]ℓ is compatible with the operations of A.

The inequality [α, β]n ≤ [α, β]ℓ follows from the combinatorial description of [α, β]n above (the
n-cycle condition is a special case of the general setup of matching corners of matrices together). To
prove that [α, β]ℓ ≤ α ∧ β, we just need to check that [α, β]ℓ ≤ α by symmetry, and this follows by
chasing equalities and congruences through the matrices in the combinatorial description of [α, β]ℓ.

If A is quasi-affine, then it is easy to see that [1A, 1A]ℓ = 0A. Finally, if [1A, 1A]ℓ = 0A, then
A embeds injectively into the group G from the definition of [1A, 1A]ℓ, and we can generalize the
combinatorial description of [α, β]ℓ to get a combinatorial description of the restriction of the 4-ary
relation a+ d = b+ c to A, so this 4-ary relation is preserved by the operations of A.

We have the following relationship between the various commutators which have been defined
so far:

[α, β] ≤ [α, β]s ≤ [α, β]2 ≤ [α, β]3 ≤ · · · ≤ [α, β]ℓ ≤ α ∧ β,

and among these, the commutators [α, β]s, [α, β]2, and [α, β]ℓ are symmetric by construction. In
[104], Kearnes and Szendrei prove that in every Taylor variety we always have [α, β]s = [α, β]ℓ,
so almost all of the commutators collapse into a single concept in Taylor varieties (and they all
collapse in varieties with difference terms). They also give an alternative characterization of the
linear commutator by showing that it is equivalent to the commutator obtained by first “freely”
extending your variety to make the basic operations multinear inside some larger abelian group, and
then computing commutators in the multilinear setting, which has a Mal’cev operation x− y + z.
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Chapter 2

Compact Representations and
algebras with Few Subpowers

2.1 Generalized Majority-Minority operations (motivating Few
Subpowers)

The Few Subpowers algorithm was heavily influenced by Dalmau’s paper on generalized majority-
minority operations [57]. Dalmau’s motivation was that in both near-unanimity algebras and
Mal’cev algebras, every subalgebra of An has a nice generating set: in the Mal’cev case, we can use
a compact representation, while in the near-unanimity case, if the arity is l+ 1, we can use any set
of elements which has the same projection onto every subset of the coordinates of size at most l.
The goal was to unify these two cases.

Definition 2.1.1. An operation φ is a generalized majority-minority operation (abbreviated as
gmm operation) if for each pair a, b we either have

φ(x, y, ..., y) = φ(y, x, ..., y) = · · · = φ(y, y, ..., x) = y for all x, y ∈ {a, b},

or
φ(x, y, ..., y) = φ(y, y, ..., x) = x for all x, y ∈ {a, b}.

In the second case we say that a, b is a minority pair for φ.

Definition 2.1.2. If R ⊆ A1 × · · · × An, then we define the signature of R, written Sig(R), to be
the set of triples (i, a, b) with i ∈ {1, ..., n}, a, b a minority pair in Ai, such that there are some
ta, tb ∈ R with π1,...,i−1(ta) = π1,...,i−1(tb) and πi(ta) = a, πi(tb) = b. In this case we say that the
pair ta, tb witnesses the triple (i, a, b).

Theorem 2.1.3. If R ≤ A1 × · · · × An is preserved by an l + 1-ary gmm operation φ and S ⊆ R
has Sig(S) = Sig(R) and πI(S) = πI(R) for all I ⊆ {1, ..., n} with |I| ≤ l, then R is generated by S
(using only φ).

Proof. We prove this by induction on the arity n of R. Suppose that a = (a1, ..., an) ∈ R, by the
induction hypothesis there is some bn with (a1, ..., an−1, bn) in the subalgebra generated by S. We
have two cases, based on whether an, bn is a majority pair or a minority pair.
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Case 1: an, bn is a majority pair. In this case we show that for every I ⊆ {1, ..., n}, we have
πIa in the subalgebra generated by πIS, by induction on |I|. We already know it for |I| ≤ l and for
n ̸∈ I. Suppose I = {i1, ..., im} with i1 < · · · < im = n and m ≥ l+ 1. By the inductive hypothesis,
there are elements bi1 , ... such that

(bi1 , ai2 , ..., an), (ai1 , bi2 , ..., an), ..., (ai1 , ai2 , ..., bn) ∈ Sgφ(S).

If some bi = ai then we are done. If some pair ai, bi is minority then - assuming WLOG that ai1 , bi1
is minority - we have

φ



bi1 · · · bi1 ai1
ai2 · · · ai2 ai2
...

. . .
...

...
an · · · an bn


 =


ai1
ai2
...
an

 ∈ Sgφ(πIS),

where all but the last column of the displayed matrix are equal. Otherwise, if all pairs ai, bi are
majority, then we have

φ



bi1 ai1 · · · ai1
ai2 bi2 · · · ai2
...

...
. . .

...
an an · · · bn


 =


ai1
ai2
...
an

 ∈ Sgφ(πIS),

where all of the columns of the displayed matrix are distinct, which is possible because m ≥ l + 1.
Case 2: an, bn is a minority pair. In this case, by the assumption Sig(S) = Sig(R), there are

c, d ∈ S witnessing the triple (n, an, bn). Set b = (a1, ..., an−1, bn), then we claim that

a = φ(b, b, ..., b, φ(b, d, ..., d, c)).

First consider the last coordinate: since an, bn is a minority pair and cn = an, dn = bn, we have

φ(bn, ..., bn, φ(bn, dn, ..., dn, cn)) = φ(bn, ..., bn, φ(bn, ..., bn, an)) = an,

so the last coordinates agree. For i < n, we have ai = bi and ci = di, so

φ(bi, ..., bi, φ(bi, di, ..., di, ci)) = φ(ai, ..., ai, φ(ai, ci, ..., ci, ci)) = ai,

where the last equality holds regardless of whether ai, ci is a majority pair or a minority pair.

Definition 2.1.4. A subset S ⊆ R is called a compact representation of a relation R preserved
by an l + 1-ary gmm operation if Sig(S) = Sig(R), πI(S) = πI(R) for every I with |I| ≤ l, and
|S| ≤ 2|Sig(R)|+

∑
|I|≤l |πI(R)|.

In order to manipulate compact representations of relations, we again define subroutines Nonempty,
Fix-values, Next-beta, and Intersect:

• Nonempty(R, i1, ..., ik, S) takes R a compact representation of R ≤ A1 × · · · × An, S ≤ Ai1 ×
· · · × Aik , computes the subalgebra generated by πi1,...,ik(R) under φ, and if this intersects
with S, then it returns an element of R which maps to an element of the intersection,
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• Fix-values(R, a1, ..., am) takes R a compact representation of R ≤ A1×· · ·×An and returns
a compact representation of the relation x ∈ R ∧ (x1 = a1) ∧ · · · ∧ (xm = am) by inductively
fixing one coordinate xi to ai at a time, and for each new coordinate that is fixed we compute
a new compact representation by computing projections onto at most l coordinates using
Nonempty and computing witnesses for triples in the signature using the proof of Case 2 of
Theorem 2.1.3,

• Next-beta(R, i1, ..., ik,S) takes R a compact representation of R ≤ A1 × · · · × An, S ≤
Ai1 × · · · × Aik , and returns a compact representation of R ∩ S by computing all projections
onto at most l coordinates using Nonempty and computing witnesses for triples in the signature
using Fix-values and Nonempty, and

• Intersect(R, i1, ..., ik, S) takes R a compact representation of R ≤ A1×· · ·×An, S a compact
representation of S ≤ Ai1 × · · · × Aik , and computes a compact representation for R ∩ S by
first making a compact representation of R × S and then repeatedly calling Next-beta to
intersect this with the equality relation on the pair of coordinates ij , n+ j.

The only subroutine which has changed substantially from the Mal’cev case is the Fix-values

subroutine.

Algorithm 8 Fix-values(R, a1, ..., am), φ an l+ 1-ary gmm term, R a compact representation of
R ≤ A1 × · · · × An.
1: Set R0 ← R.
2: for j from 1 to m do
3: Let Rj ← ∅.
4: for all I = {i1, ...} ⊆ {1, ..., n} with |I| ≤ l and (bi1 , ...) ∈ πI(Rj−1) do
5: Set Rj ← Rj ∪ Nonempty(Rj−1, j, i1, ..., i|I|, {(aj , bi1 , ..., bi|I|)}).
6: for all (i, a, b) ∈ Sig(Rj−1) with i > j and a, b a minority pair do
7: Let ta, tb ∈ Rj−1 witness the triple (i, a, b).
8: Let t← Nonempty(Rj−1, j, i, {(aj , a)}).
9: if t ̸= ∅ then

10: Set Rj ← Rj ∪ {t, φ(t, t, ..., t, φ(t, ta, ..., ta, tb))}.
11: return Rm.

Reviewing what we’ve done, we have a procedure for converting proofs that compact represen-
tations generate relations into algorithms for computing compact representations of intersections
for relations. The most critical step of the algorithm is the step of the Fix-values subroutine in
which we convert a pair that witnesses a triple (i, a, b) in Rj−1 to a pair that witnesses a triple
(i, a, b) in Rj .

Before we go on, we can use this algorithm to settle the dichotomy conjecture for constraint
languages which contain “swap” relations {(a, b), (b, a)} for every pair of elements a, b.

Theorem 2.1.5. Suppose that A = (A,Γ) is a relational structure where Γ is a set of relations
which contains the swap relation Sab = {(a, b), (b, a)} for every pair a, b ∈ A. Then either CSP(Γ)
is NP-complete, or A has a ternary generalized majority-minority polymorphism. In the second
case, CSP(Γ) can be solved in polynomial time by Dalmau’s algorithm.
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Proof. Note that Γ is automatically core, since any unary polymorphism of Sab must send a, b
to distinct values in {a, b}. Thus if CSP(Γ) is not NP-complete, then it must have a Taylor
polymorphism t.

First we will show that this implies that for all a, b ∈ A there is a ternary polymorphism fab
such that the restriction of fab to {a, b} is either the majority operation or the minority operation.
Since π1(Sab) = {a, b}, the set {a, b} is closed under t. Let t′ ∈ Clo(t) have minimal arity such that
the restriction of t′ to {a, b} is not a projection. An elementary combinatorial argument known
as Świerczkowski’s Lemma [155] shows that if t′ has arity at least four, then there is some way of
identifying two variables of t′ to get a term t′′ of smaller arity such that the restriction of t′′ to
{a, b} is also not a projection. Thus the arity of t′ is at most three. The arity of t′ can’t be one or
two since t′ is idempotent and preserves Sab.

Since every way of identifying two variables of t′|{a,b} gives a projection, up to reordering the
variables of t′ there are just three cases. In two of these cases, t′ already restricts to a majority
or minority operation on {a, b}. In the remaining case, after reordering the variables we may
assume that t′(x, y, y) = t′(y, y, x) = t′(x, y, x) = x for x, y ∈ {a, b}, and taking fab(x, y, z) =
t′(x, t′(x, y, z), z) gives a function fab which restricts to a majority operation on {a, b}.

Now we choose any ordering of the collection of pairs {a, b}, with the ith pair given by {ai, bi}.
We inductively define functions fi ∈ Clo(t) by f0 = π1, and for i ≥ 0 we set

fi+1(x, y, z) = faibi(fi(x, y, z), fi(y, z, x), fi(z, x, y)).

We claim that the final function fn (with n =
(|A|

2

)
) is a generalized majority-minority polymor-

phism of A. Since each fab is idempotent, it’s enough to check that the restriction of fi+1 to {ai, bi}
is either a pure majority or pure minority function.

From the fact that fi preserves the unary relation π1(Saibi) = {ai, bi} and the fact that the
restriction of faibi to {ai, bi} is invariant under cyclically permuting its input variables, we see that
fi+1 also restricts to a cyclic term on {ai, bi}. Since fi+1 preserves Sab, it must therefore either
restrict to the pure majority or pure minority function on {ai, bi}.

There are two examples of generalized majority-minority algebras on a three element domain
which do not come from majority or Mal’cev operations, and correspond to maximal tractable
constraint languages.

Example 2.1.1. The first example is A1 = ({a, b, c}, φ1), where φ1 is a ternary gmm such that
{a, x} is a pure minority subalgebra of A1 for all x, {b, c} is a majority subalgebra of A1, and the
equivalence relation corresponding to the partition {a}, {b, c} is a congruence α on A1 such that
the quotient A1/α is a pure minority algebra. Explicitly, φ1 is the symmetric idempotent function
of its inputs which is given by

φ1(a, a, x) = x, φ1(a, x, x) = a, φ1(b, b, c) = b, φ1(b, c, c) = c, φ1(a, b, c) = a.

The corresponding relational clone is generated by the partial order {(a, a), (b, b), (b, c), (c, c)}, the
order two automorphism {(a, a), (b, c), (c, b)}, and the affine ternary relation {(a, a, b), (a, b, a), (b, a, a), (b, b, b)}.
Example 2.1.2. The second example is A2 = ({a, b, c}, φ2), where φ2 is a ternary gmm such that
{a, x} is a majority subalgebra of A2 for all x, {b, c} is a pure minority subalgebra of A2, the
equivalence relation corresponding to the partition {a}, {b, c} is a congruence α on A2 such that
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the quotient A2/α is a majority algebra, and the permutation (b c) is an automorphism of A2.
Explicitly, φ2 is the cyclically symmetric idempotent function of its inputs which is given by

φ2(a, a, x) = a, φ2(a, x, x) = x, φ2(b, b, c) = c, φ2(b, c, c) = b, φ2(a, b, c) = b, φ2(a, c, b) = c.

The corresponding relational clone is generated by the binary relations {(a, b), (b, a)}, {(a, a), (a, b), (b, b)},
{(a, a), (b, c), (c, b)} and the ternary relation {(a, a, a), (b, b, b), (b, c, c), (c, b, c), (c, c, b)}.

The reader might notice that generalized majority-minority operations are not defined in terms
of satisfying a system of identities. So we should be able to immediately generalize Dalmau’s result
to the variety of algebras generated by algebras with a gmm operation, by finding the identities
which are satisfied by a gmm operation that were critical to the correctness of the algorithm. How
did we apply the operation φ, throughout the algorithm Fix-values and the proof of Theorem
2.1.3?

The first thing to note is that we often set almost all of the entries of φ to the same value. So
define auxiliary binary and ternary terms p, d by

d(x, y) = φ(x, y, ..., y, y),

p(x, y, z) = d(φ(x, y, ..., y, z), z).

The important property of d is that we have d(a, b) = a when a, b are a minority pair. For p, the
important property is that when a, b are a minority pair, then we have p(a, b, b) = a, and in every
case we always have

p(y, y, z) = z.

We can express the fact that p(a, b, b) = a when a, b are a minority pair by the equation

p(x, y, y) = d(x, y),

which also holds for majority pairs.
Where did we actually use the function φ? It is only called directly in the subroutine Nonempty.

It is crucial that it is actually used there, because the full function φ was necessary for Case 1 of
Theorem 2.1.3. The proof of that case does not immediately appear to generalize, as there was
substantial casework within it, based on whether there was a minority pair ai, bi or not. However,
clever use of the function d(x, y) can mimic the casework that appeared there. For each ai, bi, the
expression d(ai, bi) has the nice property that ai, d(ai, bi) automatically forms a majority pair (or
an equal pair, which we can think of as a degenerate case of a majority pair). So if we define a
function s(x0, x1, ..., xl) by

s(x0, x1, ..., xl) = φ(x0, d(x0, x1), ..., d(x0, xl)),

then we find that

s(y, x, x, ..., x) = φ(y, d(y, x), ..., d(y, x)) = d(y, x),

s(x, y, x, ..., x) = φ(x, d(x, y), x, ..., x) = x,

s(x, x, y, ..., x) = φ(x, x, d(x, y), ..., x) = x,

...

s(x, x, x, ..., y) = φ(x, x, x, ..., d(x, y)) = x.
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This function s lets us generalize Case 1 of Theorem 2.1.3, the case where d(an, bn) = bn, while
the function p was necessary to generalize Case 2. To unify them, we should slightly modify our
construction of s to create the following term e:

e(u, v, x1, ..., xl) = φ(v, d(u, x1), ..., d(u, xl−1), d(x1, xl)).

Then s is related to e by

s(x0, x1, ..., xl) = e(x1, x0, x1, ..., xl) if all but one of the xi are equal,

p is related to e by
p(x, y, z) = e(y, x, z, ..., z) if x = y or y = z,

and e satisfies the identities

e(y, y, x, x, ..., x) = φ(y, d(y, x), ..., d(y, x), x) = x,

e(y, x, y, x, ..., x) = φ(x, y, d(y, x), ..., d(y, x)) = x,

e(x, x, x, y, ..., x) = φ(x, x, d(x, y), ..., x) = x,

...

e(x, x, x, x, ..., y) = φ(x, x, x, ..., d(x, y)) = x.

Can we use this system of identities to prove an analogue of Theorem 2.1.3? Yes! The trick is to
plug things back into e, to make the following term t:

t(u, v, w, x1, ..., xl) = e(p(v, u, x1), s(w, x1, ..., xl), x1, ..., xl).

Now if we have a tuple a = (a1, ..., an) which we want to prove is in the subalgebra generated by
S, and if this subalgebra already contains (a1, ..., ai−1, bi, ai+1, ..., an) for each i, as well as a pair
(c1, ..., cn−1, an), (c1, ..., cn−1, bn) which witnesses the triple (n, an, bn), then we have

t



c1 c1 a1 b1 a1 · · ·
c2 c2 a2 a2 b2 · · ·
...

...
...

...
...

. . .

an bn bn an an · · ·


 = e



b1 a1 b1 a1 · · ·
a2 a2 a2 b2 · · ·
...

...
...

...
. . .

dn dn an an · · ·


 =


a1
a2
...
an

 ,
where dn = d(bn, an).

While playing these sorts of games with identities may yield more and more general examples of
algebraic structures where relations have compact representations, we are not being very systematic
here. So perhaps we should work backwards: what absolutely needs to be true for something like
compact representations to exist?

Proposition 2.1.6. If every subpower R ≤ An has a compact representation S consisting of at
most p(n) tuples, then the number of different subalgebras of An is at most |An|p(n) = |A|np(n).

Corollary 2.1.7. No analogue of compact representations can exist for subpowers of a nontrivial
semilattice.
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Proof. It’s enough to consider the case A = ({0, 1},max), since every semilattice contains a sub-
algebra isomorphic to it. The number of subpowers of An is at least the number of subsets on
{0, 1}n which are generated by subsets S ⊆ {x ∈ {0, 1}n,

∑
i xi = n/2} (suppose n is even). Any

two distinct subsets S, S′ of the set of tuples with weight n/2 will generate different subalgebras of
An, so the number of subalgebras of An is at least

2( n
n/2) ≥ 22

n/n,

and 2n/n clearly grows faster than any polynomial.

What makes the semilattice case so different from the Mal’cev case and the near-unanimity case?
The main difference is that the identities satisfied by a semilattice do not allow us to get back to x
once we start combining it with other values, while the identities for Mal’cev and near-unanimity
terms all have xs on the right hand sides.

So we should start by trying to prove that having few subpowers implies that there are terms
satisfying a nontrivial system of identities which have xs on the right hand sides of each identity,
such as the system of identities satisfied by the term e constructed earlier. The trick, as we will
see, is to apply the existence of compact representations to the case of a power of the free algebra
on two generators, considered as a subalgebra of (AA2

)n.

2.2 Algebras with Few Subpowers

First we define an invariant of an algebraic structure and the variety it generates, which is slightly
more well-behaved than the function that takes n to the number of subalgebras of An.

Definition 2.2.1. If A is an algebraic structure and a1, ..., ak ∈ A, we say that a1, ..., ak are
independent if no ai is in the subalgebra generated by the rest of the ajs. For every n, we define
iA(n) to be the size of the largest independent set in An.

Proposition 2.2.2. If A is a finite algebra, then any subalgebra of An can be generated by at most
iA(n) elements, so the number of subalgebras of An is bounded above by |An|iA(n) = 2n lg(|A|)iA(n).
The number of subalgebras of An is also bounded below by 2iA(n).

Proof. Since A is finite, every subalgebra of An has a minimal generating set, and this minimal
generating set is necessarily independent. The upper bound on the number of subalgebras follows
from counting the number of possible minimal generating sets.

For the lower bound on the number of subalgebras, suppose that a1, ..., ak are independent
in An. Then every subset S of {a1, ..., ak} generates a distinct subalgebra of An, since SgAn(S) ∩
{a1, ..., ak} = S by the definition of independence. Thus An has at least 2k distinct subalgebras.

Proposition 2.2.3. If B ∈ HSP (A) is also finite, then iB(n) ≤ iA(cn) for some constant c
depending only on B.

Proof. If A,B are both finite, then there is some finite number c such that B ∈ HS(Ac), that is,
there is a subalgebra C ≤ Ac and a surjective homomorphism f : C→ B. Then every independent
set in Bn lifts to an independent set in (Ac)n = Acn by choosing any section of f and applying it
coordinate-wise.
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We will apply the above result to the free algebra on two generators FV(A)(x, y) ≤ AA2
to prove

that if an algebra has few subpowers, then it has a cube term. Since cube terms have exponentially
high arity, it’s necessary to develop some notation to define them properly.

Definition 2.2.4. For every subset S ⊆ {1, ..., k}, we define the k-dimensional column vector vS

by

vSi =

{
y i ∈ S,
x i ̸∈ S.

A k-cube term is a term t with variables indexed by nonempty subsets of {1, ..., k}, such that if we
fix an enumeration S1, ..., S2k−1 of these subsets, we have the identity

t(vS1 , ..., vS2k−1) ≈ v∅.

For instance, if k = 3 then (with one possible choice of variable ordering) a 3-cube term is a
7-ary term t satisfying the identity

t

y y y x y x x
y y x y x y x
y x y y x x y

 ≈
xx
x

 .
Note that a Mal’cev term is the same as a 2-cube term (up to reordering variables).

Theorem 2.2.5 (Few subpowers implies cube term [27]). Let F = FV(A)(x, y) ≤ AA2
be the free

algebra on two generators in the variety generated by A.

• If iF(k) < 2k for any k, then A has a k-cube term.

• If iF(m) <
(
m
k

)
for any m, k, then A has a k-cube term.

In particular, if iA(n) = o(nk) then A has a k-cube term, and if iA(n) = 2o(n) then there exists
some k such that A has a k-cube term.

Proof. For the first statement, if iF(k) < 2k, then the vectors vS for S ⊆ {1, ..., k} can’t be
independent, so some vS is in the subalgebra generated by the others. By applying an automorphism
of Fk which swaps xs and ys in the coordinates belonging to S, we may assume without loss of
generality that S = ∅. From v∅ ∈ SgFk{vS | S ̸= ∅}, we see that there is a term t such that
t(vS1 , ...) = v∅, and since F is the free algebra on two generators, this implies the k-cube term
identities.

For the second statement, consider the set of vectors vS with S ∈
({1,...,m}

k

)
. By assumption,

these are not independent, so some vS is in the subalgebra generated by the others. Then if we
project onto the coordinates of S and use the fact that for S ̸= T with |S| = |T | we never have
S ⊆ T , we get the situation of the previous paragraph inside FS ∼= Fk.

Next, we upgrade the k-cube term by repeatedly plugging it into itself to produce simpler terms,
finally arriving at the k-edge term.

Definition 2.2.6. If ∆ ⊆ P({1, ..., k}) \ {∅}, then we say that t is a ∆-cube term if it has variables
indexed by elements of ∆ and satisfies the identity t(vS1 , ...) = v∅, where S1, ... is an enumeration
of the elements of ∆.

If we set ∆e = {{1, 2}, {1}, {2}, ..., {k}}, then a ∆e-cube term is called a k-edge term.
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A k-edge term is simple enough that we can write out the identities it satisfies explicitly: a
k + 1-ary term e is a k-edge term iff it satisfies

e




y y x x · · · x
y x y x · · · x
x x x y · · · x
...

...
...

...
. . .

...
x x x x · · · y



 ≈

x
x
x
...
x

 .

Theorem 2.2.7 (Cube term implies edge term [27]). If A has a k-cube term, then it also has a
k-edge term.

Proof. Since it is hard to deal with terms having exponentially many variables, we will do the last
step of the proof first, and show that if A has a ∆∗-cube term t∗ then it has a k-edge term, where

∆∗ = {{1, 2}, ..., {1, k}, {1}, {2}, ..., {k}}

only has 2k − 1 elements. The ∆∗-cube term identities for t∗ state that

t∗




y y · · · y y x x · · · x
y x · · · x x y x · · · x
x y · · · x x x y · · · x
...

...
. . .

...
...

...
...

. . .
...

x x · · · y x x x · · · y



 ≈

x
x
x
...
x

 .

In order to show that there is a k-edge term, we just need to show that v∅ can be generated from
{vS | S ∈ ∆e} using the ∆∗-cube term t∗.

Let a = t∗(x, ..., x, y, x, ..., x), where the only y occurs at the index corresponding to {1} (this
is the middle index if we order the variables of t as in the displayed indentities above). First we
will use t to generate vectors vS,a for S ∈ ∆∗ which look just like the vectors vS , except ys in the
first coordinate are replaced by as. If S ∈ ∆∗ and 1 ̸∈ S, then S is already in ∆e and vS,a = vS , so
we don’t have to worry about these. If S = {1}, then we use

t∗




x x · · · x y x x · · · x
y x · · · x x y x · · · x
x y · · · x x x y · · · x
...

...
. . .

...
...

...
...

. . .
...

x x · · · y x x x · · · y



 =


a
x
x
...
x

 ,

and note that every column of the matrix on the left hand side is vS for some S ∈ ∆e. If S = {1, 2},
then we use

t∗




x x · · · x y x x · · · x
y y · · · y y y y · · · y
x x · · · x x x x · · · x
...

...
. . .

...
...

...
...

. . .
...

x x · · · x x x x · · · x



 =


a
y
x
...
x

 ,
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again noting that every column corresponds to an element of ∆e. Finally, if S = {1, i}, say
S = {1, 3} without loss of generality, then we use

t∗





x x · · · x y x x · · · x
y y · · · y y x x · · · x
x x · · · x x y y · · · y
x x · · · x x x x · · · x
...

...
. . .

...
...

...
...

. . .
...

x x · · · x x x x · · · x




=



a
x
y
x
...
x


,

where every row other than the first three (or other than the first, second, and ith in the general
case) is all xs, and again every column belongs to ∆e.

Now that we’ve constructed the vS,as for all S ∈ ∆∗, we use t∗ to put them all together:

t∗




a a · · · a a x x · · · x
y x · · · x x y x · · · x
x y · · · x x x y · · · x
...

...
. . .

...
...

...
...

. . .
...

x x · · · y x x x · · · y



 =


x
x
x
...
x

 .

Thus if A has a ∆∗-cube term, then it has a k-edge term. Explicitly, the construction we just
worked through corresponds to the formula

e(x0, x1, ..., xk) = t∗(t∗(x2, ..., x2, x0, x2, ..., x2), t
∗(x2, ..., x2, x0, x3, ..., x3), ...,

t∗(x2, ..., x2, x0, xk, ..., xk), t
∗(x2, ..., xk, x1, x2, ..., xk), x2, ..., xk).

Now that we have the general idea down, we work through the inductive argument needed to
prove that if we have a k-cube term, then we have a ∆∗-cube term. Let ∆ℓ∗ = ∆∗∪P({1, ..., ℓ})\∅.
Note that a k-cube term is the same as a ∆k∗-cube term, and a ∆∗-cube term is the same as a
∆0∗-cube term.

Claim: If A has a ∆ℓ∗-cube term tℓ, then it also has a ∆(ℓ−1)∗-cube term.
Proof of Claim: We argue as before, this time taking a = tℓ(x, ..., x, y, x, ..., x), where the lone

y occurs in the index corresponding to {ℓ}. For S ∈ ∆ℓ∗, we let vS,a be the vector similar to vS ,
but with any y in the ℓth coordinate replaced with an a. We just need to generate each vS,a for
S ∈ ∆ℓ∗ using the vectors coming from ∆(ℓ−1)∗. Again, if ℓ ̸∈ S then vS,a = vS and S ∈ ∆(ℓ−1)∗

already.
If S = {ℓ}, then we plug in the matrix M to tℓ which looks just like the matrix which gives

the defining identities for tℓ, but has the ℓth row replaced by the sequence of xs and ys we used to
define a. Explicitly, M is given by

Mi,T T ̸= {ℓ} T = {ℓ}
i ̸= ℓ vTi vTi = x
i = ℓ x y.

Then tℓ(M) = v{ℓ},a, and the T th column of M is vT\{ℓ} if T ̸= {ℓ} and is v{ℓ} if T = {ℓ}.
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If ℓ ∈ S but S ̸= {ℓ}, then we plug in a matrix MS such that each of its columns is equal to
one of vS\{ℓ}, v{1}, v{1,ℓ}: if ℓ ̸∈ T , then the T th column of MS is vS\{ℓ}, if ℓ ∈ T but T ̸= {ℓ} then
the T th column is v{1}, and if T = {ℓ} then the T th column is v{1,ℓ}. Explicitly, MS is given by

MS
i,T ℓ ̸∈ T ℓ ∈ T ̸= {ℓ} T = {ℓ}

i = 1 ∈ S y y y
i = 1 ̸∈ S x y y

i ̸= 1, ℓ, i ∈ S y x x
i ̸= 1, ℓ, i ̸∈ S x x x

i = ℓ x x y.

These choices ensure that tℓ(MS) = vS,a.
To finish, we apply tℓ to the set of vectors vS,a for S ∈ ∆ℓ∗, and see that the defining identities

for tℓ imply that the resulting vector is v∅. Thus there is a ∆(ℓ−1)∗-cube term tℓ−1 which can in
principle be written explicitly by plugging in variables to the star composition tℓ ∗ tℓ.

From a k-edge term e, we can now construct terms s, p that act like near-unanimity and Mal’cev
terms which have been “glued together” by a binary term d. I’ve rearranged the variables of these
terms from the notation used in [27], for the sake of readability and for consistency with the notation
used in Appendix A.

Theorem 2.2.8 (Edge terms imply terms s, p, d [27]). If e is a k-edge term on a finite algebra A,
then there are terms s, p, d ∈ Clo(e) with s k-ary which satisfy the system of identities

s(y, x, x, ..., x) ≈ d(y, x),

s(x, y, x, ..., x) ≈ x,
...

s(x, x, x, ..., y) ≈ x,
p(y, y, x) ≈ x,
p(x, y, y) ≈ d(x, y),

d(d(x, y), y) ≈ d(x, y).

Furthermore, these terms can be computed from e in time O(|A|k). If A is infinite, then we can
find terms s, p, d ∈ Clo(e) satisfying all but the last displayed identity.

Proof. If we ignore the last identity involving d, we can find terms s1, p1, d1 satisfying the other
identities as follows:

s1(x1, x2, ..., xk) = e(x2, x1, x2, ..., xk),

p1(x, y, z) = e(y, x, z, ..., z),

d1(x, y) = e(y, x, y, ..., y).

We can get the last identity by an iteration argument. For each i, we set

si+1(x1, x2, ..., xk) = s1(si(x1, x2, ...., xk), x2, ..., xk),

pi+1(x, y, z) = p1(di(x, y), y, z),

di+1(x, y) = d1(di(x, y), y).
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Then for each i, the terms si, pi, di satisfy the desired identities aside from the last one. Since A is
finite, we can take i = |A|! to find that

d|A|!(d|A|!(x, y), y) = d|A|!(x, y)

for all x, y ∈ A.
To compute s|A|! efficiently from e, first we compute s1, and then for each choice of a2, ..., ak ∈ A

we find the induced unary polynomial fa2,...,ak : x1 7→ s1(x1, a2, ..., ak). To finish, we note that for
every unary function f : A→ A we can compute f∞ := limn→∞ f◦n! in time O(|A|) using a clever
algorithm which we will go over later, but which the reader may enjoy trying to discover now as
an exercise.

Now we can use the binary term d to define minority pairs and signatures.

Definition 2.2.9. If s, p, d are terms as in the Theorem 2.2.8, then we say that a, b ∈ A are a
minority pair if d(b, a) = b. If R ⊆ A1 × · · · × An, then we say that (i, a, b) is a minority index of
R which is witnessed by a pair ta, tb ∈ R if:

• a, b are a minority pair, i.e. d(b, a) = b,

• the pair ta, tb agree up to coordinate i: π1,...,i−1(ta) = π1,...,i−1(tb), and

• we have πi(ta) = a, πi(tb) = b.

We define the signature of R, written Sig(R), to be the set of minority indices which are witnessed
by pairs in R.

Definition 2.2.10. If R ≤ A1 × · · · × An and the Ai are in a variety with a k-edge term, then we
say that a set S ⊆ R is a compact representation of R if:

• Sig(S) = Sig(R),

• for every I ⊆ {1, ..., n} with |I| ≤ k − 1 we have πI(S) = πI(R), and

• |S| ≤ 2|Sig(R)|+
∑

I⊆{1,...,n},|I|≤k−1 |πI(R)|.

Theorem 2.2.11 (Subpowers with edge terms are generated by compact representations [27]). If
R ≤ A1 × · · · × An and the Ai are finite algebras in a variety with a k-edge term e, then for any
compact representation S of R, we have R = Sge(S).

Proof. Let s, p, d be terms as in Theorem 2.2.8. We induct on n. Suppose a = (a1, ..., an) ∈ R, then
by the induction hypothesis there is bn ∈ An with (a1, ..., an−1, bn) ∈ Sge(S). Then if we let dn =
d(bn, an) then we see that an, dn is a minority pair and (a1, ..., an, dn) ∈ R, so (n, an, dn) ∈ Sig(R),
and from the definition of a compact representation we see that there must be some c1, ..., cn−1

such that
(c1, ..., cn−1, an), (c1, ..., cn−1, dn) ∈ S.

We show by an inner induction on subsets I ⊆ {1, ..., n} that for each I, we have πI(a) ∈
πI(Sge(S)). If |I| ≤ k − 1 this follows from the definition of a compact representation, while if
n ̸∈ I then this follows from the outer inductive hypothesis. For the sake of notational simplicity
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we will assume that I = {1, ..., n}. Then by the inductive hypothesis, there are b1, ..., bn−1 such
that for each i, we have

(a1, ..., ai−1, bi, ai+1, ..., an) ∈ Sge(S).

Then we have

s



a1 b1 a1 · · ·
a2 a2 b2 · · ·
...

...
...

. . .

bn an an · · ·


 =


a1
a2
...
dn

 ∈ Sge(S).

Additionally, we have

p



c1 c1 b1
c2 c2 a2
...

...
...

dn an an


 =


b1
a2
...
dn

 ∈ Sge(S).

Now we can apply the k-edge term e to see that

e



b1 a1 b1 a1 · · ·
a2 a2 a2 b2 · · ·
...

...
...

...
. . .

dn dn an an · · ·


 =


a1
a2
...
an

 ∈ Sge(S).

Corollary 2.2.12. For a fixed finite algebra A:

• A has a k-edge term but no k − 1-edge term iff iA(n) = Θ(nk−1), and

• A has no k-edge term for any k iff iA(n) = 2Θ(n).

Proof. We only need to check that if A has a k-edge term, then iA(n) = O(nk−1). Suppose that
a1, ..., am ∈ An are independent, and consider the relations Ri = SgAn{a1, ..., ai}. We can easily
find a sequence of compact representations S1, ..., Sm of R1, ...,Rm with Si ⊆ Si+1 for each i. From
the independence of the ais, we have Ri ̸= Ri+1 for all i, so by induction we see that |Si| ≥ i for all
i. Then from the fact that Sm is a compact representation, we have

m ≤ |Sm| ≤ 2n|A|2 +
∑

I⊆{1,...,n},|I|≤k−1

|A|k−1 = O(nk−1).

We can now generalize Dalmau’s generalized majority-minority algorithm to an algorithm for
computing compact representations of intersections of two relations which are both described by
compact representations. The only changes we need to make are to use the edge term e in the
Nonempty subroutine in the place of the gmm term φ, and to modify the Fix-values subroutine
to use the ternary term p from Theorem 2.2.8.

That the modified Fix-values subroutine works follows from the following Proposition.

Proposition 2.2.13. If the pair of tuples ta, tb witness the minority index (i, a, b), then for any t
with πi(t) = a the pair of tuples t, p(tb, ta, t) also witnesses the minority index (i, a, b).

113



Algorithm 9 Fix-values(R, a1, ..., am), p, d terms as in Theorem 2.2.8, R a compact representa-
tion of R ≤ A1 × · · · × An.
1: Set R0 ← R.
2: for j from 1 to m do
3: Let Rj ← ∅.
4: for all I = {i1, ...} ⊆ {1, ..., n} with |I| < k and (bi1 , ...) ∈ πI(Rj−1) do
5: Set Rj ← Rj ∪ Nonempty(Rj−1, j, i1, ..., i|I|, {(aj , bi1 , ..., bi|I|)}).
6: for all (i, a, b) ∈ Sig(Rj−1) with i > j and a, b a minority pair (i.e. d(b, a) = b) do
7: Let ta, tb ∈ Rj−1 witness the triple (i, a, b).
8: Let t← Nonempty(Rj−1, j, i, {(aj , a)}).
9: if t ̸= ∅ then

10: Set Rj ← Rj ∪ {t, p(tb, ta, t)}.
11: return Rm.

Proof. From the identity p(y, y, x) ≈ x we have

π<i(p(tb, ta, t)) = π<i(p(ta, ta, t)) = π<i(t),

and since (a, b) is a minority pair, we have

πi(p(tb, ta, t)) = p(b, a, a) = d(b, a) = b.

Example 2.2.1. There is an example of an algebra A = ({a, b, c}, g) with g a ternary operation
such that A has a 3-edge term, but is not in the variety generated by generalized majority-minority
algebras of any arity (up to term equivalence). The ternary operation g is the idempotent symmetric
function given by

g(a, b, b) = b, g(a, a, b) = a, g(a, c, c) = a, g(a, a, c) = c, g(b, c, c) = a, g(b, b, c) = c, g(a, b, c) = c.

You can understand this as follows: the subset {a, b} is a majority subalgebra, the subset {a, c} is
a pure minority subalgebra, and there is a congruence with equivalence classes {a, b}, {c} so that
the quotient is a pure minority algebra. Also, the only way to get b out of an application of g is if
at least two of the inputs are bs (this property is called “absorption”: the subalgebra {a, c} absorbs
{a, b, c} with respect to g).

To see that this isn’t in the variety generated by generalized majority-minority algebras, recall
that in any gmm algebra there are functions s, p, d as in Theorem 2.2.8, where d satisfies the
additional identity d(x, d(y, x)) ≈ x since d either acts as first or second projection for any particular
pair x, y. Since the quotient corresponding to {a, b}, {c} is a pure minority algebra, we must have
d(c, b) = c, so by the extra identity we have d(b, c) = d(b, d(c, b)) = b. Then the function p would
satisfy

p

([
b c c
c c b

])
=

[
d(b, c)
b

]
?
=

[
b
b

]
.

But this is impossible: the subalgebra of A2 generated by (b, c), (c, c), (c, b) doesn’t contain (b, b),
because of the absorption property of {a, c} with respect to g.

To see that A has a 3-edge term, we define an auxiliary 4-ary term f by

f(u, x, y, z) = g(g(u, x, z), g(u, y, z), g(u, z, z)),
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and then define our 3-edge term by

e(u, x, y, z) = g(g(f(u, x, y, z), x, x), g(f(u, x, y, z), y, y), g(f(u, x, y, z), z, z)).

If we define functions s, p, d from the 3-edge term e as in Theorem 2.2.8, then d is given by

d(x, y) a b c

a a b a
b a b a
c c c c

and the minority pairs are (a, c), (c, a), (b, c). The fact that (c, b) is not a minority pair is witnessed
by the fact that the relation SgA2{(b, c), (c, c), (c, b)} contains (b, c) but does not contain (b, b), even
though it has (2, b, c) in its signature.

The associated relational clone is generated by the order two automorphism {(a, b), (b, a)} of
{a, b}, the partial order {(a, a), (a, b), (b, b), (c, c)}, the binary relation {(a, a), (a, b), (a, c), (b, a), (b, c)}
which witnesses the fact that {a, c} is a “central” subalgebra in Zhuk’s terminology [164] (which
is closely related to {a, c} being a ternary absorbing subalgebra), and the affine ternary relation
{(a, a, c), (a, c, a), (c, a, a), (c, c, c)}.

For an idempotent algebra A with a nontrivial congruence θ ∈ Con(A), such as the previous
example, we can test whether A has few subpowers by checking that A/θ has few subpowers and
that each congruence class of θ has few subpowers separately. This follows from the following easy
results from [123].

Proposition 2.2.14. Suppose A is an idempotent algebra, θ ∈ Con(A), and that there are terms
t1, t2 such that t1 acts as a ∆1-cube term on A/θ and t2 acts as a ∆2-cube term on each congruence
class of θ. Then t2 ∗ t1 is a ∆-cube term for A, where ∆ = {S × T | S ∈ ∆2, T ∈ ∆1}.

Proof by example. Suppose that t1(x, y, z) is a Mal’cev term on A/θ which is idempotent on A and
that t2(x, y, z) is a Mal’cev term on each congruence class of θ. Then for any a, b ∈ A, if we write

c = t1(a, a, b) ∈ b/θ,
d = t1(b, a, a) ∈ b/θ,

then we have

(t2 ∗ t1)



a a b a a b b b b
b a a b a a b b b
b b b a a b a a b
b b b b a a b a a


 := t2



t1(a, a, b) t1(a, a, b) t1(b, b, b)
t1(b, a, a) t1(b, a, a) t1(b, b, b)
t1(b, b, b) t1(a, a, b) t1(a, a, b)
t1(b, b, b) t1(b, a, a) t1(b, a, a)




= t2



c c b
d d b
b c c
b d d


 =


b
b
b
b

 .
Corollary 2.2.15. If A1, ...,An are idempotent algebras with the same signature such that each Ai
has a ∆i-cube term ti, then t1∗· · ·∗tn is a ∆-cube term for A1×· · ·×An, where ∆ = {S1×· · ·×Sn |
Si ∈ ∆i}.

Corollary 2.2.16. Suppose A is a finite idempotent algebra and θ ∈ Con(A). Then A has few
subpowers iff A/θ has few subpowers and each congruence class of θ has few subpowers.
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2.2.1 Some connections with congruence modularity

Theorem 2.2.17. If an algebra has an edge term, then it generates a congruence modular variety.

Proof. By Theorem A.4.8 from Appendix A, we just need to check that an algebra with an edge
term has directed Gumm terms, that is, terms f1, ..., fk, p satisfying the system of identities

f1(x, x, y) ≈ x,
fi(x, y, x) ≈ x for all i,

fi(x, y, y) ≈ fi+1(x, x, y) for all i,

fk(x, y, y) ≈ p(x, y, y),

p(x, x, y) ≈ y.

If the reader wants to understand why this system of identities implies congruence modularity
without reading all of Appendix A, then they can take the following path: first, read the discussion
before Theorem A.4.8 to see why the existence of directed Gumm terms implies the existence of
Gumm terms, then read part of the proof of Theorem A.4.7 to see how to construct Day terms
from Gumm terms, and finally, read Section A.1 of Appendix A to see why the existence of Day
terms is equivalent to congruence modularity.

Suppose that e is a k-edge term. Define terms fi(x, y, z) for i < k by

fi(x, y, z) = e(x, ..., x, y, z, ..., z),

such that there are i− 1 zs, a single y, and k + 1− i xs. Then we have

f1(x, x, y) = e(x, ..., x, x) = x,

and for i < k we have
fi(x, y, x) = e(x, ..., x, y, x, ..., x) = x.

From the construction of the fis we have

fi(x, y, y) = e(x, ..., x, y, y, ..., y) = fi+1(x, x, y)

for i+ 1 < k. Finally, if we define fk(x, y, z) by

fk(x, y, z) = e(y, x, y, z, ..., z)

and p(x, y, z) by
p(x, y, z) = e(y, x, z, z, ..., z),

then
fk−1(x, y, y) = e(x, x, x, y, ..., y) = fk(x, x, y)

and
fk(x, y, x) = e(y, x, y, x, ..., x) = x

by the k-edge identities, while

fk(x, y, y) = e(y, x, y, y, ..., y) = p(x, y, y)

and
p(x, x, y) = e(x, x, y, y, ..., y) = y

by the k-edge identities again. Thus f1, ..., fk, p are a sequence of directed Gumm terms.
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Theorem 2.2.18. For k ≥ 3, an algebra has a k-edge term and generates a congruence distributive
variety iff it has a k-ary near-unanimity term.

Proof. First the easy direction. If an algebra A has a k-ary near-unanimity term t, then adding
an extra variable at the beginning of t produces a k-edge term. Additionally, the discussion before
Theorem A.4.8 shows that we can construct a sequence of Jónsson terms from t, and then Theorem
A.4.4 shows that A generates a congruence distributive variety.

Now the harder direction: assume that A generates a congruence distributive variety and has a
k-edge term e. By Theorem A.4.8, there is a sequence of directed Jónsson terms f1, ..., fm, that is,
a sequence satisfying the system of identities

f1(x, x, y) ≈ x,
fi(x, y, x) ≈ x for all i,

fi(x, y, y) ≈ fi+1(x, x, y) for all i,

fm(x, y, y) ≈ y.

Let F = FV(A)(x, y) ≤ AA2
be the free algebra on two generators in the variety generated by A.

Let S ≤ Fk be generated by the vectors (x, ..., x, y, x, ..., x) with all but one entry equal to x and
the remaining entry equal to y. Note that S is symmetric under permuting its coordinates. We
just need to prove that (x, ..., x) ∈ S.

Claim: For all i, we have (fi(y, x, x), x, ..., x) ∈ S.
Proof of Claim: We induct on i, taking (y, x, ..., x) ∈ S as our base case. By the induction

hypothesis, we have
(fi(y, y, x), x, ..., x) = (fi−1(y, x, x), x, ..., x) ∈ S.

Additionally, the tuples 
fi(y, x, x)
fi(x, x, y)

x
...
x

 = fi




y x x
x x y
x y x
...

...
...

x x x




and 

fi(y, y, x)
fi(x, x, y)

x
...
x

 = fi




y y x
x x y
x x x
...

...
...

x x x




are both in S. Now we apply the k-edge term e:

e




fi(y, y, x) fi(y, y, x) fi(y, x, x) fi(y, x, x) · · · fi(y, x, x)
fi(x, x, y) x fi(x, x, y) x · · · x

x x x fi(x, x, y) · · · x
...

...
...

...
. . .

...
x x x x · · · fi(x, x, y)



 =


fi(y, x, x)

x
x
...
x

 .
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To finish the proof, we apply the Claim with i = m to see that (x, x, ..., x) = (fm(y, x, x), x, ..., x) ∈
S.

Example 2.2.2. We give an example of a congruence distributive algebra without few subpowers. Re-
call from Example 1.6.6 that for each n, the relational structure ({0, 1}, {0},≤, {0, 1}n \{(0, ..., 0)})
has strict width exactly n. The limiting relational clone on {0, 1} generated by the relations {0},≤,
and {0, 1}n \ {(0, ..., 0)} for all n ∈ N corresponds to the clone generated by the ternary operation

f(x, y, z) = x ∨ (y ∧ z).

Since the n-ary critical relation {0, 1}n \ {(0, ..., 0)} doesn’t have the parallelogram property and is
preserved by f for all n, the clone generated by f can’t have few subpowers by Theorem 2.3.4.

To check that the algebra A = ({0, 1}, x ∨ (y ∧ z)) generates a congruence distributive variety,
consider the sequence of ternary terms given by

f1(x, y, z) = x ∨ (y ∧ z), f2(x, y, z) = (x ∧ y) ∨ z.

To see that this is a sequence of directed Jónsson terms, note that they satisfy fi(x, y, x) = x∨ (y∧
x) = x, are connected by

f1(x, y, y) = x ∨ (y ∧ y) = x ∨ y = (x ∧ x) ∨ y = f2(x, x, y),

and have f1(x, x, y) = x, f2(x, y, y) = y. By Theorem A.4.4 and the discussion before Theorem
A.4.8, this implies that A is congruence distributive.

Example 2.2.3. We’ve seen earlier that the two-element semilattice A = ({0, 1},max) does not have
few subpowers. Here we will check that the two-element semilattice does not generate a congruence
modular variety. In fact, the congruence lattice Con(A2) already fails to be modular. It turns out
that every congruence on A2 is generated (as a congruence) by just one pair of elements a, b of
A2, so we can label the nontrivial congruences on A2 by pairs of elements a, b ∈ A2, yielding the
following congruence lattice. [

0
0

]
1A2

[
1
1

]

[
0
0

]
kerπ1

[
0
1

] [
0
1

]
Θ

[
1
0

] [
1
0

]
kerπ2

[
0
0

]

[
1
0

]
Θ1

[
1
1

] [
1
1

]
Θ2

[
0
1

]

0A2
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To see that this isn’t modular, note that the sublattice generated by kerπ1, kerπ2,Θ2 is isomorphic
to the pentagon lattice N5. Considered as an abstract lattice, Con(A2) is the standard example of
a lattice which is meet-semidistributive (recall from Example 1.9.6 and Proposition 1.9.32 that the
variety of semilattices is SD(∧)) but not join-semidistributive (we have Θ∨kerπ1 = Θ∨kerπ2 = 1A2 ,
but Θ ∨ (kerπ1 ∧ kerπ2) = Θ ̸= 1A2).

Although congruence modularity is slightly weaker than having few subpowers, the concepts
are quite close. One hint at the connection between them comes from counting congruences on
subpowers of A.

Definition 2.2.19. If A is an algebra, then we define the function cA(n) to be the base-2 logarithm
of the maximum size of Con(R) over all R ≤ An.

Proposition 2.2.20. A variety V is congruence distributive iff for all subdirect products R ≤sd
A1 × · · · ×An in V, every congruence on R can be written as a product of congruences on the Ais.

Proof. Suppose first that V is congruence distributive. Then for any congruence θ on R, by dis-
tributivity and

∧
i kerπi = 0R we have∧

i

(θ ∨ kerπi) = θ ∨
∧
i

kerπi = θ ∨ 0R = θ,

so θ is the product of the congruences πi(θ ∨ kerπi) ∈ Con(Ai).
Conversely, suppose that A ∈ V, and suppose that α, β, γ ∈ Con(A). Then A/(β ∧ γ) is a

subdirect product of A/β and A/γ, so the congruence

α ∨ (β ∧ γ),

considered as a congruence on A/(β ∧ γ), is a product congruence iff it is equal to

(α ∨ β) ∧ (α ∨ γ).

Corollary 2.2.21. If V(A) is congruence distributive, then cA(n) = ncA(1).

If a variety is congruence modular but not congruence distributive, then it necessarily contains
a (finitely generated) nontrivial affine algebra. So we need to understand cA(n) for A a finite affine
algebra, and since the congruence lattice only depends on the polynomial clone, we may assume
that A is a module over a ring. In this case, there is a bijection between congruences on An and
submodules of An.

Proposition 2.2.22. If A is a nontrivial finite module over a ring, then cA(n) ≥ n2−1
4 .

Proof. We may as well assume that A is simple. Let c be any nonzero element of A. For n = 2m,

the span of the columns of the n×m matrix

[
cI
M

]
completely determines the m×m matrix M , so

cA(2m) ≥ m2 log2(|A|) ≥ m2.

Corollary 2.2.23. If A is finite and V(A) is congruence modular but not congruence distributive,
then cA(n) = Ω(n2).
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How can we get an upper bound on cA(n) when A is congruence modular? The trick is to use
the fact that in modular lattices, the height of the lattice is well-behaved. We can relate the height
of a congruence lattice to its size using the following elementary bound.

Proposition 2.2.24. If A is a finite algebra such that Con(A) has height h, then

|Con(A)| ≤
h∑
i=0

(|A|
2

)i
≤ |A|2h.

Proof. Consider any congruence α ∈ Con(A). Since every cover of α is generated (as a congruence)
by α together with some pair (a, b) ̸∈ α, the number of covers of α is bounded by

(|A|
2

)
. Since every

element of Con(A) can be reached from 0A by repeatedly choosing covers at most h times, we get
the stated bound on |Con(A)|.

We can get a slightly better bound as follows: the above argument shows that every congruence
can be generated (as a congruence) by at most h pairs in

(A
2

)
. Additionally, there is only one

congruence at height h, since Con(A) has a top element 1A. So we have

|Con(A)| ≤ 1 +

h−1∑
i=0

((|A|
2

)
i

)
.

Corollary 2.2.25. If A is finite and generates a congruence modular variety, then cA(n) ≤ n2 ·
2|A| log2(|A|).

Proof. Let c be the maximum height of Con(B) over all subalgebras B ≤ A (c is automatically
bounded by |A|). We claim that for any R ≤ An, the height of Con(R) is bounded by cn. Since
Con(R) is modular, we can compute its height by looking at the size of any maximal chain in
Con(R).

We will choose our maximal chain to be any maximal extension of the chain

0R ≤ kerπ[n−1] ≤ · · · ≤ kerπ[2] ≤ kerπ1 ≤ 1R.

By the Diamond Isomorphism Theorem A.2.5, the interval Jkerπ[i], kerπ[i−1]K is isomorphic to the
interval Jkerπi, kerπ[i−1]∨kerπiK, so its height is bounded by the height of the interval Jkerπi, 1RK,
which is isomorphic to Con(R/ kerπi). Since R/ kerπi ∼= πi(R) ≤ A, the height of Con(R/ kerπi)
is bounded by c, and putting these intervals together we see that the height of Con(R) is bounded
by cn.

Using the previous bound, we get

log2(|Con(R)|) ≤ log2(|R|2cn) ≤ 2cn log2(|A|n) = 2cn2 log2(|A|).

Theorem 2.2.26 (Few congruences on subpowers iff congruence modular [27]). Let A be a finite
algebra with at least two elements, and let V(A) be the variety it generates.

• If V(A) is congruence distributive, then cA(n) = Θ(n).

• If V(A) is congruence modular but not congruence distributive, then cA(n) = Θ(n2).

• If V(A) is not congruence modular, then cA(n) = 2Θ(n).
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Proof. By the previous results, all we need to check is that if V(A) is not congruence modular, then
cA(n) = 2Ω(n). Let F = FV(A)(x, y, z, w) ≤ AA4

be the free algebra on four generators. We will
show that if cF(2n) < 2n for any n, then A has Day terms, and is therefore congruence modular by
Appendix A.1.

Define congruences on F as in Corollary A.1.2: let θab be the congruence generated by the pair
(a, b) for any pair of variables a, b, set α = θxy ∨ θzw, β = θxz ∨ θyw, and γ = (α ∧ β) ∨ θzw. This is
the generic Shifting Lemma configuration:

x z

y w.

β
α

β

α γ

To show the existence of Day terms, we just need to show that (x, y) ∈ γ.
Pick an n such that cF(2n) < 2n, and consider the subalgebra R ≤ F2n consisting of tuples

such that every pair of coordinates are related by β (it helps to imagine elements of R written out
horizontally as row vectors, following the convention that variables which are related by β are laid
out on horizontal lines). We will define a family of 2n pairs of elements of R as follows.

First, we define elements x0, x1, y0, y1 ∈ F2 by x0 = (x, z), x1 = (z, x) and similarly y0 =
(y, w), y1 = (w, y). Then, for any i = (i1, ..., in) ∈ {0, 1}n, we define fi, gi ∈ R by

fi = (xi1 , ..., xin),

gi = (yi1 , ..., yin).

For each i ∈ {0, 1}n, we define a congruence Θ(i) to be the congruence of R generated by the pair
(fi, gi). Since cF(2n) < 2n, there must be some i ∈ {0, 1}n such that

Θ(i) ≤
∨
j ̸=i

Θ(j),

and by permuting the coordinates of R, we see that in fact this must hold for every i, and in
particular for i = (0, ..., 0). By dropping half of the coordinates of R to get a similar algebra
R′ ≤ Fn such that f0 becomes the vector f ′0 = (x, ..., x) and g0 becomes the vector g′0 = (y, ..., y),
and defining elements f ′j , g

′
j by dropping half the coordinates of fj , gj , we see that

(f ′0, g
′
0) ∈

∨
j ̸=(0,...,0)

Θ′(j),

where Θ′(j) is the congruence of R′ generated by the pair (f ′j , g
′
j).

Each Θ′(j) has the following property: if (a, b) ∈ Θ′(j) and every pair of coordinates of a
are related by α ∧ β, then every pair of coordinates of b are also related by α ∧ β. To see this,
just note that for each coordinate i ≤ n we have (ai, bi) ∈ α, since this holds in the case where
(a, b) = (f ′j , g

′
j).

For j ̸= (0, ..., 0), Θ′(j) has the following additional property: there exists some coordinate i ≤ n
such that if (a, b) ∈ Θ′(j), then (ai, bi) ∈ γ. In fact, we can take the coordinate i to be the first
coordinate of j such that ji = 1, and note that the ith coordinates of f ′j , g

′
j are z, w respectively,

with (z, w) ∈ γ by the definition of γ.
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a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

α ∧ β α ∧ β α ∧ β α ∧ β

β β β β

α α α α αγ

Putting the above properties together, and using α∧β ≤ γ, we see that (f ′0, b) ∈
∨
j ̸=(0,...,0) Θ′(j)

implies that every coordinate of f ′0 is congruent modulo γ to every coordinate of b, and taking b = g′0
we see that (x, y) ∈ γ, which completes the proof.

Example 2.2.4. Consider the two-element semilattice A = ({0, 1},max) once again. In this case, we
can check directly that cA(n) ≥

(
n
n/2

)
. To see this, note that for every nonempty upwards closed

subset U ≤ An, there is a congruence θU which collapses all elements of U into a single top element
of An/θU , and which does not identify any pair of elements a ̸= b such that {a, b} ̸⊆ U . In other
words, θU = U2 ∪∆An .

We just need to check that the number of distinct nonempty upwards closed subsets U of {0, 1}n

is at least 2( n
n/2): for this, note that upwards closed sets U are in a one-to-one correspondence with

antichains (every upwards closed set U is determined by its antichain of minimal elements), and
every set of elements of An which each have exactly n/2 coordinates equal to 1 forms an antichain.

2.3 Parallelogram terms

Examining the proof of Theorem 2.2.11, we can extract useful terms known as parallelogram terms,
which we can use to give a better description of the relational clone corresponding to an algebra
with few subpowers.

Definition 2.3.1. If k = m + n, then an m,n-parallelogram term is a k + 3-ary term r which
satisfies the identities

r





y y x z · · · x x · · · x
...

...
...

...
. . .

...
...

. . .
...

y y x x · · · z x · · · x
x y y x · · · x z · · · x
...

...
...

...
. . .

...
...

. . .
...

x y y x · · · x x · · · z




=



x
...
x
x
...
x


,

where the upper left m×3 block has all rows given by y, y, x, the lower left n×3 block has all rows
given by x, y, y, and the right k × k block has zs on the diagonal and xs elsewhere.

Theorem 2.3.2 (Edge term implies parallelogram terms [105]). For any m,n > 0 with m+n = k,
a variety has a k-edge term e iff it has an m,n-parallelogram term r.

Proof. It’s clear that every m,n-parallelogram term is a ∆-cube term for

∆ = {{1, ...,m}, {1, ..., k}, {m+ 1, ...,m+ n}, {1}, ..., {k}},
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so by Theorem 2.2.7 if A has a parallelogram term then it has an edge term.
Now suppose that e is a k-edge term. We will build m,n-parallelogram terms rm by induction

on m. For m = 1, we need to show that the vector in F(x, y, z)k of all xs is in the subalgebra
generated by the columns of the matrix defining a 1, k − 1-parallelogram term. These vectors are
the vectors where all entries other than one are xs and the last is a z, the vector of all ys, and the
vectors (x, y, ..., y), (y, x, ..., x).

Letting d = d(y, x) = e(x, y, x, ..., x), we have

e




x y x x · · · x
z x z x · · · x
x x x z · · · x
...

...
...

...
. . .

...
x x x x · · · z



 =


d
x
x
...
x


and

e




x y x x · · · x
y y z z · · · z
y y x x · · · x
...

...
...

...
. . .

...
y y x x · · · x



 =


d
z
x
...
x

 ,

so the vectors (d, x, x, ..., x) and (d, z, x, ..., x) are in the subalgebra of F(x, y, z)k generated by
the columns of the matrix defining a 1, k − 1-parallelogram term. Note that the previous two
applications of the edge term e correspond to applications of the terms

s(x1, ..., xk) = e(x2, x1, x2, ..., xk) and p(x, y, z) = e(y, x, z, ..., z)

which act like near-unanimity and Mal’cev terms, respectively. To get the vector of all xs, we apply
e one more time:

e




d d x x · · · x
z x z x · · · x
x x x z · · · x
...

...
...

...
. . .

...
x x x x · · · z



 =


x
x
x
...
x

 .
Explicitly, our 1, k − 1-parallelogram term r1 is defined from the edge term e by

r1(x, y, z, u1, ..., uk) = e(p(y, z, u2), s(x, u2, ..., uk), u2, ..., uk)

= e(e(z, y, u2, ..., u2), e(u2, x, u2, ..., uk), u2, ..., uk).

For m > 1, we construct the m, k −m-parallelogram term rm using the previous term rm−1.
Here we focus on the mth rows of our matrices. Let

a = rm−1(y, y, x, x, ..., x, z, x, ..., x),

where the z occurs in the m + 3rd entry. We want to construct tuples (x, ..., x, a, x, ..., x) and
(x, ..., x, a, y, ..., y) from the columns of the defining matrix for an m, k−m-parallelogram term. We
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construct these tuples via

rm−1





y y x z · · · x x x · · · x
...

...
...

...
. . .

...
...

...
. . .

...
y y x x · · · z x x · · · x
y y x x · · · x z x · · · x
x y y x · · · x x z · · · x
...

...
...

...
. . .

...
...

...
. . .

...
x y y x · · · x x x · · · z




=



x
...
x
a
x
...
x


and

rm−1





y y x x · · · x x x · · · x
...

...
...

...
. . .

...
...

...
. . .

...
y y x x · · · x x x · · · x
y y x x · · · x z x · · · x
y y y y · · · y x y · · · y
...

...
...

...
. . .

...
...

...
. . .

...
y y y y · · · y x y · · · y




=



x
...
x
a
y
...
y


.

To get to the vector of all xs, we use

rm−1





x x x x x · · · z x · · · x
...

...
...

...
... . .

. ...
...

. . .
...

x x x x z · · · x x · · · x
a a x z x · · · x x · · · x
x y y x x · · · x z · · · x
...

...
...

...
... . .

. ...
...

. . .
...

x y y x x · · · x x · · · z




=



x
...
x
x
x
...
x


,

where the middle row works out because m > 1. Explicitly, rm is defined in terms of rm−1 by

rm(x, y, z, u1, ..., uk) = rm−1(rm−1(x, y, z, u1, ..., uk), rm−1(y, y, z, z, ..., um, ..., z), z, um, ..., u1, um+1, ..., uk).

To understand what parallelogram terms tell us, it is necessary to restrict to certain special
relations, known as critical relations.

Definition 2.3.3. A subalgebra R ≤ A1 × · · · × An is critical if it is ∩-irreducible, that is, if it
can’t be written as an intersection of strictly larger subalgebras, and if furthermore the relation R
has no dummy variables (that is, it depends on all of its inputs).

A standard result in the theory of algebraic lattices (Proposition A.5.6 from Appendix A) shows
that every relation can be written as an intersection of critical relations (possibly of lower arity).
The following result shows that every relation in an algebra with k-parallelogram terms can be
written as an intersection of relations of arity less than k and relations with the parallelogram
property.

124



Theorem 2.3.4 (Parallelogram terms constrain critical relations [105]). A variety V has k-parallelogram
terms iff for all critical R ≤ A1 × · · · × An with Ai ∈ V, either n < k or R has the parallelogram
property.

Proof. First suppose that V has k-parallelogram terms, and let R ≤ A1 × · · · × An be a critical
relation. Let R∗ be the cover of R, i.e., R∗ is the intersection of all relations which properly contain
R, and let a = (a1, ..., an) ∈ R∗ \R. Then a relation S which contains R will properly contain R iff
S contains a. Following Zhuk [167], we call a a key tuple for the critical relation R.

Since R is critical, R is properly contained in its existential projections onto any proper sub-
set of the coordinates 1, ..., n. Thus, there must exist elements b1, ..., bn such that the tuples
(b1, a2, ..., an), (a1, b2, ..., an), ..., (a1, a2, ..., bn) are all in R.

Now suppose, for contradiction, that n ≥ k and that R does not have the parallelogram prop-
erty when considered as a binary relation on (A1 × · · · × Ai) × (Ai+1 × · · · × An). Then the are
x1, ..., xn, y1, ..., yn such that the three tuples (y1, ..., yn), (y1, ..., yi, xi+1, ..., xn), (x1, ..., xi, yi+1, ..., yn)
are in R, but (x1, ..., xn) is not in R. Since x = (x1, ..., xn) is not in R, the subalgebra generated
by R ∪ {x} must properly contain R, so

a ∈ Sg(R ∪ {x}).

Thus there are tuples c1, ..., cm ∈ R and an m+ 1-ary term t such that

t(x, c1, ..., cm) = a.

Defining a tuple d by
t(y, c1, ..., cm) = d,

we see that the three tuples (d1, ..., dn), (d1, ..., di, ai+1, ..., an), (a1, ..., ai, di+1, ..., dn) are all in R.
But then we can use an i, n− i-parallelogram term r (which exists because n ≥ k) to see that

a1
...
ai
ai+1

...
an


= r





d1 d1 a1 b1 · · · a1 a1 · · · a1
...

...
...

...
. . .

...
...

. . .
...

di di ai ai · · · bi ai · · · ai
ai+1 di+1 di+1 ai+1 · · · ai+1 bi+1 · · · ai+1

...
...

...
...

. . .
...

...
. . .

...
an dn dn an · · · an an · · · bn




∈ R,

contradicting the assumption that a ̸∈ R.
For the converse direction, suppose that V is a variety such that every critical k-ary relation has

the parallelogram property, and suppose that m+n = k. Let F = FV(x, y, z) be the free algebra on
three generators in V. Suppose for contradiction that V doesn’t have an m,n-parallelogram term.
Then 

x
...
x
x
...
x


̸∈ SgFk





y y x z · · · x x · · · x
...

...
...

...
. . .

...
...

. . .
...

y y x x · · · z x · · · x
x y y x · · · x z · · · x
...

...
...

...
. . .

...
...

. . .
...

x y y x · · · x x · · · z




,
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so by Zorn’s Lemma there exists a maximal k-ary relation R on F which contains the right hand side
but does not contain the tuple (x, ..., x). The relation R is then a critical k-ary relation on F , since
every relation which properly contains R must contain R∗ = Sg(R ∪ {(x, ..., x)}) and since every
existential projection of R onto a proper subset of the coordinates contains a vector of all xs (by
the last k columns of the matrix of generators above). However, R does not have the parallelogram
property when considered as a binary relation on Fm×Fn, by the first three columns of the matrix
of generators above, contradicting our assumption on V.

Corollary 2.3.5. A variety V has k-parallelogram terms iff for every relation R ≤ A1 × · · · × An
with Ai ∈ V, there exists a relation R′ ≤ A1 × · · · ×An such that R′ has the parallelogram property
and

R = R′ ∩
⋂

I⊆[n],|I|<k

πI(R).

The relation R′ from the corollary need not be so mysterious: we can take it to be the least
relation R′ which contains R and has the parallelogram property, since any intersection of relations
which have the parallelogram property also has the parallelogram property. This choice of R′ can
also be “generated” from R, by repeatedly adjoining tuples which are required to be inside in order
for the parallelogram property to hold.

More explicitly, for any I ⊆ [n], we can find the least relation RI which contains R and has the
(binary) parallelogram property when considered as a subalgebra of(∏

i∈I
Ai

)
×
(∏
j ̸∈I

Aj
)
,

by finding the linking congruence of R when considered as a subalgebra of the above, which restricts
to a congruence αI ∈ Con(πI(R)), and taking RI to be the relation αI ◦ R. We can then take

R′ =
⋃

I1,I2,...⊆[n]

RI1I2···.

In particular, if all of the algebras Ai are finite, then R′ is contained in the (multisorted) relational
clone generated by R.

2.3.1 Critical rectangular relations in congruence modular varieties

Using the commutator theory for congruence modular varieties, we can give a more detailed struc-
ture theory for the high-arity critical relations preserved by algebras with few subpowers. In fact,
this structure theory applies more generally in congruence modular varieties, so long as we restrict
our attention to critical relations with a weak form of the parallelogram property.

Definition 2.3.6. A relation R ≤ A1× · · · ×Ak is said to have the 1, k− 1-parallelogram property,
or alternatively is called rectangular, if for any i ≤ k, when we regard R as a binary relation on

(A1 × · · · × Ai−1 × Ai+1 × · · · × Ak)× Ai,

it has the (binary) parallelogram property.
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The main property of subdirect rectangular relations which we need - and which holds in
complete generality, not just in the context of congruence modularity - is that if we define a
congruence θi on Ai from the linking congruence of R (considered as a binary relation on (· · · )×Ai),
then we have x ∈ R iff x/

∏
i θi ∈ R/

∏
i θi. Thus we may as well study the relation

R/
∏
i

θi ≤sd A1/θ1 × · · · × Ak/θk

instead of studying R. The reduced relation is critical if the original R is critical, is still rectangular,
and has trivial linking congruences on each Ai/θi, so it can be viewed as the graph of a surjective
homomorphism

π[k]\{i}

(
R/

∏
i

θi

)
↠ Ai/θi

for each i.

Definition 2.3.7. A subdirect rectangular relation R ≤sd A1×· · ·×Ak is called reduced if for each
i ≤ k, R is the graph of a surjective homomorphism

π[k]\{i}(R)↠ Ai,

or equivalently, for each i the map

π[k]\{i} : R→ π[k]\{i}(R)

is an isomorphism, i.e. kerπ[k]\{i} = 0R.

Proposition 2.3.8. If R ≤sd A1×· · ·×Ak is a reduced subdirect critical rectangular relation, then
each Ai is subdirectly irreducible.

Proof. Let R∗ be the cover of R in the lattice of subalgebras of A1×· · ·×Ak, and let a = (a1, ..., ak)
be a key tuple for R, that is, an element of R∗ \ R. Since R is critical, for every i there is some
bi ∈ Ai such that (a1, ..., ai−1, bi, ai+1, ..., ak) ∈ R (and this bi is unique, since R is reduced). The
claim is that for each i, every nontrivial congruence on Ai contains the pair (ai, bi) - that is, each
Ai is subdirectly irreducible with monolith equal to the congruence generated by the pair (ai, bi).

Let ψi ∈ Con(Ai) be any nontrivial congruence. Then the relation

∃yi ((x1, ..., xi−1, yi, xi+1, ..., xk) ∈ R) ∧ (xi ≡ψi
yi)

strictly contains R (since R is reduced), so it contains R∗, and in particular contains the key tuple
a. Using the fact that R is reduced again, we see that the pair (ai, bi) must be contained in ψi.

As it turns out, reduced critical rectangular relations are closely related to the concept of
similarity between subdirectly irreducible algebras (see Appendix A.5.1). We won’t need the full
theory of similarity, just the following definition.

Definition 2.3.9. If A1, ...,Ak are subdirectly irreducible algebras, then we say that an algebra R
is the graph of a joint similarity between the Ais if for each i, R has a (critical) congruence αi with
R/αi ∼= Ai, and for each pair i, j there are congruences γij , δij ∈ Con(R) such that

Jαi, α∗
i K↘ Jγij , δijK↗ Jαj , α∗

j K.

More explicitly, this means that αi ∨ δij = α∗
i , αj ∨ δij = α∗

j , and αi ∧ δij = αj ∧ δij .
Note that by Proposition A.5.36, R/(α1 ∧ · · · ∧αk) is also a graph of a joint similarity, so there

is no real loss in restricting to the case where R is a subdirect product of the Ais, with αi = kerπi.
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Theorem 2.3.10 (Kearnes, Szendrei [105]). If R ≤sd A1 × · · · × Ak is a reduced subdirect critical
rectangular relation of arity k ≥ 3 in a congruence modular variety, then

(a) R is the graph of a joint similarity between the Ais,

(b) for each i, j, the image of πi,j(R) in Ai/(0Ai : 0∗Ai
) × Aj/(0Aj : 0∗Aj

) is the graph of an
isomorphism

Ai/(0Ai : 0∗Ai
)

∼−→ Aj/(0Aj : 0∗Aj
),

(c) each monolith 0∗Ai
is abelian, and

(d) the cover R∗ is also rectangular, and the linking congruence of R∗ on Ai is the monolith 0∗Ai
.

If R has the parallelogram property, then so does its cover R∗.

Proof. (a) Let a = (a1, ..., ak) ∈ R∗ \ R be a key tuple for R, and for each i let bi ∈ Ai such that
(a1, ..., ai−1, bi, ai+1, ..., ak) ∈ R. Let ai = (a1, ..., ai−1, bi, ai+1, ..., ak). Then for any i ̸= j, if we let
δij be the congruence generated by the pair (ai, aj), we claim that

Jkerπi, (kerπi)
∗K↘ J0R, δijK.

The equality kerπi ∨ δij = (kerπi)
∗ was proved in the previous proposition. For the equality

kerπi ∧ δij = 0R, note that

kerπi ∧ δij ≤ kerπi ∧ kerπ[k]\{i,j} = kerπ[k]\{j} = 0R,

where the last equality follows from the fact that R is reduced.
(b) This follows directly from (a) and the Diamond Isomorphism Theorem A.2.5 - for details,

see Proposition A.5.36.
(c) By Proposition A.5.36 again, if πi,j(R) is not the graph of an isomorphism for any pair i, j,

then each monolith 0∗Ai
must be abelian.

(d) Suppose that u, v, w ∈ R with π[k]\{i}(u) = π[k]\{i}(v) and vi = wi. We need to show that
there is some element t ∈ R with π[k]\{i}(t) = π[k]\{i}(w) and ti = ui.

Since R∗ is contained in the relation

∃yi ((x1, ..., xi−1, yi, xi+1, ..., xk) ∈ R) ∧ (xi ≡0∗Ai
yi)

and R is reduced, we have (ui, vi) ∈ 0∗Ai
. Let p(x, y, z) be a Gumm difference term as in Theorem

A.3.1, i.e. a term such that p(y, y, x) ≈ x, and such that for (x, y) ∈ θ and θ any congruence we
have p(x, y, y) [θ, θ] x. Then taking θ = 0∗Ai

, we have p(ui, vi, vi) = ui by part (c), so we can take
t = p(u, v, w).

For the last claim, suppose that we view R∗ as a binary relation on AI × A[n]\I , where we set
AI =

∏
i∈I Ai, and that we have (a, b), (c, b), (c, d) ∈ R∗. Pick some i ∈ I and j ̸∈ I. Then there

is some a′ such that πI\{i}(a
′) = πI\{i}(a), a′i ≡0∗Ai

ai, and (a′, b) ∈ R. Similarly find c′ which only

differs from c in the ith coordinate, has c′i ≡0∗Ai
ci, and has (c′, b) ∈ R. Then (c′, d) ∈ R∗ by part

(d), so we can find d′ which only differs from d in the jth coordinate, has d′i ≡0∗Aj
di, and has

(c′, d′) ∈ R. Then by the parallelogram property for R, we have (a′, d′) ∈ R, so by part (d) we have
(a, d) ∈ R∗.
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Example 2.3.1. Consider the generalized majority-minority algebra A = ({a, b, c}, φ2) from Example
2.1.2, which is subdirectly irreducible with abelian monolith 0∗A corresponding to the partition
{a}, {b, c} of its elements, and has A/0∗A isomorphic to a two element majority algebra. We can
check that the monolith 0∗A of A is equal to its own centralizer by verifying that [1A : 0∗A] = 0∗A and
[0∗A, 0

∗
A] = 0A: to see this, note that

φ2

([
a a
b b

]
,

[
a a
b b

]
,

[
b c
b c

])
=

[
a a
b c

]
∈M(1A, 0

∗
A),

so (b, c) ∈ [1A, 0
∗
A], while every element of M(0∗A, 0

∗
A) either has all entries equal to a, or has all

entries in {b, c} with an even number of bs and an even number of cs.
The ternary relation R ≤sd A3 corresponding to the columns of the matrixa b b c c

a b c b c
a b c c b


is a reduced subdirect critical rectangular relation of arity 3 (with key tuple (c, c, c)), so by the
structure theorem it is the graph of a joint similarity between three copies of A. Every two-
coordinate projection πi,j(R) is equal to the congruence 0∗A = (0A : 0∗A), and the cover R∗ of R in
Inv3(A) is the relation x 0∗A y 0∗A z.

More generally, for any k we can define a relation Rk ≤sd Ak which contains the tuple (a, ..., a)
together with the 2k−1 tuples in {b, c}k such that the total number of cs is even, and we see that
Rk is a reduced critical rectangular relation for each k. We claim that for every k ≥ 3, there are
exactly four critical relations in Invk(A): Rk, Rk \ {(a, ..., a)}, and the two relations we get from
these by swapping bs and cs in the last coordinate.

To prove the claim, we first note that the only algebras in HS(A) which have abelian monoliths
are A and {b, c}, and that these two algebras are not similar to each other (since A/0∗A is not
isomorphic to any quotient of {b, c}). Thus by the structure theorem, we only need to consider
relations which are either subdirect in Ak or subdirect in {b, c}k. The interesting case is the case
of relations which are subdirect in Ak.

The next thing we need to check is that no graph of a similarity C ≤sd A2 from A to A induces
the isomorphism A/0∗A → A/0∗A which corresponds to swapping the equivalence classes {a} and
{b, c} of 0∗A. Note that the only candidate for C is the relation {(a, b), (a, c), (b, a), (c, a)}, and for
this choice of C the congruence lattice Con(C) is given by the following picture.

1C

kerπ1 ∨ kerπ2

kerπ1 kerπ2

0C

As the reader can see, there is no pair γ, δ ∈ Con(C) such that Jkerπ1, kerπ1 ∨ kerπ2K↘ Jγ, δK↗
Jkerπ2, kerπ1 ∨ kerπ2K, so C is not the graph of a similarity. Alternatively, we can see that C can’t
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be the graph of a similarity using the characterization in Corollary A.5.38, since the corresponding
congruence classes of 0∗A which are linked by C do not have the same sizes.

Thus, in any subdirect critical relation R ≤sd Ak of arity k > 2, each πi,j(R) must be the
congruence 0∗A, so R will consist of the tuple (a, ..., a) together with some subalgebra of {b, c}k.
Since for any S ≤ {b, c}k the set S ∪ {(a, ..., a)} will always be closed under φ2, if R is critical then
so is R \ {(a, ..., a)}, and it’s easy to check that there are only two critical relations S ≤sd {b, c}k.
This completes the classification of critical relations in Invk(A) for k > 2.

Remark 2.3.1. Using the structure theorem 2.3.10 and the fact that the centralizer of the monolith
(0 : 0∗) is automatically abelian for subdirectly irreducible algebras in residually small congruence
modular varieties (Corollary A.5.30), one can easily reduce the subpower membership problem 2.4.1
for residually small congruence modular varieties to the subpower membership problem for abelian
groups by taking advantage of the properties of the Gumm difference term (see Corollary A.3.9).
For details of the reduction, see [42].

Example 2.3.2. We give an example of a minimal algebra with few subpowers which does not
generate a residually small variety. Let A = ({a, b, c, d}, g), where g is the idempotent ternary
symmetric operation which is determined by that fact that it commutes with the cyclic permutation
σ = (a b c d) and satisfies

g(a, a, b) = a,

g(a, a, c) = c,

g(a, a, d) = c,

g(a, b, c) = c.

Then A has a unique nontrivial congruence 0∗A corresponding to the partition {a, c}, {b, d}, and
A/0∗A is isomorphic to a two element majority algebra. The congruence classes of 0∗A are affine over
Z/2, and the algebra S = SgA2{(a, b), (b, a)} has a congruence ψ corresponding to the partition{[

a
b

]
,

[
b
c

]
,

[
c
d

]
,

[
d
a

]}
,

{[
a
d

]
,

[
b
a

]
,

[
c
b

]
,

[
d
c

]}
,

such that S/ψ is isomorphic to a two element affine algebra over Z/2 (which is isomorphic to {a, c}).
In fact, we have an isomorphism S ∼= A× {a, c}.

To see that A has few subpowers, let e be the term

e(u, x, y, z) = g(x, g(u, y, y), g(y, g(x, y, z), g(x, y, z))).

Then e acts like the majority operation g(x, y, z) on A/0∗A, acts like the minority operation g(x, u, y)
on {a, c}, and has

e

b b a a
b a b a
a a a b

 = g

b a a
a b a
a a a

 =

aa
a

 ,
e

d d a a
d a d a
a a a d

 = g

d c a
a d c
a a a

 =

aa
a

 .
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Thus e is a 3-edge term.
Note that applying σ to the second coordinate of S turns it into 0∗A, and under the isomorphism

(1, σ) : S ∼−→ 0∗A, one of the congruence classes of ψ becomes the diagonal {(x, x) | x ∈ A}. Thus 0∗A
is the center of A, and A is similar to the idempotent reduct of Z/2. Since 1A = (0A : 0∗A) is not
abelian, we see that A can’t generate a residually small variety.

We can check that a b
a b
a b

 ̸∈ SgA3×2


a b
a b
b a

 ,
a b
b a
a b

 ,
b a
a b
a b


by taking the rows modulo ψ. Thus none of the subsets {a, b}, {b, c}, {c, d}, {d, a} (which are taken
to each other by powers of the automorphism σ) are closed under any term which acts nontrivially
on A/0∗A. Using this, one can show that Clo(g) does not contain any proper Taylor subclones.

What do critical relations on A look like? Suppose that R ≤sd Am × {a, c}n is critical and
subdirect for some m,n with m+ n ≥ 3. By Theorem 2.3.4, R has the parallelogram property. All
we can conclude from Theorem 2.3.10 is that R∗ has the parallelogram property and has linking
congruence (0∗A)m × 1n{a,c}, so the reduction R∗

red of R∗ is a subdirect m-ary relation on the two

element majority algebra A/0∗A which has the parallelogram property.
Luckily, it turns out that any such R∗

red has πij(R∗
red) either a full relation or the graph of an

automorphism of A/0∗A for any i, j ∈ [m]. This can be proved directly by reasoning about globally
consistent instances of 2-SAT whose solution sets have the parallelogram property, or it can be
proved more abstractly by using the fact that the two element majority algebra is subdirectly
irreducible and generates a congruence distributive variety.

However we prove the claim about R∗
red, we see that if we assume without loss of generality that

(a, ..., a) ∈ R (by applying powers of σ to coordinates of R), then we can group the coordinates of
R into groups of size m1, ...,mk,

R ≤sd Am1 × · · · × Amk × {a, c}n,

such that πij(R) is full for coordinates i, j coming from separate groups, and πij(R) = 0∗A for
coordinates i, j coming from the same group.

Since we have assumed (a, ..., a) ∈ R, R must be closed under the unary polynomial ϕ : x 7→
g(a, x, x). Since ϕ(a) = ϕ(c) = a and ϕ(b) = ϕ(d) = d, we see that any vector of as and ds which
is constant on each group of coordinates will be contained in R. From this we see that in fact, any
piecewise-constant vector

((x1, ..., x1), (x2, ..., x2), ..., (xk, ..., xk), (a, ..., a)) ∈ Am1 × · · · × Amk × {a, c}n

must be contained in R. If we now consider the restriction R ∩ {a, c}m+n, then we find that it
is an affine space defined by a system of linear equations over Z/2, where the number of coor-
dinates from any single group which show up in any equation must be even, since we may swap
(a, ..., a), (c, ..., c) ∈ Ami in any element of R. Thus we see that R can be written as an intersection
of relations R′ where the coordinates pair up in groups {i, j} of size two, such that πij(R′) = 0∗A
and the relation R′ factors through the map 0∗A ↠ {a, c} for each such pair of coordinates.

Using the above analysis, we see that the relational clone corresponding to A is generated
by the graph of the automorphism σ, which is SgA2{(a, b), (d, a)}, the critical binary relation
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SgA2{(a, a), (a, b), (b, b)}, which corresponds to a partial order on the majority algebra A/0∗A,
and the ternary relation SgA3{(a, a, a), (a, c, c), (b, b, a)}, which is the graph of the homomorphism
0∗A ↠ {a, c}.

2.4 Learnability of relations encoded by compact representations

We’ll start off by reviewing some of the standard definitions of learning theory.

Definition 2.4.1. Fix a universe U . We call a collection C of subsets of U , together with a rule
for encoding the elements of C, a concept class. An encoding of an element C ∈ C is called a
concept (from C). The encoding scheme is called polynomially evaluable if there is an algorithm
which takes an encoding of a concept C ∈ C and an element x ∈ U , and determines whether x ∈ C
in polynomial time.

Generally we imagine a situation in which a teacher knows a target concept C ∈ C, and a
student tries to learn the target concept C from the teacher, either by seeing (random) examples
of elements in U and being told whether or not they are in the target concept C, or by asking the
teacher certain types of questions. The teacher is modeled as an oracle which can be queried by
the learner.

The main model which we will be examining in this section is the model of exact learning with
(improper) equivalence queries from [3]. Learnability results in the equivalence query model can
be converted directly into learnability results in the probably approximately correct model (which
is often abbreviated as PAC-learning).

Definition 2.4.2. Let C′ be a concept class which contains C, and call C′ the hypothesis class. We
define an equivalence oracle OC with target concept C ∈ C to be the function which takes as input
a hypothesis C ′ ∈ C′, returns “true” if C = C ′, and otherwise returns an (arbitrary) element of the
symmetric difference C∆C ′.

Definition 2.4.3. An algorithm which makes calls to an oracle O is said to learn the concept class
C in the exact model with equivalence queries if, when the oracle O is the equivalence oracle OC
with target concept C ∈ C, the algorithm makes finitely many calls to the oracle O with encodings
of hypotheses C ′ ∈ C′ before finally discovering the concept C. The learning algorithm is called
proper if C′ = C, and improper otherwise. If there is an algorithm which learns C in time polynomial
in log |U |, then we say that C is polynomially learnable.

We are interested in the case where the universe U is An for n large and A a fixed algebraic
structure, and where the concept class C consists of the set of subalgebras of An, i.e. C = Invn(A)
(recall Invn(A) is the set of n-ary relations which are preserved by the basic operations of A). In
order for polynomial (in n) length encodings of the concepts in C to exist, we need log |C| to be
bounded by a polynomial in n, that is, we need A to have few subpowers.

Suppose that A has a k-edge term, and fix a particular k-edge term e. In this case, n-ary relations
on A are naturally encoded by compact representations, so we will use compact representations as
our encoding scheme for the concept class C = Invn(A).

For the sake of definiteness, we will slightly modify the definition of a compact representation
R by requiring that for each element xI of πI(R) (where |I| < k), a specific element x ∈ R with
πI(x) = xI has been marked (by xI), and similarly for each minority index (i, a, b) of R, a particular
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ordered pair (ua, ub) ∈ R2 witnessing this index has been marked (by (i, a, b)). We will also require
that each element x of the compact representation R is marked at least once (i.e., either x is part
of a marked witness to a minority index of R, or x is a marked witness for some element of a
projection of R onto a small set of coordinates).

One feature which we would like this encoding scheme to satisfy is that there should be a
polynomial time procedure to check whether an element a ∈ An is contained in the relation R
encoded by the compact representation R. In other words, we want our encoding scheme to
be polynomially evaluable. The next lemma can be used to show that our encoding scheme is
polynomially evaluable. We use the notation [i] for the set {1, ..., i}.

Lemma 2.4.4. Suppose that R ⊆ An is a compact representation of R ≤ An, i ≤ n, a ∈ An, b ∈ R
with π[i−1](a) = π[i−1](b), and set ci = d(bi, ai). Suppose that

• for each I ⊆ [i] with |I| < k and i ∈ I, the element xI ∈ R is the marked element of R
witnessing πI(x

I) = πI(a), and

• the pair (ua, uc) ∈ R2 is the marked witness of the minority index (i, ai, ci).

Then there is a term t[i] of A which can be built out of the terms e, s, p, d of Theorem 2.2.8 in time
polynomial in n, such that b[i] = t[i](b, ua, uc, x

I1 , ...) ∈ R satisfies π[i](a) = π[i](b
[i]).

Proof. The proof is a modification of the proof of Theorem 2.2.11, with the induction over subsets
of [i] modified to only involve polynomially many subsets of [i]. The trick is to consider sets I of
the form [j] ∪ J , where j ≤ i, |J | = k − 1, and i ∈ J . There are only polynomially many such sets
I, and we can induct on j to handle them.

So we will show by induction on j that for every set I = [j] ∪ J with |J | = k − 1 and i ∈ J ,
there is a term tI such that bI = tI(b, ua, uc, x

I1 , ...) satisfies πI(b
I) = πI(a). The base case j = 0

is handled by taking tI = xI for |I| = k − 1.
For the inductive step, note that if I = [j] ∪ J , then we can also write I = [j − 1] ∪ ({j} ∪ J).

Let {j}∪J = {l1, ..., lk−1, i}, and define sets I1, ..., Ik−1 by deleting l1, ..., lk−1, respectively, from I,
and note that each of the sets Im has the form Im = [j − 1]∪ Jm, where Jm = ({j} ∪ J) \ {lm} and
i ∈ Jm. By the induction hypothesis, we have already constructed terms tIm and corresponding
elements bIm ∈ R with πIm(b) = πIm(a). Then if we consider

s(b, bI1 , ..., bIk−1),

we see that if we restrict to the coordinates in {j} ∪ J , we have

s




al1 bI1l1 al1 · · · al1
al2 al2 bI2l2 · · · al2
...

...
...

. . .
...

alk−1
alk−1

alk−1
· · · b

Ik−1

lk−1

bi ai ai · · · ai



 =


al1
al2
...

alk−1

ci

 .

Additionally, if we consider
p(uc, ua, b

I1),
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then if we restrict to the coordinates in {j} ∪ J , we have

p




ul1 ul1 bI1l1
ul2 ul2 al2
...

...
...

ulk−1
ulk−1

alk−1

ci ai ai



 =


bI1l1
al2
...

alk−1

ci

 .

Thus, if we take tI to be given by

tI = e(p(uc, ua, t
I1), s(b, tI1 , ..., tIk−1), tI1 , ..., tIk−1),

then when we restrict to the coordinates in {j} ∪ J , we get

e




bI1l1 al1 bI1l1 al1 · · · al1
al2 al2 al2 bI2l2 · · · al2
...

...
...

...
. . .

...

alk−1
alk−1

alk−1
alk−1

· · · b
Ik−1

lk−1

ci ci ai ai · · · ai



 =


al1
al2
...

alk−1

ai

 ,

which completes the induction step.

We can now check if an element a ∈ An is in the relation encoded by the compact representation
R as follows. First we check that πI(a) ∈ πI(S) for each I with |I| < k, and let xI be the marked
element of R with πI(x

I) = πI(a). Then we try to construct elements b[i] ∈ SgAn(R) iteratively
with π[i](b

[i]) = π[i](a). We start by taking b[k−1] = x[k−1], and repeatedly invoke Lemma 2.4.4

to see that if (i, ai, ci) ∈ Sig(R), where ci = d(b
[i−1]
i , ai), then we can construct b[i] ∈ SgAn(R) in

polynomial time. We formalize this procedure as a subroutine which I will call Approximate(R, a)
(this is almost the same as the combination of the subroutines Interpolate and New-Fix-values

from [88]).
The running time of Approximate is O(nk+1): there are less than nk choices for j = l1 < · · · <

lk−1 < i, and for each choice, computing the new bI takes O(n) steps (since bI has n coordinates).
By only maintaining the values of b[i−1] and bI with i ∈ I in the ith step through the outer loop,
the memory required is reduced to O(nk), which is the same as the space required to store a typical
compact representation R.

Proposition 2.4.5. If R ⊆ An is a compact representation and a ∈ An with πI(a) ∈ πI(R) for all
I with |I| < k, then either Approximate(R, a) returns a and a ∈ SgAn(R), or Approximate(R, a)
returns b ̸= a such that b ∈ SgAn(R), and such that if i is minimal with bi ̸= ai, then the minority
index (i, ai, d(bi, ai)) is not witnessed in R.

At this point everything seems wonderful, but there is one major wrinkle: we have no idea
how to (efficiently) test whether a given “compact representation” R ⊆ An is actually a compact
representation of the subalgebra R = SgAn(R) it generates - in other words, we don’t know how
to test whether R is a valid encoding of a concept from the concept class C = Invn(A). While it’s
easy to test whether R and R have the same projections onto small subsets of the coordinates (just
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Algorithm 10 Approximate(R, a), e, s, p, d terms as in Theorem 2.2.8, R ⊆ An a compact repre-
sentation such that πI(a) ∈ πI(R) for all I with |I| < k.

1: for all I ⊆ [n] with |I| < k do
2: Let xI be the marked element of R with πI(x

I) = πI(a).

3: Set b[k−1]∩[n] = x[k−1]∩[n].
4: for i from k to n do
5: Set ci ← d(b

[i−1]
i , ai).

6: if (i, ai, ci) ̸∈ Sig(R) then
7: return b[i−1].
8: else
9: Let (uia, u

i
c) be the marked witness of the minority index (i, ai, ci) in R.

10: for j from 1 to i− k + 1 do
11: for all l1, ..., lk−1 with j = l1 < l2 < · · · < lk−1 < i do
12: Set I ← [j] ∪ {l2, ..., lk−1, i}.
13: for m from 1 to k − 1 do
14: Set Im ← I \ {lm}.
15: Set bI ← e(p(uic, u

i
a, b

I1), s(b[i−1], bI1 , ..., bIk−1), bI1 , ..., bIk−1).

16: return b[n].

check whether πI(R) is closed under the operations of A for all I with |I| < k), what is missing is
a way to test whether R witnesses every minority index which is witnessed in R.

Let’s think for a moment about the problem of checking whether R and Sg(R) witness the same
minority indices. Since there are only n|A|2 possible minority indices, we may as well focus on one
particular minority index (i, a, b). By replacing R with π[i](R) and n with i, we may reduce to the
case i = n.

Proposition 2.4.6. Suppose that the minority index (i, a, b) is witnessed by some pair (ua, ub) in
a relation R ≤ An. Then for any tuple ta ∈ R with πi(ta) = a, there is a tuple tb ∈ R such that the
pair (ta, tb) also witnesses the minority index (i, a, b). If i = n, then tb is uniquely determined by
ta.

Proof. Take tb = p(ub, ua, ta). Then the identity p(y, y, x) ≈ x implies that π[i−1](tb) = π[i−1](ta),
and the fact that a, b are a minority pair (that is, that d(b, a) = b) and the identity p(x, y, y) ≈
d(x, y) imply that πi(tb) = p(b, a, a) = b.

So we can check whether a minority index (i, a, b) is witnessed by Sg(R) as follows. First we
pick any tuple ta ∈ R with πi(ta) = a. Then we modify it to make a tuple tb, by replacing the ith
coordinate with a b. Finally, we check whether π[i](tb) ∈ Sg(π[i](R)). By the above results, we have
π[i](tb) ∈ Sg(π[i](R)) if and only if (i, a, b) ∈ Sig(Sg(R)). We find ourselves naturally led to consider
the subpower membership problem.

Problem 2.4.1 (Subpower Membership Problem). Given a finite subset S ⊆ An and an element
x ∈ An, determine if x is in the subalgebra of An generated by S.

Theorem 2.4.7 (Bulatov, Mayr, Szendrei [42]). For a fixed finite algebra A with few subpowers,
the following problems are polynomial time reducible to each other:
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• The subpower membership problem for A: determine if x ∈ SgAn(S), given x ∈ An and
S ⊆ An.

• Find a compact representation for SgAn(S), given a subset S ⊆ An.

• The subpower intersection problem for A: given subsets R,S ⊆ An, find a set of generators
for SgAn(R) ∩ SgAn(S).

If A has few subpowers and has a finite number of basic operations, then the subpower membership
problem for A is in NP.

Proof. Left as an exercise to the reader. The hardest bit is the claim that the subpower membership
problem is in NP: for this, imagine that we have a set R which looks like a compact representation,
and consider the set C of all a ∈ An such that Approximate(R, a) returns a. If C is not closed
under the basic operations of A, then there should be a witness to the fact that C is not closed, and
a nondeterministic algorithm can guess such a witness, verify that it works, and use it to enlarge
R.

Unfortunately, whether the subpower membership problem is in P for algebras with few sub-
powers is currently an open problem (even in the special case of quasigroups). So we need to find
a workaround for this issue.

The workaround is to enlarge the concept class C = Invn(A) to a larger concept class C′, where
concepts in C′ are encoded by “compact representations” R ⊆ An, where we allow sets R which are
not compact representations of the subalgebra R = SgAn(R) which they generate. In order to be
precise about exactly what concept C is encoded by R, we use the Approximate subroutine.

Definition 2.4.8. If R ⊆ An is a “compact representation”, then the corresponding concept
C ⊆ An encoded by R is defined by the following rule. An element a ∈ An is in C iff the following
two conditions are satisfied:

• for every I ⊆ [n] with |I| < k, we have πI(a) ∈ πI(R), and

• the subroutine Approximate(R, a) returns a.

The penalty we will pay for this workaround is that since the new concept class C′ is larger
than C = Invn(A), our learning algorithm will now be making improper equivalence queries. If the
subpower membership problem for A can be proved to be in P, then we will be able to upgrade to
a learning algorithm which makes only proper equivalence queries.

Now we can finally describe the learning algorithm, which is remarkably simple.

Proposition 2.4.9. For a fixed algebra A with few subpowers, the algorithm Learn(O) takes time
polynomial in n to find an encoding R for the target concept C ∈ Invn(A).

Proof. At every step of the algorithm, we have Sg(R) ⊆ C: this is true at the beginning, and if
it is true before we call O(R), then since the concept C ′ encoded by R has C ′ ⊆ Sg(R) ⊆ C, the
value a returned by O(R) will be contained in C∆C ′ = C \ C ′ ⊆ C, so Sg(R ∪ {a}) ⊆ C.

Furthermore, every time we process a new a ∈ C \ C ′, we strictly enlarge R to make the new
concept encoded by R contain a, either by adding a as a designated witness to πI(a) ∈ πI(R) for
some I, or by adding new minority indices which were not present in the original R. Since R can
only increase in size polynomially many times (as a compact representation has size bounded by
a polynomial in n), we can only call the oracle polynomially many times before the process must
terminate.
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Algorithm 11 Learn(O), O an equivalence oracle for an unknown target concept C ∈ Invn(A).

1: Set R← ∅.
2: while O(R) does not return “true” do
3: Set a← O(R).
4: for all I ⊆ [n] with |I| < k such that πI(a) has no designated witness in R do
5: Set R← R ∪ {a}.
6: Mark a as the designated witness for πI(a).

7: while Approximate(R, a) does not return a do
8: Set b← Approximate(R, a).
9: Let i be minimal such that ai ̸= bi.

10: Set R← R ∪ {a, d(b, a)}.
11: Mark the pair (a, d(b, a)) as the designated witness for the minority index (i, ai, d(bi, ai)).

12: Optionally, enlarge R further to make it closer to a compact representation of Sg(R).

Remark 2.4.1. If we did not insist on polynomial evaluability of the encoding scheme (or if we could
solve the subpower membership problem), then we could instead encode relations via generating
sets. The learning algorithm would then be even simpler: at every step, the learner guesses that
the target concept is the relation generated by all the examples it has seen so far. This learning
algorithm is known as the closure algorithm. The issue is that now the equivalence oracle becomes
hard to implement, as the teacher is forced to determine whether a given set generates the target
relation they have in mind.

Now we will explain how all of this relates to Valiant’s PAC-learning model [158]. In the PAC-
learning model, the teacher (oracle) has access to both a target concept C ∈ C and a probability
distribution µ over the universe U , both of which are unknown to the learner. The learner is allowed
to request random classified examples, sampled from the distribution µ (by a “classified” example,
I mean that the learner is given an example and told whether or not it is in the target concept C).

Definition 2.4.10. If C ∈ C is a target concept and µ is a probability distribution on the universe
U , then the sampling oracle for the pair C, µ is a randomized oracle which samples a random
element a ∈ U drawn from the distribution µ, and returns the ordered pair (a, a ∈ C), where by
“a ∈ C” we mean either “true” or “false” based on whether a is in the target concept C.

In the PAC-learning model, the goal of a learning algorithm is to output an encoding of a concept
C ′ in the hypothesis class C′, such that the µ-measure µ(C∆C ′) of the symmetric difference between
C and C ′ is small. We can’t hope to do better than this, since the chance of seeing an example
which lets us distinguish between C and C ′ is at most µ(C∆C ′) times the number of classified
examples we request.

Definition 2.4.11. We say that an algorithm with access to a sampling oracle learns a concept
class C in the probably approximately correct model with error ϵ and confidence 1 − δ if for any
target concept C ∈ C and any probability distribution µ over the universe, the algorithm eventually
returns a hypothesis C ′ ∈ C′ such that

P[µ(C∆C ′) ≤ ϵ] ≥ 1− δ.
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The probability here is taken over the random choices made by the oracle (and possibly the learning
algorithm) - the target concept C is not being randomized here, we require this for all C ∈ C and
all µ.

We say that a concept class C is efficiently PAC-learnable if there is an algorithm which learns
C in the PAC-model and takes time polynomial in log(|U |), 1

ϵ , and log(1δ ) for ϵ, δ > 0.

The standard learning algorithm in the PAC model is to request a large number of classified
examples, and then choose any hypothesis C ′ ∈ C′ which is consistent with all of the classified
examples we have seen so far. For this to work, it is necessary that the hypothesis class C′ is in
some sense “small”, and we also need to have a way to efficiently find at least one hypothesis which
is consistent with the examples. First we will define a measure of the “size” a the concept class C,
known as the VC-dimension.

Definition 2.4.12. If C is a collection of subsets of some universe U , then we say that a set S
is shattered by C if for all X ⊆ S, there is some C ∈ C with C ∩ S = X. We define the Vapnik-
Chervonenkis dimension of C, written VC(C), to be the size of the largest set S which is shattered
by C.

To see that the VC-dimension is a good measure of the complexity of a concept class, we recall
the Sauer-Shelah Lemma.

Lemma 2.4.13 (Sauer-Shelah Lemma). If C is a collection of subsets of U with VC-dimension d,
then

|C| ≤
d∑
i=0

(
|U |
i

)
.

In fact, we have the stronger result that the number of sets S ⊆ U which are shattered by C is at
least |C|.

Proof. We show that C shatters at least |C| sets by induction on |C|. For the base case, note that
the empty set is shattered by C as long as |C| ≥ 1. For the inductive step, let x ∈ U be an element
which is in some of the sets in C but not all of them, and let Cx be the collection of C ∈ C with
x ∈ C and C′x = C \ Cx. Inductively, Cx shatters at least |Cx| sets and C′x shatters at least |C′x| sets,
and any set shattered by Cx or C′x must not contain x.

To finish the induction, we just need to check that for any set S which is shattered by both Cx
and C′x, the set S ∪ {x} is shattered by C.

If the set S is shattered by C, then the sampling oracle could sample from a uniform distribution
on S, and in this case the learner is faced with the problem of learning an arbitrary subset X = C∩S
of S given an oracle which returns uniformly random classified examples. If the learner examines
o(|S|) classified examples, then clearly they can’t hope to succeed. The following result makes this
precise.

Proposition 2.4.14. If an algorithm learns a concept class C with error ϵ and confidence 1 − δ
after requesting at most m classified examples, then

m ≥ (2(1− ϵ)(1− δ)− 1) VC(C).
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Proof. Let S be a set with |S| = VC(C) which is shattered by C, and for each X ⊆ S consider the
sampling oracle OX which samples from the uniform distribution µ on S, and has target concept
some CX ∈ C with CX ∩ S = X. If we average the performance of the learning algorithm over the
sampling oracles OX (with X chosen as a uniformly random subset of S), we see that if it outputs
a hypothesis C ′, then

E[µ(CX∆C ′)] ≥ 1

2

(
1− m

|S|

)
.

By Markov’s inequality, this implies that

(1− ϵ)P[µ(CX∆C ′) ≤ ϵ] ≤ 1

2
+

m

2|S|
,

so
1

2
+

m

2|S|
≥ (1− ϵ)(1− δ).

Conversely, if the VC-dimension of C is small, then the standard learning algorithm in the PAC
model performs well, so long as it can be implemented.

Theorem 2.4.15 (VC-dimension determines sample-complexity [32]). If VC(C′) = d, then any
algorithm which takes

m ≥ max

(
4

ϵ
log

(2

δ

)
,

8d

ϵ
log

(13

ϵ

))
.

samples from a sampling oracle and outputs any hypothesis C ′ ∈ C′ consistent with the data will
learn C with error ϵ and confidence 1− δ.

Sketch. Consider the following process: pick 2m samples from the probability distribution µ, per-
mute them randomly, feed the first m samples (after permuting) to the learning algorithm, and
count how many of the last m samples are classified incorrectly by the hypothesis C ′ chosen by the
learning algorithm.

If the learning algorithm fails to learn C with error ϵ and confidence 1− δ, then for some choice
of target concept C and distribution µ, the process described will incorrectly classify at least ϵm

2

of the last m samples with probability at least δ
2 , by Chebyshev’s inequality (at least for m ≥ 8

ϵ ).

Thus there will be some specific set X of size 2m, such that at least a δ
2 fraction of its permutations

lead to an incorrect classification of at least ϵm
2 of its last m elements.

By the Sauer-Shelah Lemma 2.4.13, the number of distinct subsets of X which can be written
as C ′ ∩X for some C ′ ∈ C′ is bounded by

∑
i≤d

(
2m
i

)
. For each possible intersection C ′ ∩X, the

chance of the first m samples from X being consistent with C ′ and the last m samples from X
having at least ϵm

2 inconsistencies with C ′ is at most 2−ϵm/2. Thus if the learning algorithm fails,
then by the union bound we must have

2−ϵm/2
∑
i≤d

(
2m

i

)
≥ δ

2
,

and plugging in the assumed bounds on m and chugging through the inequalities gives a contra-
diction.
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Note that if A is an algebraic structure and we take U = An, C = Invn(A), then a set S is
shattered by Invn(A) iff S is an independent subset of An. Thus the VC-dimension of Invn(A)
is exactly the same thing as the number iA(n), so if the concept classes Invn(A) are efficiently
PAC-learnable as n varies, then A must have few subpowers.

We can convert learning algorithms in the equivalence query model into learning algorithms in
the PAC model by using the sampling oracle to simulate an equivalence oracle.

Proposition 2.4.16 (Angluin [3]). If a concept class C is efficiently learnable in the (improper)
equivalence query model using a hypothesis class C′ which has a polynomially evaluable encoding
scheme, then C is also efficiently learnable in the PAC model.

Proof. Given a sampling oracle O, we simulate an equivalence oracle as follows. The ith time
the equivalence oracle is called by the learner, say to determine whether the target concept C is
equivalent to a hypothesis C ′ ∈ C′, we call the sampling oracle O some number qi times to get
qi random classified examples, and we check whether the way they are classified agrees with the
hypothesis C ′ (here is where we are using polynomial evaluability). If their classifications do agree
with C ′, then we pretend that the equivalence oracle returned “true”, and otherwise we pick one
of the examples a whose classification does not agree with C ′ and return a as the counterexample
in C∆C ′.

By the union bound, the probability that the simulated equivalence oracle ever returns “true”
for a hypothesis C ′ with µ(C∆C ′) ≥ ϵ is at most∑

i

(1− µ(C∆C ′))qi ≤
∑
i

(1− ϵ)qi .

If we take

qi ≥
1

ϵ
(ln(1/δ) + i ln(2)),

for instance, then we get∑
i

(1− ϵ)qi ≤
∑
i

e−ϵqi ≤
∑
i

eln δ−i ln(2) =
∑
i

δ

2i
≤ δ.

Remark 2.4.2. Another learning model is the on-line learning model described by Littlestone [122].
In this model, the learner is repeatedly presented with examples, and for each example must guess
its classification before being told whether its guess is correct. The goal of the learner is to have
an upper bound on the number of incorrect guesses it makes, even if the sequence of examples is
chosen adversarially. It is easy to convert a learnability result in the (improper) equivalence query
model into an algorithm for on-line learning.

Remark 2.4.3. There is a variant of the PAC learning model in which the learner is also allowed to
use membership queries: in a membership query, the learner picks an element x ∈ U , and asks the
teacher (oracle) whether x is in the target concept.

In [2], several situations are given where the addition of membership queries can be shown not to
help with learning, under some standard cryptographic assumptions. In [40], there is a claim that
some of the impossibility results for PAC learning of Invn(A) when A doesn’t have few subpowers
can be generalized to impossibility results in the model of PAC learning with membership queries
(under cryptographic assumptions), but the exact statement and the proof are left to a “full version”
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of the paper which I have been unable to track down. The more recent paper [55] by Chen and
Valeriote proves such a hardness result for algebraic structures which are not congruence modular,
and for finitely related structures congruence modularity is equivalent to few subpowers by the
main result of [13].

2.5 Algebras with few subpowers are finitely related

Suppose a clone O on a finite domain A has a k-edge term e. We want to show that there exists
some finite set of relations R1, ..., Rm which generate the relational clone which is dual to O. This
is equivalent to O being exactly the set of operations Pol(R1, ..., Rm) which preserve the relations
R1, ..., Rm. If R1, ..., Rm are all preserved by O, then the clone Pol(R1, ..., Rm) will certainly contain
O, but might end up being too large. In this case, Pol(R1, ..., Rm) will still contain the k-edge term
e, and we can use this to our advantage.

To understand the structure of a clone O with a k-edge term, we go back to the explicit
representation of the set On of n-ary operations of O as the free algebra over A = (A,O) on n
generators, which is concretely given by the subalgebra

On = FA(x1, ..., xn) ≤ AAn

generated by the elements πi : An → A given by πi(a1, ..., an) = ai, where xi ∈ FA(x1, ..., xn)
is identified with the element πi ∈ AAn

. Similarly, recall that the set of n-ary operations f ∈
Poln(R1, ..., Rm), considered as a subalgebra of AAn

, is given by the primitive positive formula

f ∈ Poln(R1, ..., Rm) ⇐⇒
∧
i≤m

∧
M∈Rn

i

f(M) ∈ Ri.

To check that these two subalgebras of AAn
are equal, by Theorem 2.2.11 and the fact that one is

contained within the other, it suffices to check that they have the same projections onto subsets
I ⊆ An of the coordinates with |I| < k, and to check that they have the same forks. If R1, ..., Rm
generate all relations of Inv(A) with arity less than k, then the first condition will be satisfied. The
hard part is dealing with the forks.

In order to make precise statements about the set of forks in AAn
, we first need to choose an

ordering on the coordinates of AAn
, that is, an ordering on the elements of An. A natural choice is

to first fix any total order ≤ on the set A, and to extend this to the lexicographic order on An.

Definition 2.5.1. If (A,≤) is a set with a total order, then we define the lexicographic order ≤lex
on An by a ≤lex b iff either a = b or there is some i ≤ n such that aj = bj for j < i and ai < bi. In
other words, a <lex b if ai < bi at the first coordinate i where a and b differ.

Definition 2.5.2. If (I,≤) is a totally ordered set and R ⊆ AI is a relation on A, then for i ∈ I
we define the set of forks of R at the ith coordinate to be the set of pairs (a, b) ∈ A2 given by

Forks(R, i) := {(a, b) | ∃ta, tb ∈ R, π<i(ta) = π<i(tb), πi(ta) = a, πi(tb) = b}.

So in order to understand a clone O with a k-edge term, we need to understand the relations
of arity less than k, together with the set of forks Forks(On, a) for all a ∈ An and all n. The issue
is that while each set Forks(On, a) is given by a finite collection of pairs of elements, there are
infinitely many elements a ∈ An, n ∈ N+ to consider. So we need a way to relate Forks(On, a) to
Forks(Om, b) for some choices of a ∈ An, b ∈ Am.
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Proposition 2.5.3. Suppose a ∈ An, b ∈ Am. If there is a map ϕ : [m] → [n] such that the
associated function ϕ∗ : An → Am given by ϕ∗(x1, ..., xn) = (xϕ(1), ..., xϕ(m)) satisfies the conditions

• ϕ∗(a) = b and

• for all c <lex a we have ϕ∗(c) <lex b,

then for any clone O on A, we have Forks(Om, b) ⊆ Forks(On, a).

Proof. Letting A = (A,O), ϕ induces a natural map of free algebras Om → On given by xi 7→ xϕ(i).

We will write this natural map as f 7→ fϕ. Considering Om,On as subalgebras of AAm
,AAn

,
respectively, we see that for c ∈ An and f ∈ Om, the cth coordinate of the image fϕ of f under
this map is given by

fϕ(c) = f(ϕ∗(c)).

In particular, if t, t′ ∈ Om with π<lexb(t) = π<lexb(t
′), then

π<lexa(tϕ) = π<lexa(t
′
ϕ),

and [
tϕ(a)
t′ϕ(a)

]
=

[
t(ϕ∗(a))
t′(ϕ∗(a))

]
=

[
t(b)
t′(b)

]
,

so every fork in Forks(Om, b) is also a fork in Forks(On, a).

Proposition 2.5.4. A map ϕ as in the previous proposition exists if there is a strictly increasing
function h : [n]→ [m] such that

• the same elements of A occur in both a and b,

• h∗(b) = a, that is, ai = bh(i) for all i ∈ [n], and

• for all s ∈ A, if the index of the first occurence of s in a is i, then h(i) is the index of the
first occurence of s in b.

If no coordinate ai of a is minimal or maximal with respect to the order < on A, then the converse
is true: such a ϕ exists iff such an h exists.

Proof. Given such an h, we define ϕ as follows. We set ϕ(h(i)) = i, and for j not in the image of h
let ϕ(j) be the first index i such that ai = bj , so that h(ϕ(j)) ≤ j for all j. Then for any c <lex a, if
i is the first index where ai ̸= ci, and if j is the first coordinate where ϕ∗(a) and ϕ∗(c) differ, then
we have aϕ(j) ̸= cϕ(j), so i ≤ ϕ(j), so h(i) ≤ h(ϕ(j)) ≤ j, so we must have h(i) = j since ϕ∗(a) and
ϕ∗(c) also differ at h(i). Thus ϕ∗(c) <lex ϕ

∗(a) = b.
Now suppose that no coordinate ai of a is minimal or maximal with respect to the order < on

A. Then the map ϕ in the previous proposition must be surjective: if i is not in the image of ϕ, then
we can define c <lex a which only differs from a on the ith coordinate, and ϕ∗(c) = ϕ∗(a) ̸<lex b,
contradicting the choice of ϕ. Thus we can define h : [n]→ [m] by

h(i) = min{j ∈ [m] | ϕ(j) = i},

so h∗(b) = a and we see that a and b have the same set of symbols.
For any i, if we define c <lex a which matches a up to the ith coordinate, has ci < ai, and

cj > aj for all j > i, then from ϕ∗(c) < b = ϕ∗(a), we see that h(i) < h(j) for all j > i. Thus h
must be strictly increasing. Finally, from the definition of h, we see that if i is the index of the first
occurence of s in a, then h(i) must be the index of the first occurence of s in b.
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Definition 2.5.5. Let A+ =
⋃
n≥1A

n, and define the partial order ≤E on A+ by a ≤E b iff there
exists a map h as in the previous proposition. Equivalently, a ≤E b iff the same set of elements
of A occur in a and b, and b can be formed from a by inserting elements s ∈ A after their first
occurences in a.

Note that the partial ordering ≤E on A+ has no dependence on the arbitrary choice of ordering
< we introduced on the elements of A (of course, the set Forks(O, a) still depends on the choice
of <). The partial order ≤E is a refinement of the embeddability partial ordering that occurs
in Higman’s Lemma [81]. We can now simplify the description of the sets Forks(O, a) using the
ordering ≤E .

Definition 2.5.6. For any pair (c, d) ∈ A2, we define the set λ(O, (c, d)) ⊆ A+ to be the set of
a ∈ A+ such that (c, d) ̸∈ Forks(O, a).

Corollary 2.5.7. For any clone O on a set A, the set λ(O, (c, d)) is upwards closed in A+ with
respect to ≤E, that is, if a ∈ λ(O, (c, d)) and a ≤E b, then b ∈ λ(O, (c, d)).

To describe an upwards closed subset (also called an upset) of a finite poset, it is enough to
describe its minimal elements. We want to show that λ(O, (c, d)) can be described in terms of its
minimal elements, but for this to work, it’s necessary to show that (A+,≤E) is a well partial order.

Definition 2.5.8. A partial order (X,≤) is a well partial order if for every infinite sequence
x1, x2, ... of elements of X, there exists an infinite increasing subsequence i1 < i2 < · · · such that
xi1 ≤ xi2 ≤ · · · .

Proposition 2.5.9. A partial order (X,≤) is a well partial order iff it has no infinite descending
chains and no infinite antichains.

Proof. Let x1, x2, ... be any infinite sequence of elements of X. Color the edges of the complete
graph on N+ with three colors, as follows: for i < j, the edge {i, j} is colored red if xi > xj , colored
blue if xi, xj are incomparable, and colored green if xi ≤ xj . By Ramsey’s Theorem, there must be
some infinite monochromatic clique in this graph, so either there is an infinite descending chain,
an infinite antichain, or an infinite subsequence i1 < i2 < · · · with xi1 ≤ xi2 ≤ · · · .

Proposition 2.5.10. A partial order (X,≤) is a well partial order iff for all upsets U ⊆ X, every
element of U is ≥ some minimal element of U and U has finitely many minimal elements, that is,
there exists a finite set of elements u1, ..., uk ∈ U such that U = {x | x ≥ ui for some i}.

Proof. Suppose first that (X,≤) is a well partial order. If some element u ∈ U is not above any
minimal element of U , then we can find an infinite descending chain in U . Since any pair of distinct
minimal elements of U are incomparable, the number of minimal elements of U must be finite. The
converse follows from the previous proposition.

So the last ingredient of the argument will be the proof that ≤E is a well partial order. While
the tools we have available are capable of proving this directly, it is useful to reduce this to the
fact that the simpler (and more well-known) embeddability partial ordering ≤e, due to Higman, is
a well partial order - this allows us to transfer other results about Higman’s ordering to the partial
order ≤E .
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Definition 2.5.11. Define the partial order ≤e on A+ by a ≤e b if b can be formed from a by
inserting elements of A.

Proposition 2.5.12. If B is the disjoint union of A with the two-element set of symbols {#,′ },
then there is an embedding of partial orders

F : (A+,≤E) ↪→ (B+,≤e),

i.e. a function F such that for x, y ∈ A+, we have x ≤E y iff F (x) ≤e F (y).

Proof. We define F : A+ → B+ to be the function which modifies x ∈ A+ by inserting a ′ after
the first occurence of each symbol within x, inserting a # at the end of x, and then following that
with a ′ for each symbol which doesn’t occur within x. For instance, if A = {a, b, c, d, e}, then

F (adaadca) = a′d′aadc′a#′′,

where the two ′s at the end keeps track of the fact that b, e did not occur within the word adaadca.
Note that F (x) is always formed from x by inserting exactly 1 copy of # and exactly |A| copies

of the symbol ′. Thus, if F (x) ≤e F (y), then F (y) must be obtained by inserting only symbols
from A into the word F (x). If any symbol s ∈ A is inserted before its first occurence in F (x), or
inserted directly in front of a ′, then we can see that the resulting word can’t be of the form F (y),
by considering the first location with an invalid insertion.

Theorem 2.5.13. If A is a finite set, then the partial order ≤e on A+ is a well partial order.

Proof. We prove this by induction on |A|. Since ≤e clearly has no infinite descending chains (as
a <e b implies |a| < |b|), we just need to prove that ≤e has no infinite antichains. Suppose for
contradiction that ≤e has an infinite antichain, and let x1, x2, ... be a lexicographically minimal
infinite antichain, that is, suppose that x1 is minimal such that there exists an infinite antichain
containing x1, that x2 is minimal such that there exists an infinite antichain containing {x1, x2},
etc.

By the infinite pigeonhole principle, we see that there is an infinite subsequence i1 < i2 < · · ·
such that every element xij ends in the same element of A, say a. Let x′ij be the element of A+

we obtain by deleting the a in the last coordinate of xij , then from the definition of ≤e we see that
xij ≤e xik ⇐⇒ x′ij ≤e x

′
ik

. Let j be minimal such that xj >e x
′
ik

for some k, and note that j ≤ i1
so j is well-defined. Then the sequence

x1, x2, ..., xj−1, x
′
ik
, x′ik+1

, ...

is also an infinite antichain, and is lexicographically smaller than x1, x2, ..., xj−1, xj , ..., a contra-
diction.

Corollary 2.5.14. If A is a finite set, then the partial order ≤E on A+ is a well partial order.

Theorem 2.5.15 (Few subpowers implies inherently finitely related [1]). If a clone O contains a
k-edge term, then it is finitely related. In fact, a set Γ ⊆ Inv(O) generates Inv(O) iff the following
two conditions are satisfied:

• every relation of arity strictly less than k in Inv(O) is contained in ⟨Γ⟩, and
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• for each minority pair (c, d) ∈ A2 and each minimal element a ∈ λ(O, (c, d)), if we set n = |a|,
then the relation Poln(Γ) on AAn

defined by the primitive positive formula∧
R∈Γ

∧
M∈Rn

f(M) ∈ R

has (c, d) ̸∈ Forks(Poln(Γ), a).

Proof. By the fact that ≤E is a well partial order, we see that there is a finite set Γ ⊆ Inv(O)
which satisfies the conditions given: for instance, we may take Γ to consist of the collection of all
relations in Inv(O) of arity less than k, together with the relations On ≤ AAn

for every n such that
some minimal element a ∈ λ(O, (c, d)) has |a| = n for some (c, d) ∈ A2.

Now suppose that Γ satisfies the given conditions. Then for any (c, d) ∈ A2 and any b ∈
λ(O, (c, d)), there exists some minimal a ∈ λ(O, (c, d)) with a ≤E b. Thus if |a| = n, |b| = m,
then Forks(Polm(Γ), b) ⊆ Forks(Poln(Γ), a), and by the second condition on Γ we have (c, d) ̸∈
Forks(Poln(Γ), a). Thus for any b ∈ A+ with |b| = m, we have

(c, d) ̸∈ Forks(Om, b) =⇒ (c, d) ̸∈ Forks(Polm(Γ), b),

so Forks(Polm(Γ), b) ⊆ Forks(Om, b). Since Polm(Γ) contains Om (by Γ ⊆ Inv(O)), and every
projection of Polm(Γ) onto fewer than k coordinates of AAm

is contained in the corresponding
projection of Om (by the first condition on Γ), we can apply Theorem 2.2.11 to see that Polm(Γ) =
Om.

Corollary 2.5.16. The number of clones on a finite set which contain an edge term is countable.

Remark 2.5.1. There is a converse to Theorem 2.5.15: if O is a clone on a finite set such that every
clone O′ with O′ ⊇ O is finitely related, then O has an edge term. The proof of this relies on the
theory of cube term blockers (aka projective subalgebras) from [123], which roughly states that a
clone O fails to contain a cube term iff there is an infinite sequence of invariant relations which
look like the relations {0, 1}n \ {(0, ..., 0)} - recall that the clone corresponding to this sequence of
relations on {0, 1} was our basic example of a clone which was not finitely related (Example 1.1.3).

Example 2.5.1. Consider the algebra A = ({a, b, c}, g) from Example 2.2.1, which has {a, b} a
majority subalgebra and {a, c} an absorbing minority subalgebra. Recall that the minority pairs
of A were (a, c), (c, a), (b, c). Since a ∈ SgA{b, c}, for any s ∈ A+ we have

(b, c) ∈ Forks(⟨g⟩, s) =⇒ (a, c) ∈ Forks(⟨g⟩, s).

Take the standard alphabetical ordering < on {a, b, c}. It’s easy to check that λ(⟨g⟩, (a, c)) contains
a, b, c, ab, ba, bc, ca, cb, abc, acb, acc, bac, bca, cab, cba and that λ(⟨g⟩, (b, c)) = A+: for the strings of
length 2, the free algebra FA(x, y) only has six elements so we may compute the forks directly, for
permutations of abc we note that a corresponding permutation of aac comes before it and g preserves
the congruence corresponding to the partition {a, b}, {c}, and for acc we note that aac and aca
come before it and that g preserves the affine ternary relation {(a, a, a), (a, c, c), (c, a, c), (c, c, a)}.

To complete the description of λ(⟨g⟩, (a, c)), we just need to check that for all 2 ≤ i ≤ n,
the word sin = a · · · aca · · · a ∈ A+ of length n with a c in the ith position and as elsewhere has
(a, c) ∈ Forks(⟨g⟩, sin). For this, we take the terms x1 and g(x1, x1, xi) in the free algebra, and
check that they make a fork at sin. For s′ <lex sin, we have s′1 = a and s′i < c, so

g(s′1, s
′
1, s

′
i) = g(a, a, a) or g(a, a, b) = a = s′1,
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so x1 and g(x1, x1, xi) agree on tuples which come lexicographically before sin. At sin, we get the
fork (a, g(a, a, c)) = (a, c).

Example 2.5.2. Consider the gmm algebra A2 = ({a, b, c}, φ2) from Example 2.1.2, which had major-
ity subalgebras {a, b}, {a, c} and minority subalgebra {b, c}. The only minority pair to worry about
is (b, c), and under the standard alphabetical ordering < on {a, b, c}, we find that λ(⟨φ2⟩, (b, c))
contains the following 16 elements of A+:

a, b, c, ab, ac, ba, ca, cb, acb, bcc, cab, cba, abcc, bacc, bcac, bcca.

Again, it is easy to check the strings of length 2 as FA2(x, y) only has 4 elements, strings which
have a c preceding the first b such as acb don’t work because the corresponding word with bs and
cs swapped (i.e. abc in this case) comes before it and φ2 preserves order two the automorphism
swapping b and c, and strings containing bcc such as abcc don’t work because the two strings where
one of the cs is replaced by a b (i.e. abbc and abcb in this case) come before it and φ2 preserves the
ternary relation corresponding to the columns of the matrixa b b c c

a b c b c
a b c c b

 .
It’s much harder to show that the remaining elements s which are not ≥E to one of the 16

strings displayed above all have (b, c) ∈ Forks(⟨φ2⟩, s). Each such s has at least one b, exactly one
c, and has its first b before its c. We may assume without loss of generality that s begins with a b,
and suppose s has its only c at the ith position for some i ≥ 2. We need to show that there is some
term t ∈ FA2(x1, ..., xn) such that the pair (x1, t) gives us a fork at s. In other words, we need to
show that we can find a term t such that for each s′ <lex s we have t(s′) = s′1 and t(s) = c.

The only way I know to show the existence of such a term t is to use the analysis of critical
relations in Invk(A2) carried out in Example 2.3.1. By that analysis, we see that every relation
R ≤ Ak2 is the intersection of some family of binary relations and some family of relations RI ≤ AI
such that for each I and each i, j ∈ I, we have πi,j(RI) ⊆ 0∗A2

, where 0∗A2
is the congruence

corresponding to the partition {a}, {b, c}. Thus, if the term t we are looking for does not exist,
then either there is some s′ <lex s such that[

s′1
c

]
̸∈ SgA2

2

[
s′

s

]
,

or there is some family s1, ..., sk <lex s such that for each j, l, we have (slj , sj) ∈ 0∗A2
but

s11
...
sk1
c

 ̸∈ SgA2
2


s1

...
sk

s

 .
To rule out the first possibility, we note that if s′ <lex s then s′1 ∈ {a, b}, and if (s′1, s

′
i) ̸= (b, c),

then (s′1, s
′
i) is a majority pair and taking φ2(x1, x1, xi) does the trick, while if (s′1, s

′
i) = (b, c), then

at the first location j where s′ and s differ we must have s′j = a, sj = b, so taking φ2(xj , x1, xi)
does the trick:

φ2

([
a b c
b b c

])
=

[
b
c

]
.
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To rule out the second possibility, note that if sl <lex s and (slj , sj) ∈ 0∗A2
for all j, then the first

coordinate where sl and s can differ is at the coordinate i with si = c, so we must have sli = b,
si = c and sl1 = s1 = b. Thus the term xi rules out the second possibility.

2.6 Cube term blockers: projective subalgebras and crosses

The goal of this section is to describe a criterion for the existence of an edge term of low arity, based
on the nonexistence of certain families of relations or special types of subalgebras. The forbidden
type of subalgebra was originally called a cube term blocker in [123], but now it is slightly more
common to see it referred to as a projective subalgebra.

Definition 2.6.1 ([123]). If P ≤ A is a subalgebra such that for each term t ∈ Clo(A) there is
some coordinate i(t) ≤ ar(t) such that

∀x1, .., xar(t) ∈ A, xi(t) ∈ P =⇒ t(x1, ..., xar(t)) ∈ P,

then we say that P is a projective subalgebra of A. Following [106], we say that t is P-absorbing in
the ith coordinate if the above implication holds for t and i = i(t).

We say that a pair (P,B) of subalgebras with P < B ≤ A is a cube term blocker for A if P is a
proper projective subalgebra of B.

Remark 2.6.1. The name “projective subalgebra” refers to the way every term acts somewhat like
a projection, when it comes to deciding whether or not its output will be contained in P. Note
that it has nothing to do with the concept of a projective module from ring theory (or to the
category-theoretic generalization).

Although the definition of a projective subalgebra refers to all terms t ∈ Clo(A), it’s actually
enough to check the condition for the basic operations of A.

Proposition 2.6.2. If A = (A, {fj}), then P ≤ A is a projective subalgebra of A iff for each j,
there is some i(fj) ≤ ar(fj) such that

xi(fj) ∈ P =⇒ fj(x1, ..., xar(fj)) ∈ P.

Proof. We just need to check that the collection of operations t which have a P-absorbing coordinate
i(t) is closed under composition. If we have already found P-absorbing coordinates i(f) and i(gj)
for j = 1, ..., ar(f), and if we define a new operation h by

h = f ◦ (g1, ..., gar(f)),

then we have

xi(gi(f)) ∈ P =⇒ gi(f)(x1, ..., xar(h)) ∈ P

=⇒ f(g1(x1, ..., xar(h)), ..., gi(f)(x1, ..., xar(h)), ..., gar(f)(x1, ..., xar(h))) ∈ P,

so we can take i(h) = i(gi(f)).

Projective subalgebras can be described in terms of the existence of an infinite family of high-
arity relations which look like cubes with a corner removed (such relations are referred to as
“symmetric crosses” in [106], or as “chipped cubes” in [99]).
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Proposition 2.6.3. For any P < B ≤ A, the pair (P,B) is a cube term blocker for A (that is, P is
a projective subalgebra of B) if and only if for every n ≥ 1, the n-ary relation Rn defined by

(x1, ..., xn) ∈ Rn ⇐⇒
∧
i∈[n]

xi ∈ B ∧
∨
j∈[n]

xj ∈ P,

or equivalently by

Rn = (P× Bn−1) ∪ (B× P× Bn−2) ∪ · · · ∪ (Bn−1 × P)

= Bn \ (B \ P)n,

is preserved by all of the term operations of A (that is, Rn is a subuniverse of An).

Proof. Let t be an m-ary term operation of A. If P is a projective subalgebra of B, then there must
be some P-absorbing (with respect to B) coordinate i(t), i.e.

t(B, ...,P, ...,B) ⊆ P,

where the P occured in the i(t)th coordinate. Then for any x1, ..., xm ∈ Rn, if xi(t) has x
i(t)
j ∈ P,

then we have
t(x1j , ..., x

i(t)
j , ..., xmj ) ∈ P

and
t(x1i , ..., x

m
i ) ∈ B

for all i ̸= j, so
t(x1, ..., xm) ∈ Bj−1 × P× Bn−j ⊆ Rn.

Thus t preserves Rn as long as P is a projective subalgebra of B.
Now suppose that P is not a projective subalgebra of B, with t some m-ary term operation

having no corresponding P-absorbing (with respect to B) coordinate i(t). Then for each i ≤ m,
there must be some tuple

x1i , ..., x
m
i ∈ B, xii ∈ P

such that
t(x1i , ..., x

m
i ) ̸∈ P.

Then we have x
i
1
...
xim

 ∈ Bi−1 × P× Bn−i ⊆ Rm

for each i, but

t


x

1
1
...
x1m

 , · · · ,
x

m
1
...
xmm


 ∈ (B \ P)m,

so t does not preserve Rm.
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Corollary 2.6.4. A subalgebra P ≤ A is projective iff for each n ≥ 1, the n-ary relation∨
i∈[n]

xi ∈ P

is preserved by the basic operations of A.

Remark 2.6.2. If Rn = Bn\(B \P )n is a subuniverse of An for some n ≥ 2, then (as long as P ⊆ B)
it will automatically be the case that B and P are also subuniverses of A, by

B = π1(Rn)

and
x ∈ P ⇐⇒ (x, x, ..., x) ∈ Rn.

As a consequence, there was no loss of generality in restricting our definition of cube term blockers
to the case where P and B are subuniverses of A.

Now we finally explain the reason for the name “cube term blocker”.

Proposition 2.6.5 ([123]). If an algebra A has a cube term blocker P < B ≤ A, then A has no
cube term.

Proof. Pick any a ∈ P and any b ∈ B \ P. If A had a k-cube term, then we would have

(b, ..., b) ∈ SgAk

(
{a, b}k \ {(b, ..., b)}

)
,

but by Proposition 2.6.3 the right hand side is contained in Bk \ (B \ P)k, which does not contain
(b, ..., b).

Proposition 2.6.6. If an algebra A has a cube term blocker P < B ≤ A, then there is an expansion
Â of A (i.e., an algebra with the same underlying set whose basic operations are a superset of the
basic operations of A) such that Â is not finitely related. If A is idempotent then we can take Â to
be idempotent as well.

Proof. Let the basic operations of Â be the collection of all operations which preserve the relations

Rn = Bn \ (B \ P)n

for all n, and which also preserve all unary relations which are preserved by A. Then Â is an
expansion of A, which is idempotent iff A is idempotent, so we just need to check that Â is not
finitely related.

By the Galois correspondence between Inv and Pol, the relational clone Inv(Â) is generated by
the infinite sequence of relations Rn together with some collection of unary relations. Thus, using

(x1, ..., xk) ∈ Rk ⇐⇒ (x1, ..., xk, xk, ..., xk︸ ︷︷ ︸
m−k

) ∈ Rm

for k ≤ m, we see that every finite collection of relations in Inv(Â) is in the relational clone
generated by some Rm together with some unary relations. Therefore we just need to check that
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for each m, Rm+1 is not contained in the relational clone Γm generated by Rm together with all
unary relations.

In order to show that Rm+1 is not contained in the relational clone Γm, we just need to find an
operation t which preserves (a generating set of) the relations in Γm but which does not preserve
Rm+1. One such operation is the m+ 1-ary operation given by

t(x1, ..., xm+1) =


x1 if x1 ̸∈ P and at most one xi ∈ P,
x2 if x1 ∈ P and no other xi ∈ P,
xj if i < j are the first two indices s.t. xi, xj ∈ P.

Since the output of t is always one of the inputs to t, every unary relation S ⊆ A will be preserved by
t. That t preserves Rm follows from the pigeonhole principle: among any m+1 tuples x1, ..., xm+1 ∈
Rm, there must be some pair i < j ≤ m + 1 and some coordinate k ≤ m such that xik, x

j
k ∈ P, in

which case we have t(x1k, ..., x
m+1
k ) ∈ P as well.

To see that t doesn’t preserve Rm+1, pick any m+ 1 tuples x1, ..., xm+1 such that

xi ∈ (B \ P)i−1 × P× (B \ P)m+1−i ⊂ Rm+1

for each i, and note that we then have t(x1, ..., xm+1) ∈ (B \ P)m+1, so t(x1, ..., xm+1) ̸∈ Rm+1.

One of the main results of [123] is the converse of Proposition 2.6.5 (for idempotent algebras).
Since Corollary 2.2.15 shows that any product of idempotent algebras with few subpowers has few
subpowers, the same should be true of idempotent algebras which have no cube term blockers. This
will follow from a few basic results about projective subalgebras.

Proposition 2.6.7. If P ≤ B ≤ A and P is a projective subalgebra of B, then

(a) for any n, Pn is a projective subalgebra of Bn,

(b) for any θ ∈ Con(A), the quotient P/θ is a projective subalgebra of B/θ,

(c) for any C ≤ A with C∩ P ̸= ∅, the intersection P∩C is a projective subalgebra of B∩C, and

(d) for any binary relation R ≤ A× D, if we define P + R by

P + R = π2(R ∩ (P× D))

and similarly for B + R, then P + R is a projective subalgebra of B + R.

Note that as a special case of (d), if there is a homomorphism π : D→ A, then π−1(P) is a projective
subalgebra of π−1(B).

Proof. In each case, if we are trying to show that P′ is a projective subalgebra of B′, the strategy
is to show that if the restriction of some term operation t to B is P-absorbing in its ith coordinate,
then the restriction of t to B′ is P′-absorbing in the (same) ith coordinate.

We will prove (d), since the other cases are easier. Supposing that tB is P-absorbing in its first
coordinate, we will prove that tB+R is also P + R-absorbing in its first coordinate. For this, note
that for any q ∈ P + R we can (by the definition of P + R) find some p ∈ P with (p, q) ∈ R, and
similarly for d2, ... ∈ B + R there are bi ∈ B with (bi, di) ∈ R, so

t

([
p b2 · · ·
q d2 · · ·

])
∈ R,
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so

t(q, d2, ...) ∈ t(p, b2, ...) + R ⊆ P + R.

Corollary 2.6.8. Suppose that P ≤ B ≤ A and P is a projective subalgebra of B. If a relation
R ≤ Am is defined by a primitive positive formula Φ(x1, ..., xm) where some of the (free or bound)
variable domains are B, and if S ≤ R is defined by modifying the formula Φ by replacing some of
those variable domains with P, then S is a projective subalgebra of R.

Remark 2.6.3. It is not always the case that if P is a projective subalgebra of B and Q is a projective
subalgebra of C, then P × Q is a projective subalgebra of B × C. The reason is that tB might be
P-absorbing in its ith coordinate (only) and tC might be Q-absorbing in its jth coordinate (only)
for i ̸= j. For instance, consider the case where A = B×C has just one basic operation t(x, y) such
that tB is first projection and tC is second projection (such an algebra A is known as a rectangular
band).

Similarly, it is easy to construct an example of Q ≤ P ≤ B such that Q is a projective subalgebra
of P, P is a projective subalgebra of B, but Q is not a projective subalgebra of B.

Proposition 2.6.9 ([106]). If {Ai} is a collection of idempotent algebras and A ∈ HSPfin({Ai})
has a cube term blocker, then some Ai has a cube term blocker.

Proof. The previous results immediately show that any subalgebra or quotient of an algebra with
no cube term blockers also has no cube term blocker, so we just need to consider the case where
A = A1 × · · · × An. Suppose that

P < B ≤ A1 × · · · × An

and that P is a projective subalgebra of B. If πn(P) ̸= πn(B), then πn(P) is a proper projective
subalgebra of πn(B), so in this case An has a cube term blocker.

Otherwise, if πn(P) = πn(B), then there must be some bn ∈ πn(B) such that

π[n−1](P ∩ (A1 × · · · × An−1 × {bn})) ̸= π[n−1](B ∩ (A1 × · · · × An−1 × {bn})),

in which case (using the fact that {bn} is a subalgebra of An) the left hand side is a proper projective
subalgebra of the right hand side, so we see by induction on n that one of A1, ...,An−1 has a cube
term blocker.

Corollary 2.6.10 ([106]). If A is a finite idempotent algebra with no cube term blocker, then the
free algebra on two generators FV(A)(x, y) in the variety V(A) generated by A also has no cube term
blocker.

Putting the previous corollary together with the next result, we can show that every finite
idempotent algebra with no cube term blocker has a cube term.

Lemma 2.6.11 ([123]). If A is a finite idempotent algebra with no cube term blocker, then for
every pair a ̸= b ∈ A there is some n such that

(b, ..., b) ∈ SgAn

(
{a, b}n \ {(b, ..., b)}

)
.
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Proof. Suppose for the sake of contradiction that for each n we have (b, ..., b) ̸∈ SgAn({a, b}n \
{(b, ..., b)}). Let n be large, and pick a tuple (b1, ..., bn) ∈ (A \ {a})n with∑

i≤n
| SgA{a, bi}|

minimal among n-tuples satisfying

(b1, ..., bn) ̸∈ SgAn

(∏
i≤n
{a, bi} \ {(b1, ..., bn)}

)
.

For each i ≤ n, define Pi ⊂ Bi ≤ A by

Bi = SgA{a, bi},
Pi = {p ∈ Bi | SgA{a, p} ≠ Bi}.

Writing

R = SgAn

(∏
i≤n
{a, bi} \ {(b1, ..., bn)}

)
,

we claim that
(x1, ..., xn) ∈ R ?⇐⇒

∧
i≤n

xi ∈ Bi ∧
∨
i≤n

xi ∈ Pi.

To see this, first note that for any ci ∈ Bi we have(∏
i≤n
{a, ci}

)
\ {(c1, ..., cn)} ⊆ R,

since for each j ≤ n we have∏
i<j

{a, ci} × {a} ×
∏
k>j

{a, ck} ⊆ SgAn

(∏
i<j

{a, bi} × {a} ×
∏
k≥j
{a, bk}

)
⊆ R.

Thus by the choice of (b1, ..., bn), for ci ∈ Bi we have

(c1, ..., cn) ̸∈ R =⇒
∧
i≤n

SgA{a, ci} = Bi,

so
R ⊇

(∏
i≤n

Bi
)
\
(∏
i≤n

(Bi \ Pi)
)
.

For the other containment, suppose for the sake of contradiction that there is a tuple (c1, ..., cn) ∈ R
with ci ∈ Bi \ Pi for all i. In this case, we will show by induction on i that we have

(b1, ..., bi, ci+1, ..., cn) ∈ R

for i = 0, ..., n. For the inductive step, from (b1, ..., bi−1, ci, ..., cn) ∈ R and

(b1, ..., bi−1, a, ci+1, ..., cn) ∈ R,
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we see that
(b1, ..., bi−1,SgA{a, ci}, ci+1, ..., cn) ⊆ R,

and by the definition of Pi we have

ci ∈ Bi \ Pi =⇒ bi ∈ SgA{a, ci}.

This completes the inductive step, and taking i = n gives us a contradiction to the assumption
(b1, ..., bn) ̸∈ R, so we must in fact have

R =
(∏
i≤n

Bi
)
\
(∏
i≤n

(Bi \ Pi)
)
.

Now assuming that n > (m − 1)(|A| − 1), we see by the pigeonhole principle that there must be
some b′ such that bi = b′ for at least m different choices of i. Rearranging the coordinates, we may
assume without loss of generality that b1 = · · · = bm = b′, so

Rm = π[m]

(
R ∩

(
Bm1 × {(bm+1, ..., bn)}

))
is given by

Rm = Bm1 \ (B1 \ P1)
m,

and is a subalgebra of Am (note that P1 is automatically a subalgebra of A as a consequence).
Since we can take m arbitrarily large, there must be some pair P ⊂ B which shows up infinitely
often as m grows, and this pair is a cube term blocker for A.

Theorem 2.6.12 (Marković, Maróti, McKenzie [123]). If a finite idempotent algebra A has no
cube term blocker, then A has few subpowers.

Proof. By Corollary 2.6.10, the free algebra FV(A)(x, y) has no cube term blocker. Thus by Lemma
2.6.11, there is some n ≥ 1 such that

(x, ..., x) ∈ SgFV(A)(x,y)n
(
{x, y}n \ {(x, ..., x)}

)
,

and any term t witnessing this is an n-cube term.

Corollary 2.6.13 ([123]). A finite idempotent algebra A has few subpowers if and only if every
(idempotent) expansion of A is finitely related.

One of the reasons for the interest in Corollary 2.6.13 was that it was seen as indirect support
for the following conjecture due to Matthew Valeriote, which was eventually settled by Barto [13].

Conjecture 2.6.1 (Edinburgh conjecture, aka Valeriote’s conjecture). A finite algebra A has few
subpowers if and only if A is finitely related and generates a congruence modular variety.

Using Theorem 2.6.12, Kazda and Zhuk [99] were able to design a simple polynomial time
algorithm (Algorithm 12) for checking whether a given idempotent algebraic structure (described
by listing out the tables of the basic operations) has few subpowers.

Proposition 2.6.14. Algorithm 12 correctly decides whether there is a cube term blocker P < B ≤ A
with a ∈ P.
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Algorithm 12 Algorithm for finding a cube term blocker P < B ≤ A with a ∈ P, from [99].

1: Set S ← {a}.
2: while S ̸= A do
3: Find b ∈ A \ S minimizing | SgA{a, b}|.
4: if S ∩ SgA{a, b} is a projective subalgebra of SgA{a, b} then ▷ Proposition 2.6.2
5: Set P← S ∩ SgA{a, b} and B← SgA{a, b}.
6: return (P,B).
7: else
8: Set S ← S ∪ SgA{a, b}.
9: return “No cube term blockers have a ∈ P.”

Proof. We just need to prove that at every step of the algorithm, for every element c ∈ S the
subalgebra SgA{a, c} has no proper projective subalgebra containing a.

Suppose that b ∈ A\S minimizes |SgA{a, b}|. Inductively, we see that any projective subalgebra
P of SgA{a, b} which contains a must contain every element c ∈ S ∩ SgA{a, b}, since P ∩ SgA{a, c}
is a projective subalgebra of SgA{a, c}. By the choice of b, every c ∈ SgA{a, b} \ S must have
b ∈ SgA{a, c}, so we also see that any proper subalgebra of SgA{a, b} must contain S ∩ SgA{a, b},
so S ∩ SgA{a, b} is the only possible proper projective subalgebra of SgA{a, b}.

Now let’s turn our attention to trying to find a k-cube term with k as small as possible. The
key is the following local-to-global result from Horowitz’s thesis [85].

Theorem 2.6.15 (Horowitz [85], [86]). A finite idempotent algebra A has a k-cube term iff for
every sequence of k ordered pairs ai ̸= bi ∈ A, we have

(b1, ..., bk) ∈ SgAk

(∏
i≤k
{ai, bi} \ {(b1, ..., bk)}

)
.

Proof. This is a generalization of the construction of a Mal’cev term out of local Mal’cev terms
from Remark 1.7.1. Define vSi (x, y) by

vSi (x, y) :=

{
y i ∈ S,
x i ̸∈ S,

and fix some ordering S1, ..., S2k−1 of the nonempty subsets of [k]. If (b1, ..., bk) ∈ Sg(
∏
i{ai, bi} \

{(b1, ..., bk)}), then there must be some (idempotent) (2k − 1)-ary term ta1b1···akbk such that

ta1b1···akbk(vS1
i (bi, ai), ..., v

S
2k−1

i (bi, ai)) = bi.

Our goal is to build our way up to a k-edge term by composing the terms ta1b1···akbk with each
other.

The strategy is to construct, by backward induction on 0 ≤ j < k, terms ta1b1···ajbj such that

i ≤ j =⇒ ta1b1···ajbj (v
S1
i (bi, ai), ..., v

S
2k−1

i (bi, ai)) = bi,

i > j =⇒ ta1b1···ajbj (v
S1
i (x, y), ..., v

S
2k−1

i (x, y)) ≈ x,
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so that once j reaches 0 we will have constructed a k-edge term. Fixing an enumeration (c1, d1), ...
of the ordered pairs of elements of A, we will construct ta1b1···ajbj by inductively constructing a

sequence of (idempotent) terms tℓa1b1···ajbj satisfying

i ≤ j =⇒ tℓa1b1···ajbj (v
S1
i (bi, ai), ...) = bi,

i > j + 1 =⇒ tℓa1b1···ajbj (v
S1
i (x, y), ...) ≈ x,

n ≤ ℓ =⇒ tℓa1b1···ajbj (v
S1
j+1(dn, cn), ...) = dn,

starting with
t0a1b1···ajbj (x1, ...) := x#{j+1},

where #{j + 1} is defined by S#{j+1} = {j + 1}. To see that this works for ℓ = 0, note that

i ̸= j + 1 =⇒ v
{j+1}
i (x, y) ≈ x.

For the inductive step, assume that we have already constructed tℓ−1
a1b1···ajbj , and let

eℓ = tℓ−1
a1b1···ajbj (v

S1
j+1(dℓ, cℓ), ...).

If we already have eℓ = dℓ, then we can take tℓa1b1···ajbj := tℓ−1
a1b1···ajbj . Otherwise, we define (2k − 1)-

ary terms uSm by

uSm(x1, ...) :=


xm if j + 1 ̸∈ Sm,
tℓ−1
a1b1···ajbj (x1, ...) if Sm = {j + 1},
tℓ−1
a1b1···ajbj (v

S1
j+1(xw, xm), ...) if Sm = {j + 1} ⊔ Sw,

and we take
tℓa1b1···ajbj := ta1b1···ajbjeℓdℓ ◦ (uS1 , ...).

To verify that this works, it’s enough to check that we have

i ≤ j =⇒ uSm(vS1
i (bi, ai), ...) = vSm

i (bi, ai),

i > j + 1 =⇒ uSm(vS1
i (x, y), ...) ≈ vSm

i (x, y),

n ≤ ℓ− 1 =⇒ uSm(vS1
j+1(dn, cn), ...) = dn,

and
uSm(vS1

j+1(dℓ, cℓ), ...) = vSm
j+1(dℓ, eℓ).

These are all automatic when j + 1 ̸∈ Sm, and when Sm = {j + 1} they follow from the inductive
hypothesis and the definition of eℓ. The cases where i ̸= j + 1 and Sm = {j + 1} ⊔ Sw follow from

i ̸= j + 1, Sm = {j + 1} ⊔ Sw =⇒ vSw
i (x, y) ≈ vSm

i (x, y)

together with idempotence of tℓ−1
a1b1···ajbj . Finally, the cases where n ≤ ℓ and Sm = {j + 1} ⊔ Sw

follow from
Sm = {j + 1} ⊔ Sw =⇒ vSw

j+1(dn, cn) = dn, vSm
j+1(dn, cn) = cn,

and vSm
j+1(dℓ, eℓ) = eℓ = tℓ−1

a1b1···ajbj (v
S1
j+1(dℓ, cℓ), ...).
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Definition 2.6.16 ([99], [106]). A relation R ≤ A1 × · · · × Ak is called a k-dimensional chipped
cube if there are subalgebras Pi < Bi ≤ Ai such that

(x1, ..., xk) ∈ R ⇐⇒
∧
i≤k

xi ∈ Bi ∧
∨
j≤k

xj ∈ Pj ,

that is, if

R =
(∏
i≤k

Bi
)
\
(∏
i≤k

Bi \ Pi
)
.

Following [106], we say that a chipped cube is a cross if we have Bi = Ai for all i ≤ k, that is, if

(x1, ..., xk) ∈ R ⇐⇒
∨
i≤k

xi ∈ Pi.

Theorem 2.6.17 (Kazda, Zhuk [99]). A finite idempotent algebra A has a k-cube term iff there is
no k-dimensional chipped cube R ≤ Ak.

Proof. By Horowitz’s Theorem 2.6.15, we just need to check that if there is some sequence of k
ordered pairs ai ̸= bi ∈ A such that

(b1, ..., bk) ̸∈ SgAk

(∏
i≤k
{ai, bi} \ {(b1, ..., bk)}

)
,

then A has a k-dimensional chipped cube. For this, we fix (a1, ..., ak) and choose such a (b1, ..., bk)
such that ∑

i≤k
|SgA{ai, bi}|

is minimized. Then by the same argument as the one in Lemma 2.6.11, if we define Pi,Bi by

Bi = SgA{ai, bi},
Pi = {p ∈ Bi | SgA{ai, p} ≠ Bi},

then
R := SgAk

(∏
i≤k
{ai, bi} \ {(b1, ..., bk)}

)
=

(∏
i≤k

Bi
)
\
(∏
i≤k

Bi \ Pi
)
.

To see that Pi is actually a subuniverse of A, note that we have

p ∈ Pi ⇐⇒ (b1, ..., bi−1, p, bi+1, ..., bk) ∈ R.

Surprisingly, Kearnes and Szendrei [106] showed that a version of this result holds in the infinite
case, by using some special properties of free algebras.

Theorem 2.6.18 (Kearnes, Szendrei [106]). Let A be a (possibly infinite) idempotent algebra, and
let F = FV(A)(x, y) be the free algebra on two generators in the variety generated by A. Then

(a) A has a k-cube term iff F has no k-dimensional cross R < Fk, and

(b) A has a cube term iff F has no proper projective subalgebra P < F.
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Proof. We start with (a). Since F is the free algebra on two generators, A has a k-cube term iff

(x, ..., x) ∈ SgFk

(
{x, y}k \ {(x, ..., x)}

)
.

Defining Cross(P1, ..., Pk) by

(x1, ..., xk) ∈ Cross(P1, ..., Pk) ⇐⇒
∨
i≤k

xi ∈ Pi,

we see that if A does not have a k-cube term then

(x, ..., x) ̸∈ SgFk

(
Cross({y}, ..., {y})

)
.

We now inductively define a sequence of proper subalgebras Pi < F with y ∈ Pi and x ̸∈ Pi as
follows. Assuming that we have already constructed P1, ...,Pi−1 such that

(x, ..., x) ̸∈ SgFk

(
Cross(P1, ...,Pi−1, {y}, {y}, ..., {y})

)
,

we use Zorn’s Lemma to find a maximal subalgebra Pi ⊇ {y} among those satisfying

(x, ..., x) ̸∈ SgFk

(
Cross(P1, ...,Pi−1,Pi, {y}, ..., {y})

)
.

Note that even the initial choice of P1 might need to depend on the particular value of k.
We claim that for this particular choice of P1, ...,Pk, the cross Cross(P1, ...,Pk) forms a subuni-

verse of Fk. Suppose for the sake of contradiction that this is not true, i.e. suppose that there are
ui ∈ F \ Pi such that

(u1, ..., uk) ∈ SgFk

(
Cross(P1, ...,Pk)

)
.

We will prove, by induction on i, that in this case we have

(x, ..., x, ui+1, ..., uk) ∈ SgFk

(
Cross(P1, ...,Pk)

)
for each 0 ≤ i ≤ k. Since ui ̸∈ Pi, the choice of Pi implies that we have

(x, ..., x) ∈ SgFk

(
Cross(P1, ...,Pi−1,Sg(Pi ∪ {ui}), {y}..., {y})

)
= SgFk

(
Cross(P1, ...,Pi−1,Pi, {y}, ..., {y}) ∪ {(x, ..., x, ui, x, ..., x)}

)
,

since F is generated by {x, y} and every element of {x, y}i−1×{ui}×{x, y}k−i other than (x, ..., x, ui, x, ..., x)
is already contained in the cross. Since F is the free algebra on two generators, for each j > i there
is a homomorphism φj : F→ F such that

φj(x) = uj ,

φj(y) = y.

Since homomorphisms commute with all term operations, this implies that we have

(x, ..., x, x, φi+1(x), ..., φk(x)) ∈ SgFk

(
Cross(P1, ...,Pi−1,Pi, {φi+1(y)}, ..., {φk(y)})
∪ {(x, ..., x, ui, φi+1(x), ..., φk(x))}

)
,
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that is,

(x, ..., x, x, ui+1, ..., uk) ∈ SgFk

(
Cross(P1, ...,Pi−1,Pi, {y}, ..., {y}) ∪ {(x, ..., x, ui, ui+1, ..., uk)}

)
,

which completes the inductive step. Taking i = k, we get the desired contradiction.
For part (b), we first use a variation of the argument of (a) to find an infinite sequence of proper

subalgebras Pi < F with y ∈ Pi and x ̸∈ Pi such that Cross(P1, ...,Pk) is a subuniverse of Fk for all
k ≥ 1. As in (a), we inductively apply Zorn’s Lemma to pick a maximal Pi such that

(x, ..., x) ̸∈ SgFk

(
Cross(P1, ...,Pi, {y}, ..., {y})

)
for all k ≥ i. We then inductively show that if there are ui ∈ F \ Pi such that

(u1, ..., uk) ∈ SgFk

(
Cross(P1, ...,Pk)

)
,

then for each i ≤ k there is some m ≥ k such that

(x, ..., x, ui+1, ..., uk, x, ..., x) ∈ SgFm

(
Cross(P1, ...,Pk, {y}, ..., {y})

)
,

reaching a contradiction once i = k.
Once we have found the infinite sequence P1,P2, ..., we define P < F by

P =
⋃
i≥0

(⋂
j≥i

Pj
)
,

that is, P consists of all elements of F which are contained in all but finitely many of the Pis. P is
a subalgebra of F since it is an increasing union of the subalgebras

⋂
j≥i Pi. Also, we have y ∈ P

and x ̸∈ P, so P is a proper subalgebra of F.
To show that P is a projective subalgebra of F, suppose for the sake of contradiction that there

was some tuple u = (u1, ..., uk) with ui ∈ F \ P and

(u1, ..., uk) ∈ SgFk

(
Cross(P, ...,P)

)
.

Then there is a finite collection of tuples v1, ..., vn ∈ Cross(P, ...,P) such that u ∈ SgFk{v1, ..., vn}.
Pick N large enough that

j1, ..., jk ≥ N =⇒ vm ∈ Cross(Pj1 , ...,Pjk)

for all m ≤ n. Since each ui is not contained in P, there must be an infinite sequence of js such
that ui ̸∈ Pj , so we can find N ≤ j1 < j2 < · · · < jk such that

ui ̸∈ Pji

for each i ≤ k. But then we have

(u1, ..., uk) ∈ SgFk{v1, ..., vn} ⊆ SgFk

(
Cross(Pj1 , ...,Pjk)

)
,

contradicting the choice of the sequence P1,P2, ....

Kearnes and Szendrei [106] used this to prove the following striking result, which can be viewed
as a partial converse to the fact that a semilattice does not have few subpowers.
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Corollary 2.6.19 ([106]). Suppose that A = (A, c(x1, ..., xm)), where the m-ary basic operation c
is idempotent and cyclic, i.e. c satisfies the identity

c(x1, x2, ..., xm) ≈ c(x2, ..., xm, x1).

Then A fails to have a cube term iff the two-element algebra

({0, 1},max(x1, ..., xm)),

which is term-equivalent to a semilattice, is contained in the variety generated by A.

Proof. By Theorem 2.6.18, if A has no cube term then the free algebra F = FV(A)(x, y) has a
proper projective subalgebra P < F. Note that if c is P-absorbing in any coordinate, then c must
be P-absorbing in all coordinates, since c is cyclic.

Pick any element b ̸∈ P, and consider the subalgebra B ≤ F generated by P∪{b}. The fact that
c is P-absorbing in all coordinates implies that we have

(x1, ..., xm) ∈ (P ∪ {b})m \ {(b, ..., b)} =⇒ c(x1, ..., xm) ∈ P,

and since c is idempotent we have
c(b, ..., b) = b,

so in particular B = P∪{b}. Then if we define an equivalence relation θ on B with blocks P and {b},
we see that θ is a congruence of B, and the quotient B/θ is isomorphic to ({0, 1},max(x1, ..., xm))
by identifying b/θ with 0 and P/θ with 1.

Our final goal for this section is to go over the proofs from [106] and [99] of the fact that if
the basic operations of an idempotent algebra have low arity, and if the algebra has no cube term
blocker, then it must have a k-cube term with k small.

Lemma 2.6.20 ([106], [99]). If an m-ary idempotent operation t(x1, ..., xm) preserves the k-
dimensional chipped cube R given by

(x1, ..., xk) ∈ R ⇐⇒
∧
i≤k

xi ∈ Bi ∧
∨
j≤k

xj ∈ Pj ,

then there are at most m− 1 values of i ≤ k such that tBi has no Pi-absorbing coordinate.

Proof. Suppose for the sake of contradiction that there are at least m values of i ≤ k such that tBi

has no Pi-absorbing coordinate. We may assume without loss of generality that these include all
i ≤ m.

For each i ≤ m, by the assumption that tBi is not Pi-absorbing in its ith coordinate we can pick
an m-tuple (bi1, ..., b

i
i−1, p

i
i, b

i
i+1, ..., b

i
m) ∈ Bi−1

i × Pi × Bm−i
i such that

t(bi1, ..., b
i
i−1, p

i
i, b

i
i+1, ..., b

i
m) ̸∈ Pi.

For m < i ≤ k, pick any element bi ∈ Bi \ Pi and set bij = bi for all j ≤ m, so that by idempotence
of t we have

t(bi1, ..., b
i
m) = t(bi, ..., bi) = bi ̸∈ Pi.
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For each j ≤ m, define a k-dimensional column vector

vj = (b1j , ..., b
j−1
j , pjj , b

j+1
j , ..., bkj )

T ∈ R,

and note that by our choices we have

t(v1, ..., vm) ∈
∏
i≤k

Bi \ Pi,

contradicting the assumption that t preserves R.

Theorem 2.6.21 (Kearnes, Szendrei [106]). If an idempotent algebra A = (A, f1, ..., fn) has a cube
term, then it has a k-cube term with

k = 1 +
∑
i≤n

(
ar(fi)− 1

)
,

where ar(fi) is the arity of fi.

Proof. Supposing that A has no k-cube term, Theorem 2.6.18 shows that somewhere in the variety
generated by A there is a k-dimensional chipped cube R given by

(x1, ..., xk) ∈ R ⇐⇒
∧
i≤k

xi ∈ Bi ∧
∨
j≤k

xj ∈ Pj .

Our goal is to prove that in this case, at least one of the pairs (Pi,Bi) is a cube term blocker.
By the lemma, for each basic operation fj there are at most ar(fj) − 1 values of i ≤ k such

that fBi
j has no Pi-absorbing coordinate. By the choice of k, there must then be some i∗ ≤ k such

that each f
Bi∗
j has some Pi∗-absorbing coordinate. Then by Proposition 2.6.2 Pi∗ is a projective

subalgebra of Bi∗ , so A has no cube term.

Example 2.6.1. We can now outline an easier way to verify that the three-element algebra A =
({a, b, c}, g) from Example 2.2.1 has a 3-edge term. First, we use Corollary 2.6.19 to see that since
g is symmetric, in order to check whether A has few subpowers we just need to check whether A has
a two-element semilattice as a subquotient (we only need to check subquotients by Lemma 1.5.9,
since two-element algebras are strictly simple). Once this is done, we note that since ar(g) = 3,
Theorem 2.6.21 implies that if A has few subpowers then it must have a 3-cube term, and therefore
also a 3-edge term by Theorem 2.2.7.

A better bound when |A| is small was given in [99]. The key idea is to show that there is a
chipped cube where the number of distinct pairs (Pi,Bi) is bounded by

(|A|
2

)
.

Lemma 2.6.22 ([99]). If A is a finite idempotent algebra which has a 2(k − 1)-cube term but no
k-cube term, and if we pick a sequence of k ordered pairs ai ̸= bi ∈ A which minimize∑

i≤k
|SgA{ai, bi}|

among all such sequences of pairs which satisfy

(b1, ..., bk) ̸∈ SgAk

(∏
i≤k
{ai, bi} \ {(b1, ..., bk)}

)
,
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then R = SgAk

(∏
i≤k{ai, bi} \ {(b1, ..., bk)}

)
is a k-dimensional chipped cube given by

(x1, ..., xk) ∈ R ⇐⇒
∧
i≤k

xi ∈ Bi ∧
∨
j≤k

xj ∈ Pj .

with

Bi = SgA{ai, bi},
Pi = {p ∈ Bi | SgA{ai, p} ≠ Bi},

and the number of distinct ordered pairs (Pi,Bi) is at most
(|A|

2

)
.

Proof. Everything other than the bound on the number of pairs (Pi,Bi) follows from same argument
as the one used in Lemma 2.6.11 and Theorem 2.6.17, without using the fact that the ai can also
be varied. Since the pair (Pi,Bi) is determined by the ordered pair (ai, bi), we just need to prove
that

(ai, bi) ̸= (bj , aj)

for all i, j.
Suppose for the sake of contradiction that (ai, bi) = (bj , aj). Since ai ̸= bi, we can’t have i = j,

so we may assume without loss of generality that i = 1 and j = k, i.e. that

(a1, b1) = (bk, ak).

Note that if there is any c ∈ P1 ∩ Pk, then SgA{c, b1} = SgA{c, ak} ̸= Bk and c ̸= b1, so replacing
a1 with c gives

(b1, ..., bk) ̸∈ SgAk

((
{c, b1} ×

∏
2≤i≤k

{ai, bi}
)
\ {(b1, ..., bk)}

)
⊂ R,

contradicting the minimality of our initial choice of the sequence of pairs ai ̸= bi. Thus we must
have

P1 ∩ Pk = ∅.

Now if we define a relation S ≤ A2(k−1) by the primitive positive formula

(x1, ..., xk−1, y2, ..., yk) ∈ S ⇐⇒ ∃z s.t. (x1, ..., xk−1, z) ∈ R ∧ (z, y2, ..., yk) ∈ R,

then
(b1, ..., bk−1, b2, ..., bk) ̸∈ S

since z would need to be in P1 ∩ Pk, but for each i ≤ k − 1 and j ≥ 2 we have

(b1, ..., ai, ..., bk−1, b2, ..., bk), (b1, ..., bk−1, b2, ..., aj , ..., bk) ∈ S,

by taking z = bk = a1 or z = ak = b1, so A can’t have a 2(k − 1)-cube term.
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Theorem 2.6.23 (Kazda, Zhuk [99]). If a finite idempotent algebra A = (A, f1, ..., fn) with |A| > 2
has a cube term, and if

ar(f1) ≥ · · · ≥ ar(fn),

and if we define m by

m = min
(
n,

(
|A|
2

))
,

then A has a k-cube term with
k = 1 +

∑
i≤m

(
ar(fi)− 1

)
.

Proof. We only have to handle the case where m =
(|A|

2

)
< n, since the other case follows from

Theorem 2.6.21. Suppose that K is the largest arity of any chipped cube in A, and note that if
K < 3 then there is nothing to prove, since m ≥

(
3
2

)
≥ 3 and we may assume that none of the

fi are unary. Then since 2(K − 1) > K we can apply the previous lemma to see that there is a
K-dimensional chipped cube where the number of distinct pairs (Pi,Bi) is at most m.

If A has a cube term then for each distinct pair (Pi,Bi) there must be some j such that fBi
j has

no Pi-absorbing coordinate. Since there are at most m distinct pairs (Pi,Bi), at most m functions
fj1 , ..., fjm are needed to witness that none of the pairs (Pi,Bi) is a cube term blocker. Now we
argue as in Theorem 2.6.21 to see that we must have

K ≤
∑
i≤m

(
ar(fji)− 1

)
≤

∑
i≤m

(
ar(fi)− 1

)
.

Kazda and Zhuk [99] also prove a polynomial bound on the least dimension of a cube term
in the non-idempotent case (specifically, they show that we can take k ≤ |A|3 ar(A), where ar(A)
is the largest arity of any basic operation of A), and use it to find an EXPTIME algorithm for
determining whether a non-idempotent algebra has few subpowers.

Problem 2.6.1. If a (non-idempotent) algebra A is described to us by listing out the tables of its
basic operations, is it possible to determine whether or not A has few subpowers in time polynomial
in the number of bits needed to describe A?
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Chapter 3

Absorption and Bounded Width

3.1 Fourth basic example: the Rock-Paper-Scissors algebra

We’re going to start building intuition for the bounded width case with a detailed investigation
of a fourth basic algebra on three elements, which is sometimes called the “rock-paper-scissors”
algebra. This algebra is Arps = ({a, b, c}, ·), where · is the binary, commutative, idempotent
operation described by the following table.

· a b c

a a b a
b b b c
c a c c a

b

c

The algebra Arps is not a semilattice, but every two-element subset of Arps is a semilattice. Thus,
the binary operation · satisfies the following identities:

xx ≈ x, xy ≈ yx, x(xy) ≈ xy.

Any binary operation satisfying the above identities is known as a 2-semilattice operation, and the
algebra Arps is the smallest 2-semilattice which is not a semilattice.

As we will see, the corresponding relational clone is generated by the binary relation {(a, b), (b, c), (c, a)}
(which corresponds to the fact that the algebra has a cyclic automorphism) and the ternary relation
Ra,b given by the formula

Ra,b(x, y, z) := (x ∈ {a, b}) ∧ (x = a =⇒ y = z).

The ternary relation Ra,b has a special role, which is closely connected to the fact that {a, b} is a
semilattice subalgebra of Arps.

Proposition 3.1.1. If R,S ⊆ An are any n-ary relations with S ⊆ R, then the n+ 1-ary relation

((x, y) ∈ R× {a, b}) ∧ (y = a =⇒ x ∈ S)

can be defined by a primitive positive formula in R, S, and Ra,b.

Proof. Just use the following primitive positive formula:

∃z ∈ An x ∈ R ∧ z ∈ S ∧
∧
i≤n

Ra,b(y, xi, zi).
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Proposition 3.1.2. If R ≤sd Anrps is a subdirect n-ary relation, then R is the intersection of its
two-variable projections, each of which is either a full relation or the graph of an automorphism of
Arps which is either the identity or is cyclic. In particular, there is some subset of the coordinates
I ⊆ {1, ..., n} such that the projection πI is an isomorphism from R to AIrps.

Proof. We prove this by induction on n. The base case, n = 2, is easily verified: since Arps
is simple, every subdirect binary relation on Arps is either the graph of an automorphism or is
linked, and we can check that every connected subgraph of the complete bipartite graph K3,3

either contains a bipartite matching or is a tree with two leaves on both parts (e.g. using Hall’s
Marriage Lemma). Therefore up to automorphisms of Arps we just need to consider relations which
contain {(a, a), (a, b), (b, b), (c, c)}, {(a, a), (b, c), (c, b)}, or {(a, b), (a, c), (b, a), (c, a)}, and all three
of these generate A2

rps.
Now consider the case n > 2. By the induction hypothesis, we may assume without loss of

generality that π[n]\{i}(R) = An−1
rps for every i ≤ n. Suppose for contradiction that R ̸= Anrps.

Since the automorphism group of Arps is transitive, we may assume without loss of generality
that (a, ..., a) ̸∈ R. Since Arps is idempotent, the set R′ of triples (x, y, z) such that (x, y, z, a, ..., a) ∈
R is a subalgebra of A3

rps, and since π[n]\{i}(R) = An−1
rps for i = 1, 2, 3 we see that every projection

of R′ onto any pair of coordinates is full. So we can reduce to the case n = 3.
If any two of (a, a, c), (a, c, a), (c, a, a) are in R, then we can combine them to obtain (a, a, a).

So we may suppose that (a, a, b) ∈ R. If we consider the binary relation consisting of pairs (y, z)
with (a, y, z) ∈ R, then by the n = 2 case, we must have (a, c, a) ∈ R. Similar reasoning with the
roles of the first and second coordinates reversed then shows that we must have (c, a, a) ∈ R, a
contradiction.

Proposition 3.1.3. If R ≤sd Anrps × {a, b}k has full projection onto Anrps, then we have Anrps ×
{(b, ..., b)} ⊆ R.

Proof. For any x ∈ Anrps, let x− be the tuple obtained from x by applying the cyclic permutation
(a c b) componentwise. Then it’s easy to check that for any x, y ∈ Anrps, we have

(xy−)y = y.

By multiplying all of the elements of R together in any order (with parentheses placed arbitrar-
ily), we see that there is some x ∈ Anrps such that (x1, ..., xn, b, ..., b) ∈ R. For any y ∈ Anrps, there
are tuples c, d ∈ {a, b}n such that (y, c), (y−, d) ∈ R by the assumption π[n](R) = Anrps. Thus

(y, b) = ((x, b) · (y−, d)) · (y, c) ∈ R.

The previous two propositions are enough to describe an algorithm which solves CSP(Arps). The
algorithm first establishes arc-consistency, reducing some of the domains of the variables until every
constraint relation becomes subdirect. Then for each variable with a two element domain, the last
proposition shows that we may as well take that variable equal to the top/absorbing element of that
domain. After this restriction, if we consider the remaining variables, each relation decomposes into
binary relations, each of which is either an equality relation or the graph of a cyclic automorphism.
This final problem can be solved by checking that no cycle of binary relations implies that any
variable is related to itself by a nontrivial cyclic automorphism.
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Definition 3.1.4. An instance of a CSP is cycle-consistent if for every sequence of variables
v1, ..., vn and relations R1, ..., Rn and pairs of coordinates (ik, jk) such that vk, vk+1 are related by
π(ik,jk)(Rk) for each k (indices taken modulo n), the composition

π(i1,j1)(R1) ◦ · · · ◦ π(in,jn)(Rn)

contains the equality relation on the domain of the variable v1.

Corollary 3.1.5. Any cycle-consistent instance of CSP(Arps) has a solution.

If we want to understand the complete structure of a general relation R ≤ Anrps, things become
more complicated. Typical relations we need to consider have the form

x1 ∈{a, b} ∧ (x1 = a =⇒ x2 ∈ {a, b}) ∧ (x1 = x2 = a =⇒ x3 ∈ {a, b})
∧ · · · ∧ (x1 = · · · = xk = a =⇒ y = z)

or

x1 ∈{a, b} ∧ (x1 = a =⇒ x2 ∈ {a, b}) ∧ (x1 = x2 = a =⇒ x3 ∈ {a, b})
∧ · · · ∧ (x1 = · · · = xk−1 = a =⇒ xk ∈ {a, b}).

We can slightly modify these relations by applying cyclic automorphisms of Arps to some of the
variables, or by renaming the variables. We call any relation obtained by making such a modification
to the two types of relation above a basic relation on Arps.

Theorem 3.1.6. Suppose R ≤ Anrps. Then x ∈ R iff x satisfies every basic relation on Arps which
contains R. In particular, R is contained in the relational clone generated by {(a, b), (b, c), (c, a)}
and Ra,b.

Proof. Suppose x satisfies every basic relation which contains R. Let I = {i1, ..., ik} ⊆ [n] be
maximal such that, after applying cyclic automorphisms to coordinates in I, we have xij = a for
all j ≤ k, and such that the basic relation

yi1 ∈{a, b} ∧ (yi1 = a =⇒ yi2 ∈ {a, b}) ∧ (yi1 = yi2 = a =⇒ yi3 ∈ {a, b})
∧ · · · ∧ (yi1 = · · · = yik−1

= a =⇒ yik ∈ {a, b})

contains R. Assume without loss of generality that the coordinates are ordered such that I =
{n− k + 1, ..., n} and such that the n− k-ary relation R′ defined by

(y1, ..., yn−k) ∈ R′ ⇐⇒ (y1, ..., yn−k, a, ..., a) ∈ R

has R′ ≤sd Amrps × {a, b}n−m−k for some m (possibly after further applications of cyclic auto-
morphisms). Then by the maximality of I, we have x = (x1, ..., xm, b, ..., b, a, ..., a). By Propo-
sitions 3.1.2, 3.1.3, and our assumption that x satisfies all basic relations containing R, we have
(x1, ..., xm) ∈ π[m](R′) and π[m](R′)× {(b, ..., b)} ⊆ R′, so (x1, ..., xm, b, ..., b) ∈ R′, so x ∈ R.

Remark 3.1.1. The intricate yet understandable structure of the basic relations considered above
is at the heart of the uncountable region found by Zhuk [163] in the lattice of clones on a three-
element domain. Each of the clones in Zhuk’s uncountable region properly contains the clone of
the rock-paper-scissors algebra, so the generating relations for the corresponding relational clones
can be written in terms of the basic relations considered above.
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Proposition 3.1.7. Suppose that f : An → A is any idempotent operation which depends on
all of its inputs and preserves the relation Ra,b. Then the restriction of f to {a, b} must be the
n-ary semilattice operation on {a, b}, that is, for any (x1, ..., xn) ∈ {a, b}n \ {(a, ..., a)}, we have
f(x1, ..., xn) = b.

Proof. Suppose for contradiction that there is some (x1, ..., xn) ∈ {a, b}n\{(a, ..., a)} with f(x1, ..., xn) ̸=
b. Since {a, b} = π1(Ra,b) is preserved by f , we must then have f(x1, ..., xn) = a. We will show
that for all i with xi = b, f does not depend on its ith input.

Let y, z ∈ An be any pair of tuples with yi = zi whenever xi = a. Then each (xi, yi, zi) ∈ Ra,b,
so  a

f(y)
f(z)

 = f

x1 x2 · · · xn
y1 y2 · · · yn
z1 z2 · · · zn

 ∈ Ra,b,
so f(y) = f(z).

Theorem 3.1.8. An n-ary operation f is contained in Clon(Arps) iff it preserves the relations
{(a, b), (b, c), (c, a)} and Ra,b. If f depends on all its inputs, this occurs iff f preserves the cyclic
automorphism of Arps and f |{a,b} is the n-ary semilattice operation on {a, b}.

Proof. We just need to check this in the case where f depends on all of its inputs. Let F =

FV(Arps)(x1, ..., xn) ≤ AAn
rps

rps be the subalgebra generated by π1, ..., πn : Anrps → Arps. The projection

πx(F) of F onto the coordinate of AAn
rps

rps corresponding to x ∈ Anrps is the subalgebra of Arps
generated by {π1(x), ..., πn(x)} = {x1, ..., xn}.

If x is a diagonal tuple, say x = (a, ..., a), then πx(F) = {a}, corresponding to the fact that any
f ∈ F must be idempotent, with f(a, ..., a) = a. If exactly two elements of Arps occur in x, say
x ∈ {a, b}n, then πx(F) = {a, b}, and if f depends on all its inputs and preserves Ra,b, this implies
that we must have f(x) = b, i.e. πx(f) = b. Thus, if I ⊆ Anrps is the set of x such that all three

of a, b, c show up in the coordinates of x, we see that πI(F) ≤sd AIrps, and by Proposition 3.1.3 we
have f ∈ F ⇐⇒ πI(f) ∈ πI(F).

By Proposition 3.1.2, πI(F) is the intersection of its two-variable projections, each of which
is either full or the graph of a cyclic automorphism of Arps. A two variable projection πx,y(F)
will only be the graph of a cyclic automorphism σ ∈ Aut(Arps) if (πi(x), πi(y)) is in the graph of
σ for all i, that is, if yi = σ(xi) for all i. Thus, πI(f) ∈ πI(F) iff whenever y = σ(x), we have
f(y) = σ(f(x)).

Note that one of the key steps behind the analysis of the rock-paper-scissors algebra was Propo-
sition 3.1.2 which classified the subdirect powers of the algebra, and that the method of proof de-
pended only on checking properties of subdirect binary and ternary relations on Arps. The general
pattern behind this is best understood in terms of a property of the polynomial clone known as
polynomial completeness.

Definition 3.1.9. An algebra is polynomially complete if its polynomial clone is the clone of
all operations, that is, if every operation on the underlying set can be expressed using the basic
operations of the algebra together with the constant operations.

Theorem 3.1.10. A finite idempotent algebra A is polynomially complete if every binary relation
on A which contains the diagonal is either the equality relation or the full relation, and every ternary
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relation R ≤sd A3 such that every two variable projection of R is full is equal to the full relation
A3.

Proof. We will show by induction on n that every n-ary relation R ≤ An which contains the
subalgebra of diagonal tuples (x, ..., x), x ∈ A is given by a conjunction of equalities between pairs
of coordinates. The base case n = 2 follows from our assumption on A. By the inductive hypothesis,
we may assume without loss of generality that π[n]\{i}R = An−1 for each i.

If n = 3, then our assumption on A implies that R = A3. Otherwise, suppose for contradiction
that (x1, ..., xn) ̸∈ An, and consider the ternary relation R′ consisting of triples (u, v, w) such that
(u, v, w, x4, ..., xn) ∈ R. Since A is idempotent, R′ is a subalgebra of A3, and every two-variable
projection of R′ is full, so by the n = 3 case we must have (x1, x2, x3) ∈ R′, a contradiction.

Note that we have shown that the relational clone corresponding to the polynomial clone of A
is generated by the equality relation. The general Inv−Pol Galois duality now shows that A is
polynomially complete. To see this concretely, consider the subalgebra of AAn

generated by the
functions πi and the constant (diagonal) tuples. Then this subalgebra is described by a conjunction
of equalities between pairs of coordinates. But no two-variable projection of this subalgebra can
be an equality relation: if x ̸= y ∈ An, then there is always some i such that πi(x) ̸= πi(y). Thus
this subalgebra of AAn

must be the full set of operations An → A.

Corollary 3.1.11. The rock-paper-scissors algebra is polynomially complete.

As far as relations go, the main impact of polynomial completeness is that it strongly constrains
subdirect relations where each factor is polynomially complete. As we have seen, if some factors
are not polynomially complete, then the structure of an arbitrary relation can be quite intricate.
In the case of the rock-paper-scissors algebra, we are able to side-step this intricacy by restricting
each factor which is a proper subalgebra of Arps to its top/absorbing element. This is a general
strategy that can be used in the study of bounded width algebras, as well as finite Taylor algebras.

We conclude this section with a few classical results about polynomial completeness.

Definition 3.1.12. The ternary discriminator function is the function t defined by

t(x, y, z) =

{
z x = y,

x x ̸= y.

Proposition 3.1.13. A finite algebra is polynomially complete iff it has the ternary discriminator
as a polynomial operation.

Proof. One direction is obvious. For the other direction, it’s enough to show that the idempotent al-
gebra A = (A, t) whose only basic operation is the ternary discriminator t is polynomially complete.
We may assume that the underlying set A contains at least two distinct elements a, b. Suppose
first that R ≤sd A2 is a relation properly containing the diagonal of A2, and assume without loss
of generality that (a, b) ∈ R with a ̸= b. Then for any c ∈ A, we have[

a
c

]
= t

([
a b c
b b c

])
∈ R,

and similarly (d, b) ∈ R for any d ∈ A. Then for any c, d ∈ A we have[
d
c

]
= t

([
a a d
c b b

])
∈ R,
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so R = A2.
To finish, we just need to show that any ternary relation R ≤sd A3 such that every two vari-

able projection is full must be the full relation A3. Since A has full automorphism group, if
R ̸= A3 then we may assume without loss of generality that (a, a, a) ̸∈ R, while all three of
(a, a, b), (a, b, a), (b, a, a) are in R. Then we haveba

b

 = t

a a b
a b a
b a a

 ∈ R,

so aa
a

 = t

a b b
a a a
b b a

 ∈ R,

contradicting the assumption (a, a, a) ̸∈ R.

Example 3.1.1. We can give an alternative proof of the fact that the rock-paper-scissors algebra
is polynomially complete by expressing the ternary discriminator as a polynomial. First, we can
define the unary polynomial x+ corresponding to the cyclic permutation (a b c) by

x+ = ((xa)c)(xb),

and we can define the inverse of this by x− = (x+)+. Note that we now have

xy+ =

{
x+ x = y,

x x ̸= y.

Thus if we set u(x, y, z) = (z(xy+)−)x, then we have

u(x, y, z) = (z(xy+)−)x =

{
xz x = y,

x x ̸= y,

so we may take
t(x, y, z) = ((u(x, y, z)u(x, y, z+)−)u(x, y, z−)+)−.

To see that this works, note that if x = y, then two of xz, (xz+)−, (xz−)+ are equal to z while the
third is equal to z+, so since {z, z+} is a semilattice we see that in this case t(x, y, z) is given by

(((xz)(xz+)−)(xz−)+)− = (zzz+)− = (z+)− = z,

while if x ̸= y then u(x, y, ?) = x, so t(x, y, z) is given by

((xx−)x+)− = (xx+)− = (x+)− = x.

The ternary discriminator t satisfies the system of identities

t(x, y, y) ≈ x,
t(x, y, x) ≈ x,
t(y, y, x) ≈ x.
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Any ternary term satisfying this system of identities is known as a Pixley term. Note that any
Pixley term is automatically a Mal’cev term, and that the term d defined from t by

d(x, y, z) = t(x, t(x, y, z), z)

is automatically a majority term. In the case where t is the ternary discriminator, d becomes the
dual discriminator of Example 1.6.5.

Theorem 3.1.14 (Pixley [139]). An algebra A generates a variety which is both congruence per-
mutable and congruence distributive iff it has a Pixley term. If A is also simple, then it is polyno-
mially complete.

Proof. If A has a Pixley term, then it has both a Mal’cev term and a majority term, so it generates
a congruence permutable and congruence distributive variety. Conversely, suppose that A generates
a congruence permutable and congruence distributive variety. Let F = FV(A)(x, y, z) be the free
algebra on three generators in this variety, and for a, b ∈ {x, y, z} let θab be the smallest congruence
with a ≡θab b. Then (x, z) ∈ θxz ∧ (θxy ◦ θyz), so by congruence distributivity and permutability,
we have

(x, z) ∈ θxz ∧ (θxy ∨ θyz) = (θxz ∧ θxy) ∨ (θxz ∧ θyz) = (θxz ∧ θyz) ◦ (θxz ∧ θxy).

Thus there is some t ∈ F such that

x (θxz ∧ θyz) t (θxz ∧ θxy) z.

Thus t is a ternary term which satisfies the Pixley identities.
Now suppose that A is simple. Since A is Mal’cev, every binary relation on A is the graph of

an isomorphism modulo the linking congruence, and the linking congruence is necessarily either 0A
or 1A. Thus every binary relation on A which contains the diagonal is either full or equal to the
diagonal. Since A has a majority term, every ternary relation on A whose two variable projections
are all full must itself be a full relation. Thus A is polynomially complete.

Varieties which are both congruence distributive and congruence permutable are known as
arithmetical varieties. The name arithmetical comes from the theory of arithmetical rings, which
are rings where the “Chinese remainder condition” holds: for any ideals I1, ..., In and elements
a1, ..., an with ai ≡ aj (mod Ii + Ij) for all i, j, there exists some x with x ≡ ai (mod Ii) for all i.

3.2 Partial semilattice operations and the digraph of semilattice
subalgebras

In this section we will go over a binary analogue of a standard result about iterating unary functions
to make (compositionally) idempotent functions, that is, functions satisfying e ◦ e = e. First we
review the case of unary iteration.

Definition 3.2.1. If f : A→ A is a unary function, we define f◦n to be f ◦ · · · ◦ f , with n copies
of f . If (A, f) is either finite or profinite, we define f∞ by

f∞(x) := lim
n→∞

f◦n!(x).
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Alternatively, we can define f∞ as the limit of f◦n over the net of positive integers n, ordered by
divisibility. Similarly, we define f∞−1 by

f∞−1(x) := lim
n→∞

f◦(n!−1)(x).

Proposition 3.2.2. If (A, f) is profinite, then the limit defining f∞ exists, and f∞ satisfies the
identity

f∞(f∞(x)) ≈ f∞(x).

Furthermore, if A is finite, then
f∞ = f◦ lcm{1,...,|A|},

and the graph of f∞ can be computed from the graph of f in time linear in |A|.

Proof. It’s enough to prove this in the case where A is finite. Let m,m′ be any positive multiples
of lcm{1, ..., |A|}, we will show that f◦m = f◦m

′
: this will show that the limit is equal to f◦m,

and taking m′ = 2m will show that f∞ ◦ f∞ = f∞. To see that f◦m = f◦m
′
, note that for any

x, the sequence x, f(x), f(f(x)), ..., f◦k(x), ... must be eventually periodic with period p at most
|A|, and the periodic behavior must begin within the first |A| steps, so for any k ≥ |A| we have
f◦k(x) = f◦(k+p)(x). Since |m−m′| is a multiple of p and m,m′ ≥ |A|, this implies that f◦m = f◦m

′
.

In order to compute the graph of f∞ efficiently, we will also compute the function f∞−1 si-
multaneously. First, make a list of elements of A, and mark all of them as “unprocessed”. In
each round, we pick the next unprocessed element x from the list, and compute the sequence of
iterates x, f(x), f(f(x)), ..., marking each one as “processed” as we compute it, until the first time
we compute f◦k(x) and find that it has already been marked as “processed”. There are two cases:
either f◦k(x) is equal to f◦i(x) for some i < k, or f◦k(x) was processed in some previous round.
We can distinguish between the two cases by checking whether the value of f∞(f◦k(x)) has already
been computed.

In the case where f◦k(x) = f◦i(x) for some i < k, we first set f∞(f◦j(x)) := f◦j(x) and
f∞−1(f◦j(x)) := f◦(j−1)(x) for i < j ≤ k. For j < i, we iterate downwards, setting

f∞(f◦j(x)) := f∞−1(f◦(j+1)(x))

and
f∞−1(f◦j(x)) := f∞−1(f∞(f◦j(x))).

In the case where f◦k(x) was processed in a previous round, we iterate downwards using the above
rules to handle all j < k.

Since the number of steps needed for each round is linear in the number of elements which are
marked as processed in that round, and since each element of A is marked as processed at most
once, the entire procedure for computing f∞ and f∞−1 runs in time linear in |A|.

In the context of CSPs, the reduction to the case of core structures was based on the observation
than any non-surjective unary polymorphism f : A→ A allows us to replace the underlying set A
by the smaller set f(A) to obtain a homomorphically equivalent CSP on a smaller domain. In this
case, the map f∞ : A→ A will also be non-surjective, and in fact we have the guarantee that

f∞(A) ⊆ f◦n(A)
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for all n ≥ 0. So whenever we shrink the domain of a non-core CSP using a unary polymorphism,
we may as well assume that the unary polymorphism in question is (compositionally) idempotent.

On the algebraic side, if e ◦ e = e and e ∈ Clo1(A), we can define a reduct Ae of A as follows.
For every n-ary operation f ∈ Clon(A), we define the corresponding operation fe : An → A by

fe(x1, ..., xn) = e(f(e(x1), ..., e(xn))).

Then we define Ae to be the algebraic structure (A, {fe | f ∈ Clo(A)}) having a basic operation fe
for each term f of A.

Each operation fe only depends on the restriction of f to e(A), and takes values in e(A). Also, if
f preserves e(A), then fe and f agree when they are restricted to e(A). The reduct Ae has e(A) as
a subalgebra, and is completely determined by its restriction to the subalgebra e(A) together with
the description of the map e : A→ e(A). So the reduct Ae and its subalgebra e(A) are essentially
interchangeable, and the subalgebra e(A) of Ae has as its basic operations the terms of A which
preserve e(A).

As a special case of the general result relating reflections to height 1 identities, we have the
following basic result.

Proposition 3.2.3. If a system of height 1 identities is satisfied by terms f1, ..., fk of A, then
the same system of height 1 identities is satisfied by the corresponding operations f1e , ..., f

k
e of Ae

(defined as above).

Note that identities which involve nesting functions may not survive the process of passing from
A to the reduct Ae.

Now we return to the world of idempotent operations, and describe a surprisingly powerful
binary analogue of unary iteration. Rather than (compositionally) idempotent operations, we will
produce a type of binary operation which I call a partial semilattice operation.

Definition 3.2.4. We say that an idempotent binary operation s is a partial semilattice if it
satisfies the identity

s(x, s(x, y)) ≈ s(s(x, y), x) ≈ s(x, y).

Equivalently, s is a partial semilattice if for all x, y, the set {x, s(x, y)} is closed under s, and acts
like a semilattice subalgebra with absorbing element s(x, y) under s.

Note that unlike semilattices and 2-semilattices, partial semilattices are not necessarily Taylor
operations. The binary projection π1 is an extreme example of a partial semilattice operation which
is not Taylor. This is a necessary feature of the definition, since we will show that any idempotent
binary operation can be used to produce a partial semilattice operation (in a nontrivial way).

In order to produce partial semilattice operations, we will start by treating our binary operation
as a unary function of the second variable, with the first variable treated as a (constant) parameter.

Definition 3.2.5. If t : A2 → A is a binary function and A is finite (or profinite), then we define
t∞ to be the pointwise limit

t∞(x, y) := lim
n→∞

tn!(x, y),

where t1 := t and tn+1(x, y) := t(x, tn(x, y)).
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Proposition 3.2.6. For any binary term t, we have

t∞(x, t∞(x, y)) ≈ t∞(x, y).

If t is idempotent, then so is t∞.

The function t∞ now satisfies one of the two defining identities for a partial semilattice. Note
that t∞ can be computed from t in time linear in |A|2. To find a term u which satisfies the second
identity u(u(x, y), x) ≈ u(x, y), we plug t∞ into itself in a surprisingly counterintuitive way.

Proposition 3.2.7. If f is an idempotent binary term which satisfies the identity

f(x, f(x, y)) ≈ f(x, y),

and if we define a term u by
u(x, y) := f(x, f(y, x)),

then u satisfies the identity
u(u(x, y), x) ≈ u(x, y).

Proof. We have

f(x, u(x, y)) ≈ f(x, f(x, f(y, x))) ≈ f(x, f(y, x)) ≈ u(x, y),

so
u(u(x, y), x) ≈ f(u(x, y), f(x, u(x, y))) ≈ f(u(x, y), u(x, y)) ≈ u(x, y).

Finally, to get a term which satisfies both defining identities of a partial semilattice, we iterate
the function u on its second variable.

Proposition 3.2.8. If u is an idempotent binary term which satisfies the identity

u(u(x, y), x) ≈ u(x, y),

then s := u∞ satisfies the identity

s(x, s(x, y)) ≈ s(s(x, y), x) ≈ s(x, y).

Proof. Define un as in the definition of u∞. Then for any m we have

um(u(x, y), x) ≈ u(x, y),

and on replacing y by un−1(x, y), we get

um(un(x, y), x) ≈ un(x, y)

for any m,n.

The full process, going from t to f = t∞ to u(x, y) = f(x, f(y, x)) to s = u∞, is functorial, and
the final function s : A2 → A can be computed from t in time linear in |A|2. Since s was defined
from t in a nontrivial way, we get the following result.
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Proposition 3.2.9. If t is a binary idempotent term and a, b are such that t(a, b) = t(b, a) = b, then
the partial semilattice term s ∈ Clo(t) defined by the above process also satisfies s(a, b) = s(b, a) = b.

More generally, if B,C are subsets of A such that for any x ∈ B ∪ C and any y ∈ C we have
t(x, y), t(y, x) ∈ C, then the same holds for s.

Corollary 3.2.10. If (b, b) ∈ SgA2{(a, b), (b, a)}, then there is a partial semilattice term s ∈ Clo(A)
such that s(a, b) = s(b, a) = b.

Once we have a partial semilattice term s with s(a, b) = s(b, a) = b, we can use it to preprocess
the inputs to other n-ary functions to force them to preserve the subset {a, b} and act like the n-ary
semilattice operation on this subset. To do this, we first need to find terms sn ∈ Clo(s) which act
like the n-ary semilattice operation.

Proposition 3.2.11. If s is a partial semilattice operation, then for all n there are terms sn ∈
Clo(s) of arity n such that if {x, x2, ..., xn} = {x, y}, then

sn(x, x2, ..., xn) ≈ s(x, y).

Proof. If {x, x2, ..., xn} = {x, y}, then the expressions s(x, x2), ..., s(x, xn) are all equal to either x
or s(x, y), and at least one of them is equal to s(x, y), so since {x, s(x, y)} acts like a semilattice
oriented from x to s(x, y) under s, we can combine these expressions in any order to produce such
a term sn.

For concreteness, we define sn inductively, as follows: s1(x) = x, s2(x, y) = s(x, y) and

sn(x1, ..., xn) = s(sn−1(x1, ..., xn−1), s(x1, xn)).

Now we can use the terms sn to preprocess the inputs to n-ary functions. If f is an n-ary term
of A, define the term fs by

fs(x1, ..., xn) = f(sn(x1, ..., xn), sn(x2, ..., xn, x1), ..., sn(xn, x1, ..., xn−1)).

As in the case of unary operations, we will consider the reduct As with basic operations fs for every
term f of A. This reduct will be simpler in the sense that for any a, b with s(a, b) = s(b, a) = b,
each term fs will act like the n-ary semilattice operation on {a, b}. Additionally, every two-variable
height 1 identity which holds in A will also hold in As.

Proposition 3.2.12. Let A = (A, (f i)i∈I) be a finite idempotent algebra, and let Σ be the set of
all two-variable height 1 identities which involve both variables on each side and are satisfied in A.
Then the operations (f is)i∈I of As will also satisfy the identities in Σ.

Additionally, if B,C are subalgebras of A such that for any x ∈ B and any y ∈ C we have
s(x, y), s(y, x) ∈ C, then for any n-ary term f of A and any x1, ..., xn ∈ B ∪ C such that at least
one xi ∈ C, we have fs(x1, ..., xn) ∈ C.

Proof. Suppose we have an identity

f i(a1, ..., am) ≈ f j(b1, ..., bn),

with {a1, ..., am} = {b1, ..., bn} = {x, y}. Define a′1, ..., a
′
m by a′k = s(x, y) if ak = x and a′k = s(y, x)

if ak = y, and define b′1, ..., b
′
n similarly. Then for each k, we have

sm(ak, ..., am, a1, ..., ak−1) ≈ a′k,
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and similarly for the b′ls, so

f is(a1, ..., am) ≈ f i(a′1, ..., a′m) ≈ f j(b′1, ..., b′n) ≈ f js (b1, ..., bn).

For the last statement, we just need to check that for any x1, ..., xn ∈ B ∪ C with at least one
of the xis in C we have sn(x1, ..., xn) ∈ C (since C is closed under each term f of A). This follows
from the fact that sn is defined from s in a way that involves all of its variables.

Since an algebra A is Taylor iff it satisfies a nontrivial system of two-variable height 1 identities,
if A is Taylor then As will also be Taylor. Later, we will see that algebras with bounded width are
also characterized by two-variable height 1 identities, so the same sort of implication (i.e. A has
bounded width implies As has bounded width) will hold in that case as well. Algebras with few
subpowers are not characterized by height 1 identities, essentially because no semilattice can have
few subpowers, so such an implication fails in that case.

There are two other interesting cases which are not characterized by two-variable height 1
identities: algebras of width 1, and algebras such that the associated CSP is solved by the linear
programming relaxation. It turns out that we can still prove a similar result in these cases.

Proposition 3.2.13. If A has symmetric terms fn of every arity, then it has symmetric terms fsn
which act like the semilattice operation on each set {a, b} with s(a, b) = s(b, a) = b.

Proof. Let fn be a symmetric term of arity n, for each n. Then for any n, let σ1, ..., σn! be an
enumeration of the permutations of {1, ..., n}, and define fsn by

fsn(x1, ..., xn) := fn!(sn(xσ1(1), ..., xσ1(n)), ..., sn(xσn!(1), ..., xσn!(n))).

Then fsn is a symmetric term of arity n.

Proposition 3.2.14. If A has totally symmetric terms fn of every arity, then it has totally sym-
metric terms fsn which act like the semilattice operation on each set {a, b} with s(a, b) = s(b, a) = b.

Proof. Fix n. For every m ≥ 1, let Snm be the set of n-ary terms t of A such that there exist
variables y1, ..., yl with {y1, ..., yl} = {x1, ..., xn} and such that for each i, the number of j with
yj = xi is at least m, and

t(x1, ..., xn) = sl(y1, ..., yl).

Note that for m′ > m we have Snm′ ⊆ Snm, and each Snm is finite and nonempty, so the intersection
Sn =

⋂
m S

n
m is also finite and nonempty. Furthermore, for any a1, ..., an ∈ A, the set of values

{t(a1, ..., an) | t ∈ Sn}

depends only on the set {a1, ..., an}. Thus we can take

fsn(x1, ..., xn) := f|Sn|({t(x1, ..., xn) | t ∈ Sn}).

Remark 3.2.1. The previous two propositions only used the fact that the restrictions of the sns to
{a, b} are symmetric and totally symmetric, respectively. So they can be generalized to show that
if an algebra A has symmetric/totally symmetric operations of each arity, then for every subset X
of A such that some collection of terms tn of A preserve X and have symmetric/totally symmetric
restrictions to X, we can find symmetric/totally symmetric operations of A which preserve X and
such that their restrictions to X agree with the restrictions of the terms tn. It turns out that a
similar general result holds for Taylor clones and clones of bounded width, but the proof of that
will need to wait until we show that Taylor algebras have cyclic terms.
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Recall that for any a, b, the set {a, b} is a semilattice subalgebra of A iff the ternary relation
(x ∈ {a, b}) ∧ (x = a =⇒ y = z) defines a subalgebra of A3. We can generalize this somewhat.

Proposition 3.2.15. If B,C are subsets of A, then the ternary relation

(x ∈ B ∪ C) ∧ (x ̸∈ C =⇒ y = z)

defines a subalgebra of A3 iff B∪C is a subalgebra of A, and for any n, any n-ary term f ∈ Clon(A)
which depends on all of its inputs, and any x1, ..., xn ∈ B ∪ C such that at least one xi ∈ C, we
have f(x1, ..., xn) ∈ C.

Definition 3.2.16. If C ≤ B are subalgebras of A such that there exists a term t with t(B,C), t(C,B) ⊆
C, then we say that C binary absorbs B, and write C�binB. If for any n, any n-ary term f ∈ Clon(A)
which depends on all of its inputs, and any x1, ..., xn ∈ B such that at least one xi ∈ C, we have
f(x1, ..., xn) ∈ C, then we say that C strongly absorbs B, and write C�str B.

We can summarize the previous results in the following proposition, which shows that binary
absorption and strong absorption are very nearly the same thing.

Proposition 3.2.17. If C�binB, then there is a partial semilattice term s with s(B,C), s(C,B) ⊆ C,
and in the reduct As the subalgebras Bs,Cs satisfy Cs�str Bs. Furthermore, C�str B iff the ternary
relation (x ∈ B) ∧ (x ̸∈ C =⇒ y = z) defines a subalgebra of A3 (and C ≤ B).

In general, a binary absorbing subalgebra of a binary absorbing subalgebra might not be
binary absorbing (consider the 4 element lattice ({0, 1}2,∧,∨) and the sequence {(0, 1)} �bin

{(0, 0), (0, 1)} �bin {0, 1}2), and similarly for strongly absorbing subalgebras (consider the idem-
potent commutative groupoid ({a, b, c}, ·) given by ab = ac = b, bc = c and the sequence {c} �str

{b, c} �str {a, b, c}). However, we can always chain together binary and strong absorption in one
particular order.

Proposition 3.2.18. If C�bin B�str A, then C�bin A. Applying this repeatedly, we see that if

C�bin Bn �str · · ·�str B1 �str A,

then C�bin A.

Proof. Suppose that C absorbs B with respect to the binary term t. Define a term u by

u(x, y) := t(t(x, t(x, y)), t(y, t(y, x))).

Then for any a ∈ A, c ∈ C, we have t(a, c) ∈ B and t(a, t(a, c)) ∈ B since c ∈ B�str A, so

u(a, c) ∈ t(B, t(c,B)) ⊆ t(B,C) ⊆ C,

and similarly u(c, a) ∈ C.

By iteratively replacing A with reducts As for partial semilattice terms s quadratically many
times, we can reduce to the case where for all a, b, we have (b, b) ∈ SgA2{(a, b), (b, a)} iff {a, b} is a
semilattice subalgebra of A with absorbing element b.
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Definition 3.2.19. We say that an idempotent algebra A has been prepared if for every pair a, b
such that [

b
b

]
∈ SgA2

{[
a
b

]
,

[
b
a

]}
,

the set {a, b} is a semilattice subalgebra of A (in the sense that the restriction of any k-ary basic
operation of A to {a, b} is the k-ary semilattice operation on {a, b} with absorbing element b).

For algebras which have been prepared, it makes sense to define a digraph whose edges corre-
spond to semilattice subalgebras of A.

Definition 3.2.20. If s is a partial semilattice operation and a, b have s(a, b) = b, then we write
a→s b, or just a→ b if s is understood (or if the algebra has been prepared).

Theorem 3.2.21. Let s be a fixed nontrivial partial semilattice term of an idempotent algebra A.
If A is prepared, then the following are equivalent.

(a) s(a, b) = b, that is, a→ b,

(b) the restriction of s to {a, b} acts like the semilattice operation on {a, b} with absorbing element
b,

(c) there exists c such that s(a, c) = b,

(d)

[
b
b

]
∈ SgA2

{[
a
b

]
,

[
b
a

]}
(e) there is a binary term t of A with t(a, b) = t(b, a) = b,

(f) there is a partial semilattice term s′ of A with s′(a, b) = b,

(g) for every n and every n-ary term f ∈ Clon(A) which depends on all its inputs, the restriction
of f to {a, b} acts like the n-ary semilattice operation on {a, b} with absorbing element b,

(h) the ternary relation (x ∈ {a, b}) ∧ (x = a =⇒ y = z) defines a subalgebra of A3.

If A has not been prepared, then (a), (b), (c) are equivalent to each other, (d), (e), (f) are equivalent
to each other, (g), (h) are equivalent to each other, and (g) implies (a) implies (d).

Proposition 3.2.22. If A is prepared, then the following hold:

(a) for B�bin A and any a ∈ A, there is some b ∈ B such that a→ b,

(b) if B�bin A and a ∈ A, b ∈ B have b→ a, then a ∈ B,

(c) if C�bin B�bin A, then C�bin A,

(d) if B1,B2 �bin A, then B1 ∩ B2 ̸= ∅ and B1 ∩ B2 �bin A.

In particular, there is a unique minimal binary absorbing subalgebra B �bin A, and this B has no
proper binary absorbing subalgebra.
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Proof. Part (a) follows from the existence of a partial semilattice term s with s(A,B) ⊆ B and part
(b) follows from part (g) of the previous proposition.

For part (c), choose a partial semilattice term s with s(B,C), s(C,B) ⊆ C, and choose any
binary term t with t(A,B), t(B,A) ⊆ B. Define a binary term u by

u(x, y) := s(s(t(x, y), y), s(t(y, x), x)).

Then for a ∈ A, c ∈ C we have t(a, c), t(c, a) ∈ B, and we have t(c, a)→ s(t(c, a), a), so by part (b)
we have s(t(c, a), a) ∈ B. Thus

u(a, c) ∈ s(s(B, c),B) ⊆ s(C,B) ⊆ C,

and similarly u(c, a) ∈ C.
For part (d), pick b1 ∈ B1, then by part (a) there is some b2 ∈ B2 with b1 → b2, and then by

part (b) we have b2 ∈ B1, so b2 ∈ B1 ∩ B2. Then from B2 �bin A we have B1 ∩ B2 �bin B1, and we
can apply part (c) to finish.

Proposition 3.2.23. If A has been prepared and a, b, c ∈ A have c ∈ Sg{a, b} with a→ c, then A
has a partial semilattice term s with s(a, b) = c.

Proof. Let s′ be an arbitrary nontrivial partial semilattice term of A, and choose p a binary term
of A with p(a, b) = c. Then take s(x, y) = s′(x, p(x, y)). We clearly have s(a, b) = s′(a, p(a, b)) =
s′(a, c) = c, so we just have to check that s is a partial semilattice.

If p is second projection then s = s′ and we are done. Otherwise, since A has been prepared,
p and s′ both act as the semilattice operation on {x, s′(x, p(x, y))} = {x, s(x, y)}, so s also acts as
the semilattice operation on {x, s(x, y)}.

In any digraph, the strongly connected components have a natural partial order.

Definition 3.2.24. We say that b is reachable from a if there is a sequence a = a0, a1, ..., ak = b
such that ai → ai+1 for i = 0, ..., k − 1.

Proposition 3.2.25. If A is prepared and s1, ..., sk are partial semilattice terms of A, then for
any n-ary term f ∈ ⟨s1, ..., sk⟩, f(x1, ..., xn) is always reachable from at least one of the variables
x1, ..., xn.

Definition 3.2.26. We say that a subset S of an algebra A which has a partial semilattice operation
s is upwards closed if whenever a ∈ S and a′ ∈ A have a→s a

′, we also have a′ ∈ S.

Definition 3.2.27. We say that a set A is strongly connected if for every subset S ⊂ A with
S ̸= ∅, A there is an a ∈ S and a b ∈ A \ S such that a → b. We say that a set A is a maximal
strongly connected component of an algebra A if A is a strongly connected subset which is upwards
closed (note that every finite upwards closed set contains at least one maximal strongly connected
component). Finally, we call an element of an algebra A maximal if it is contained in any maximal
strongly connected component of A.

The main application of partial semilattice terms to CSPs is the following general idea: if a
solvable instance of a CSP is arc-consistent (i.e. all relations are subdirect), then it probably has
a solution where each variable is assigned a value in a maximal strongly connected component of
the corresponding domain. So a basic case to try to understand is the case where every domain is
a strongly connected algebra.
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Remark 3.2.2. The digraph considered in this section is the same as the set of “thin red edges”
of Andrei Bulatov’s colored graph [47] attached to any Taylor algebra. Bulatov has a different
construction of a partial semilattice operation s from a binary term t, which is still based on the
couterintuitive idea of taking a function f which satisfies f(x, f(x, y)) ≈ f(x, y) and plugging in
f(x, f(y, x)).

3.3 Maximal strongly connected components and polynomial com-
pleteness

In this section we prove a few results of Andrei Bulatov [44] about the way maximal strongly
connected components of partial semilattice algebras interact with binary and ternary relations.
A consequence of the results of this section is that simple, strongly connected algebras are always
polynomially complete. Throughout this section, we will always fix a partial semilattice operation
s.

Theorem 3.3.1. Fix a partial semilattice operation s. Suppose R ≤sd A×B is subdirect and A,B
are maximal strongly connected subsets of A,B, respectively.

(a) The set of a such that ({a} ×B) ∩ R ̸= ∅ is upwards closed. In particular, if (A×B) ∩ R is
nonempty, then it is subdirect in A×B.

(b) The set of a such that {a} ×B ⊆ R is upwards closed.

(c) If A is contained in a linked component of R (that is, a connected component of R considered
as a bipartite graph on A ⊔ B), (A×B) ∩ R ̸= ∅, and A,B are finite, then A×B ⊆ R.

Additionally, the product A×B is a maximal strongly connected subset of A× B.

Proof. For part (a), suppose that (a, b) ∈ R and b ∈ B, and let a→ a′. Since R is subdirect, there
is some b′ with (a′, b′) ∈ R. Then [

a′

s(b, b′)

]
= s

([
a
b

]
,

[
a′

b′

])
∈ R,

and b→ s(b, b′), so s(b, b′) ∈ B.
For part (b), suppose that {a} × B ⊆ R and a → a′. Let S be the set of b ∈ B such that

(a′, b) ∈ R, that is, S = π2(({a′} ×B) ∩R). By part (a), S is nonempty. To finish, we just have to
show that S is upwards closed. Suppose b ∈ S and b→ b′. Then by assumption we have (a, b′) ∈ R,
so [

a′

b′

]
= s

([
a′

b

]
,

[
a
b′

])
∈ R.

For part (c), suppose first that A × A ⊆ R ◦ R−, where R− ≤ B × A is the reverse of R (we
will later reduce the general case to this case). Let a be any element of A, and let X be the set of
b ∈ B such that (a, b) ∈ R, that is, X = π2(({a} × B) ∩ R). By part (a), X ∩ B ̸= ∅, and by the
finiteness of B, the intersection X ∩B has a maximal strongly connected component S. Since B is
a maximal strongly connected component of B, S is a maximal strongly connected component of
X.
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By the assumption A×A ⊆ R◦R− and the definition of X, we see that (A×X)∩R is subdirect
in A×X. Thus by part (b) and the fact that {a}×S ⊆ (A×X)∩R, we see that A×S ⊆ (A×X)∩R,
so A× S ⊆ R. Then by part (b) applied to R−, we see that A×B ⊆ R.

Now suppose that A× A ̸⊆ R ◦ R−. From the finiteness of A we see that there is some k such
that A × A ⊆ (R ◦ R−)◦k. Choose k minimal, and let R′ = (R ◦ R−)◦(k−1) ≤sd A2. Then R′ is
equal to its own reverse R′−, and A×A ⊆ R′ ◦ R′ since 2(k − 1) ≥ k for k ≥ 2. Thus the previous
paragraphs applied to R′ (using R′ = R′−) show that A× A ⊆ R′, contradicting the minimality of
k.

Corollary 3.3.2. If π : A↠ B is a surjective homomorphism of finite algebras, then the subalgebra
of A generated by the maximal elements of A maps surjectively onto the subalgebra of B generated
by the maximal elements of B.

Corollary 3.3.3. If we start with any arc-consistent instance of CSP(A1, ...,An) and replace every
domain and every relation by the subalgebra generated by its maximal elements, then the resulting
instance will still be arc-consistent.

Corollary 3.3.4. Fix a partial semilattice operation s. Suppose that R ≤sd A × B is a subdirect
product of finite algebras A,B, and that B is simple and B = Sg(B), with B a maximal strongly
connected component of B. Then:

(a) if A is also simple and A = Sg(A) with A a maximal strongly connected component of A, and
if R ∩ (A×B) ̸= ∅, then R is either the graph of an isomorphism or is A× B, and

(b) if A is arbitrary and R is not the graph of a homomorphism from A to B, then there is an
a ∈ A with {a} × B ⊆ R.

Proof. If B is simple, then the linking congruence of R on B must either be the trivial congruence
0B, in which case R is the graph of a homomorphism from A to B, or the full congruence 1B, in
which case R is linked. In the second case, the results follow from Theorem 3.3.1(c).

Theorem 3.3.5. Fix a partial semilattice operation s. Suppose R ⊆ A × B × C is closed under
s, A is strongly connected, π23(R) is strongly connected, π12(R) = A × B, π13(R) = A × C, and
A,B,C are finite. Then R = A× π23(R).

Proof. By Theorem 3.3.1(c), we just need to show that R is linked as a subset of A× π23(R). We
will do this by showing that for any a→ a′ in A, some fork of R links a to a′ in one step.

Since π1(R) = A, there exist b ∈ B, c ∈ C such that (a, b, c) ∈ R. Since π13(R) = A× C, there
exists some b′ ∈ B such that (a′, b′, c) ∈ R. Since a′

s(b, b′)
c

 = s

ab
c

 ,
a′b′
c

 ∈ R,
we may assume without loss of generality that b′ = s(b, b′), that is, that b→ b′.

Since π12(R) = A×B, there exists some c′ ∈ C such that (a, b′, c′) ∈ R. Since a
b′

s(c, c′)

 = s

ab
c

 ,
ab′
c′

 ∈ R,
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we may assume without loss of generality that c′ = s(c, c′), that is, that c→ c′.
Since (a′, b′, c) and (a, b′, c′) are in R, we havea′b′

c′

 = s

a′b′
c

 ,
ab′
c′

 ∈ R.
Thus both a and a′ meet (b′, c′) ∈ π23(R).

Remark 3.3.1. The proof of Theorem 3.3.5 actually proves something slightly more general: if
R ⊆ A × B × C is closed under s, π12(R) = A × B, π13(R) = A × C, and A is weakly connected,
then R is linked when considered as a subalgebra of A× π23(R).

Corollary 3.3.6. Fix a partial semilattice operation s. Suppose R ⊆ A1× · · ·×An is closed under
s, A1 is strongly connected, π[2,n](R) is strongly connected, π1i(R) = A1 ×Ai for i ∈ [2, n], and Ai
are finite for all i. Then R = A1 × π[2,n](R).

Corollary 3.3.7. Fix a partial semilattice operation s. Suppose R ⊆ A1× · · ·×An is closed under
s, all Ai are strongly connected, πij(R) = Ai × Aj for all i ̸= j, and Ai are finite for all i. Then
R = A1 × · · · ×An.
Corollary 3.3.8. Fix a partial semilattice operation s. If A is simple and is generated by a finite
maximal strongly connected component A, then A is polynomially complete.

Proof. We just need to show that every relation R ≤ An which contains the set of constant tuples
∆n = {(a, ..., a) | a ∈ A} is an intersection of equality relations. First consider the case n = 2.
From the assumption that A is simple we see that either R is the equality relation, or R is linked.
If R is linked, then Theorem 3.3.1(c) and the fact that R contains ∆2 implies that A×A ⊆ R, and
from the assumption A = Sg(A) we see that R = A× A.

Now consider the case n ≥ 3. If any two-variable projection πij(R) is the equality relation,
then we can ignore one of the coordinates i, j, so we may assume without loss of generality that
πi,j(R) = A×A for all i, j. Let a be any element of A, and let R be a maximal strongly connected
component of R which is reachable from (a, ..., a). Then for any i, j we must have πi,j(R) = A×A,
so by the previous corollary we have R = An. Thus An ⊆ R, and from the assumption A = Sg(A)
we see that R = An.

Example 3.3.1. The reader may be wondering whether we can weaken the assumption that π23(R)
is strongly connected from Theorem 3.3.5 to the assumption that B,C are strongly connected. It
seems plausible that if B,C are both strongly connected and π23(R) is a subdirect product of B
and C, π23(R) might automatically be strongly connected.

However, there is an example of a strongly connected 2-semilattice A and a subdirect product
R ≤sd A2 which is not strongly connected. The 2-semilattice A is pictured below.

a

b c

d

e f
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The missing values are given by s(b, c) = s(b, f) = s(e, c) = a.
If we let θ ≤sd A2 be the smallest congruence containing (b, c), then θ corresponds to the

partition {a, b, c}, {d}, {e}, {f}, and A/θ is a four element tournament. Considering θ as an algebra,
we find that θ is not strongly connected: (b, c) and (c, b) are incomparable minimal elements of θ,
and the remaining elements of θ form a maximal strongly connected component.

Example 3.3.2. Here we will give an example of a subdirect product of strongly connected algebras
which has two maximal strongly connected components (such an example is necessarily not a 2-
semilattice, since every 2-semilattice has a unique maximal strongly connected component).

As in the previous example, we will consider a congruence θ on a six-element algebra A. This
time A/θ will be the three-element rock-paper-scissors algebra, and every congruence class of A will
have two elements, with s acting as π1 on the congruence class. As a digraph, A is just a directed
six-cycle, pictured below.

a1

a2

b1

b2

c1

c2

Given the above digraph structure and the assumption that there is a congruence θ corresponding
to the partition {a1, a2}, {b1, b2}, {c1, c2}, there is only one way to fill in the values of the partial
semilattice operation s. The reader can check that the congruence θ, considered as a subalgebra of
A2, has two maximal strongly connected components which are both isomorphic to A.

Despite the above examples, we do at least have the following result, which is important for
understanding how restricting to maximal strongly connected components interacts with cycle-
consistency.

Theorem 3.3.9. Fix a partial semilattice operation s. Suppose that R ⊆ A×A is closed under s,
A is finite and strongly connected, and R contains the diagonal ∆A = {(a, a) | a ∈ A}. Then R has
a maximal strongly connected component which contains ∆A.

Proof. Since ∆A is strongly connected, it’s enough to show that if (a, b) is reachable from (a, a) in
R, then some element (c, c) of ∆A is reachable from (a, b) in R. We will define a unary polynomial
ϕ of R such that ϕ((a, a)) = (a, b) and such that ϕ(x) is reachable from x in R for all x ∈ R.

To construct ϕ, choose some sequence (ai, bi) ∈ R such that (a, a) = (a0, b0), (ai, bi) →
(ai+1, bi+1) for all i, and (ak, bk) = (a, b) for some k. Then define ϕ by

ϕ(x) = s

(
s

(
· · · s

(
s

(
x,

[
a1
b1

])
,

[
a2
b2

])
, · · ·

)
,

[
ak
bk

])
.

Note that since ϕ((a, a)) = (a, b), we have π1(ϕ((a, x))) = a for all x ∈ A.
Since A is finite, we can find m ≥ 1 such that ϕ◦2m = ϕ◦m. Define another unary polynomial

ϕ∆ of R by

ϕ∆(x) = s

(
s

(
· · · s

(
s

(
x,

[
b1
b1

])
,

[
b2
b2

])
, · · ·

)
,

[
bk
bk

])
,
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that is, by replacing each (ai, bi) in the definition of ϕ by (bi, bi). Then if ϕ◦m((a, a)) = (a, c), we
have

ϕ◦m∆

(
ϕ◦(m−1)

([
a
b

]))
= ϕ◦m∆

([
a
c

])
=

[
c
c

]
.

Thus (c, c) is reachable from (a, b) in R.

Corollary 3.3.10. If we start with any cycle-consistent instance of CSP(A1, ...,An) and replace
every domain and every relation by the subalgebra generated by its maximal elements, then the
resulting instance will still be cycle-consistent.

Proof. By Theorem 3.3.1(a), we just need to check this in the special case where our cycle-consistent
instance is a cycle of binary relations Ri ≤sd Ai × Ai+1 with indices taken modulo n. Let R ≤sd
A1 × · · · × An × A1 be the relation given by the formula

(x1, x2) ∈ R1 ∧ · · · ∧ (xn, xn+1) ∈ Rn.

The assumption that the instance is cycle-consistent implies that ∆A1 ⊆ π1,n+1R. Set R∆ =
π1,n+1R.

For any algebra A, let Amax denote the subalgebra of A generated by the maximal elements of A.
We see from Theorem 3.3.1(a) that πi,i+1(Rmax) = Rmax

i for each i and that π1,n+1(Rmax) = Rmax
∆ .

By Theorem 3.3.9 we have ∆Amax
1
⊆ Rmax

∆ , so the new instance is cycle-consistent at the first
variable.

3.4 2-semilattices, spirals, and ancestral algebras

In this section we’ll discuss a pretty general class of partial semilattice algebras which are nice
enough for the associated CSP to have bounded width, due to Bulatov [39]. Following the strategy
of replacing domains of variables with the subalgebras generated by their maximal elements, and
noting that many of the structural results proved in the preceeding section apply best to strongly
connected algebras, we see that it would be quite convenient if every domain of every variable in
our CSP has a unique maximal strongly connected component. The most straightforward examples
of algebras with this property are 2-semilattices.

Definition 3.4.1. A binary operation s is a 2-semilattice operation if it satisfies the identities

s(x, y) ≈ s(y, x), s(x, s(x, y)) ≈ s(x, y), s(x, x) ≈ x.

In other words, a 2-semilattice is a partial semilattice operation which is also commutative.

Proposition 3.4.2. An algebra A = (A, s) is a 2-semilattice iff for all a, b ∈ A, the subalgebra
SgA{a, b} is a semilattice under s.

Proposition 3.4.3. If A = (A, s) is a finite 2-semilattice, then A has a unique maximal strongly
connected component.

Proof. If a, b are any two maximal elements of A, then s(a, b) = s(b, a) is reachable from both a
and b, so a and b must be in the same maximal strongly connected component.
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The first difficult results about bounded width CSPs were proved for 2-semilattices. However,
the proofs only depended on the fact that every 2-semilattice has a unique maximal strongly
connected component. Bulatov [39] calls this the “maximal red component condition”. I’ve chosen
to call such algebras “ancestral” instead, because they can be equivalently defined as follows.

Definition 3.4.4. An idempotent algebra A with a fixed partial semilattice operation s is called
ancestral if for all a, b ∈ A, there is some c ∈ SgA{a, b} which is reachable from both a and b. We
call any such c a common ancestor of a and b.

Proposition 3.4.5. A finite idempotent algebra A is ancestral iff every proper subalgebra of A has
a unique maximal strongly connected component.

A nice generalization of 2-semilattices is the collection of algebras which I call “spirals”. Spirals
are defined in terms of a single commutative binary operation, so they can be described more
rapidly than general ancestral algebras. As we will see later, a minimal Taylor clone is ancestral if
and only if it is a minimal spiral, so we would not lose too much generality by restricting the study
of ancestral algebras to the study of spirals.

Definition 3.4.6. An algebra A = (A, f) is a spiral if f is a commutative idempotent binary
operation and every subalgebra of A which is generated by two elements either has size two or has
a surjective homomorphism to the free semilattice on two generators.

Example 3.4.1. Here we give an example of a minimal spiral A6 which is not a 2-semilattice.

A6 a b c d e f

a a c e d e d
b c b c c f f
c e c c c e c
d d c c d d d
e e f e d e f
f d f c d f f

a b

c d

e f

Every proper subalgebra of A6 is a 2-semilattice - in fact, every pair of elements other than {a, b}
generates a two or three element semilattice subalgebra of A6. The pair {a, b} generates A6, and A6

has a congruence θ corresponding to the partition {a}, {b}, {c, d, e, f} such that A6/θ is isomorphic
to the free semilattice on two generators.

The reader may check that any nonempty subset S of A6 which is closed under multiplication
by a and by b must necessarily contain all four of c, d, e, f - using this observation, it is easy to
check that Clo(A6) contains no nontrivial proper subclones.

Theorem 3.4.7. If A = (A, f) is a spiral, then for any partial semilattice term s ∈ Clo(f) which
is defined nontrivially in terms of f , the reduct As = (A, s) is ancestral.

Proof. We prove this by induction on the size of A. Let a, b be any two elements of A. If SgA{a, b}
has size two, then since f is commutative we must either have a → b or b → a, so one of a, b is a
common ancestor of a and b.

Otherwise, by the definition of a spiral, there is a surjective homomorphism α from SgA{a, b}
to the free semilattice on two generators. Clearly a and b must be sent to the two generators of
the free semilattice by α, say α(a) = x and α(b) = y, and every nontrivial binary term t ∈ Clo(f)
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must have α(t(a, b)) = t(x, y) = f(x, y). Thus the kernel of α has congruence classes {a}, {b}, and
S = SgA{a, b} \ {a, b}, and S is a binary absorbing subalgebra of A with respect to f .

Since S is a binary absorbing subalgebra of A with respect to f and s ∈ Clo(f) is defined
nontrivially, we must have s(a, b), s(b, a) ∈ S. Since |S| ≤ |A| − 2, we can apply the inductive
hypothesis to see that s(a, b), s(b, a) have a common ancestor in Sg(S,s){s(a, b), s(b, a)} ⊆ SgAs

{a, b}.

Example 3.4.2. An example of an ancestral algebra which is not a 2-semilattice or a spiral is the
algebra A4 = ({a, b, c, d}, s), where s is the partial semilattice operation described below.

s a b c d

a a b b a
b b b c c
c d c c d
d a a d d

a b

cd

The algebra A4 has the cyclic automorphism (a b c d), and is generated by the pair a, c, since
s(a, c) = b, s(c, a) = d. The binary term s′ given by

s′(x, y) := s(x, s(y, x))

is another (nontrivial) partial semilattice term of A4, such that s′(a, c) = a, s′(c, a) = c. So the
reduct ({a, b, c, d}, s′) of A4 is not an ancestral algebra, as it has the subalgebra ({a, c}, s′) which
has the two maximal strongly components {a} and {c}.

It is easy to check that A4 is simple, and every proper subalgebra of A4 is a two element
semilattice. By Corollary 3.3.8, A4 is polynomially complete, and in fact Theorem 3.3.1 and
Theorem 3.3.5 imply that every subdirect relation R ≤sd An4 can be written as an intersection of
two variable relations, each of which is the graph of an automorphism of A4. In particular, if we
consider the ternary relation

Rac = SgA3


aa
c

 ,
ac
a

 ,
ca
a

 ,

we find that Rac = A3
4. Since there is an automorphism of A4 which interchanges a and c, we see

that there are ternary terms g, g′ ∈ Clo(A4) such that {a, c} is closed under g and g′, with ({a, c}, g)
a two element majority algebra and ({a, c}, g′) a two element affine algebra. Either of the reducts
({a, b, c, d}, g) or ({a, b, c, d}, g′) defines a Taylor algebra, since g satisfies the identity

g(x, x, y) ≈ g(x, y, x) ≈ g(y, x, x) ≈ s′(x, y),

and g′ satisfies the similar identity

g′(x, x, y) ≈ g′(x, y, x) ≈ g′(y, x, x) ≈ s′(y, x).

Proposition 3.4.8. Every quotient of an ancestral algebra is ancestral.

Theorem 3.4.9. If A1, ...,An are ancestral algebras with partial semilattice operation s, then so is
A1 × · · · × An.
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Proof. We prove this by induction on n. Let a, b ∈ A1 × · · · × An. Since A1 is ancestral, there is
some c1 ∈ SgA1

{a1, b1} which is reachable from both a1 and b1. Lifting the path from a1 to c1 to a
path from a to some element c′ ∈ Sg{a, b} with c′1 = c1, and lifting the path from b1 to c1 to a path
from b to some c′′ ∈ Sg{a, b} with c′′1 = c1, we see that we just need to find a common ancestor of
c′ and c′′. Since c′1 = c′′1 and A1 is idempotent, we see that c′, c′′ have a common ancestor so long
as A2 × · · · × An is ancestral, which follows from the inductive hypothesis.

Corollary 3.4.10. If A is ancestral and B ∈ HSPfin(A), then B is also ancestral.

It turns out that ancestral algebras can be defined entirely in terms of collections of partial
semilattice operations.

Theorem 3.4.11. A finite idempotent algebra A with a fixed partial semilattice operation s is
ancestral iff for some m ≥ n ≥ 0 it has a sequence of partial semilattice terms p1, p2, ..., pm such
that

• a→s pi(a, b) for all a, b ∈ A and all i,

• a→s b implies pi(a, b) = b for all i, and

• if we define binary operations fi recursively by f0(x, y) := s(x, y) and

fi(x, y) := pi(fi−1(x, y), fi−1(y, x))

for i ≥ 1, then fm(x, y) ≈ fn(y, x).

Proof. That the existence of such a sequence implies A is ancestral follows from the fact that for
any a, b, each fi(a, b) is reachable from a and each fj(b, a) is reachable from b.

For the converse direction, let F = FA(x, y) ≤ AA2
be the free algebra on two generators in the

variety generated by A. Since F ∈ SPfin(A), F is ancestral, so there is some sequence of elements
f0, ..., fn ∈ F with f0(x, y) = s(x, y), such that each fi−1 →s fi, each fi ∈ SgF{fi−1(x, y), fi−1(x, y)},
and such that the subset S of elements of the subalgebra S = SgF{fn(x, y), fn(y, x)} which are
reachable from fn in S is minimal given these constraints. Then S must be strongly connected, and
for every g ∈ S we must have S = SgF{g(x, y), g(y, x)}. Thus we can extend our sequence f0, ..., fn
by fn+1, ..., fm such that each fi−1 →s fi, and fm(x, y) ≈ fn(y, x), and we will automatically have
fi ∈ SgF{fi−1(x, y), fi−1(x, y)} for each i.

Note that fi−1 →s fi and fi ∈ SgF{fi−1(x, y), fi−1(x, y)} implies the existence of a binary term
pi such that x →s pi(x, y) and fi(x, y) = pi(fi−1(x, y), fi−1(y, x)), by the argument of Proposition
3.2.23. Note that the reduct with basic operations s, fi is ancestral, and has the property that
a →s b implies fi(a, b) = fi(b, a) = b for all i, so {a, b} is a semilattice subalgebra with respect to
any nontrivial binary term in Clo(f0, ..., fm). Thus we may assume without loss of generality that
a→s b implies pi(a, b) = b for all i, and then the argument of Proposition 3.2.23 implies that each
pi is a partial semilattice term.

In fact, we can go further: every ancestral algebra has an ancestral reduct which is prepared.
Recall that A is prepared if for all a, b ∈ A, we have (b, b) ∈ SgA2{(a, b), (b, a)} iff {a, b} is a
semilattice subalgebra of A with a→ b.

Theorem 3.4.12. Every finite ancestral algebra A has a reduct which is prepared and ancestral.
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Proof. Let s, fi be as in Theorem 3.4.11, and assume without loss of generality that these are
the basic operations of A. Suppose there is a pair a, b ∈ A with (b, b) ∈ SgA2{(a, b), (b, a)} but
s(a, b) ̸= b. Let s′ be a partial semilattice term with s′(a, b) = b. Then c→s d implies c→s′ d, and
if we define

f ′0(x, y) := s′(x, y)

and
f ′i(x, y) := fi−1(s

′(x, y), s′(y, x))

for i ≥ 1, then the reduct with basic operations s′, f ′i is an ancestral algebra (with respect to s′)
with strictly more semilattice subalgebras than A.

Due to the structural simplifications we can obtain by passing to reducts, it makes sense to
focus on ancestral algebras such that no proper reduct is also ancestral.

Definition 3.4.13. A finite algebra A is called a minimal ancestral algebra if A is ancestral, and
no proper reduct of A is ancestral.

Since every minimal ancestral algebra is automatically prepared, we don’t need to specify a
particular choice of partial semilattice operation to define the digraph of semilattice subalgebras.

Proposition 3.4.14. Every finite ancestral algebra has a reduct which is a minimal ancestral
algebra.

Proof. Whether an algebra is ancestral only depends on the collection of partial semilattice op-
erations in its clone. Since there are only finitely many partial semilattice operations on a given
finite set, we don’t need to worry about infinite descending chains of smaller and smaller ancestral
reducts.

Proposition 3.4.15. If A is a minimal ancestral algebra and B ∈ HSPfin(A), then B is also a
minimal ancestral algebra.

Proof. Let fi be terms for A as in Theorem 3.4.11. If we can find a proper reduct of B which is
ancestral, then there is a sequence of terms f ′i of this reduct such that f ′0(x, y) ≈ x, f ′i(x, y) →
f ′i+1(x, y), and f ′m(a, b) = f ′n(b, a) holds for all a, b ∈ B. Then if we define additional terms f ′m+i by

f ′m+i(x, y) := fi(f
′
m(x, y), f ′n(y, x)),

we see that these terms f ′0, ..., f
′
m, f

′
m+1, ... generate the same reduct on B as f ′0, ..., f

′
m, and generate

an ancestral reduct of A.

Theorem 3.4.16. If A is a minimal ancestral algebra, then for any a, b ∈ A, if S is the maximal
strongly connected component of SgA{a, b}, then we have SgA{a, b} = S∪{a, b}. If {a, b} ̸⊆ S, then
SgA{a, b} has a semilattice quotient with S as a congruence class which acts as the top element.

Proof. Choose terms fi as in Theorem 3.4.11. Let F = FA(x, y) be the free algebra on two gener-
ators in the variety generated by A. Pick any element g(x, y) in the maximal strongly connected
component of F, and note that since g(x, y) is reachable from both x and y in F, every term
t(x1, ..., xk) ∈ Clo(g) which depends on all its inputs has the property that t(x1, ..., xk) is reachable
from each xi in FA(x1, ..., xk).
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Applying the semilattice iteration argument, we get a partial semilattice term s′(x, y) ∈ Clo(g),
which is reachable from each of x, y, and g(x, y) in F. In particular, we see that s′(x, y) is contained
in the maximal strongly connected component of F, and if we define terms f ′i by

f ′0(x, y) := s′(x, y)

and
f ′i(x, y) := fi−1(s

′(x, y), s′(y, x))

for i ≥ 1, then the reduct with basic operations f ′i is an ancestral algebra, and each f ′i(x, y) is
contained in the maximal strongly connected component of F. Thus the clone generated by the f ′is
must be equal to the clone of A, and we see that every element of F is either equal to one of x, y
or is contained in the maximal strongly connected component of F.

Corollary 3.4.17. If A is a minimal ancestral algebra, then the maximal strongly connected com-
ponent of A is a strongly absorbing subalgebra of A.

There is a sense in which even the class of minimal ancestral algebras is unnecessarily large:
it contains algebras such as the algebra A4 from Example 3.4.2 which have proper Taylor reducts
with two element majority or affine subalgebras.

Theorem 3.4.18. Suppose A is a minimal ancestral algebra which is generated by a and b, is
strongly connected, and is simple. Then there are ternary terms g, g′ ∈ Clo(A) such that {a, b} is
closed under g and g′, ({a, b}, g) is a two element majority algebra, and ({a, b}, g′) is a two element
affine algebra.

Proof. Let S = SgA2{(a, b), (b, a)}. If S is linked, then by Theorem 3.3.1(c) we must have (b, b) ∈ S,
so a → b, a contradiction. Otherwise, S is the graph of an automorphism swapping a and b. In
this case, the ternary relation R = SgA3{(a, a, b), (a, b, a), (b, a, a)} has (a, a), (a, b), (b, a) ∈ πi,j(R)
for each i, j, so by Theorem 3.3.1(c) we have πi,j(R) = A2, and then by Theorem 3.3.5 we have
R = A3. Thus (a, a, a) ∈ R and (b, b, b) ∈ R, and we can take g, g′ to be ternary terms of A which
witness these facts.

Later we will see that the above result implies that a minimal ancestral algebra which is both
strongly connected and generated by two elements has a proper Taylor reduct (and, in fact, has a
proper bounded width reduct). For now we will show that minimal ancestral algebras which avoid
this situation are actually spirals.

Theorem 3.4.19. If A is a minimal ancestral algebra such that for all a, b the subalgebra SgA{a, b}
has no strongly connected quotient, then A is term equivalent to a spiral.

Proof. Let s be a nontrivial partial semilattice operation on A. Define a sequence of terms fi
inductively by f0 := s and

fi+1(x) := fi(s(x, y), s(y, x)).

We will show by induction on |A| that for each a, b ∈ A, there is an n such that fn(a, b) = fn(b, a).
To see this, note that by Theorem 3.4.16, for any a, b the subalgebra generated by s(a, b), s(b, a) is
contained in the maximal strongly connected component S of SgA{a, b}, so as long as S ̸= A we
can apply the induction hypothesis to see that there is some i such that

fi(s(a, b), s(b, a)) = fi(s(b, a), s(a, b)),
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and for this i we then have fi+1(a, b) = fi+1(b, a).
Thus there is some n such that f = fn is commutative (in fact, we can take n = |A|). To finish,

we need to show that if A is generated by two elements a, b with |A| > 2, then the maximal strongly
connected component S of A does not contain either of a, b. To this end, suppose for a contradiction
that S contains b. Let S = SgA2{(a, b), (b, a)}. If S is contained in a linked component of S, then
by Theorem 3.3.1(c) we must have (b, b) ∈ S, so a → b, a contradiction. Otherwise, the linking
congruence θ ∈ Con(A) of S has |S/θ| > 1 and b/θ ∈ S/θ, and so we may assume without loss of
generality that θ is trivial. But if θ is trivial, then A has an automorphism which interchanges a
and b, so S contains both a and b, so A is both strongly connected and generated by two elements,
a contradiction.

3.5 Cycle-consistency solves ancestral CSPs

In this section we will prove that any cycle-consistent instance of an ancestral CSP has a solution.
This proof is a simple case of Kozik’s proof [111] of the fact that cycle-consistency solves CSPs over
templates with bounded width: the main purpose of presenting the argument in this special case is
to allow the reader to focus on the overall proof strategy before getting into the technical algebraic
details.

The ingredients which we will need for the proof are the following facts about ancestral algebras.

• Every ancestral algebra A has a unique maximal strongly connected component Amax (Propo-
sition 3.4.5).

• If π : A↠ B is a surjective homomorphism, then π(Amax) = Bmax (Corollary 3.3.2 to Theorem
3.3.1(a)).

• If R ≤sd A×B and Amax is contained in a linked component of R, then Rmax = Amax×Bmax

(Theorem 3.3.1(c)).

• In particular, if R ≤sd A×B, A is generated by Amax, B is generated by Bmax, and B is simple,
then R is either the graph of a homomorphism A↠ B or R = A× B (Corollary 3.3.4).

• If R ≤sd A×B×C has π12(R) = A×B and π13(R) = A×C, then Rmax = Amax × π23(R)max

(Theorem 3.3.5).

• Applying the above inductively, if R ≤sd A1 × · · · × An has πij(R) = Ai × Aj for all i ̸= j,
then Rmax = Amax

1 × · · · × Amax
n (Corollary 3.3.7).

• If R ≤sd A× A and R contains the diagonal ∆A, then ∆Amax ⊆ Rmax (Theorem 3.3.9).

• If we start with any cycle-consistent instance of CSP(A1, ...,An) and replace every domain
and every relation by the subalgebra generated by its maximal elements, then the resulting
instance will still be cycle-consistent (Corollary 3.3.10).

If we assume that our algebras are minimal ancestral (rather than just ancestral), then each Amax

becomes a subalgebra (Corollary 3.4.17), which slightly simplifies the arguments. We won’t use
this simplification, but the reader should keep it in mind.

The general strategy is to start with a cycle-consistent instance, and to find a way to shrink some
of the variable domains and relations to get a strictly smaller cycle-consistent instance. Eventually,
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we reach a situation where all the variable domains have size 1 and the instance is still cycle-
consistent - at this point, there is obviously a solution to the CSP. We have already seen that by
shrinking variable domains, we can reach a situation where each variable domain Ax is generated
by Amax

x (the last bullet point above).
To finish the argument, we need to find another strategy for reducing the variable domains when

each Ax = Sg(Amax
x ). The intuition is that if Ax = Sg(Amax

x ), then there is some congruence θx ∈
Con(Ax) such that Ax/θx is simple, and in fact Ax/θx will be polynomially complete by Corollary
3.3.8. Since polynomially complete algebras should have few interesting subdirect relations, it’s
plausible that we can replace the domain Ax with an arbitrary congruence class of θx, and always
obtain a cycle-consistent instance.

So fix a variable x with |Ax| > 1, a maximal congruence θx in Con(Ax), and a congruence class
A′
x of θx. We now have to restrict the other variable domains in order to, at the very least, get

an arc-consistent sub-instance. We will show that a very minimalistic sort of reduction strategy
suffices: instead of worrying about all possible issues with ensuring arc-consistency, we will only
consider paths from variables y to x through the instance.

Definition 3.5.1. If X is an instance of a CSP and x, y are variables of X, then a path p from x
to y is defined as a sequence x = v0, (R1, i1, j1), v1, ..., vn−1, (Rn, in, jn), vn = y such that each vk is
a variable, and each Rk is a relation such that one of the constraints of the instance X imposes the
relation Rk on a tuple u = (u1, ...) of variables with uik = vk−1 and ujk = vk.

To every path p from x to y, we associate the binary relation Pp ≤ Ax × Ay which is given by

Pp := πi1j1(R1) ◦ · · · ◦ πinjn(Rn).

In other words, Pp is the set of pairs of values in Ax × Ay which are consistent with the path p.
We define addition and negation of paths in the natural way, so that if p is a path from x to y

and q is a path from y to z, then p+ q is a path from x to z with Pp+q = Pp ◦ Pq, and −p is a path
from y to x with P−p = P−

p .

In particular, we see that an instance is arc-consistent iff for all paths p the associated binary
relations Pp are subdirect, and it is cycle-consistent iff we additionally have ∆Av ⊆ Pp for every
path p from a variable v back to itself.

Definition 3.5.2. Suppose that X is a cycle-consistent instance such that for all variable domains
we have Av = Sg(Amax

v ), that x is any variable with |Ax| > 1, that θx is any maximal congruence
on Ax, and that A′

x is any congruence class of Ax/θx.
For each variable y, we say that y is proper if there is a path p from y to x such that Pp/θx ≤

Ay×Ax/θx is the graph of a homomorphism ιy : Ay ↠ Ax/θx. In this case, we define the congruence
θy ∈ Con(Ay) to be the kernel of ιy, and we define A′

y to be the preimage of A′
x under ιy. If y is

not proper, then we define A′
y to be Ay.

We define the reduced instance X′ by replacing the domain of each variable v by A′
v, and

replacing each constraint relation R ≤ Av1 × · · · × Avm of X by R′ = R ∩ (A′
v1 × · · · × A′

vm).

The reason for the name “proper” is that a variable v is proper iff the reduced domain A′
v is

a proper subalgebra of Av. First we need to check that the maps ιy for the proper variables y are
well-defined.
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Lemma 3.5.3. If y is a proper variable and p, q are two paths from y to x such that Pp/θx,Pq/θx
are graphs of homomorphisms ιp, ιq : Ay ↠ Ax/θx, then in fact we have ιp = ιq. Thus ιy, θy, and
A′
y are all well-defined.

Proof. The path p − q connects y to itself, so by cycle-consistency we must have ∆Ay ⊆ Pp−q =
Pp ◦ P−

q . Taking the quotient by θx, we see that ∆Ay ⊆ (Pp/θx) ◦ (Pq/θx)−, so for every element
a ∈ Ay we must have ιp(a) = ιq(a).

We sometimes abuse notation, and think of ιy as an isomorphism from Ay/θy to Ax/θx.

Lemma 3.5.4. Suppose p is a path from y to a proper variable z. Then one of the following is
true:

• Pp/θz = Ay × Az/θz, or

• y is also proper, and Pp/(θy × θz) is the graph of an isomorphism ιp : Ay/θy
∼−→ Az/θz such

that ιy = ιz ◦ ιp.
Proof. This follows from Corollary 3.3.4 and cycle-consistency (note that Az/θz is simple, since it
is isomorphic to Ax/θx).

We have the ingredients necessary to check that the reduced instance X′ is cycle-consistent. We
start with arc-consistency.

Lemma 3.5.5. Suppose R ≤sd Av1 × · · · × Avn is a constraint of X. Then the reduced constraint
R′ = R ∩ (A′

v1 × · · · × A′
vn) is subdirect inside A′

v1 × · · · × A′
vn, that is, πi(R

′) = A′
vi for each i.

Proof. By symmetry, it’s enough to prove that π1(R′) = A′
v1 . In other words, for each element

a ∈ A′
v1 , we want to find a tuple s ∈ R such that si ∈ A′

vi for all i. We may ignore variables vi
such that i ̸= 1 and vi is not proper, since for such i the restriction from Avi to A′

vi = Avi has
no effect. Similarly, for any two proper variables vi, vj such that πij(R) induces an isomorphism
between Avi/θvi and Avj/θvj , we may ignore one of the two variables vi, vj , since any element s ∈ R
which satisfies si ∈ A′

vi will automatically also satisfy sj ∈ A′
vj .

To formalize the process of ignoring variables, we define an equivalence relation ∼ on the set of
indices of proper variables of R, with i ∼ j when πij(R) induces an isomorphism between Avi/θvi and
Avj/θvj (that ∼ is an equivalence relation is easy to check). Then we let I ⊆ [n] be a set of variable
indices such that each ∼-class has exactly one representative in I, 1 ∈ I, and no index of any non-
proper variable other than possibly 1 is in I. We then define a relation S ≤ Av1 ×

∏
i∈I\{1}Avi/θvi

by

S := πI(R)
/ ∏
i∈I\{1}

θvi .

We just need to show that for every a ∈ A′
v1 there is some s ∈ S with s1 = a and si = A′

vi/θvi
for each i ∈ I \ {1}. Note that by Lemma 3.5.4 and the construction of I, for every pair i, j ∈ I
the projection πij(S) is full. Thus by Corollary 3.3.7, we in fact have

Smax = Amax
v1 ×

∏
i∈I\{1}

Amax
vi /θvi ,

and since each Avi is generated by Amax
vi , we have

S = Av1 ×
∏

i∈I\{1}

Avi/θvi .
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Now we can check that cycle-consistency also holds for the reduced instance.

Lemma 3.5.6. Suppose p is a path from v to v in the instance X, and let p′ be the corresponding
path in X′. If ∆Av1

⊆ Pp, then ∆A′
v1
⊆ Pp′.

Proof. Suppose that p is the path v = v0, (R1, i1, j1), v1, ..., vn−1, (Rn, in, jn), vn = v. Note that
in the corresponding path p′, we must replace each Ri with R′

i, so we must also worry about the
proper variables which occur in Ri but do not lie along the path p. In order to do this cleanly, we
consider the relation R defined by

R :=
{

(v0, u
1, ..., un, vn) ∈ Av ×

∏
i≤n

Ri × Av
∣∣∣ v0 = u1i1 , u

1
j1 = u2i2 , ..., u

n−1
jn−1

= unin , u
n
jn = vn

}
.

If each Ri has arity mi, then R is thought of as a relation of arity m = 2 +
∑

imi, and the indices
of R might contain several copies of variables of the instance X. Let the ith index of R correspond
to the variable yi in X, with y1 = v0 = v and ym = vn = v, so

R ≤sd Ay1 × · · · × Aym .

Note that by the arc-consistency of the instance X, for any two indices i, j of the relation R, the
projection πij(R) is the same as Pq for some path q from yi to yj formed out of the relations Ri,
and that π1m(R) = Pp, so π1m(R) ⊇ ∆Av .

As in the argument for arc-consistency, we define an equivalence relation ∼ on the proper indices
of R defined by i ∼ j when πij(R) induces an isomorphism between Ayi/θyi and Ayj/θyj . We let
I ⊆ [m] to be a set of indices of R with 1,m ∈ I, such that I contains no indices of non-proper
variables of R other than possibly 1 and m, such that I \ {m} contains one representative from
each ∼ class of {1, ...,m− 1}, and such that I \ {1} contains one representative from each ∼ class
of {2, ...,m}. As before, we define a relation S by

S := πI(R)
/ ∏
i∈I\{1,m}

θyi .

We just need to show that for every a ∈ A′
v, there is some s ∈ S with s1 = sm = a and

si = A′
vi/θvi for each i ∈ I \ {1,m}. By Lemma 3.5.4 and the construction of I, for every pair

i, j ∈ I with {i, j} ≠ {1,m} the projection πij(S) is full. Thus by Corollary 3.3.7, we have

πI\{m}(S) = Ay1 ×
∏

i∈I\{1,m}

Ayi/θyi

and
πI\{1}(S) = Aym ×

∏
i∈I\{1,m}

Ayi/θyi .

Thus by Theorem 3.3.5, we have

Smax = π1m(S)max ×
∏

i∈I\{1,m}

Amax
yi /θyi ,
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and by Theorem 3.3.9 and the assumption π1m(S) = π1m(R) ⊇ ∆Av , we have π1m(S)max ⊇ ∆Amax
v

.
Since each Ay is generated by Amax

y , we have

S ⊇ ∆Av ×
∏

i∈I\{1,m}

Ayi/θyi ,

so in particular for every a ∈ A′
v we have {a}×

∏
i∈I\{1,m}A′

yi/θyi ×{a} ⊆ S, so (a, a) ∈ π1m(R′) =
Pp′ .

Thus the reduced instance X′ is cycle-consistent. Since we can iteratively shrink our instance
whenever some variable x has Ax ̸= Sg(Amax

x ) or has Ax = Sg(Amax
x ) but |Ax| > 1, we see that we

eventually reach a situation where each Ax consists of a single element, and then arc-consistency
proves that this collection of single elements gives a solution to the original instance. We have
proved our main result.

Theorem 3.5.7. If X is a cycle-consistent instance of an ancestral CSP, then X has a solution.
In fact, for any variable x of X, and for any element a ∈ Ax such that there is a sequence of

subalgebras Ax ⊇ A0 ⊇ · · · ⊇ An = {a} with A0 = Sg(Amax
x ) and such that for each i, there is a

maximal congruence θi ∈ Con(Ai) and a congruence class A′
i of θi with Ai+1 = Sg(A′max

i ), there is
a solution to the instance X in which x is assigned the value a.

The simple construction of the reduced instance X′ can be used to show that we can find a
solution to any cycle-consistent instance of an ancestral CSP in linear time.

3.6 Cycle-consistency solves majority CSPs

The paper which prompted the study of cycle-consistency was a preliminary investigation by Chen,
Dalmau, and Grußien [54], which studied a slightly stronger consistency notion: singleton arc-
consistency. Singleton arc-consistency refers to the strategy of fixing a particular value for some
variable, and checking if applying arc-consistency to the remaining variables produces a contradic-
tion. Singleton arc-consistency is clearly at least as powerful as cycle-consistency. One of the main
results of [54] showed that singleton arc consistency solves majority CSPs, but in fact their proof
strategy was to show that cycle-consistent instances of majority CSPs always have solutions.

The argument for majority algebras is simpler than the argument for ancestral algebras, es-
sentially because the analogue of the case where all the variables domains are strongly connected
doesn’t need to be considered. Instead, we are always in the situation where some variable domain
Ax has a proper absorbing subalgebra (every singleton is an absorbing subalgebra of a majority
algebra), although we need to work slightly harder than we did in the absorbing case of ancestral
CSPs since the absorption is no longer binary absorption. Rather than working with absorbing
subalgebras, [54] used the closely related concept of an ideal of a majority algebra.

Definition 3.6.1. If A = (A,m) is a majority algebra, then B ≤ A is called an ideal of A if
m(B,A,B) ⊆ B.

The word “ideal” comes from the theory of median algebras - a subset B is an ideal of a median
algebra A iff there is a congruence θ of A such that B is a congruence class of θ. The corresponding
statement is not true of majority algebras in general: every subset of the dual discriminator algebra
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from Example 1.6.5 is an ideal, but the dual discriminator algebra on n elements is simple (and
polynomially complete) for n ≥ 3.

The next result shows that ideals interact with standard algebraic constructions (products,
quotients, intersections) nicely. A similar result holds for absorbing subalgebras, with the same
proof.

Proposition 3.6.2. Suppose that a relation R is defined by a primitive positive formula Φ involving
the relations R1, ...,Rk. If we replace each Ri with an ideal R′

i of Ri to make a primitive positive
formula Φ′, then the relation R′ which is defined by Φ′ is an ideal of R.

Proof. Let Φ(x) = ∃yΨ(x, y), with Ψ quantifier-free, and let Ψ′ be the corresponding formula
with Ris replaced by R′

is. Then for any a, b, c with a, c ∈ R′ and b ∈ R, there exist d, e, f such
that Ψ′(a, d),Ψ(b, e),Ψ′(c, f) hold, so Ψ′(m(a, b, c),m(d, e, f)) holds since each R′

i is an ideal, so
Φ′(m(a, b, c)) holds.

Recall the definition of a path in an instance (Definition 3.5.1). It’s notationally convenient to
allow paths to act on subsets of the variable domains.

Definition 3.6.3. If p is a path connecting variables x, y of an instance X, and if B is a subset of
the variable domain Ax, then we define B + p to be the subset of Ay given by

B + p := {c ∈ Ay | ∃b ∈ B s.t. (b, c) ∈ Pp} = π2(Pp ∩ (B × Ay)).

Proposition 3.6.4. If B ≤ Ax and p is a path from x to y, then B + p is a subalgebra of Ay. If B
is an ideal of Ax and the instance is arc-consistent, then B + p is an ideal of Ay.

Our overall strategy will be to start with a cycle-consistent instance X, and find a collection
of ideals A′

x of the variable domains Ax such that reducing each domain to A′
x produces an arc-

consistent instance X′. Then we will show that any such X′ is automatically cycle-consistent.
In order to find an arc-consistent family of ideal subdomains, we consider the set I of pairs

(x,B) where x is a variable and B is a proper ideal of Ax. Note that I is nonempty as long as some
x has |Ax| > 1, since every singleton is an ideal.

Definition 3.6.5. Let I be the set of pairs (x,B) where x is a variable and B is a proper ideal
of Ax. We define a quasiorder ⪯ on I by (x,B) ⪯ (y,B + p) for every path p from x to y with
B + p ̸= Ay.

Proposition 3.6.6. If X is a cycle-consistent instance, x is a variable, and (x,B) ⪯ (x,C), then
B ≤ C.

Proof. Suppose p is a path from x to itself with B + p = C. By cycle-consistency we must have
∆Ax ⊆ Pp, so B ⊆ B + p.

Definition 3.6.7. Suppose X is a cycle-consistent instance of a majority CSP, and assume without
loss of generality that each constraint of X is binary. Fix a maximal element (x,A′

x) of I under
the quasiorder ⪯.

Call a variable y proper if there is a path p from x to y such that A′
x + p ̸= Ay, and in this case

set A′
y = A′

x + p. If y is not proper, then set A′
y = Ay.

Define the reduced instance X′ by replacing the domain of each variable v by A′
v, and by

replacing each constraint R ≤ Au × Av with R′ = R ∩ (A′
u × A′

v).
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First we need to check that the sets A′
y are well-defined.

Lemma 3.6.8. If there are paths p, q from x to y such that A′
x + p ̸= Ay and A′

x + q ̸= Ay, then
A′
x + p = A′

x + q.

Proof. Since (x,A′
x) is maximal and (x,A′

x) ⪯ (y,A′
x + p), we must have (y,A′

x + p) ⪯ (x,A′
x) ⪯

(y,A′
x + q), so A′

x + p ≤ A′
x + q. Similarly we have A′

x + q ≤ A′
x + p, so A′

x + p = A′
x + q.

Next we check arc-consistency.

Lemma 3.6.9. If p is a path from y to z and p′ is the corresponding path in X′, then A′
y+p′ = A′

z.

Proof. We just need to check this in the case when p has length 1, corresponding to a binary
relation R ≤sd Ay × Az. If A′

y + p ̸= Az, then y, z must both be proper with A′
y + p = A′

z. Either
way we see that A′

y + p ⊇ A′
z, and since R′ = R ∩ (A′

y × A′
z) we have A′

y + p′ = A′
z in the reduced

instance.

Finally, we check that arc-consistency of X′ and cycle-consistency of X implies cycle-consistency
of X′. For this, we note that if p is a path from v back to itself in X, and if p′ is the corresponding
path in X′, then Pp′ is an ideal of Pp. Since Pp ⊇ ∆A′

v
we have

m(Pp′ ,∆A′
v
,Pp′) ⊆ Pp′ ,

so the cycle-consistency of X′ follows from the following result.

Theorem 3.6.10. Suppose that R ≤sd A × A is subdirect with m(R,∆A,R) ⊆ R, where m is a
majority operation. Then ∆A ⊆ R.

In fact, if R ≤sd A1 × · · · ×An is subdirect and satisfies m(R, S,R) ⊆ R, where S is any subset
of A1 × · · · × An, then S ⊆ R.

Proof. First we prove the statement about binary relations, since this is all we will need. Let a be
any element of A. Since R is subdirect, there are b, c ∈ A such that (a, b) ∈ R and (c, a) ∈ R. Then
since (a, a) ∈ ∆A, we have[

a
a

]
= m

([
a
b

]
,

[
a
a

]
,

[
c
a

])
∈ m(R,∆A,R) ⊆ R.

For the more general statement, we show by induction on k that π[k](S) ⊆ π[k](R) for each
k ≤ n. The base case k = 1 follows from the assumption that R is subdirect, and for the inductive
step we may as well assume that we have already proven this for k = n − 1, and wish to show it
for n. Let (a1, ..., an) be any element of S. Then by the inductive hypothesis there is some b such
that (a1, ..., an−1, b) ∈ R, and by the assumption that R is subdirect there are c1, ..., cn−1 such that
(c1, ..., cn−1, an) ∈ R. Then we have

a1
...

an−1

an

 = m



a1
...

an−1

b

 ,

a1
...

an−1

an

 ,

c1
...

cn−1

an


 ∈ m(R, S,R) ⊆ R.

Corollary 3.6.11. The reduced instance X′ is cycle-consistent.
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We have proved the main result of this section.

Theorem 3.6.12. Every cycle-consistent instance X of a majority CSP has a solution.
In fact, for any variable v of X and any value a ∈ Av, the instance X has a solution in which

the variable v is assigned the value a.

Proof. For the second statement, we note that if |Av| > 1, then (v, {a}) ∈ I, so there is some
maximal element (x,A′

x) ∈ I such that (v, {a}) ⪯ (x,A′
x), and we define the reduction X′ in terms

of the maximal element (x,A′
x). If v is proper, then from (v, {a}) ⪯ (x,A′

x) ⪯ (v,A′
v) we must have

a ∈ A′
v, and if v is not proper then we have a ∈ Av = A′

v. Either way, we see by induction that the
reduced instance X′ has a solution in which the variable v is assigned the value a.

Corollary 3.6.13. Suppose A is an algebra with a partial semilattice term s and a ternary term g
such that for any subalgebra B ≤ A, the restriction of g to Sg(Bmax) is a majority operation. Then
every cycle-consistent instance of CSP(A) has a solution.

Proof. By Corollary 3.3.10, if we start with a cycle-consistent instance X and restrict all the variable
domains Ai to Sg(Amax

i ) to create a new instance X′, then X′ will still be cycle-consistent, and by
assumption X′ will be preserved by the majority operation g. Then by the previous theorem, X′

will have a solution.

Example 3.6.1. Consider A = ({−, 0,+}, g), where g is the idempotent cyclic ternary operaton with

g(0, 0,−) = g(0,−,−) = −,
g(0,−,+) = g(−,−,+) = −,
g(0, 0,+) = g(0,+,+) = +,

g(0,+,−) = g(−,+,+) = +.

This can be described more succinctly as follows: the permutation (− +) is an automorphism of
A, {−,+} is a majority subalgebra of A, and {0,−}, {0,+} are semilattice subalgebras of A with
0 → −,+. The term s(x, y) := g(x, x, y) is a partial semilattice, and s, g satisfy the assumptions
of the Corollary above, so every cycle-consistent instance of CSP(A) has a solution. We give a
table for s and draw the graph of two element subalgebras of A (with undirected edges for majority
subalgebras and directed edges for semilattice subalgebras) below.

s − 0 +

− − − −
0 − 0 +
+ + + + 0

− +

The relational clone Inv(g) is generated by the unary relation x ̸= 0, the binary relation x = −y,
the binary relation x ≤ y, and the ternary relation x = 0 =⇒ y = z.

The clone ⟨g⟩ is properly contained in the clone ⟨s2⟩ from Example 1.6.8, and it does not contain
any proper subclone with a Taylor operation. In some sense the algebra considered in this example
is the prototypical example of a bounded width algebra: Bulatov [44] has shown that in every
minimal bounded width clone, the maximal strongly connected components behave as if there is a
majority operation preserving them, and for every pair of maximal strongly connected components
there is a two-element majority subalgebra which connects them.
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Remark 3.6.1. It’s tempting to try to generalize Theorem 3.6.10 to near-unanimity operations. We
say that a subalgebra B absorbs A with respect to a near-unanimity operation t if

t(B, ...,B,A,B, ...,B) ⊆ B

for each possible location of A. Suppose that R ≤sd A × A absorbs ∆A with respect to t - can we
conclude that R contains the diagonal?

Unfortunately the answer is no: even if R is subdirect and absorbs A2 with respect to a near-
unanimity term, we might not have ∆A ⊆ R. Consider the threshold function tn2 from Example
1.1.3 defined by

tn2 (x1, ..., xn) =

{
1

∑
i xi ≥ 2,

0
∑

i xi ≤ 1.

For n ≥ 4, the relation

R =

{[
0
1

]
,

[
1
0

]
,

[
1
1

]}
absorbs {0, 1}2 with respect to tn2 , but does not contain the diagonal element (0, 0). However, R does
intersect the diagonal at (1, 1). In the next section we will see that this weaker claim generalizes:
if R ≤sd A× A absorbs ∆A, then R ∩∆A ̸= ∅.

3.7 Absorption, Jónsson absorption, and connectivity

Absorption is a common generalization of ideals of majority algebras and maximal strongly con-
nected components of minimal ancestral algebras, and a lot of the theory of absorbing subalgebras
applies to general (finite, idempotent) algebras, without assuming the existence of a Taylor term.
After introducing absorption, we will show that absorbing subalgebras R′ of binary relations R
retain some of the connectivity properties of the original relations R.

Definition 3.7.1. A subalgebra B ≤ A absorbs A with respect to an idempotent term t if

t(B, ...,B,A,B, ...,B) ⊆ B

for each possible location of A. We just say that B absorbs A, written B� A, if there exists some
idempotent term t such that B absorbs A with respect to t.

More generally, we sometimes say that a set B absorbs a set A with respect to an idempotent
term t if

t(B, ..., B,A,B, ..., B) ⊆ B

for each possible location of A. Note that if B ⊆ A, then B must be closed under t.

The reason we avoid specifying the idempotent term t in the notation B�A is that there exists
a common term t which witnesses all absorption within any finite collection of pairs Bi � Ai.

Proposition 3.7.2. If B1�A1 with respect to t1 and B2�A2 with respect to t2, then each Bi�Ai
with respect to the star composition t1 ∗ t2 (see Definition 1.5.3). If A1 = B2, then B1 � A2 with
respect to t1 ∗ t2.

Corollary 3.7.3. A finite algebra A has a near-unanimity term iff for all a ∈ A, the singleton {a}
absorbs A.
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A common strategy in arguments involving absorbing operations t of high arity n is to consider
expressions of the form

t(x, ..., x, y, z, ..., z),

where just a single y occurs, and iteratively march the location of the y one step to the left at a
time. We can make such arguments more transparent by phrasing them in terms of the sequence
of ternary terms

di(x, y, z) := t(x, ..., x︸ ︷︷ ︸
n−i

, y, z, ..., z︸ ︷︷ ︸
i−1

),

with d0(x, y, z) := x and dn+1(x, y, z) := z, so that the di satisfy the system of identities

d0(x, y, z) ≈ x,
di(x, y, y) ≈ di+1(x, x, y),

dn+1(x, y, z) ≈ z.

If B absorbs A with respect to the term t, then we will additionally have

di(B,A,B) ⊆ B

for all i.

Definition 3.7.4. A Jónsson absorption chain is a sequence of ternary terms d1, ..., dn which
satisfy the identities

d1(x, x, y) ≈ x,
di(x, y, y) ≈ di+1(x, x, y),

dn(x, y, y) ≈ y.

We say that B Jónsson absorbs A with respect to the Jónsson chain d1, ..., dn if for each i ∈ [n] we
have

di(B,A,B) ⊆ B.

If B Jónsson absorbs A with respect to some Jónsson chain, then we write B�J A.

Proposition 3.7.5. If B� A, then B�J A.

As with absorption, we can witness several instances of Jónsson absorption simultaneously with
a single Jónsson absorption chain d1, ..., dn.

Proposition 3.7.6. If B1 �J A1 with respect to d1, ..., dm and B2 �J A2 with respect to e1, ..., en,
then the sequence of terms f1, ..., fmn defined by

fn(i−1)+j(x, y, z) := di(x, ej(x, y, z), z)

is a Jónsson absorption chain which witnesses both B1 �J A1 and B2 �J A2. If A1 = B2, then
B1 �J A2 with respect to f1, ..., fmn.

Corollary 3.7.7. A finite algebra A generates a congruence distributive variety iff for all a ∈ A,
the singleton {a} Jónsson absorbs A.
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Proof. A Jónsson absorbing chain which witnesses {a}�J A for all a ∈ A is the same as a sequence
of terms d1, ..., dm which satisfy the system of identities

d1(x, x, y) ≈ x,
di(x, y, x) ≈ x for all i,

di(x, y, y) ≈ di+1(x, x, y) for all i,

dm(x, y, y) ≈ y,

that is, d1, ..., dm are a sequence of directed Jónsson terms. By Theorem A.4.8, a variety is congru-
ence distributive iff it has directed Jónsson terms.

Example 3.7.1. If A = (A, s) is a 2-semilattice, then B �J A iff s(A,B) = s(B,A) ⊆ B, that is, iff
B�str A.

Example 3.7.2. If A is abelian, then A has no Jónsson absorbing singleton subalgebras. To see this,
note that if A is abelian, then for any Jónsson chain d1, ..., dn witnessing {b}�J A and any a ̸= b,
we have d1(b, b, a) = b, and then by induction we have

di(b, b , a) = b = di(b, b , b) =⇒ di(b, a , a) = di(b, a , b) = b =⇒ di+1(b, b, a) = di(b, a, a) = b,

so a = dn(b, a, a) = b, a contradiction.
In particular, no affine algebra A has any proper Jónsson absorbing subalgebra B, because we

can apply the above argument to the quotient A/θB, where θB is the congruence of A which has B
as a congruence class.

Example 3.7.3. Suppose B is an ideal of a majority algebra A = (A,m). Then B�J A with respect
to the Jónsson absorption chain d1(x, y, z) = m(x, y, z) (of length 1):

m(x, x, y) ≈ x,
m(x, y, y) ≈ y,
m(B,A,B) ⊆ B.

In fact, the converse holds: if B�J A, then there must be a majority term m′ ∈ Clo(m) such that
m′(B,A,B) ⊆ B. This follows from the fact that every ternary term in a majority algebra is either
a projection or another majority operation.

If A generates a locally finite variety, then by applying the construction of Proposition 3.7.6
iteratively to all the majority operations in Clo(m), we can find a single majority term m̂ ∈ Clo(m)
such that for any C ≤ B ∈ HSP (A) we have

C�J B ⇐⇒ m̂(C,B,C) ⊆ C.

As we will see later, for finite majority algebras B �J A implies that B � A - possibly with
respect to a term of very high arity (for instance, in the case where A is the dual discriminator
algebra from Example 1.6.5 and |B| = |A|−1, the minimal arity of a term t which witnesses B�A is
|A|+ 1). So ideals of finite majority algebras are actually the same thing as absorbing subalgebras!

Remark 3.7.1. If we define a concept called ideal absorption by B �I A when there is a ternary
term d such that d(x, x, y) ≈ x ≈ d(y, x, x) and d(B,A,B) ⊆ B, then all of the results about ideals
of majority algebras generalize. I don’t know any applications of this idea outside the context of
majority algebras.
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Like ideals of majority algebras, absorbing subalgebras play nice with primitive positive formu-
las.

Proposition 3.7.8. Suppose that a relation R is defined by a primitive positive formula Φ involving
the relations R1, ...,Rk. If we replace each Ri with an absorbing subalgebra R′

i � Ri to make a
primitive positive formula Φ′, then the relation R′ which is defined by Φ′ is an absorbing subalgebra
of R. The same is true with “absorbing” replaced by “Jónsson absorbing”.

Proof. Since only finitely many relations Ri show up in Φ, we can find a single absorbing term (or
Jónsson chain) which witnesses all absorptions R′

i � Ri (or R′
i �J Ri) simultaneously. From here

the proof is similar to the proof in the case of ideals of majority algebras.

Now we will illustrate how Jónsson absorption is used, by proving a few connectivity results.
Recall that every binary relation R ≤ A×A can be visualized as a graph in two different ways: we
can either think of R as a bipartite graph on the disjoint union A ⊔ A, or we can think of R as a
directed graph on A. The next result is perhaps the most crucial.

Theorem 3.7.9 (Absorbing directed paths [17]). If S,R ≤ A×A are binary relations with S�J R,
and a, b ∈ A satisfy

• (a, a), (b, b) ∈ S, and

• (a, b) ∈ R,

then if we think of S as a directed graph on A, there is a directed path from a to b in S, that is,
(a, b) ∈ S◦n for some n.

Proof. Suppose S�J R with respect to the Jónsson chain d1, ..., dn. Then for each i we have[
di(a, a, b)
di+1(a, a, b)

]
=

[
di(a, a, b)
di(a, b, b)

]
= di

([
a
a

]
,

[
a
b

]
,

[
b
b

])
∈ di(S,R, S) ⊆ S.

Stringing these together, we get a directed path from d1(a, a, b) = a to dn(a, b, b) = b of length n,
so in fact (a, b) ∈ S◦n.

Applying the above to S◦m�JR◦m for a sufficiently largem, we get the following stronger-looking
corollary.

Corollary 3.7.10. If S,R ≤ A× A have S�J R, and a, b ∈ A satisfy

• each of a, b is contained in a directed cycle of the digraph S, and

• there is a directed path from a to b in the digraph R,

then there is a directed path from a to b in the digraph S.

For the sake of applying the previous result, it is useful to keep in mind the following basic fact
about finite directed graphs.

Proposition 3.7.11. If (A,R) is a finite directed graph such that each vertex of A has in-degree
at least 1 (in other words, such that π2(R) = A), then for every vertex a ∈ A there is some a′ ∈ A
and some n such that a′ is contained in a directed cycle of length n and such that there is a directed
path from a′ to a of length n (that is, (a′, a′), (a′, a) ∈ R◦n).
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Proof. Define a function φ : A→ A such that for each a ∈ A we have (φ(a), a) ∈ R. Then there is
some n such that φ◦2n = φ◦n by the finiteness of A: in fact, we may take n = lcm{1, ..., |A|}.

In the next result, we think of binary relations as bipartite graphs. Recall that the linked
components of a binary relation R ≤ A × B are the connected components of R considered as a
bipartite graph on A ⊔ B, and that the linked components of size greater than 1 are the same as
the congruence classes of the linking congruence kerπ1 ∨ kerπ2 on R.

Theorem 3.7.12 (Absorbing linked components [17]). If S,R ≤ A × B are binary relations with
S �J R, and a, b ∈ π1(S) are in the same linked component of R, then a, b are in the same linked
component of S.

Proof. If a, b are linked in R, then there is some m such that (a, b) ∈ (R ◦ R−)◦m. Since (S ◦
S−)◦m �J (R ◦ R−)◦m and (a, a), (b, b) ∈ S ◦ S− by a, b ∈ π1(S), we can apply Theorem 3.7.9 to see
that there is some n such that (a, b) ∈ (S ◦ S−)◦mn. Thus a, b are in the same linked component of
S.

The next result is an analogue of Theorem 3.3.9 and Theorem 3.6.10 for Jónsson absorption.

Theorem 3.7.13 (Loop Lemma, finite absorbing case [15]). If R ≤sd A×A is subdirect, A is finite,
and R Jónsson absorbs the diagonal ∆A, then R ∩∆A ̸= ∅.

Proof. We may assume without loss of generality that A is idempotent. As long as |A| > 1, we will
try to find a proper subalgebra B ≤ A with R ∩ (B× B) subdirect. Then R ∩ (B× B) will Jónsson
absorb ∆B, and we can show by induction that R ∩∆B ̸= ∅.

Let b be any element of A, and define a sequence of subalgebras Bi by B0 = {b}, Bi+1 = Bi +R,
i.e. Bi+1 = π2(R∩ (Bi×A)). If there is any i such that Bi ̸= A but Bi+1 = A, then for every C ≤ A
we have (C + R−) ∩ Bi ̸= ∅, so by the finiteness of Bi we may take

B =
⋂
k≥0

Bi + (R−)◦k = {a | ∃a0, a1, ... ∈ Bi s.t. a0 = a and ∀j (aj , aj+1) ∈ R}.

Otherwise, each Bi ̸= A, and by the finiteness of A there must be some m,n such that Bm = Bm+n.
We will show that in this case we have Bm+i = Bm for each i, so we may take B = Bm.

Consider any directed cycle a0, ..., akn = a0 of R (considered as a digraph) with a0 ∈ Bm.
We will show that each ai ∈ Bm. Note that (a0, a0), (ai, ai) ∈ R◦kn, that R◦kn Jónsson absorbs
(R ∪∆A)◦kn, and that (a0, ai) ∈ R◦i ⊆ (R ∪∆A)◦kn. Thus by Theorem 3.7.9 there is some l such
that (a0, ai) ∈ R◦ln, and since Bm + R◦ln = Bm+ln = Bm, we see that ai ∈ Bm.

Since Bm+i+R◦n = Bm+i and Bm+i is finite, for each element a of Bm+i there is an ai contained
in a directed cycle of R◦n and a directed path of R◦n from ai to a, so in fact we have a ∈ Bm as
well, and we see that Bm+i ⊆ Bm. Similarly we have Bm ⊆ Bm+i, so Bm = Bm+i.

Corollary 3.7.14. If R ≤sd A×A is subdirect, A is finite and has no proper absorbing subalgebra,
and R absorbs the diagonal ∆A, then ∆A ⊆ R.

Proof. Since R ∩∆A ̸= ∅ is an absorbing subalgebra of ∆A and ∆A ∼= A has no proper absorbing
subalgebra, we must have R ∩∆A = ∆A.

Definition 3.7.15. We say that B is a minimal absorbing subalgebra of A, written B<�A, if B�A
and B has no proper absorbing subalgebra.
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Proposition 3.7.16. Every finite absorbing subalgebra of A contains a minimal absorbing subal-
gebra of A, and any pair of distinct minimal absorbing subalgebras of A are disjoint.

Proof. This follows from the fact that C� B�A implies C�A, and the fact that the intersection
of any pair of absorbing subalgebras is an absorbing subalgebra.

Theorem 3.7.17. Suppose that X is an arc-consistent instance of a CSP, and suppose that for
each variable domain Av there is a minimal absorbing subalgebra A′

v<�Av such that the reduced
instance X′ with variable domains replaced by A′

v and relations R ≤sd Av1 × · · · × Avn replaced by
R′ = R ∩ (A′

v1 × · · · × A′
vn) is arc-consistent.

Then for any path p in X from a variable v to itself such that Pp ⊇ ∆Av , the corresponding path
p′ of X′ has Pp′ ⊇ ∆A′

v
. In particular, if X is cycle-consistent then so is X′.

Proof. Note that Pp′ is an absorbing subalgebra of Pp, so Pp′ absorbs ∆A′
v
. Since Pp′ is subdirect

in A′
v ×A′

v by the arc-consistency of X′ and A′
v has no proper absorbing subalgebra, we may apply

Corollary 3.7.14 to see that Pp′ ⊇ ∆A′
v
.

Later we will show that any cycle-consistent instance X has an arc-consistent reduction X′ where
all variable domains are replaced by minimal absorbing subalgebras, which will set us up to apply
Theorem 3.7.17. The argument strategy will be fairly generic, not using any specific properties of
absorbing subalgebras other than Theorem 3.7.9 and the fact that absorption is compatible with
primitive positive formulas. Additionally, we will be able to weaken cycle-consistency to a property
known as pq-consistency, which says that for any pair of paths p, q from a variable v to itself, there
is some j ≥ 0 such that Pj(p+q)+p ⊇ ∆Av .

3.7.1 Local criterion for Jónsson absorption

Since a finite algebra A has bounded strict width iff every singleton is an absorbing subalgebra of A,
we’d like to have a way to test whether a given subalgebra B ≤ A is an absorbing subalgebra. Since
the arity of a potential absorbing term is unbounded, we’ll start with the easier problem of testing
whether B is a Jónsson absorbing subalgebra, since in this case there is an obvious algorithm which
will at least eventually halt: list out every possible ternary term of A by brute force, and make a
digraph of possible Jónsson chains.

The idea behind finding a better way to test whether B �J A is to try to find a converse to
the fundamental digraph connectivity result characterizing Jónsson absorption (Theorem 3.7.9). In
order to formulate the converse, we need to consider generic pairs of digraphs S ≤ R ≤ C×C such
that

B�J A =⇒ S�J R.

One natural way to do this is to write R as the projection to the last two coordinates of a ternary
relation X ≤ A× C× C, and to take S to be the corresponding projection of X ∩ (B× C× C).

Definition 3.7.18. For B ≤ A and C ∈ V(A) all idempotent, we say that A,B,C satisfy the
condition J(A,B;C) if for every a ∈ A, b, b′ ∈ B, and c, d ∈ C, if we set

S = π23

SgA×C×C


bc
c

 ,
ac
d

 ,
b′d
d

 ∩
BC
C

 ,

then there is some n such that (c, d) ∈ S◦n.
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We will show that the condition J(A,B;A) is equivalent to B �J A, following the strategy of
[17]. Note that Theorem 3.7.9 proves one direction of the equivalence, so we just need to prove that
J(A,B;A) =⇒ B �J A. The strategy will be to use induction to show that J(Am,Bm;An) holds
for all m,n, and then to take m = |A||B|2, n = |A|2 to show that a certain directed path exists
between binary terms in the free algebra on two generators, which will correspond to a Jónsson
absorption chain. Before diving into the details, we will outline how this criterion could be used to
test whether B�J A.

Note that if A is given in terms of tables for its basic operations, then the condition J(A,B;A)
can be tested in time polynomial in |A|, |B| (with the degree of the polynomial depending on the
arities of the basic operations), since the total number of tuples a, b, b′, c, d is |A|3|B|2, computing S
requires us to compute a ternary relation of size at most |A|3, and we only need to check whether
(c, d) ∈ S◦n for n ≤ |A|.

If A is instead given in terms of a list of basic relations, then testing the condition J(A,B;A)
can be reduced to solving polynomially many polynomially large constraint satisfaction problems
over the domain A - so in particular if CSP(A) can be solved in polynomial time, then we can test
J(A,B;A) in polynomial time. To see this, note that in order to test whether a given edge (e, f) is
an element of S, we just need to test whether A has a ternary polymorphism t such that

t(b, a, b′) ∈ B,
t(c, c, d) = e,

t(c, d, d) = f,

and the set of ternary polymorphisms t ∈ FA(x, y, z) ≤ AA3
can be described by a primitive positive

formula involving only |A|3 variables.

Lemma 3.7.19. If J(A1,B1;C) and J(A2,B2;C) both hold, then so does J(A1 × A2,B1 × B2;C).

Proof. Suppose a = (a1, a2) ∈ A1 × A2 and b = (b1, b2), b
′ = (b′1, b

′
2) ∈ B1 × B2, c, d ∈ C. Define

S,R ≤ C × C as usual, and define an intermediate digraph S1, where instead of restricting to
B1 × B2, we restrict to B1 × A2 instead - so for the purposes of computing S1, we can ignore the
A2 components. Then by J(A1,B1;C), from (c, d) ∈ R we see that there is a directed path from c
to d in S1.

To finish, we just need to check that for each (e, f) ∈ S1, there is a directed path from e to f
in S. Note that (e, f) ∈ S1 means that there are some b′′1 ∈ B1, a

′′
2 ∈ A2 such that(b′′1, a

′′
2)

e
f

 ∈ Sg


(b1, b2)

c
c

 ,
(a1, a2)

c
d

 ,
(b′1, b

′
2)

d
d

 .

Then from e, f ∈ Sg{c, d}, there are some (b′′′1 , b
′′′
2 ) ∈ B1 × B2 with(b′′′1 , b

′′′
2 )

e
e

 ∈ Sg


(b1, b2)

c
c

 ,
(b′1, b

′
2)

d
d

 ,

and similarly for (f, f), so we just need to check that

π23

Sg


(b′′′1 , b

′′′
2 )

e
e

 ,
(b′′1, a

′′
2)

e
f

 ,
(b′′′′1 , b

′′′′
2 )

f
f

 ∩
B1 × B2

C
C
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contains a directed path from e to f . But now we can ignore the B1 component, so this follows
from J(A2,B2;C).

Lemma 3.7.20. If J(A,B;C1) and J(A,B;C2) both hold and C1,C2 are finite and idempotent,
then J(A,B;C1 × C2) holds as well.

Proof. Suppose not. Choose c = (c1, c2), d = (d1, d2) ∈ C1 × C2 such that Sg{c, d} is minimal
among all pairs such that there exist a ∈ A, b, b′ ∈ B so that the associated digraph S has no
directed path from c to d.

Ignoring the C2 components, we can apply J(A,B;C1) to find a sequence of edges (ei, f i+1) ∈ S
such that f i1 = ei1 for each i ≤ n, c = f1, and en = d. Since we assumed that there is no directed
path from c to en = d, we can consider the first i such that there is no directed path from c to ei.

Since ei ∈ Sg{c, d}, we have [
c
ei

]
∈ Sg

{[
c
c

]
,

[
c
d

]
,

[
d
d

]}
= R,

and since there is no directed path from c to ei in S, we see that we must have Sg{c, ei} = Sg{c, d}
by our minimality assumption, so in particular we have f i ∈ Sg{c, ei}. Thus we have[

f i

ei

]
∈ Sg

{[
c
ei

]
,

[
ei

ei

]}
⊆ R.

By the choice of i there is a path from c to f i in S (passing through ei−1 if i > 1). To get
a contradiction, we just need to show that there is a directed path from f i to ei in S. Since
(ei, ei), (f i, f i) ∈ S, there are a′ ∈ A, b′′, b′′′ ∈ B such that

π23

Sg


b′′f i
f i

 ,
a′f i
ei

 ,
b′′′ei
ei

 ∩
 B
C1 × C2

C1 × C2

 ⊆ S.

Since f i1 = ei1, we can ignore the C1 components in the above, so by J(A,B;C2) there is a directed
path from f i to ei in S.

Theorem 3.7.21 (Local criterion for Jónsson absorption [17]). If B ≤ A are finite and idempotent,
then B�J A if and only if J(A,B;A) holds.

Proof. By the previous two lemmas, J(Am,Bm;An) holds for m = B×A×B and n = A×A. There
is a natural map Φ : FA(x, y, z)→ AB×A×B and a pair of natural maps Ψ1,Ψ2 : FA(x, y, z)→ AA×A:
the first takes f to the restriction f |B×A×B, the other two take f to the functions f(x, x, y), f(x, y, y).

Then we can apply J(Am,Bm;An) with a = Φ(π2), b = Φ(π2), b
′ = Φ(π3), c = Ψi(π1) =

Ψ1(π2), d = Ψi(π3) = Ψ2(π2). If we set

S = π23

Sg


x|x,z∈Bx

x

 ,
y|x,z∈Bx

y

 ,
z|x,z∈By

y

 ∩
BmAn
An

 ,
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then the inner ternary subalgebra is exactly Im(Φ,Ψ1,Ψ2), so S is exactly the digraph of pairs of
binary terms g(x, y), h(x, y) such that there is some ternary term f(x, y, z) satisfying

f(B,A,B) ⊆ B,
f(x, x, y) ≈ g(x, y),

f(x, y, y) ≈ h(x, y).

The condition J(Am,Bm;An) says that this digraph contains a path from the term x to the term
y, which is the same as a Jónsson absorption chain for B�J A.

Note that the same argument shows that it is enough to check J(A,B;Ci) for any collection of
algebras C1, ...,Cn generating a variety V such that FA(x, y) = FV(x, y). In cases where FA(x, y)
is small the criterion becomes especially nice.

Corollary 3.7.22. If A = (A,m) is a majority algebra, then B �J A iff there do not exist a ∈ A
and b, c ∈ B such that

• a, b, c are distinct,

• SgA{a, b, c} ∩ B = {b, c},

• the partitions {{b}, Sg{a, b, c} \ {b}} and {{c}, Sg{a, b, c} \ {c}} of Sg{a, b, c} correspond to
congruences θb, θc on Sg{a, b, c}.

The third bullet point can also be stated in the equivalent form: Sg{a, b, c}/(θb ∧ θc) is isomorphic
to the three element median algebra, with median element a/(θb ∧ θc) = Sg{a, b, c} \ {b, c}.

3.8 Absorption and B-essential relations

In this section we’ll give a relational description of absorption, as well as a first simplification
via Ramsey theory. The relational description is a generalization of the way relations over near-
unanimity algebras decompose.

Definition 3.8.1. Suppose B ≤ A. We say that a relation R ≤ Am is B-essential if for every
1 ≤ i ≤ n we have

R ∩ (Bi−1 × A× Bn−i) ̸= ∅,
but

R ∩ Bn = ∅.
More generally, if Bi ≤ Ai for all i, then we say that R ≤ A1× · · · ×Am is (B1, ...,Bm)-essential

if
R ∩ (B1 × · · · × Bi−1 × Ai × Bi+1 × · · · × Bm) ̸= ∅

for each i, but
R ∩ (B1 × · · · × Bm) = ∅.

Proposition 3.8.2. If R ≤ Am is B-essential, then so is

π[m−1](R ∩ (Am−1 × B)).

In particular, if there is a B-essential relation of some arity, then there are B-essential relations of
all smaller arities.
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Proposition 3.8.3. If B absorbs A with respect to a term t of arity m, then there are no B-essential
relations R ≤ Am of arity m.

Proof. Suppose for contradiction that R ≤ Am is B-essential, and let bij ∈ B, ai ∈ A be such that
a1
b21
...
bm1

 ,

b12
a2
...
bm2

 , ...,

b1m
b2m
...
am

 ∈ R.

Then if we apply t, we have

t



a1 b12 · · · b1m
b21 a2 · · · b2m
...

...
. . .

...
bm1 bm2 · · · am


 ∈ R ∩ Bm

since B absorbs A with respect to t, which is a contradiction.

Corollary 3.8.4. If B absorbs A with respect to a term t of arity m, then for any n ≥ m− 1 and
any relation R ≤ An such that

πI(R) ∩ Bm−1 ̸= ∅

for all I ⊆ [n] with |I| = m− 1, we have

R ∩ Bn ̸= ∅.

Proof. We prove this by induction on n ≥ m − 1. The base case n = m − 1 follows by taking
I = [n]. For the inductive step, note that by the inductive hypothesis we have

π[n]\{i}(R) ∩ Bn−1 ̸= ∅

for all i ∈ [n], and we must have R ∩ Bn ̸= ∅ since there are no B-essential relations of arity n ≥ m
by Propositions 3.8.2 and 3.8.3.

Our main result is the converse to Proposition 3.8.3.

Theorem 3.8.5 (Relational description of absorption [17]). If A is finite and idempotent, then B
absorbs A with respect to a term of arity m if and only if there are no B-essential relations of arity
m. In particular, we have B�A if and only if there is a bound on the arity of B-essential relations.

The strategy of the proof is to show that if there are no m-ary terms t which absorb B, then the
projection of the free algebra FA(x1, ..., xm) ≤ AAm

onto the coordinates where all but one input
xi are in B looks like a B-essential relation. The arity of this projection will be much higher than
m, but the set of coordinates can be naturally grouped into m parts.

Lemma 3.8.6. If n1, ..., nm ≥ 1 and R ≤ An1 × · · · ×Anm is (Bn1 , ...,Bnm)-essential, then there is
a B-essential relation R′ ≤ Am of arity m. In fact, R′ can be chosen to have the form

R′ = πI

(
R ∩

(∏
i

Ci
))

205



for some I ⊆ [n1 + · · ·+ nm] with |I| = m such that∣∣I ∩ (n1 + · · ·+ nj−1, n1 + · · ·+ nj ]
∣∣ = 1

for each j ≤ m, and for some choice of Ci ∈ {A,B} for each i.

Proof. We prove this by induction on n = n1+· · ·+nm. If all ni = 1, then R is an m-ary B-essential
relation already. Otherwise, we may assume nm > 1 without loss of generality. First consider the
relation

R1 = π[n−1](R ∩ (An−1 × B)) ≤ An1 × · · · × Anm−1.

We have
R1 ∩ (Bn1 × · · · × Ani × · · · × Bnm−1 × Bnm−1) ̸= ∅

for each i ̸= m, and
R1 ∩ Bn−1 = ∅,

so the only way for R1 to fail to be (Bn1 , ...,Bnm−1 ,Bnm−1)-essential is if

π[n−nm]∪{n}(R) ∩ Bn−nm+1 = ∅.

In this case, we see that
R2 = π[n−nm]∪{n}(R)

is a (Bn1 , ...,Bnm−1 ,B)-essential relation.

Proof of Theorem 3.8.5. We just need to prove that if there is no m-ary B-essential relation, then B
absorbs A with respect to some m-ary term t. For each i, let Xi be the set of tuples (x1, ..., xm) ∈ Am
such that xj ∈ B for j ̸= i, and xi ∈ A \ B. Consider the relation

R = πX1∪···∪Xm(FA(x1, ..., xm)) ≤ AX1 × · · · × AXm .

Since FA(x1, ..., xm) contains the projection functions πi : Am → A, by the definition of the sets Xi

we have
R ∩ (BX1 × · · · × AXi × · · · × BXm) ̸= ∅

for all i. Since there is no B-essential relation of arity m, we see that R can’t be (BX1 , ...,BXm)-
essential by Lemma 3.8.6, so we must have

R ∩ (BX1 × · · · × BXm) ̸= ∅

as well. Then by the definition of R, we see that there is a term t ∈ FA(x1, ..., xm) which absorbs
B.

We can simplify this slightly as follows.

Corollary 3.8.7. We have B�A with respect to an m-ary term t iff for all bij ∈ B, ai ∈ A we have

SgAm



a1
b21
...
bm1

 ,

b12
a2
...
bm2

 , ...,

b1m
b2m
...
am


 ∩ Bm ̸= ∅.
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We leave the following generalization as an exercise to the reader.

Theorem 3.8.8. If A1, ...,Ak are finite and idempotent, and Bi ≤ Ai for each i are such that there
is no (Bi1 , ...,Bim)-essential relation R ≤ Ai1×· · ·×Aim for any choice of i1, ..., im ∈ [k], then there
is an m-ary term t such that each Bi absorbs Ai with respect to t.

Corollary 3.8.9. A finite idempotent algebra A has a near-unanimity term of arity m iff for each
choice of ai, bi ∈ A, we have

b1
b2
...
bm

 ∈ SgAm



a1
b2
...
bm

 ,

b1
a2
...
bm

 , ...,

b1
b2
...
am


 .

Now we move our focus to finding a simpler characterization of B � A, without restricting to
terms of a particular arity. We’ll use the notation rk(m) for the multicolored Ramsey number
R(m, ...,m) (with k copies of m), defined as the least number n such that any edge coloring of Kn

with k colors must have a monochromatic copy of Km.

Theorem 3.8.10. If A is finite and idempotent, then B�A iff there do not exist a ∈ A and b, c ∈ B
such that for every m, we have

SgAm




a b b · · · b
c a b · · · b
c c a · · · b
...

...
...

. . .
...

c c c · · · a




∩ Bm = ∅.

Proof. We just need to show that if B does not absorb A, then such a, b, c exist for every m. Let
n = |A|(r|B|2(m)− 1) + 1. Then since B doesn’t absorb A with respect to any term of arity n, there
is some collection of ai ∈ A, bij ∈ B such that

SgAn



a1 b12 · · · b1n
b21 a2 · · · b2n
...

...
. . .

...
bn1 bn2 · · · an


 ∩ Bn = ∅.

By the pigeonhole principle, there is some a which occurs at least n′ = r|B|2(m) times among
a1, ..., an. Suppose without loss of generality that a1, ..., an′ are all equal to a. If we restrict to the
rows and columns with ai = a, we find that

SgAn′



a b12 · · · b1n′

b21 a · · · b2n′

...
...

. . .
...

bn′1 bn′2 · · · a


 ∩ Bn

′
= ∅.

Now we color the complete graph Kn′ with |B|2 colors, coloring the edge {i, j} (with i < j) with
the color corresponding to the ordered pair (bij , bji). Then by the definition of the Ramsey number
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r|B|2(m), there is a monochromatic copy of Km, with all edges colored by the color corresponding
to some pair (b, c) ∈ B2. By restricting to the rows and columns corresponding to the vertices of
this monochromatic Km, we see that

SgAm



a b · · · b
c a · · · b
...

...
. . .

...
c c · · · a


 ∩ Bm = ∅.

Corollary 3.8.11. If A = (A,m) is a finite majority algebra, then B � A iff there is a majority
term m′ ∈ Clo(m) such that m′(B,A,B) ⊆ B. Equivalently, we have B� A ⇐⇒ B�J A.

More precisely, if B �J A, then B absorbs A with respect to a term of arity at most ⌈e · |B|!⌉,
where e is Euler’s constant

∑
n≥0

1
n! ≈ 2.718.

Proof. The weaker bound ⌈e|A| · |B|2!⌉ on the arity of an absorbing term follows from the estimate
rk(3) ≤ ⌈e · k!⌉ and the fact that b

m′(c, a, b)
c

 ∈ SgA3


a b b
c a b
c c a

 .

However, we don’t need the exact setup above. It’s enough to find n sufficiently large that for every
n× n matrix 

a1 b12 · · · b1n
b21 a2 · · · b2n
...

...
. . .

...
bn1 bn2 · · · an


with off-diagonal entries in B, we can find i, j, k distinct such that bij = bik and bki = bkj . If we set
b = bij = bik and c = bki = bkj , then this will give us a submatrix of the formai b b

bji aj bjk
c c ak

 ,
and applying m′ will give us an element of B3.

Taking n = ⌈e · |B|!⌉ is good enough to find i, j, k with bij = bik and bki = bkj . The proof
is a minor adaptation of the proof of the upper bound on rk(3), and is left as an exercise to the
reader.

Remark 3.8.1. It’s intriguing that in the case of majority algebras, the bound on the arity of the
absorbing operation only depends on the size of |B|.

Problem 3.8.1. Define m(k) to be the least number such that whenever A is a finite majority
algebra, B�J A, and |B| ≤ k, we can always find a term t of arity at most m(k) such that B absorbs
A with respect to t. How quickly does m(k) grow?

The dual discriminator algebra from Example 1.6.5 shows that we always have m(k) ≥ k + 2,
while the previous result shows that m(k) ≤ ⌈e · k!⌉. For k = 1, 2 we have m(1) = 3,m(2) = 4.
Could it be that we have m(k) = k + 2 for every k?
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3.8.1 Finitely related implies Jónsson absorption is equivalent to absorption

The story of this subsection began with a paper of Larose, Loten, and Zádori [118], which gave a
concrete characterization of undirected (reflexive) graphs which are preserved by a near-unanimity
operation. Surprisingly, it turned out that the corresponding algebraic structure has a near-
unanimity term iff it generates a congruence distributive variety (i.e., iff it has Jónsson terms).
This coincidence inspired what came to be known as the Zádori conjecture: could it be the case
that for every finitely related algebra, the existence of Jónsson terms is equivalent to the existence
of near-unanimity terms?

The Zádori conjecture was settled affirmatively by Barto [11], showing as a consequence that
it is possible to decide whether or not a given finite relational structure has a near-unanimity
polymorphism. Zhuk [166] independently proved the decidability result, with a better bound on
the smallest arity of a near-unanimity polymorphism. Barto and Buĺın [15] then extended Zhuk’s
approach to show that in a finitely related algebra, Jónsson absorption becomes equivalent to
absorption (note that by Corollaries 3.7.3 and 3.7.7, this is a generalization of the Zádori conjecture).

The basic idea of (Barto and Buĺın’s extension of) Zhuk’s approach is to suppose that B�J A,
and that we are able to construct a B-essential relation R ≤ An for some huge n via a primitive
positive formula Φ built out of relations Ri ≤ Am for small m. The goal is to prove a contradiction
if n is sufficiently large compared to m and |A|, which will show that B�A by Theorem 3.8.5. The
core of the strategy is to reduce to the case where the primitive positive formula which defines the
huge relation R has a simple structure.

We’ll start with a particularly simple case, where R ≤ An is defined by a “comb formula” Φ
over a collection of ternary relations Ri ≤ A3 in the following way:

(x1, ..., xn) ∈ R ⇐⇒ ∃y0, ..., yn ∈ A s.t.
∧
i∈[n]

(yi−1, xi, yi) ∈ Ri.

We call this a comb formula because the diagram we get by drawing the projection maps πj : Ri → A
looks like a comb:

R1 R2 R3 R4
A A A A A

A A A A

(Note that y0, yn do not actually add anything to the expressive power of a comb formula: in fact,
there is no loss of generality in assuming that R1 is the constraint x1 = y1 and that Rn is the
constraint xn = yn−1.) Our goal is to show that if n is sufficiently large compared to |A|, then such
a relation R can never be B-essential. We will need to use the following consequence of Corollary
3.7.10 and Proposition 3.7.11.

Lemma 3.8.12. Suppose that S�J P ≤ A× A, and that there are subsets C,D ⊆ A such that

C + S = C,

D − S = D,

and
P ∩ (C ×D) ̸= ∅.

Then C ∩D ̸= ∅.
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Proof. Pick any (c, d) ∈ R∩ (C×D). Since C+S = C is equivalent to each vertex having in-degree
at least 1 in the digraph on C with edge set S ∩ (C × C), we can apply Proposition 3.7.11 to see
that there is some c′ ∈ C and some k ≥ 1 such that (c′, c′) ∈ S◦k and (c′, c) ∈ S◦k. Similarly, there
is some d′ ∈ D such that (d, d′), (d′, d′) ∈ S◦l for some l ≥ 1.

Since S ⊆ P, we see that

(c′, d′) ∈ S◦k ◦ P ◦ S◦l ⊆ P◦(k+1+l),

so we can apply Corollay 3.7.10 to see that there is a directed path from c′ to d′ in S. Since c′ ∈ C
and C + S = C, we see that in fact we must have d′ ∈ C as well, so d′ ∈ C ∩D.

Theorem 3.8.13 (Barto and Buĺın [15]). Suppose that R ≤ An is defined by the formula

(x1, ..., xn) ∈ R ⇐⇒ ∃y0, ..., yn ∈ A s.t.
∧
i∈[n]

(yi−1, xi, yi) ∈ Ri,

for some collection of ternary relations Ri ≤ A3. If B�J A and

n ≥ 3|A| − 2|A|+1 + 3,

then R is not B-essential.

Proof. Suppose for the sake of contradiction that R is B-essential. For each i ∈ [n], define binary
relations Si �J Pi ≤ A× A by

Pi = π13(Ri),
Si = π13

(
Ri ∩ (A× B× A)

)
.

Since R was assumed to be B-essential, for each i ∈ [n] we have

S1 ◦ · · · ◦ Si−1 ◦ Pi ◦ Si+1 ◦ · · · ◦ Sn ̸= ∅,

but
S1 ◦ · · · ◦ Sn = ∅.

For each 0 ≤ i ≤ n, if we define Ci,Di ≤ A by

Ci = A + S1 ◦ · · · ◦ Si,
Di = A− Si+1 ◦ · · · ◦ Sn,

then the assumption that R is B-essential implies that

Ci ∩ Di = ∅

for all 0 ≤ i ≤ n, and that for any 0 ≤ i < j ≤ n we have

(Ci × Dj) ∩ (Pi+1 ◦ · · · ◦ Pj) ̸= ∅,

so in particular Ci,Dj ̸= ∅ for i, j ∈ [n − 1]. Since the number of ordered pairs (C,D) of disjoint,
nonempty subsets of A is given by

#
{

(C,D) | ∅ ̸= C,D ⊆ A, C ∩D = ∅
}

= 3|A| − 2|A|+1 + 1,

by the pigeonhole principle there must be some pair i < j ∈ [n − 1] such that (Ci,Di) = (Cj ,Dj).
Now we can apply the previous lemma to P = Pi+1 ◦ · · · ◦ Pj , S = Si+1 ◦ · · · ◦ Sj and C = Ci = Cj ,
D = Di = Dj to see that Ci ∩ Di ̸= ∅, contradicting the assumption that R was B-essential.
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The next step of the proof is to consider relations R defined by “tree formulas” Φ, i.e. formulas
such that the bipartite graph between variables and relations imposed on those variables forms a
tree. The goal is to show that if such an R is B-essential, then we can define a relation R′ whose
arity is not too small compared to the arity of R, such that R′ is defined by a comb formula Φ′ and
R′ is also B-essential. The main idea is to use the fact that if a tree has bounded degree and has
many leaves, then it must contain a long path.

Theorem 3.8.14. Suppose that the primitive positive formula Φ is a tree formula over relations
Ri ≤ Ami, with all mi ≤ m, which defines a B-essential relation R of arity at least

max(m− 1, 2)n−3 + 2.

Then there is a collection of ternary relations R′
i ≤ A3, for 1 ≤ i ≤ n, such that the relation R′

defined by the comb formula

(x1, ..., xn) ∈ R′ ⇐⇒ ∃y0, ..., yn ∈ A s.t.
∧
i∈[n]

(yi−1, xi, yi) ∈ R′
i

is also B-essential.

Proof. We may as well assume that m ≥ 3. We can also make a series of simplifying assumptions
about the structure of the tree formula Φ.

First, we may assume that every free variable of Φ is a leaf. To see this, note that if some free
variable x of Φ is not a leaf, then we can modify Φ by replacing it with the tree formula

∃x s.t. Φ ∧ x = x′,

where x′ is a new free variable. Furthermore, we may assume that every bound variable of Φ is not
a leaf (by replacing any relation involving a bound leaf variable with its existential projection onto
the other variables), so that the free variables of Φ are exactly the leaves.

Next we may assume that each bound variable has degree at most three in Φ (that is, that each
variable is involved in at most three constraints). To do this, suppose that some bound variable x
is involved in four or more constraints, so that Φ has the form

Φ = ∃x s.t. (x, ...) ∈ R1 ∧ · · · ∧ (x, ...) ∈ Rk ∧Ψ,

with k ≥ 4. Then we replace Φ with the equivalent tree formula

∃x, x′ s.t. x = x′ ∧ (x, ...) ∈ R1 ∧ (x, ...) ∈ R2 ∧ (x′, ...) ∈ R3 ∧ · · · ∧ (x′, ...) ∈ Rk ∧Ψ,

where x now occurs in just three constraints, and x′ now occurs in k − 1 constraints.
In fact, as long as m ≥ 3, we may even assume that every bound variable has degree exactly

two in Φ. For this, we introduce the ternary relation R= defined by

(x, y, z) ∈ R= ⇐⇒ x = y = z ∈ A.

Now if Φ has a bound variable x of degree three, so that Φ has the form

Φ = ∃x s.t. (x, ...) ∈ R1 ∧ (x, ...) ∈ R2 ∧ (x, ...) ∈ R3 ∧Ψ,
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then we replace Φ with the equivalent tree formula

∃x, x′, x′′ s.t. (x, x′, x′′) ∈ R= ∧ (x, ...) ∈ R1 ∧ (x′, ...) ∈ R2 ∧ (x′′, ...) ∈ R3 ∧Ψ,

where x, x′, x′′ now each occur in just two constraints.
Now that the simplifications are complete, let E be the set of variables of Φ and let V be the set

of constraints of Φ. Letting F ⊆ E be the set of free variables of Φ, we can interpret (V ⊔ F,E) as
a graph, where each bound variable x ∈ E is interpreted as an edge connecting the two constraints
it is involved in, and each free variable y ∈ E is interpreted as an edge connecting the constraint
it is involved in to the leaf y considered as an element of F . Since Φ is a tree formula, the graph
(V ⊔ F,E) is also a tree, and the maximum degree of any vertex is bounded by m by assumption.

Now pick any v1 ∈ F , and inductively define a non-backtracking path v1, v2, ... ∈ V ⊔F through
the tree (V ⊔ F,E) as follows:

• we pick v2 ∈ V to be the unique constraint involving the free variable v1,

• if we have already picked vi−1, vi and vi ∈ V , then we pick vi+1 ̸= vi−1 among the neighbors of
vi so that the number of free variables which are reachable from vi+1 in the subgraph formed
by deleting vi is maximized, and

• if vi ∈ F for i > 1, then we stop.

For each i ≥ 1, let Fi be the set of free variables which are reachable from vi+1 in the subgraph
formed by deleting vi. By construction, we have F1 = F \ {v1} and

|Fi| > 1 =⇒ |Fi| ≥ |Fi+1| ≥
⌈ |Fi|
m− 1

⌉
.

Setting F0 = F , let 0 = i1 < i2 < · · · < ik be the collection of is such that Fi ̸= Fi+1. For each ij ,
we pick some free variable xj ∈ Fij \ Fij+1, so that x1 = v1 and xk is the final free variable at the
end of the path v1, v2, .... Also, let y0 = y1 = x1, yk−1 = yk = xk, and for 2 ≤ j ≤ k − 2 we let yj
be the bound variable which connects the constraint vij to the constraint vij+1.

Now we define a pp-formula Φ′ by starting from Φ, imposing the unary constraint z ∈ B for
each unused free variable z ∈ F \ {x1, x2, ..., xk}, and existentially quantifying all such zs, so that
the remaining free variables are just x1, x2, ..., xk and the resulting constraint is still B-essential.
Chopping the formula Φ′ into pieces by removing the variables x1, ..., xk and y2, ..., yk−2, we see
that each piece has boundary equal to some triple {yj−1, xj , yj}, and by existentially projecting the
remaining variables in each piece we get an equivalent constraint

(yj−1, xj , yj) ∈ R′
j ≤ A3,

with R′
1 = R′

k = R=, so we see that Φ′ is equivalent to the comb formula

∃y0, ..., yk ∈ A s.t.
∧
i∈[k]

(yi−1, xi, yi) ∈ R′
i.

To finish the proof, we just need to check that k ≥ n (and we may as well assume that n ≥ 3,
since comb formulas are silly when n ≤ 2). For this, we note that by our assumption on the arity
of the original B-essential relation R we have

|Fi2 | = |F1| = |F0| − 1 ≥ max(m− 1, 2)n−3 + 1 > max(m− 1, 2)n−3,
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so inductively we have
|Fij | > max(m− 1, 2)n−j−1

for 2 ≤ j ≤ n− 1, so in particular
|Fin−1 | > 1,

which shows that k > n− 1.

The last ingredient of the proof is to show that if some primitive positive formula Φ defines
a B-essential relation of large arity, then we can repeatedly unravel cycles in Φ to produce a tree
formula Φ′ which defines a B-essential relation of the same arity. This is tricky in two different ways:
first, we need to apply Theorem 3.7.13 (a nontrivial application of Jónsson absorption) in order to
unravel a cycle, and second, it is not obvious that repeatedly unravelling cycles will eventually end
up producing a tree formula. We start by showing how we will apply Theorem 3.7.13.

Lemma 3.8.15. If S�J P ≤ A× A, then we have

∃x s.t. (x, x) ∈ S ⇐⇒ ∃x0, ..., x|D| ∈ D s.t. (x0, x1) ∈ S ∧ · · · ∧ (x|D|−1, x|D|) ∈ S,

where D = {x | (x, x) ∈ P}.

Proof. Left to right is clear: if (x, x) ∈ S, then x ∈ D and we can take x0 = · · · = x|D| = x.
For the other direction, suppose that there are x0, ..., x|D| ∈ D such that (xi, xi+1) ∈ S for each i.

By the pigeonhole principle, there must be some i < j such that xi = xj , so the digraph (D, S∩D2)
contains a cycle of length j − i. Letting C ≤ D be the subalgebra consisting of elements x ∈ D
which are contained in a cycle of length j − i in this digraph, we see that C is nonempty and that
S ∩ C2 is subdirect in C× C.

Since C ⊆ D, we see that P ∩ C2 contains the diagonal ∆C, so S ∩ C2 is subdirect in C × C
and Jónsson absorbs the diagonal ∆C. Thus by Theorem 3.7.13 there is some x ∈ C such that
(x, x) ∈ S.

Theorem 3.8.16 (Barto, Buĺın [15], generalizing Zhuk [166]). If B �J A, and if Φ is a primitive
positive formula over relations Ri ≤ Ami which defines a B-essential relation R, then there is a tree
formula Φ′ over the same relations Ri together with some unary relations Dj ≤ A which defines a
B-essential relation R′ of the same arity as R.

Proof. Let n be the arity of R. As in the proof of Theorem 3.8.14, we may as well assume that
each free variable of Φ occurs in just one constraint of Φ. Furthermore, by splitting variables into
copies and adding equality constraints between the copies, we may as well assume that Φ is defined
by starting with a (quantifier-free) tree formula Ψ, adding a bunch of equality constraints between
variables of Ψ, and then existentially quantifying, i.e.

Φ(x1, ..., xn) = ∃y1, ..., yk s.t. Ψ(x, y) ∧
∧

(i,j)∈E

yi = yj

for some E ⊆ [k]× [k].
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For any (i0, j0) ∈ E, we can unravel a cycle of Φ to produce the formula Φ(i0,j0) with n · (|A|+1)
free variables, which is defined by

Φ(i0,j0)(x
0
1, ..., x

|A|
n ) = ∃y01, ..., y

|A|
k s.t.

∧
0≤l≤|A|

(
Ψ(xl, yl) ∧

∧
(i,j)∈E\(i0,j0)

yli = ylj

)
∧

∧
0≤l<|A|

yl+1
i0

= ylj0 ∈ Di0 ,

where
Di0 =

{
yi0 | ∃x1, ..., xn, y1, ..., yk s.t. Ψ(x, y) ∧

∧
(i,j)∈E

yi = yj

}
.

Claim. For any (i0, j0) ∈ E, the formula Φ(i0,j0) defines a relation R(i0,j0) ≤
(
A|A|+1

)n
which is

B|A|+1-essential.
Proof of claim. By the assumption that the original relation R was B-essential, for each i ≤ n

there is some tuple (x1, ..., xn) ∈ R such that xj ∈ B for all j ̸= i. Thus there are y1, ..., yk such
that

Ψ(x, y) ∧
∧

(i,j)∈E

yi = yj ,

and taking xlj = xj and ylj = yj for all j shows that R(i0,j0) contains a tuple in
(
B|A|+1

)i−1×A|A|+1×(
B|A|+1

)n−i
.

To finish the proof of the claim, we just need to check that R(i0,j0) doesn’t contain any tuple in(
B|A|+1

)n
. Define binary relations S�J P ≤ A× A by

(yi0 , yj0) ∈ P ⇐⇒ ∃x1, ..., xn ∈ A,∃y1, ..., yk s.t. Ψ(x, y) ∧
∧

(i,j)∈E\(i0,j0)

yi = yj ,

(yi0 , yj0) ∈ S ⇐⇒ ∃x1, ..., xn ∈ B,∃y1, ..., yk s.t. Ψ(x, y) ∧
∧

(i,j)∈E\(i0,j0)

yi = yj .

Then we have
Di0 = {yi0 | (yi0 , yi0) ∈ P},

and R(i0,j0) contains a tuple in
(
B|A|+1

)n
iff

∃y0i0 , ..., y
|A|+1
i0

∈ Di0 s.t.
∧

0≤l<|A|

(yli0 , y
l+1
i0

) ∈ S.

By Lemma 3.8.15, this is equivalent to the existence of a loop (yi0 , yi0) ∈ S, which is equivalent to
R containing a tuple from Bn - which can’t happen by our assumption that R is B-essential.

Now by Lemma 3.8.6, we can find Dli ∈ {A,B} and a set I ⊆ [n]× [|A|+ 1] with |I| = n and∣∣I ∩ {i} × [|A|+ 1]
∣∣ = 1

for all i, such that

R′
(i0,j0)

= πI

(
R(i0,j0) ∩

(∏
i,l

Dli
))
≤ An

214



is B-essential. This corresponds to a formula Φ′
(i0,j0)

which is derived from Φ(i0,j0) by restricting
some of the free variables to lie in B and then existentially quantifying all free variables aside from
those labeled by I.

Now for the tricky part: we need to show that there is some way of choosing (i0, j0) ∈ E to
guarantee that the new formula Φ′

(i0,j0)
is, in some sense, closer to being a tree formula than the

original Φ was. We will need to use the fact that if there is some bound variable y such that
removing it splits Φ′

(i0,j0)
into several components, one of which contains no free variables, then we

can prune the component which contains no free variables and replace it with a unary constraint
on y without changing the relation R′

(i0,j0)
.

Let GΦ be the bipartite graph of variables and constraints of the formula Φ, with edges between
variables and the constraints which involve them. A vertex of GΦ is called a cut-vertex if deleting
it from GΦ splits GΦ into more than one connected component. An induced subgraph C of GΦ is
called a biconnected component of GΦ if it is maximal with respect to the property of C having no
cut-vertices of its own. The following are standard results from graph theory:

• every cycle of GΦ (with no repeated vertices) is contained in some biconnected component of
GΦ,

• each edge of GΦ belongs to exactly one biconnected component of GΦ,

• the vertices which appear in more than one biconnected component are exactly the cut-vertices
of GΦ, and

• the bipartite graph of cut-vertices and biconnected components of GΦ forms a tree.

Following Zhuk [166], we call a biconnected component of GΦ “trivial” if it consists of just a
single edge (between a variable and a constraint of Φ), and we mainly focus on how large a given
nontrivial biconnected component of GΦ is, with a secondary focus on how close we are to being
able to prune a given biconnected component. We can consider ourselves very close to pruning a
biconnected component C if it contains a cut-vertex y such that when we delete y, very many of
the free variables of Φ are not reachable from C. Thus we define

MaxCut(C) := max
y∈C

#{free variables of Φ which can’t be reached from C without passing through y},

and we pick a nontrivial biconnected component C0 with the following properties:

• the size |C0| should be maximal among biconnected components, and

• MaxCut(C0) should be minimal among biconnected components C satisfying |C| = |C0|.

In other words, we pick the biconnected component which we are currently farthest from being
able to prune, among the components which are as large as possible. Once we have picked such a
component C0, we pick any of the extra equality constraints yi = yj , (i, j) ∈ E, which occurs within
it and take (i0, j0) = (i, j).

To finish the proof, we just need to show that the number of nontrivial biconnected components
C′ of GΦ′

(i0,j0)
with |C′| = |C0| and MaxCut(C′) = MaxCut(C0) is decreased, and that no C′ has

|C′| > |C0| or |C′| = |C0| and MaxCut(C′) < MaxCut(C0). It’s easy to see that if C′ involves any
copy of any edge of C0, then |C′| < |C0|, since C′ can’t contain any copy of the constraint relation
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yi0 = yj0 . Otherwise, C′ must be a copy of some biconnected component C ̸= C0 of GΦ, so at least
we have |C′| = |C| ≤ |C0|.

We may assume that Φ has already been pruned in the following two ways:

• for any nontrivial biconnected component C of GΦ with MaxCut(C) = n, we can prune C and
replace it by a unary constraint on the cut-vertex separating C from the free variables of Φ,
and

• for any pair of cut-vertices yi, yj such that there are no free variables x which can reach
both of yi, yj without passing through the other, we can prune any nontrivial biconnected
components which can reach both of yi, yj without passing through the other, replacing them
with a path of binary constraints connecting yi to yj .

The second form of pruning allows us to make the following statement about C0: for any other
nontrivial biconnected component C ≠ C0 with |C| = |C0|, the cut-vertex y which achieves the
maximum in the definition of MaxCut(C) is the one which separates C from C0. To see this, let
y0 ∈ C0 be the cut-vertex which separates C0 from C, and note that if y does not separate C from
C0, then every free variable which is separated from C by y is also separated from C0 by y0, so the
assumption MaxCut(C0) ≤ MaxCut(C) implies that we should have pruned C and replaced it by a
path of binary constraints from y0 to y.

Now consider any nontrivial biconnected component C′ of GΦ′
(i0,j0)

which is a copy of some

nontrivial biconnected component C ≠ C0 of GΦ with |C| = |C0|. If y ∈ C is the cut-vertex
separating C from C0, and if y′ ∈ C′ is the corresponding vertex of GΦ′

(i0,j0)
, then y′ separates C′

from every one of the equality relations yl+1
i0

= ylj0 , from every copy of any free variable x which
was separated from C by y, and from every other copy of C in GΦ′

(i0,j0)
. Therefore we have

MaxCut(C′) ≥ MaxCut(C),

with equality iff every single free variable xi which is not separated from C by y has the corresponding
free variable xli (with (i, l) ∈ I) of Φ′

(i0,j0)
not separated from C′ by y′. In particular, there is at

most one copy C′ of C which satisfies MaxCut(C′) = MaxCut(C), and if such a copy exists then
every other copy of C is ready to be pruned from Φ′

(i0,j0)
.

We can now put the pieces together to get the main result of this section. Note that although
we have stated all of the results so far as if there was only a single Jónsson absorbing subalgebra
B�J A of interest, they can all be straightforwardly generalized to the case where there are several
Jónssons absorbing subalgebras Bi �J Ai ≤ A, and where we are trying to put bounds on the
potential arity of (Bi1 , ...,Bin)-essential relations R ≤ Ai1 × · · · × Ain ≤ An. Thus we can use
Theorem 3.8.8 to get the following slightly stronger result.

Theorem 3.8.17 (Barto, Buĺın [15]). If A is finitely related, with Inv(A) generated by relations of
arity at most m, then there is a term t of arity at most

max(m− 1, 2)3
|A|−2|A|+1

+ 2,

such that for every Jónsson absorption Bi �J Ai ≤ A, Bi absorbs Ai with respect to t.
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Corollary 3.8.18. If A is finitely related, then A generates a congruence distributive variety iff A
has a near-unanimity term. In this case, if Inv(A) is generated by relations of arity at most m,
then A has a near-unanimity term of arity at most

max(m− 1, 2)3
|A|−2|A|+1

+ 2.

It’s natural to wonder if these bounds can be improved. As it turns out, Zhuk [166] found exam-
ples showing that sometimes the least arity of a near-unanimity term really is doubly exponential
in |A|. To understand these examples, it is helpful to start by constructing a comb formula which
defines a B-essential relation of singly exponential arity, for an absorbing subalgebra B.

Since ternary relations are tricky to visualize, we will actually start by trying to construct an
exponentially long sequence of pairs of binary relations Si � Pi such that

S1 ◦ · · · ◦ Si−1 ◦ Pi ◦ Si+1 ◦ · · · ◦ Sn ̸= ∅

for all i, but such that S1 ◦ · · · ◦ Sn = ∅. In order to compactly represent both relations Si,Pi
simultaneously, we will draw a bipartite graph where solid edges represent elements which are
contained in both Si and Pi, while dashed lines represent elements which are contained in Pi but
not in Si. For instance, if we had

P =
{[

a
a

]
,

[
a
b

]
,

[
b
b

]}
,

S =
{[

a
a

]
,

[
b
b

]}
,

then we would represent this situation by drawing the bipartite graph below.

a

b

a

b

Note that for this particular pair S, P, it is not possible to have S�J P by Theorem 3.7.9.

Example 3.8.1 (Zhuk [166]). Let A = {∗} ∪ {0, 1, ..., n}, and for each k ≤ n define a pair of binary
relations Sk ⊂ Pk by

x+ Pk =


{x} x > k,

{∗, 0, ..., k − 1} x ∈ {k, ∗},
∅ x ∈ {0, ..., k − 1},

Sk = Pk \ {(k, ∗)},

so that when n = 4, k = 2 we can represent the situation visually by the bipartite graph below.
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∗
We will find an exponentially long sequence of binary relations Sk0 , Sk1 , Sk2 , ... which compose to
the empty set, such that for each i, if we replace Ski by Pki then the composition becomes nonempty.
When n = 2, we can represent these all-but-one paths as the rows of a visually self-similar matrix:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 1 ∗ ∗ ∗ ∗ ∗ ∗
1 1 0 ∗ ∗ ∗ ∗ ∗
2 2 2 2 ∗ ∗ ∗ ∗
2 2 2 2 0 ∗ ∗ ∗
2 2 2 2 1 1 ∗ ∗
2 2 2 2 1 1 0 ∗


,

and by examining this matrix we can see that the desired sequence of relations is given by

S∗ ◦ S0 ◦ S1 ◦ S0 ◦ S2 ◦ S0 ◦ S1 ◦ S0 = ∅,

where S∗ = ∆A\{∗}, P∗ = ∆A (the first step of the paths has been left out of the rows of the matrix,
since it obscures the pattern). The pattern generalizes: for i > 0 we will take

ki = max{j s.t. 2j divides i},

and for i = 0 we use S∗ ⊂ P∗. In particular, the sequence will have a total of 2n+1 = 2|A|−1 binary
relations composed together to produce the empty set.

Now we will show that there is a near-unanimity operation t of arity 2n+1 + 1 which preserves
the relations Sk, Pk and witnesses the absorptions Sk � Pk for all k ∈ A. Such a t is given by

t(x0, ..., x2n+1) =



n if #{i | xi = n} > 2n,

n− 1 otherwise, if #{i | xi = n− 1} > 2n−1,
...

...

0 otherwise, if #{i | xi = 0} > 1,

∗ otherwise, i.e. if #{i | xi = k} ≤ 2k for all k.

To see that t witnesses S∗ � P∗, or equivalently that t witnesses A \ {∗} � A, note that if all but
one of the xi are not ∗, then there must be some k such that #{i | xi = k} > 2k, since

1 + 2 + · · ·+ 2n < 2n+1.
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The argument to show that t witnesses Sk � Pk is similar: if (xi, yi) ∈ Pk and all but one are in
Sk, and if t(x0, ..., x2n+1) = k, then by the definition of t and Pk at least 2k of the yis must be in
the set {0, ..., k − 1}, so there must be some j ∈ {0, ..., k − 1} such that #{i | yi = j} > 2j , so
t(y0, ..., y2n+1) ̸= ∗.

In order to turn this example into a comb formula, we just define ternary relations Ri+1 by

(y, x, y′) ∈ Ri+1 ⇐⇒ x ∈ {∗, 0} ∧ (y, y′) ∈ Pki ∧ (x = ∗ =⇒ (y, y′) ∈ Ski).

To see that Ri+1 is preserved by t, note that for xi ∈ {∗, 0} we have t(x0, ...) = 0 unless all but
at most one xi is ∗, so the fact that Ri+1 is preserved by t follows from the fact that t witnesses
Ski � Pki . The comb formula

(x1, ..., x2n+1) ∈ R ⇐⇒ ∃y0, ..., y2n+1 s.t.
∧

i∈[2n+1]

(yi−1, xi, yi) ∈ Ri

then defines a {∗}-essential relation R of arity 2n+1 = 2|A|−1 which is preserved by the near-
unanimity operation t.

In order to construct an example demonstrating doubly exponential behavior, we reverse-
engineer the proof of Theorem 3.8.14 to produce a tree formula of exponential radius, so that
paths through it look like the comb formula constructed in Example 3.8.1. However, we will need
to introduce new relations of higher arity which are not preserved by the near-unanimity operation
t from Example 3.8.1.

Example 3.8.2 (Zhuk [166], Barto, Draganov [16]). Let A,Sk, Pk be defined as in Example 3.8.1,
and let m ≥ 3. For each k ∈ {0, ..., n}, define an m-ary relation Rm,k by

(x1, ..., xm−1, y) ∈ Rm,k ⇐⇒
∧

i∈[m−1]

(xi, y) ∈ Pk ∧
∨

j∈[m−1]

(xj , y) ∈ Sk.

Note that the formula above is not a primitive positive formula, and that the m-ary relation Rm,k
is not preserved by the near-unanimity operation t from Example 3.8.1 for m ≥ 3.

To illustrate how we will make use of the relations Rm,k, note that for any k1, k2 we have

∃y1, ..., ym−1 s.t.
∧

i∈[m−1]

(xi,1, ..., xi,m−1, yi) ∈ Rm,k1 ∧ (y1, ..., ym−1, z) ∈ Rm,k2

=⇒
∧

(i,j)∈[m−1]2

(xi,j , z) ∈ Pk1 ◦ Pk2 ∧
∨

(i,j)∈[m−1]2

(xi,j , z) ∈ Sk1 ◦ Sk2 .

We now inductively pp-define relations Tm,j of arity (m− 1)j + 1 by Tm,1 = Rm,n and

(x1, ..., x(m−1)j+1 , z) ∈ Tm,j+1 ⇐⇒ ∃y1, ...ym−1 s.t.
∧

i∈[m−1]

(x(i−1)(m−1)j+1, ..., xi(m−1)j , yi) ∈ Tm,j

∧ (y1, ..., ym−1, z) ∈ Rm,k2n+j
,

where n = k2n , k2n+1, ..., k2n+1−1 is the second half of the sequence from Example 3.8.1. Then we

define a relation Tm of arity (m− 1)2
n

= (m− 1)2
|A|−2

by

(x1, ..., x(m−1)2n ) ∈ Tm ⇐⇒ ∃z s.t. (x1, ..., x(m−1)2n , z) ∈ Tm,2n .
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It’s now fairly straightforward to verify that Tm is an {n}-essential relation, so there is no near-
unanimity operation of arity (m − 1)2

n
which preserves all of the m-ary relations Rm,k. (For a

direct proof that no such near-unanimity operation exists, see [16].)
To finish up this example, we need to find a near-unanimity operation u of arity (m− 1)2

n
+ 1

which preserves the m-ary relations Rm,k for all k ∈ {0, ..., n}. If we make the convention that
∗ < k for every k ∈ {0, ..., n}, then such an operation is given by

u(x0, ..., x(m−1)2n ) =



n if #{i | xi ≤ n} > (m− 1)2
n ·#{i | xi < n},

n− 1 otherwise, if #{i | xi ≤ n− 1} > (m− 1)2
n−1 ·#{i | xi < n− 1},

...
...

0 otherwise, if #{i | xi ≤ 0} > (m− 1) ·#{i | xi < 0},
∗ otherwise, i.e. if #{i | xi ≤ k} ≤ (m− 1)2

k ·#{i | xi < k} for all k.

In order to check that u preserves Rm,n, the important point is that if none of the inputs xi to u
were equal to n and the output of u ended up being ∗, then we must have had

(m− 1)2
n

+ 1 = #{i | xi < n}

≤ (m− 1)2
n−1 ·#{i | xi < n− 1}

≤ · · ·

≤ (m− 1)2
n−1+2n−2+···+1 ·#{i | xi < 0}

= (m− 1)2
n−1 ·#{i | xi = ∗},

so strictly more than m− 1 of the inputs xi to u must have been equal to ∗. Thus, if we have
x10
...

xm−1
0

y0

 ,


x11
...

xm−1
1

y1

 , · · · ∈ Rm,n
but somehow 

u(x10, x
1
1, ...)
...

u(xm−1
0 , ...)

u(y0, y1, ...)

 =


n
...
n
∗

 ̸∈ Rm,n,
then each yi < n since (x1i , yi) ∈ Pn, so by what we just showed we see that

#{i | yi = ∗} ≥ m,

and for each i with yi = ∗ we see that there must be some ji ∈ [m− 1] with

(xjii , yi) = (xjii , ∗) ∈ Sn =⇒ xjii = ∗,

so by the pigeonhole principle there must be some j ∈ [m − 1] such that xji = ∗ ≠ n for at least
two is, in which case we have

u(xj0, ..., x
j
(m−1)2n

) ̸= n,

contrary to our assumption. The verification that u preserves Rm,k for the remaining values of k
is similar, and can be found in [16].
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Example 3.8.2 shows that the bound from Theorem 3.8.14 is nearly best possible when m ≥ 3,
so if we want to significantly improve the bound on the arity of a near-unanimity operation in
Corollary 3.8.18 then our only hope is to improve the comb-formula estimate in Theorem 3.8.13
from 3|A| to something closer to 2|A|.

What about the case m = 2? We can’t build a doubly exponential essential relation out of the
binary relations Sk, Pk from Example 3.8.1, since we already know that they are preserved by a
near-unanimity operation of singly exponential arity. The trick is to introduce one more element
into the domain, after which we can use slight variations on the binary relations Sk, Pk to pp-define
the ternary relations R3,k from Example 3.8.2.

Example 3.8.3 (Zhuk [166], Barto, Draganov [16]). Let A± = {∗−, ∗+, 0, 1, ..., n}. For each k ∈
{0, ..., n}, define the binary relation Q±

k by

x+Q±
k =


{x} x > k,

{∗+, 0, ..., k − 1} x = k,

∅ x ∈ {0, ..., k − 1},
{∗−, ∗+, 0, ..., k − 1} x ∈ {∗−, ∗+},

so that when n = 4, k = 2 we represent Q±
2 by the bipartite graph below.

4

3

2

1

0

∗+

∗−

4

3

2

1

0

∗+

∗−

Similarly, we define Q∓
k by swapping the roles of ∗+ and ∗− in Q±

k . Then the relation R±
3,k defined

by the primitive positive formula

(x1, x2, y) ∈ R±
3,k ⇐⇒ (x1, y) ∈ Q±

k ∧ (x2, y) ∈ Q∓
k

is essentially the same as the relation R3,k from Example 3.8.2, so we can use the same construction

to show that there is no near-unanimity operation of arity 22
n

= 22
|A±|−3

which preserves Q±
k and

Q∓
k for all k. A near-unanimity operation of arity 22

n
+ 1 which does preserve Q±

k , Q
∓
k is the
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operation u± given by

u±(x0, ..., x(m−1)2n ) =



n if #{i | xi ≤ n} > 22
n ·#{i | xi < n},

n− 1 otherwise, if #{i | xi ≤ n− 1} > 22
n−1 ·#{i | xi < n− 1},

...
...

0 otherwise, if #{i | xi ≤ 0} > 2 ·#{i | xi < 0},
∗+ otherwise, if #{i | xi = ∗+} > #{i | xi = ∗−},
∗− otherwise.

Note that u± preserves the equivalence relation θ which identifies ∗+ with ∗−, and that the quotient
operation u±/θ is exactly u. The proof of the fact that u± preserves Q±

k , Q
∓
k is similar to the proof

of the fact that u preserves R3,k, and can be found in [16].

3.9 Finding an arc-consistent absorbing subinstance

In this section we’ll go over Marcin Kozik’s proof from [112] (which refined the argument from [111])
of the fact that every cycle-consistent instance has a cycle-consistent subinstance such that every
domain is absorption-free. In fact, Kozik proves something stronger, involving a weaker consistency
notion known as pq-consistency. The technique for the proof can be viewed as a generalization of the
argument for the case of majority algebras, but it is much more difficult because we can’t assume
that all the relations involved are binary. The main idea of the proof was originally developed
in [24], for the sake of proving a technical lemma about absorption generalizing Theorem 3.7.13
and Theorem 3.6.10, which was needed to show that near-unanimity CSPs can be solved in NL
(nondeterministic logspace).

First we define the weaker consistency notion known as pq-consistency (Kozik names it jpq-
consistency in [112]). The basic idea behind this definition is that it is a consistency check which
(aside from assuming arc-consistency) only involves pairwise projections of constraints, only com-
putes compositions of these binary relations along cycles, and is strong enough to rule out the
existence of a cycle such that each binary relation along it is the graph of a permutation and the
composition of all these permutations is not the identity permutation.

Definition 3.9.1. A CSP instance X with domains Avi corresponding to variables vi is called
pq-consistent if

• it is arc-consistent, i.e. each relation R ≤ Av1×· · ·×Avk imposed on the variables is subdirect,
and

• for each variable v and each pair of cycles p, q of X which begin and end at v, there exists
some j ≥ 0 such that the binary relation Pj(p+q)+p corresponding to the path j(p+ q)+p (see
Definition 3.5.1) contains the diagonal ∆Av , i.e. for each a ∈ Av, we have a ∈ {a}+j(p+q)+p
(see Definition 3.6.3).

The reader may find it interesting to check that in the proofs that we have already given for
the fact that cycle-consistency solves ancestral CSPs and majority CSPs, we may substitute pq-
consistency for cycle-consistency everywhere without significantly complicating the arguments. The
reason for introducing the slightly more technical notion of pq-consistency is that the “standard
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semidefinite relaxation” of a CSP naturally produces a pq-consistent instance, but doesn’t always
produce a cycle-consistent instance - and the semidefinite relaxation is the tool used to “robustly”
solve bounded width CSPs in [20].

The main step of the argument is the following technical result.

Theorem 3.9.2 (Kozik [112]). If X is a pq-consistent instance and Y is an arc-consistent subin-
stance of X defined by restricting each domain and each relation of X to an absorbing subalgebra,
and if any domain of Y has a proper absorbing subalgebra, then there is a proper arc-consistent
subinstance Z of Y defined by restricting each domain to an absorbing subalgebra.

Before diving into the proof of this result, we’ll show how it can be used.

Theorem 3.9.3. If X is a pq-consistent instance with domains Av, then there is a pq-consistent
subinstance X′ of X defined by restricting each domain Av to a minimal absorbing subalgebra A′

v.
If X is cycle-consistent, then so is X′.

Proof. By repeatedly applying Theorem 3.9.2, we may find an arc-consistent subinstance X′ of X
such that each domain has no proper absorbing subalgebra. Then by Theorem 3.7.17, for every
cycle r from v to v of X such that Pr ⊇ ∆Av , if r′ is the corresponding cycle in X′, then we have
Pr′ ⊇ ∆A′

v
. If X is pq-consistent, then for any cycles p, q from v to v there is some j such that

Pj(p+q)+p ⊇ ∆Av , so on taking r = j(p + q) + p we see that the corresponding cycles p′, q′ have
Pj(p′+q′)+p′ ⊇ ∆A′

v
.

The proof of Theorem 3.9.2 will only rely on three properties of absorption. Since there are
several absorption-like concepts that have proven useful, and most of them satisfy these properties,
we will consider an arbitrary “absorption concept” �X which applies to certain pairs B ≤ A, and
which satisfies the following three properties.

• Compatibility with pp-formulas. If Si �X Ri are relations, and if a relation R is defined
by a pp-formula Φ involving the relations R1, ...,Rk (and possibly some other relations), then
if we define a relation S by the pp-formula Φ′ defined by replacing each Ri by Si in Φ, we
have S�X R.

• Transitive closure. If C�X B�X A, then C�X A.

• Connectivity transfers. If S�XR and R ≤ A×A, and if a, b ∈ A are such that (a, a), (b, b) ∈
S and (a, b) ∈ R, then there is some k such that (a, b) ∈ S◦k.

Note that by the local criterion for Jónsson absorption (Theorem 3.7.21), if �X is compatible
with pp-formulas, then the connectivity transfer property of �X is equivalent to the implication
B�X A =⇒ B�J A. Also, a trivial case of compatibility with pp-formulas implies that for all A,
we have A�X A.

Throughout most of the proof, we will be focusing on the arc-consistent instance Y. Therefore,
for each variable v of Y, we let Av be the corresponding domain in Y, and let AX

v be the corre-
sponding domain in the original pq-consistent instance X, so we have Av �X AX

v . Similarly, if R
refers to a relation in Y, then we let RX refer to the corresponding relation in X, with R�X RX.

The argument strategy generalizes the strategy used for majority algebras. We will consider
the set B of ordered pairs (x,B) such that x is a variable of Y, B �X Ax, and B ̸= ∅,Ax. We
want to define a quasiorder ⪯ on B, such that if restricting the domain of the variable x to B and
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imposing arc-consistency forces another variable y to have its domain restricted to C, then we have
(x,B) ⪯ (y,C). Unfortunately, it is not enough to consider paths alone to define this partial order:
general deductions involving arc-consistency involve reasoning about trees.

Definition 3.9.4. To every relational structure A = (A,R1, ...) we associate the bipartite graph
GA with vertex sets A and R1 ⊔ · · · , and edge set consisting of pairs (a, r) for every a ∈ A and
r ∈ Ri such that some coordinate of r is equal to a (if a occurs as a coordinate of r multiple times,
then we make multiple copies of the edge (a, r)).

We say that A is a tree if the associated bipartite graph GA is a tree (so in particular, no tuple
r in any relation Ri can have any repeated coordinates).

Kozik [112] extends the concepts of paths and addition of paths to trees in order to define the
partial order ⪯ on B properly.

Definition 3.9.5. If Y is a CSP instance, viewed as a relational structure, then we define a tree
pattern p from x to y to consist of the following information:

• a relational structure A = (A,R1, ...) which is a tree, with each relation of A corresponding
to a relation of Y,

• a homomorphism of relational structures h : A→ Y,

• a subset I ⊆ A of the elements of A which we call the set of inputs to the pattern, such that
for all i ∈ I we have h(i) = x, and

• an element o ∈ A which we call the output of the pattern, such that h(o) = y.

If p is a tree pattern from x to y, then we may view it as a CSP instance via the homomorphism
h : A → Y. If B ≤ Ax, then we define B + p to be the subalgebra of values b ∈ Ay such that the
instance A has a solution with the variables from I assigned to values in B, and with the variable
o assigned to the value b.

If p is a tree pattern from x to y, and if q is a tree pattern from y to z, then we define the tree
pattern p+ q by attaching a copy of p to each input of q, combining the output of each copy of p
to the corresponding input of q. This definition is set up to ensure that B + (p+ q) = (B + p) + q
for any B ≤ Ax.

Proposition 3.9.6. If p is a tree pattern from x to y in an arc-consistent instance Y and B�XAx,
then B + p�X Ay.

Proof. This follows from the fact that �X is compatible with pp-formulas: we have Ax + p = Ay if
Y is arc-consistent, and so B + p�X Ax + p = Ay.

Note that unlike the situation for path patterns, arc-consistency of the instance Y is no longer
enough to ensure that B ̸= ∅ =⇒ B + p ̸= ∅ for all tree patterns p. So we can no longer take as
given that the subalgebras we construct will always be nonempty.

Definition 3.9.7. Define the quasiordered set (B,⪯) to be the set of ordered pairs (x,B) such
that x is a variable of the instance Y, B �X Ax, and B ̸= ∅,Ax, with the quasiorder defined by
(x,B) ⪯ (y,C) if there exists a tree pattern p from x to y with B + p = C.
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As in the argument for majority algebras, we now pick a maximal component C of the qua-
siordered set (B,⪯) (since B is nonempty by assumption and is finite, such a maximal component
exists). We would like to use C to define our reduced instance Z, but we no longer have a guarantee
that there is at most one set B with (x,B) ∈ C for a given variable x.

A worst case scenario would be that there exist B1,B2 with (x,Bi) ∈ C such that B1 ∩ B2 = ∅:
in this case, we would have no hope of using C to define an arc-consistent reduction, because no
matter which (y,C) ∈ C we pick, there exist tree patterns p1, p2 from y to x with C + pi = Bi, so
reducing the domain Ay to C and imposing arc-consistency would make it impossible to assign any
value to x. The main step of the proof is ruling out this scenario.

Lemma 3.9.8. If C is a maximal component of (B,⪯), and if (x,B), (x,C) ∈ C, then B ∩ C ̸= ∅.

Before proving the lemma, we’ll show how we can use it to finish the proof of Theorem 3.9.2.
This step won’t use the fact that the instance X is pq-consistent, or the fact that �X transfers
connectivity: the lemma is where these crucial facts are used.

Proof of Theorem 3.9.2, assuming the lemma. Note that if (x,B), (x,C) ∈ C, then we can splice
together tree patterns to show that (x,B ∩ C) ∈ C as well (so long as B ∩ C ̸= ∅, which follows
from the lemma). So for every x, we can define a subalgebra Bx �X Ax by taking Bx to be the
intersection of all B such that (x,B) ∈ C (or taking Bx = Ax if no such B exist). We define the
absorbing subinstance Z by reducing the domains of Y from Ax to Bx. We need to check that Z is
arc-consistent.

Consider a single relation R ≤sd Ax1 × · · · × Axk of Y. We wish to show that R ∩
∏
i Bxi is

subdirect in
∏
i Bxi . We will show by induction on i that

πi(R ∩
∏
j≤i

Bxj ×
∏
l>i

Axl) = Bxi .

The base case i = 1 follows from the fact that Y is arc-consistent. For the inductive step, we pick
any (y,C) ∈ C and splice together tree patterns pj from y to xj with C + pj = Bxj for j < i such
that Bxj ̸= Axj together with the relation R to make a tree pattern p from y to xi with

C + p = πi(R ∩
∏
j≤i−1

Bxj ×
∏
l>i−1

Axl),

and note that by the induction hypothesis the right hand side is nonempty. Thus we either have
C + p = Axi or (xi,C + p) ∈ C, and in either case we have Bxi ⊆ C + p (by the lemma), which
completes the proof.

Now we finally prove the crucial lemma.

Proof of the lemma. Suppose for contradiction that the lemma is not true, and choose C maximal
such that (x,C) ∈ C and such that there exists (x,B) ∈ C with B ∩C = ∅. Let B1, ...,Bk be the set
of minimal Bs such that (x,B) ∈ C and B ∩ C = ∅. Note that since the set of Bs with (x,B) ∈ C is
closed under nonempty intersection, we must have Bi ∩ Bj = ∅ for all i ̸= j. Additionally, any B
with (x,B) ∈ C and B ∩ C = ∅ must contain at least one Bi.

Choose tree patterns pi, q, r from x to x such that Bi + pi = Bi+1, C + q = B1, Bk + r = C.
Define the tree pattern p by p = q + p1 + · · ·+ pk−1 + r, and note that C + p = C. We will mainly
work inside the instance A corresponding to the tree pattern p.
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First we prune the inputs of the tree pattern p a little bit to make a new tree pattern p′ (with
the same instance A), removing variables of A from the input set one at a time as long as we can
remove one while keeping C + p′ = C. Now pick any remaining input variable s ∈ A of p′ (at least
one input variable remains at the end of the pruning process, by the arc-consistency of Y), and
let t be the output variable of p′ (note that s, t are both mapped to x in Y). Let p′′ be p′ with s
removed from its input set. Consider the binary relation S ≤ Ax×Ax consisting of pairs (a, b) such
that some solution of the instance A assigns the value a to s, assigns the value b to t, and assigns
all input variables of p′′ to values in C.

Since C + p′ = C, we have
C + S = C + p′ = C,

and because of the pruning process we have

π2(S) = C + p′′ ̸= C,

so by the maximal choice of C we have π2(S)∩Bi ̸= ∅ for all i. By splicing p′′ together with a tree
pattern qi with C+ qi = Bi (merging their outputs together), we see that (x, π2(S)∩Bi) ∈ C, so by
the minimality of Bi we have

π2(S) ⊇ Bi
for all i. Thus the subalgebra

Bi − S = π1(S ∩ Ax × Bi)

is nonempty, has (Bi − S) ∩ C = ∅ since (C + S) ∩ Bi = ∅, and by splicing p′′ with the same qi and
changing the output to s, we see that (x,Bi−S) ∈ C. Thus there is some ji such that Bi−S ⊇ Bji .
Then we have

(Bji + S) ∩ Bi ̸= ∅,

and by another tree splice (this time splicing qji into p′′ by merging the output of qji with s) we
see that either Bji + S = Ax or (x,Bji + S) ∈ C, so by the minimality of Bi we have

Bji + S ⊇ Bi.

Thus we have
∪iBi + S ⊇ ∪iBi,

so if we consider S as a digraph on Ax, we see that there is some directed cycle of S which is entirely
contained in ∪iBi. From C + S = C, we also see that there is some directed cycle of S which is
entirely contained in C. The plan is to apply Corollary 3.7.10 to produce a directed path in S from
an element of C to an element of ∪iBi, which will give us a contradiction since any directed path
in S which starts in C must end up in C.

In order to apply Corollary 3.7.10, we need to construct a binary relation R such that S�X R
and such that there is a directed path from C to ∪iBi in R. This is where we will finally use the
assumption that Y absorbs a bigger instance X which is pq-consistent. We define an instance AX

similarly to A, but with each domain replaced with the corresponding domain in X and similarly
for the relations, and define R to be the projection of the solution set to AX onto the variables s, t.
Then since �X is compatible with pp-formulas and since every domain/relation restriction in sight
is absorbing, we have S�X R.

Now pick any b ∈ ∪iBi which is contained in a directed cycle of S. Suppose b ∈ Bi. Consider the
path from s to the output variable of q+p1 + · · ·+pi−1 in A, call this path α, and let β be the path
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from that output variable to t in A. The images of these paths in X are cycles αX, βX from x to
x, so by the pq-consistency of X there must exist some j ≥ 0 such that b ∈ {b}+ j(βX +αX) +βX.
Note that by the arc-consistency of X, R is the binary relation corresponding to the cycle αX +βX.
Additionally, since

C + q + p1 + · · ·+ pi−1 = Bi,

there is some c ∈ C such that b ∈ {c}+ αX. Thus we have

b ∈ {c}+ αX + j(βX + αX) + βX = {c}+ (j + 1)(αX + βX) = {c}+ R◦(j+1).

Additionally, by following paths of S backwards sufficiently many times, we see that c is reachable
from a directed cycle of S which is entirely contained in C. Thus there is some m such that for
some a ∈ C, we have (a, a), (b, b) ∈ S◦m and (a, b) ∈ R◦m, and since S◦m�X R◦m we may apply the
transfer of connectivity property to see that for some n we have (a, b) ∈ S◦n, which gives us our
contradiction.

To finish the analysis of bounded width algebras, we just need to understand the case where
all the domains are absorption free. For this we need two main ingredients: first is that binary
relations are forced to be boring unless some absorption occurs, and second is that if a simple
algebra has an exciting ternary relation whose binary projections are boring, then the algebra must
be affine and therefore does not have bounded width.

3.9.1 Absorption constants

In this subsection, we’ll go over the proof of an interesting generalization of the Theorem 3.7.13 to
higher arity relations, from [24], which we mentioned at the beginning of the last section. Since the
proof of this result is so similar to the proof of Kozik’s result from the last section, this seems like
an appropriate place to cover the argument.

We will need some notation for the diagonal of a power An. One option is to use the notation
∆n

A, but this looks very similar to the notation we use in the appendix on commutator theory
(Appendix A). Another notation some authors use is 0nA, so that when n = 2 we get the least
congruence 0A, but I am not a big fan of this notation either. Yet another possibility is =n

A. I
decided on a fourth option, which allows me to refer to specific elements of the diagonal without
too much ugliness, and which emphasizes the fact that the diagonal is isomorphic to A.

Definition 3.9.9. For any n, define the diagonal subalgebra of arity n to be the subalgebra A(n) ≤sd
An, given by

A(n) = {(a, ..., a) | a ∈ A}.

Additionally, for each a ∈ A, we define the corresponding constant tuple to be

a(n) = (a, ..., a) ∈ A(n).

Theorem 3.9.10 (Theorem 6 of [24]). If A is finite, R ≤sd An is subdirect, and R Jónsson absorbs
the diagonal A(n), then R ∩ A(n) ̸= ∅.

Proof. The proof strategy is similar to the proof of Theorem 3.7.13. We assume without loss of
generality that A is idempotent, and we induct on |A|. It’s enough to show that there is some
proper subalgebra B ≤ A such that

R ∩ Bn ≤sd Bn,
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since R ∩ Bn will automatically Jónsson absorb B(n).
Similarly to the proof of Theorem 3.9.2, we define the a quasiordered set (B,⪯) to be the set of

subalgebras B ≤ A with B ̸= ∅,A, with the quasiorder defined by B ⪯ C if there is a tree pattern p
built out of copies of the relation R such that B + p = C.

Pick some maximal component C of (B,⪯). Note that if B,C ∈ C have B ∩ C ̸= ∅, then we can
splice together tree patterns to see that B ∩ C ∈ C as well.

First suppose that every pair B,C ∈ C have B ∩ C ̸= ∅. Then there is some B ∈ C which is
contained in all other elements of C. We claim that in this case, we have

R ∩ Bn ≤sd Bn,

which will allow us to complete the proof. To check this, we prove by induction on i that

B ⊆ πi(R ∩ Bi−1 × An−i+1).

For i = 1 this follows from the assumption that R is subdirect. For the induction step, note that
the induction hypothesis implies that

πi(R ∩ Bi−1 × An−i+1) ̸= ∅,

so
πi(R ∩ Bi−1 × An−i+1) ∈ C ∪ {A},

and either way it contains B.
Now suppose, for the sake of contradiction, that there are B,C ∈ C with B ∩ C = ∅. As in the

proof of Lemma 3.9.8, we take C ∈ C maximal under inclusion such that there exists some B ∈ C
with B ∩ C = ∅, and we let B1, ...,Bk be the set of minimal (under inclusion) Bs such that B ∈ C
and B ∩ C = ∅.

We continue following the proof of Lemma 3.9.8, defining tree patterns pi, q, r built out of copies
of the relation R such that Bi + pi = Bi+1, C + q = B1, Bk + r = C, and defining p by

p = q + p1 + · · ·+ pk + r.

Then we prune the inputs of the pattern p to make a pattern p′ with as few inputs as possible such
that

C + p′ = C,

and let p′′ be the pattern we get from p′ by removing one additional input s from the input set,
and define

S ≤ A× A

as the set of possible pairs of values for the pruned input s and the output of the pattern p′′ which
extend to assignments where every remaining input of p′′ is given a value in C, as in the proof of
Lemma 3.9.8.

By the exact same argument from Lemma 3.9.8, we have

C + S = C + p′ = C

and
∪iBi + S ⊇ ∪iBi,
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so every element c ∈ C is reachable from a directed cycle of S which is entirely contained in C, and
∪iBi contains a directed cycle of S.

Now we finally deviate slightly from the proof of Lemma 3.9.8. Define a pattern p= by replacing
each occurence of R by R ∪ A(n) in the pattern p, and similarly define p′=, p

′′
=, and define

S= ⊆ A× A

as the set of possible pairs of values for the pruned input s and the output of the pattern p′′= which
extend to assignments where every remaining input of p′′= is given a value in C. The S ⊆ S= and S
Jónsson absorbs S=. Additionally, for each i we have

C + p= ⊇ C + q + p1 + · · ·+ pi−1 = Bi,

since we can simply feed a bunch of equal copies of an element b ∈ Bi to each of the remaining
levels of the tree pattern. Thus we have

C + S= ⊇ ∪iBi.

Thus we can find a directed path in S= from some element c ∈ C which is contained in a directed
cycle of S to some element of ∪iBi which is contained in a directed cycle of S. This allows us to
apply Corollary 3.7.10 to conclude that there is some directed path from C to ∪iBi in S, which
gives us our contradiction.

Ross Willard points out the following consequence of this result.

Corollary 3.9.11. If A is a finite algebra, then there is at least one element a ∈ A such that, for
all subdirect relations R ≤sd An, we have

R�J SgAn(R ∪ A(n)) =⇒ a(n) ∈ R.

The set of such elements a forms a Jónsson absorbing subalgebra of A.

Definition 3.9.12. Say that a is an absorption constant of A with respect to the absorption
concept �X if

R�X SgAn(R ∪ A(n)) =⇒ a(n) ∈ R

for all subdirect relations R ≤sd An. Let

AbsX(A) �X A

be the set of absorption constants of A with respect to �X .

Problem 3.9.1 (Ross Willard). Can we give an independent characterization of the canonical
absorbing subalgebra Abs(A)? What can we do with it?
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3.10 Zhuk’s centers and ternary absorption

In this section we’ll go over a very strong technique introduced by Zhuk in his proof of the dichotomy
conjecture [164], which produces ternary absorption as soon as we have a certain type of binary
relation on a pair of Taylor algebras. This technique allows us to both simplify and strengthen
one of the key results needed for the study of general Taylor algebras, known as the “absorption
theorem”.

First, we’ll go over the history of this idea, so the reader can understand where the definition
comes from and why it is (somewhat) natural.

The main idea behind Zhuk’s approach in [164] is to note that if an algebra is not polynomially
complete, then its polynomial clone must be contained in a maximal proper subclone of the clone
of all functions (that every proper subclone is contained in a maximal proper subclone follows from
the fact that the clone of all functions is finitely generated: in fact, it’s generated by the set of
functions of arity 2). A maximal clone corresponds under the Inv−Pol Galois connection to a
minimal relational clone, and every minimal relational clone can be generated by a single relation,
of one of several special forms. Zhuk is very familiar with the theory of relational clones, so he was
aware of Rosenberg’s Completeness Theorem [149] (see [138] or chapter II.6 of [120] for alternate
expositions), which completely classifies the special relations which correspond to maximal clones
into six different types.

Zhuk then considered each of the types of relations from Rosenberg’s classification, and investi-
gated which of them might be preserved by the polynomial clone of a Taylor algebra, and what the
existence of such a relation implies about the structure of the Taylor algebra. The most interesting
case is the case of the relations known as central relations.

Definition 3.10.1. A relation R ≤ An is central if it has the following properties:

• R is symmetric under permuting its coordinates,

• R contains every tuple which has any pair of equal coordinates, and

• the set C ≤ A defined by

C = {c ∈ A | ∀a2, ..., an ∈ A, (c, a2, ..., an) ∈ R}

is not empty and is not equal to A.

The set C is known as the center of the central relation R.

Since relations of high arity are hard to think about, Zhuk simplifies this to a special type of
binary relation on A× B, where B is secretly taken to be An−1. To see that this step doesn’t lose
anything essential, we use the following fact about absorbing subalgebras of powers.

Proposition 3.10.2. Suppose that A is idempotent and that Ak has a proper absorbing subalgebra
for some k. Then A has a proper absorbing subalgebra.

In fact, this holds for any absorption concept �X which is compatible with pp-formulas.

Proof. We induct on k. Suppose that B �X Ak. If π1(B) ̸= A then π1(B) �X A and we are done,
otherwise since B ̸= Ak there must exist some a ∈ A such that π[k]\{1}(B ∩ {a} × Ak−1) ̸= Ak−1.
Since �X is compatible with pp-formulas and {a} ≤ A by the idempotence of A, we have

π[k]\{1}(B ∩ {a} × Ak−1) �X Ak−1,

so we can apply the induction hypothesis.
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With this in mind, it’s natural to restrict our attention to binary relations R ≤ A × B which
have a nontrivial proper “left center”, and to try to use them to produce an absorbing subalgebra
inside either A or B.

Definition 3.10.3. If R ≤sd A×B is subdirect and B is finite and idempotent, then the left center
of R is the subalgebra C ≤ A defined by

C = {c ∈ A | ∀b ∈ B, (c, b) ∈ R}.

The right center of a subdirect binary relation is defined similarly (so the right center of R is the
left center of R−, and is a subalgebra of B).

To see that the left center C is automatically a subalgebra of A, note that it can be defined by
the following pp-formula:

c ∈ C ⇐⇒
∧
b∈B
∃x(x ∈ {b} ∧ (c, x) ∈ R).

In order to do anything useful with such a binary relation, we will need to assume that B is
Taylor. We will attempt to exploit the Taylor term to produce binary absorption on B, using the
following lemma.

Lemma 3.10.4. Suppose B ≤ A and that there is an idempotent term t ∈ Clok(A) with the
following two properties:

• t satisfies an identity of the form t(x, u2, ..., uk) ≈ t(y, v2, ..., vk), where each ui, vi ∈ {x, y},
and

• t(B,A, ...,A) ⊆ B.

Then B absorbs A with respect to some idempotent binary operation f .

Proof. To make the notation more clear, we treat each ui, vi as a binary function, with ui = ui(x, y)
and vi = vi(x, y). Define f(x, y) by

f(x, y) := t(x, u2(x, y), ..., uk(x, y)) ≈ t(y, v2(x, y), ..., vk(x, y)).

Then for any a ∈ A and b ∈ B, we have

f(a, b) = t(b, v2(a, b), ..., vk(a, b)) ∈ t(B,A, ...,A) ⊆ B,

and
f(b, a) = t(b, u2(b, a), ..., uk(b, a)) ∈ t(B,A, ...,A) ⊆ B.

Theorem 3.10.5 (Zhuk [164]). Suppose that A,B are finite idempotent algebras, and that there is
a term t which is Taylor on B. If R ≤sd A× B is subdirect and has a nontrivial left center C, then
either B has a proper binary absorbing subalgebra, or C absorbs A with respect to the term t∗ · · · ∗ t,
with |B| − 1 copies of t.
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Proof. Suppose t has arity k. We will show that if B has no proper binary absorbing subalgebra,
then for any a ∈ A \ C and for any c1, ..., ck ∈ C and any i ≤ k, the value

t(c1, ..., ci−1, a, ci+1, ..., ck)

is “closer” to being in C than a is. To make this precise, we measure how close an element a is to
being in C by looking at the size of the set

a+ R = π2(R ∩ {a} × B).

By the definition of C, we have |a+ R| = |B| if and only if a ∈ C.
Since R is preserved by t, we have

t(c1, ..., a, ..., ck) + R ⊇ t(c1 + R, ..., a+ R, ..., ck + R) = t(B, ..., a+ R, ...,B).

Since t is idempotent, the right hand side of the above must contain a+R, and if it is equal to a+R
then we can apply the previous lemma (since t is Taylor) to see that a + R is a binary absorbing
subalgebra of B. Thus if a ̸∈ C, then either a+ R is a proper binary absorbing subalgebra of B, or
else

|t(c1, ..., a, ..., ck) + R| > |a+ R|.

Keeping the same setup, the left center C has an additional nice property, which is much stronger
than it looks.

Theorem 3.10.6 (Zhuk [164]). Suppose A,B are finite idempotent algebras. If R ≤sd A×B has a
left center C and B has no proper binary absorbing subalgebras, then for any a ∈ A we have

a ̸∈ C =⇒
[
a
a

]
̸∈ SgA2

{[
a
C

]
,

[
C
C

]
,

[
C
a

]}
.

Proof. Suppose otherwise. Then there are i, j and c1, ..., ci, c
′
j , ..., c

′
n ∈ C with j ≤ i+ 1 and a term

t of arity n such that[
a
a

]
= t

([
a
c1

]
, · · · ,

[
a
cj−1

]
,

[
c′j
cj

]
, · · · ,

[
c′i
ci

]
,

[
c′i+1

a

]
, ...,

[
c′n
a

])
.

Looking at the neighbors via R, we have[
a+ R
a+ R

]
⊇ t

([
a+ R · · · a+ R B · · · B B · · · B
B · · · B B · · · B a+ R · · · a+ R

])
.

Thus a+ R absorbs B with respect to the binary term

f(x, y) := t(x, ..., x, y, ..., y)

as long as the number of xs is between j − 1 and i.

We can combine the previous two results about left centers to define a new type of absorption.
We won’t need the full power of the previous result, and instead will use a slightly weaker property.

232



Definition 3.10.7. We say that C centrally absorbs A, written C �Z A, if the following two
properties hold:

• C� A, and

• for any a ̸∈ C, we have

[
a
a

]
̸∈ SgA2

{[
a
C

]
,

[
C
a

]}
.

Corollary 3.10.8. Suppose A,B are finite and idempotent. If R ≤sd A× B has left center C and
B is Taylor and binary absorption free, then C�Z A.

Proof. By Theorem 3.10.5, C absorbs A, and then by Theorem 3.10.6 the absorption is central.

There is an unfortunate naming collision between the centers considered here, and the centers
considered in commutator theory. Generally it should be clear from context which sort of center is
meant. (I have proposed the alternate name stable absorption instead of central absorption, but it
seems unlikely to catch on.)

The key fact about central absorption that makes it so much more powerful than ordinary
absorption is the following doubling trick due to Zhuk and Kozik.

Lemma 3.10.9 (Essential doubling trick [164]). Suppose that R ≤ A0×· · ·×An+1 is (C,B1, ...,Bn,C′)-
essential, with C′ �Z An+1 and An+1 finite and idempotent. Then there is a relation

R′ ≤ A0 × · · · × An × An × · · · × A0

which is (C,B1, ...,Bn,Bn, ...,B1,C)-essential.

Proof. Suppose R is chosen such that, subject to satisfying the assumptions of the lemma, the
subalgebra B′ ≤ An+1 defined by

B′ = πn+1(R ∩ C× B1 × · · · × Bn × An+1)

is as small as possible. Note that B′ is necessarily nonempty and disjoint from C′ if R is (C,B1, ...,Bn,C′)-
essential.

Since we may shrink R to the subalgebra generated by any collection of tuples witnessing
R ∩ (C× · · · × Ai × · · · × C′) ̸= ∅ for all i from 0 to n+ 1, we see that

b, b′ ∈ B′ =⇒ b′ ∈ SgAn+1
(C′ ∪ {b}).

In particular, if we pick some b ∈ B′ and define the symmetric binary relation S ≤ An+1×An+1 by

S = SgA2
n+1

{[
b
C′

]
,

[
C′

b

]}
,

then π1(S) ⊇ B′.
We now define the relation R′ by

(x0, ..., xn, yn, ..., y0) ∈ R′ ⇐⇒ ∃xn+1, yn+1 (x0, ..., xn+1) ∈ R∧(xn+1, yn+1) ∈ S∧(y0, ..., yn+1) ∈ R.

To see that
R′ ∩ C× B1 × · · · × Ai × · · · × Bn × Bn × · · · × B1 × C ̸= ∅
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for any 0 ≤ i ≤ n, we choose (x0, ..., xn+1) ∈ R∩ (C×· · ·×Ai×· · ·×C′) and choose (y0, ..., yn+1) ∈
R ∩ C× B1 × · · · × Bn × {b}, which is possible since b ∈ B′ and C′ × {b} ⊆ S. We can check that

R′ ∩ C× B1 × · · · × Bn × Bn × · · · × Ai × · · · × B1 × C ̸= ∅

for 0 ≤ i ≤ n similarly, by interchanging the roles of the xis and yis.
To finish, we just need to check that

R′ ∩ C× B1 × · · · × Bn × Bn × · · · × B1 × C = ∅,

or equivalently, that
S ∩ B′ × B′ = ∅.

So suppose for contradiction that there are b′, b′′ ∈ B′ with (b′, b′′) ∈ S. Since

b ∈ Sg(C′ ∪ {b′}) ⊆ B′ − S,

we see that there is some b′′′ ∈ B′ such that (b, b′′′) ∈ S. But then we have

{b}+ S ⊇ Sg(C′ ∪ {b′′′}) ⊇ B′,

so (b, b) ∈ S, contradicting our assumption that C′ �Z An+1.

Corollary 3.10.10. If C �Z A and A is finite and idempotent, then C absorbs A with respect to
some ternary term.

Proof. If C does not absorb A with respect to any ternary term, then by Theorem 3.8.5 there is
some ternary C-essential relation R ≤ A3. By repeatedly applying the doubling trick, we see that
there exists some C-essential relation of arity 2 + 2k for every k ≥ 0, so C can’t absorb A with
respect to a term of any arity, contradicting the assumption C�Z A.

Corollary 3.10.11. If C1 �Z A1,B2 � A2, and C3 �Z A3 with Ai finite and idempotent, then no
(C1,B2,C3)-essential relation can exist.

Proof. If a (C1,B2,C3)-essential relation exists, then by repeatedly applying the doubling trick we
can find (C1,B2, ...,B2,C1)-essential relations of arbitrarily high arity. By forcing the first and last
coordinates to be in C1 and existentially projecting, we see that there are B2-essential relations of
arbitrarily high arity, which contradicts the assumption B2 � A2.

Corollary 3.10.12. If Ai are finite and idempotent, Ci � Ai for all i and for all but at most one
i we have Ci�Z Ai, then for any relation R ≤ A1× · · · ×An such that πi,j(R)∩Ci×Cj ̸= ∅ for all
i, j, we have

R ∩ C1 × · · · × Cn ̸= ∅.

Proof. We show by induction on |I| that for all I ⊆ [n] we have

πI(R) ∩
∏
i∈I

Ci ̸= ∅.

The base case |I| ≤ 2 is our assumption. For |I| ≥ 3, pick i, j, k ∈ I distinct. By the induction
hypothesis, there are tuples xi, xj , xk ∈ R such that πI\{i}(xi) ∈

∏
i′∈I\{i}Ci′ , and similarly for

xj , xk.
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Now consider the subalgebra of Ai × Aj × Ak generated by πi,j,k(xi), πi,j,k(xj), πi,j,k(xk). Since
this subalgebra can’t be a (Ci,Cj ,Ck)-essential relation (since at least two of Ci,Cj ,Ck are centrally
absorbing and the third is absorbing), it must contain an element of Ci × Cj × Ck. Thus there is
some x ∈ Sg{xi, xj , xk} such that

πi,j,k(x) ∈ Ci × Cj × Ck,

and this x automatically satisfies

πI\{i,j,k}(x) ∈
∏

i′∈I\{i,j,k}

Ci′

since each of xi, xj , xk do, which completes the inductive step.

Corollary 3.10.13. If A is finite and idempotent, then there is a ternary term t ∈ Clo3(A) such
that for all finite B ∈ HSP (A) and each C�Z B, C absorbs B with respect to the term t.

Proof. For any finite collection of pairs Ci �Z Bi ∈ HSP (A), we can apply the previous corollary
to find a term t ∈ Clo3(A) which simultaneously witnesses all Ci�Bi. Since there are only finitely
many ternary terms t of A, some t must work for all pairs C�Z B ∈ HSP (A).

Central absorption turns out to be a good absorption concept (in the sense of the previous
section), as long as we restrict ourselves to finite idempotent algebras. Unlike previous absorption
concepts, in this case it is not so easy to see that �Z is compatible with pp-formulas. For this,
we need to consider the basic types of pp-formulas separately. The hardest case is the case of
projections.

Proposition 3.10.14. If C�Z A with A finite and idempotent, and if there is a surjective homo-
morphism π : A↠ B, then π(C) �Z B.

Proof. Suppose there is some b ∈ B \ π(C) such that (b, b) ∈ Sg(π(C)× {b} ∪ {b} × π(C)). Choose
a ∈ π−1(b) such that the subalgebra Sg(C ∪ {a}) is as small as possible. Set

S = SgA2

{[
a
C

]
,

[
C
a

]}
.

By the choice of b, there exist a′, a′′ ∈ A such that (a′, a′′) ∈ S and π(a′) = π(a′′) = b. By the
choice of a, we have a ∈ Sg(C ∪ {a′′}). Thus we have

Sg{a, a′}+ S ⊇ Sg(C ∪ {a′′}) ⊇ {a},

so there is some a′′′ ∈ Sg{a, a′} with (a′′′, a) ∈ S, and by idempotence we have π(a′′′) = b, so
a ∈ Sg(C ∪ {a′′′}). By idempotence we have {a} ≤ A, so

{a} − S ⊇ Sg(C ∪ {a′′′}) ⊇ {a},

so (a, a) ∈ S, which contradicts the assumption C�Z A.

Proposition 3.10.15. If C �Z B �Z A, then C �Z A. As a consequence, if Ci �Z Bi ≤ A, then
C1 ∩ C2 �Z B1 ∩ B2.
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Proof. Suppose there is some a ∈ A such that (a, a) ∈ Sg(C × {a} ∪ {a} × C). Since C ≤ B and
B�Z A, we must have a ∈ B. Then since C�Z B, we must have a ∈ C. Thus C�Z A.

For the second statement, note that C2�Z B2 implies C1 ∩C2�Z C1 ∩B2 and C1�Z B1 implies
C1 ∩ B2 �Z B1 ∩ B2.

Proposition 3.10.16. If C1 �Z A1, then C1 × A2 �Z A1 × A2.

Putting these three results together, we see that central absorption is a good absorption concept.

Proposition 3.10.17. The absorption concept �Z , restricted to finite idempotent algebras, is com-
patible with pp-formulas, is transitively closed, and transfers connectivity.

Remark 3.10.1. Annoyingly, binary absorption fails to be transitively closed or compatible with
pp-formulas (the intersection of two binary absorbing subalgebras might not be binary absorbing).
However, if we restrict ourselves to finite idempotent algebras which are prepared, that is, such that
(b, b) ∈ Sg{(a, b), (b, a)} implies that {a, b} is a semilattice subalgebra with absorbing element b, then
binary absorption becomes compatible with pp-formulas and transitively closed (see Proposition
3.2.22).

In some cases central absorption implies binary absorption. To describe a criterion for when
this happens, we will exploit partial semilattice operations.

Proposition 3.10.18. Suppose that C�Z A and that s is any partial semilattice operation. Then
s(C,A) ⊆ C.

Proof. Suppose c ∈ C and a ∈ A, and let b = s(c, a). Then s(c, b) = s(b, c) = b by the defining
property of partial semilattice operations, so (b, b) ∈ Sg({b}×C∪C×{b}). Thus by the definition
of central absorption, we have b ∈ C, that is, s(c, a) ∈ C.

Proposition 3.10.19. Suppose that C�ZA in a finite idempotent algebra A, or just that s(C,A) ⊆
C for all partial semilattice terms s ∈ Clo(A). Then the following are equivalent:

(a) C binary absorbs A,

(b) for all a ∈ A\C and all c ∈ C, the subalgebra Sg{a, c} has a proper binary absorbing subalgebra,

(c) for all a ∈ A and all c ∈ C, there is a sequence of elements a = a0, a1, ..., an ∈ Sg{a, c} with
an ∈ C such that (ai, ai) ∈ Sg{(ai−1, ai), (ai, ai−1)} for all i.

If A is prepared, then the third condition is equivalent to the assumption that for all a and for all
c ∈ C, the subalgebra Sg{a, c} contains a directed path from a to C.

Proof. To see that (a) implies (b), note that C�binA implies that C∩Sg{a, c}�bin Sg{a, c}. To see
that (b) implies (c), we induct on the size of Sg{a, c}. Let B be a proper binary absorbing subalgebra
of Sg{a, c}, and let s be a partial semilattice term that witnesses this absorption (such an s exists
by Proposition 3.2.17). Then for any b ∈ B we have s(a, b) ∈ B, and if we take a1 = s(a, b) then
(a1, a1) ∈ Sg{(a, a1), (a1, a)}. Let c1 = s(c, b), then c1 ∈ B ∩ C, and so Sg{a1, c1} ⊆ B < Sg{a, c},
so by the inductive hypothesis we can complete this to a sequence a1, ..., an ∈ Sg{a1, c1} as in (c).

Now suppose that (c) holds. For each a, c with c ∈ C, we will construct a binary function fac
such that fac(a, c) ∈ C and fac(C,A) ⊆ C. Then by cyclically composing the functions fac together,
we can produce a binary term which absorbs C. To construct fac, we pick a sequence of partial
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semilattice terms si such that si(ai−1, ai) = ai as well as binary terms ti such that ti(a, c) = ai. We
set

fac(x, y) := sn(· · · s2(s1(x, t1(x, y)), t2(x, y)) · · · , tn(x, y)).

Then we have
fac(a, c) = sn(· · · s2(s1(a, a1), a2) · · · , an) = an ∈ C

and
fac(C,A) ⊆ sn(· · · s2(s1(C,A),A) · · · ,A) ⊆ C,

as required.

3.11 Binary relations in Taylor algebras: the Absorption Theorem
and the Loop Lemma

In this section we’ll go over two of the main results from Barto and Kozik’s paper [19] about
absorption, known as the “absorption theorem” and the “loop lemma”. The first of these results
can be used to constrain the possible subdirect binary relations in simple absorption free algebras,
while the second result makes no direct mention of absorption, but combines the theory of absorbing
subalgebras with an elementary argument in the absorption free case to give a criterion for a
subdirect binary relation to intersect the diagonal.

The loop lemma was originally introduced in order to settle a special case of the dichotomy
problem, where the template structure A consists of a set together with a single subdirect binary
relation (considered as a directed graph). As a bonus, the loop lemma easily implies the existence
of a Taylor term of a special form, known as a Siggers operation, named after the first person to
notice that such special Taylor terms exist in the finite case [153] (this result was quickly refined,
after the initial discovery: see [100] for the paper which introduced the 4-ary operations which are
now commonly known as Siggers operations).

Here is a strong form of the absorption theorem, stated in terms of Zhuk’s centers.

Theorem 3.11.1 (Absorption Theorem [19]). If R ≤sd A × B is a subdirect binary relation and
A,B are finite idempotent Taylor algebras, and if R is linked, then either

• R = A× B,

• A has a proper binary absorbing or centrally absorbing subalgebra, or

• B has a proper subalgebra which is both binary absorbing and centrally absorbing.

The absorption theorem can be viewed as a strengthening of Zhuk’s results about central rela-
tions: as we will see, it actually follows from Zhuk’s result by applying a few simple tricks. First
we will bootstrap to the case of a subdirect relation R such that R ◦ R− = A× A.

Lemma 3.11.2. If R ≤sd A×B is a subdirect binary relation and A,B are finite idempotent Taylor
algebras, and if R ◦ R− = A× A, then either

• there is some b ∈ B such that A× {b} ⊆ R,

• A has a proper binary absorbing subalgebra, or
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• every element of A is contained in a proper centrally absorbing subalgebra.

Proof. Suppose that there is no b ∈ B with A× {b} ⊆ R and that A is binary absorption free, and
choose any a ∈ A. Choose a sequence of subalgebras {a} + R = D0 ≥ D1 ≥ · · · ≥ Dn such that
each Di+1 is a proper binary absorbing subalgebra of Di and such that Dn has no proper binary
absorbing subalgebras. We will first show that Dn − R = A, and then we will apply Zhuk’s result
(Corollary 3.10.8) to the binary relation R ∩ (A× Dn).

We will show that Di−R = A for each i, by induction on i. Note that D0−R = {a}+R−R = A
by the assumption R ◦ R− = A× A. For the inductive step, note that since Di+1 �bin Di, we have

Di+1 − R�bin Di − R = A,

so we must have Di+1 − R = A since A has no proper binary absorbing subalgebra.
If we set R′ = R ∩ (A× Dn), then we have

{a} × Dn ⊆ R′ ≤sd A× Dn.

Thus the left center C of R′ contains a. Since Dn is binary absorption free, we see that C centrally
absorbs A by Corollary 3.10.8. If C = A, then A × Dn ⊆ R, contradicting the assumption that
there is no b ∈ B with A× {b} ⊆ R.

In the case where A has no proper binary absorbing or centrally absorbing subalgebra and R
has a nontrivial right center, we will use the criterion developed in Proposition 3.10.19 to show that
the right center of R must actually be a binary absorbing subalgebra of B.

Lemma 3.11.3. If R ≤sd A×B is a subdirect binary relation and A,B are finite idempotent Taylor
algebras, and if there is some b ∈ B such that A× {b} ⊆ R, then either

• R = A× B,

• A has a proper binary absorbing or centrally absorbing subalgebra, or

• the right center of R is a proper binary absorbing subalgebra of B.

Proof. Let C ≤ B be the right center of R. By Corollary 3.10.8, if A has no proper binary absorbing
subalgebra then we have C�ZB. If C is not a binary absorbing subalgebra of B, then by Proposition
3.10.19 there must be some b ∈ B \C and c ∈ C such that Sg{b, c} has no proper binary absorbing
subalgebra.

Since R is subdirect, there is some a ∈ A such that (a, b) ∈ R. Since c is in the right center of
R, we also have A× {c} ⊆ R. Thus if we set R′ = R ∩ (A× Sg{b, c}), then we have

{a} × Sg{b, c} ⊆ R′ ≤sd A× Sg{b, c}

Since b is not in the right center of R, the left center of R′ is a proper subalgebra of A. Then since
Sg{b, c} has no proper binary absorbing subalgebra, Corollary 3.10.8 shows that the left center of
R′ is a proper centrally absorbing subalgebra of A.

Proof of the Absorption Theorem. Let S = R ◦ R− ≤sd A × A. If S = A × A, we may apply the
lemmas to see that either A has a proper binary absorbing or centrally absorbing subalgebra, or
that B has a proper subalgebra which is both binary absorbing and centrally absorbing. Otherwise,
by the fact that R is linked and the finiteness of A there must be some minimal k > 1 such that
S◦k = A × A. Then we can apply the lemmas to S◦(k−1) to see that A must have either a binary
absorbing or centrally absorbing subalgebra.
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Corollary 3.11.4. Let A,B be finite idempotent Taylor algebras with no proper binary or centrally
absorbing subalgebras. If B is simple, then every subdirect binary relation R ≤sd A×B is either the
full relation or the graph of a surjective homomorphism A↠ B.

Proof. Since B is simple, the linking congruence of R on B is either trivial or is full. If the linking
congruence of R on B is trivial, then R must be the graph of a surjective homomorphism A ↠ B.
Otherwise, R is linked, so we can apply the Absorption Theorem 3.11.1 to see that R = A×B.

Next we switch our focus to subdirect relations R ≤sd A×A. In this case, it is often appropriate
to think of R as a digraph on the vertex set A, and we can ask questions about whether R (viewed
as a digraph) is weakly connected, strongly connected, whether it contains any loops, etc. To be
precise, the associated digraph is the relational structure R = (A,R), where A is the underlying
set of A and R ⊆ A × A is the underlying set of R (often I abuse notation and write R = (A,R)
instead of explicitly replacing A,R with their underlying sets).

Remark 3.11.1. Note that if R ≤ A×A and S ≤ B×B are subpowers of A,B, then a homomorphism
R → S and a homomorphism R → S of the associated digraphs R = (A,R),S = (B,S) are
completely different things! The first is a homomorphism of algebraic structures, and doesn’t
depend on how R, S are represented as collections of ordered pairs of elements in A or B (but does
depend on how the algebraic operations behave). The second is a digraph homomorphism, which
ignores the algebraic structure, and is completely determined by a map A → B of the underlying
sets of A,B which is compatible with the digraph structures R, S.

In the context of digraphs, the case of a subdirect relation R ≤sd A×A is actually rather special.
The assumption π1(R) = A means that every vertex of the digraph R has outdegree at least one,
and the assumption π2(R) = A means that every vertex of R has indegree at least one.

Definition 3.11.5. A digraph D = (V,E) is called smooth if every vertex of D has indegree at
least one and outdegree at least one. Note that this is equivalent to the relation E ⊆ V × V being
subdirect.

If a digraph is not smooth, it is often desirable to find a smooth digraph within it. The natural
thing to do is to simply prune all of the vertice with indegree 0 or outdegree 0. Unfortunately,
after this pruning step we may find ourselves with more vertices that need to be pruned, and so
on - possibly ending up with no vertices at all! For instance, this actually occurs if our initial
digraph is a finite directed path. Additionally, it may not be clear that these pruning operations
are compatible with the algebraic structures which we started with. Luckily, there is a standard
way to describe the result of this pruning process via a primitive positive formula, as well as a
simple criterion for when the pruned digraph will be nonempty.

Proposition 3.11.6. If D = (V,E) is a digraph, then the largest smooth digraph Dsm which is
contained in D is exactly the set of vertices v of D such that there exists a bi-infinite directed
walk through v. If D is finite, with n vertices, then the vertex set of Dsm may be defined by the
pp-formula

v ∈ Dsm ⇐⇒ ∃v−n, ..., vn (v0 = v) ∧
∧

−n≤i<n
(vi, vi+1) ∈ E.

The set Dsm will be nonempty iff D contains a directed cycle (or a bi-infinite directed path, in the
infinite case).
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Definition 3.11.7. If D is a digraph and Dsm is defined as in the previous proposition, then we
call Dsm the smooth part of the digraph D.

Note that the smooth part of a digraph may contain vertices which are not themselves part of
any directed cycles: it may also contain intermediate vertices along directed paths connecting two
directed cycles. In fact, the smooth part of a digraph enjoys the following convexity property.

Proposition 3.11.8. If D is a digraph and a, b are in the smooth part of D, then every vertex of
D which can be found along any directed path from a to b is also contained in the smooth part of
D.

One reason for introducing this terminology is that it lets us easily state results such as the
following one.

Proposition 3.11.9. If S � R and R,S ≤ A × A correspond to digraphs R,S with vertex set A,
and if R is smooth, then the smooth part Ssm of the digraph S has vertex set equal to an absorbing
subalgebra of A, which will be nonempty as long as S contains some directed cycle.

Of course, we will often abuse notation a little further, and talk about the “smooth part of the
digraph S” as long as this does not seem likely to cause confusion. It will be convenient to have
the following criterion for the existence of a directed cycle contained in a subalgebra B ≤ A.

Proposition 3.11.10. If R ≤ A × A, and if B ≤ A is finite and satisfies either B ⊆ B + R or
B ⊆ B− R, then the restriction R ∩ (B× B) of R to B has nonempty smooth part.

Proof. Suppose that B ⊆ B − R. Then every vertex in B has an edge leaving it which lands in B,
so we can find an arbitrarily long directed walk of R which is entirely contained in B. Since B is
finite, this implies that there is some directed cycle which is entirely contained in B.

As a warmup to the full loop lemma, we will first focus on the special case where the relation
R is linked. This special case is usually enough to handle most applications.

Lemma 3.11.11 (Loop Lemma, linked case). Suppose that A is a finite Taylor algebra and that
R ≤sd A× A is a linked subdirect relation. Then R contains a loop, that is, R ∩∆A ̸= ∅.

Proof. We prove this by induction on |A|. We may assume that A is idempotent without loss of
generality. If R ̸= A × A, then A must have some proper absorbing subalgebra B � A by the
Absorption Theorem 3.11.1. If we define a sequence of absorbing subalgebras B = B0,B1, ... of A
by Bi+1 = Bi+R for i even and Bi+1 = Bi−R for i odd, then since R is linked and A is finite there
must be some i such that Bi+1 = A but Bi ̸= A. Since this Bi satisfies Bi ⊆ A = Bi+1, we see that
either Bi ⊆ Bi + R or Bi ⊆ Bi − R, so by the previous proposition the relation R ∩ (Bi × Bi) has a
nonempty smooth part Bsm � Bi, with edge set S = R ∩ (Bsm × Bsm).

Since Bsm�A, we have S�R. Since S is smooth, we can transfer the linkedness of R to S using
Theorem 3.7.12, to see that S must also be linked. By the inductive hypothesis applied to Bsm, we
see that S must contain a loop, and this loop will also be contained in R since S ≤ R.

To state the full loop lemma, we need another digraph concept.

Definition 3.11.12. The algebraic length of a weakly connected digraph D is the least common
multiple of all integers k such that there is a digraph homomorphism from D to a directed cycle of
length k.
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Proposition 3.11.13. The algebraic length of a weakly connected digraph D = (V,E) is the greatest
common divisor of all integers k such that there exist v ∈ V and k1, k2, ..., km ∈ N such that

v ∈ {v}+ k1E − k2E + · · · ± kmE

and k = k1 − k2 + · · · ± km.
Furthermore, there exists a digraph homomorphism from D to a directed cycle C iff the algebraic

length of D is a multiple of the length of the cycle C.

Proposition 3.11.14. If D = (V,E) is a smooth, weakly connected digraph of algebraic length
k, then the digraph D◦m = (V,E◦m) has gcd(k,m) weakly connected components, and each weakly
connected component of D◦m has algebraic length k

gcd(k,m) .

Proposition 3.11.15. If D = (V,E) is smooth and weakly connected, then D has algebraic length
1 if and only if there is some m ≥ 0 such that the relation E◦m is linked.

Corollary 3.11.16. If D = (V,E) is smooth and has a weakly connected component C ⊆ V of
algebraic length 1, and if v ∈ C, then the set C can be defined by a primitive positive formula using
the singleton unary relation {v} and the binary relation E.

With these preliminaries out of the way, we can finally state the full version of the loop lemma
for finite Taylor algebras.

Theorem 3.11.17 (Loop Lemma [19]). If A is a finite Taylor algebra and R ≤sd A×A corresponds
to a smooth digraph R = (A,R) which has a weakly connected component of algebraic length 1, then
R has a loop, i.e. R ∩∆A ̸= ∅.

Proof. We prove this by induction on |A|. We may assume that A is idempotent without loss of
generality. We may also assume that R is weakly connected by restricting to a weakly connected
component of algebraic length 1 (which forms a subalgebra of A by the results above). Let m be
minimal such that R◦m is linked. We split into cases based on whether R◦m = A× A or not.

If R◦m ̸= A×A, then by the Absorption Theorem 3.11.1 we see that A must have some proper
absorbing subalgebra. By a similar argument to the linked case (Lemma 3.11.11), we see that
there is some proper absorbing B � A such that S = R ∩ (B × B) is subdirect in B × B. Then
since S◦m � R◦m, we can apply Theorem 3.7.12 to see that S◦m is linked, so the smooth digraph
S = (A, S) has algebraic length 1 and S has a loop by the inductive hypothesis.

If R◦m = A × A, then we let B be any linked component of R◦(m−1) on the first coordinate
(note that R◦(m−1) is not linked by the choice of m, so B is a proper subalgebra of A). First we
will show that B ⊆ B−R. To see this, let b ∈ B be arbitrary, pick any c ∈ b+R◦(m−1). Then since
R◦m = A× A, we have

c ∈ b+ R◦m,

and if we let d be the first element along a directed path of length m from b to c, then we have

d ∈ (b+ R) ∩ (c− R◦(m−1)) ⊆ (b+ R) ∩ (b+ R◦(m−1) − R◦(m−1)) ⊆ (b+ R) ∩ B.

Thus b ∈ B−R, and since b was an arbitrary element of B we see that B ⊆ B−R. Thus the smooth
part Bsm of R ∩ (B× B) is nonempty.

To finish, we just need to check that the smooth digraph corresponding to S = R∩ (Bsm×Bsm)
has algebraic length 1. For this, we pick any (b, c) ∈ S◦(m−1), and pick any directed path b =
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b1, ..., bm = c of length m − 1 with all bi ∈ Bsm. Since (b, c) ∈ R◦m, we may also find directed
path b = c0, ..., cm = c from b to c of length m in R. We will show that every ci along this path is
actually in Bsm. For this, we just note that bi, ci are in the same linked component of R◦(m−1) for
each i ≥ 1 (since bi and ci can both reach c in exactly m− i steps), so each ci is at least in B, and
then since each ci is along a directed path between two vertices of Bsm we see that each ci belongs
to the smooth part Bsm as well. Thus b ∈ b + S◦(m−1) − S◦m, so S has algebraic length 1 and we
may apply the inductive hypothesis to see that S contains a loop.

Corollary 3.11.18 (Siggers term [153], [100]). If A is a finite Taylor algebra, then A has a 4-ary
idempotent term t which satisfies the identity

t(x, x, y, z) ≈ t(y, z, z, x).

Proof. Assume without loss of generality that A is idempotent. Let F = FA(x, y, z) be the free
algebra on three generators in the variety generated by A. Let R be the binary relation

R = SgF2

{[
x
y

]
,

[
x
z

]
,

[
y
z

]
,

[
z
x

]}
.

Then R is clearly subdirect, and the generating set of R forms the binary relation on {x, y, z}
pictured below, as both a bipartite graph and as a digraph.

x

y

z

x

y

z
x

y

z

This digraph is smooth, strongly connected (in fact, it has x + R◦3 = F and R◦5 = F × F), and
has algebraic length 1 (since x ∈ x + R◦2 − R◦1), so we can apply the Loop Lemma to see that R
contains some loop (f, f) (we are using here the fact that F ≤ AA3

is finite and Taylor). Then since
(f, f) ∈ R, there must be some 4-ary term t such that

t

([
x
y

]
,

[
x
z

]
,

[
y
z

]
,

[
z
x

])
=

[
f
f

]
,

and this t then satisfies the identity

t(x, x, y, z) = f = t(y, z, z, x).

Remark 3.11.2. Suppose that t is a Siggers term, i.e. that t(x, x, y, z) ≈ t(y, z, z, x). If we substitute
y = z into the Siggers identity and rename variables, we see that

t(y, y, x, x) ≈ t(x, x, x, y),

and if we substitute x = y into the Siggers identity and rename variables, then we get

t(x, x, x, y) ≈ t(x, y, y, x).
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Thus there is some binary term f(x, y) such that

t

y y x x
x y y x
x x x y

 ≈
f(x, y)
f(x, y)
f(x, y)

 .
If we reorder the first and second inputs to t, the left hand side exactly becomes the left hand side
of the equation for the 3-edge term. If f(x, y) was equal to x, then t would become a 3-edge term
(up to reordering inputs).

If f(x, y) was instead equal to y, then p(x, y, z) = t(x, x, y, z) would become a Mal’cev term,
which is even better than a 3-edge term. However, if we allow for the possibility of semilattice
subalgebras, then f(x, y) must act as the semilattice operation on any two-element semilattice
subalgebra, and of course in this case there couldn’t possibly be any cube term of any arity. For
this reason, the system of equations satisfied by t above are often summarized by calling such a t
a “weak 3-edge term”.

The fact that a Siggers term looks suspiciously similar to a 3-edge term is more than a coinci-
dence: Theorem 6.2 of [14] shows that every finite Taylor algebra either has a 3-edge term or has
some pair of elements a ̸= b such that (b, b) ∈ Sg{(a, b), (b, a)}.

3.12 Finite abelian Taylor algebras are affine, and Zhuk’s four
cases

First we recall the definition of an abelian algebra.

Definition 3.12.1. An algebraic structure A is called abelian if there is a congruence Θ on A×A
such that the diagonal ∆A = {(a, a) | a ∈ A} is one of the congruence classes of Θ.

The reader might be skeptical about how often such a congruence Θ actually shows up. After
all, such a congruence is most naturally viewed as a 4-ary relation on A, and for the most part we
have only been able to prove interesting structural results about binary relations so far. The next
result illustrates the most common situation which leads to the existence of such a congruence.

Proposition 3.12.2. Suppose that R ≤sd A×A×A has the property that for each a ∈ A, and for
each permutation (i, j, k) of (1, 2, 3), the binary relation

πij(x ∈ R ∧ xk = a)

is the graph of an automorphism of A. Then A is abelian.

Proof. Note that the assumption on R can be rephrased as saying that if we fix any pair of coordi-
nates of a tuple in R, then the last coordinate is uniquely determined. Therefore R can be viewed
as the graph of a homomorphism

m : A× A↠ A

such that the preimage m−1(a) is the graph of an automorphism of A for every a ∈ A (equivalently,
m is the multiplication of some quasigroup which commutes with the operations of A). In other
words, every congruence class of the kernel kerm ∈ Con(A× A) is the graph of an automorphism
of A. Twisting kerm by one of these automorphisms yields a congruence Θ ∈ Con(A × A) such
that one of its congruence classes is the graph of the identity permutation of A.
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The proof we give in this section - following [23] - of the fact that finite abelian Taylor algebras
are affine breaks into three steps:

• every finite abelian algebra is (hereditarily) absorption free,

• every finite, idempotent, Taylor, hereditarily absorption free algebra is Mal’cev, and

• every abelian Mal’cev algebra is affine.

We have already completed the third step in Section 1.9, Theorem 1.9.23. We will complete the
remaining steps in reverse order as well.

Definition 3.12.3. We say that an algebra A is hereditarily absorption free if every subalgebra of
A is absorption free, that is, if C� B ≤ A implies that C = B or C = ∅.

Proposition 3.12.4. Suppose A,B are idempotent and hereditarily absorption free. Then A × B
is also hereditarily absorption free.

Proof. Suppose that S�R ≤ A×B, with S ̸= ∅. Then since π1(S)�π1(R) ≤ A and A is hereditarily
absorption free, we see that π1(S) = π1(R). Thus for every a ∈ π1(R) we have a+ S ̸= ∅, and since
A is idempotent, we have

a+ S� a+ R ≤ B.

Then since B is hereditarily absorption free, we see that a + S = a + R. Since a was an arbitrary
element of π1(R), we have S = R.

Theorem 3.12.5 (HAF implies Mal’cev [23]). If A is finite, idempotent, Taylor, and hereditarily
absorption free, then A is Mal’cev.

Proof. By repeatedly applying the previous proposition, we see that the free algebra on two gen-
erators F = FA(x, y) ≤ AA2

is absorption free. Consider the binary relation R ≤sd F × F defined
by

R = SgF2

{[
x
y

]
,

[
x
x

]
,

[
y
x

]}
.

Then x + R ⊇ SgF{x, y} = F, so x is contained in the left center of R. Thus by the Absorption
Theorem 3.11.1 (or just Zhuk’s result Corollary 3.10.8) we must have R = F× F, and in particular
(y, y) ∈ R. Thus there is some ternary term p such that

p

([
x
y

]
,

[
x
x

]
,

[
y
x

])
=

[
y
y

]
.

To finish the proof that finite abelian Taylor algebras are affine, we just need to check that
every abelian algebra is absorption free. Note that every subalgebra of an abelian algebra is also
abelian, so this will imply that abelian algebras are hereditarily absorption free as well. Addition-
ally, every reduct of an abelian algebra is also abelian (since taking reducts can only increase the
congruence lattice), so we see that the idempotent reduct of a finite abelian Taylor algebra will also
be hereditarily absorption free, allowing us to apply the previous result to it.

It is not so easy to see how to use abelianness to rule out absorption. As a warmup, we will
show that abelian algebras can’t have any near-unanimity terms: this will give us the hint about
how to show that finite abelian algebras are absorption free.
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Proposition 3.12.6. If an algebra A is abelian and has at least two elements, then A does not
have a near-unanimity term.

Proof. Let Θ ∈ Con(A×A) be a congruence with the diagonal ∆A as a congruence class. Suppose
for contradiction that t is a near-unanimity term of minimal arity n, and note that n must be at
least 3 since A has at least two elements. Let a, b be any pair of elements of A. Then we have

t

([
a b b · · · b
b b b · · · b

])
=

[
b
b

]
∈ ∆A.

Since the second column of inputs to t is (b, b) ∈ ∆A, we can replace it with any other element of
∆A without changing the the result modulo Θ. Thus we have

t

([
a a b · · · b
b a b · · · b

])
≡Θ

[
b
b

]
∈ ∆A.

Since t(b, a, b, ..., b) = b, we see that we must have

t

([
a a b · · · b
b a b · · · b

])
=

[
b
b

]
.

Since a, b were arbitrary elements of A, we see that

t(y, y, x, ..., x) ≈ x,

so the term t(x, x, y2, ..., yn−1) is a near-unanimity term of arity n− 1, contradicting the choice of
t.

In order to mimic this argument to rule out absorption, we will need to assume finiteness of A
and apply an iteration argument. (To see that the finiteness assumption is really needed, consider
the infinite idempotent quasiaffine Taylor algebra ([0, 1], x+y2 ), which has the open interval (0, 1) as
a binary absorbing subalgebra.)

Theorem 3.12.7 (Abelian implies HAF [23]). If a finite algebra A is abelian, then it is absorption
free.

Proof. Let Θ ∈ Con(A×A) be a congruence with the diagonal ∆A as a congruence class. Suppose
for contradiction that B�A is nonempty and proper, and let t be a term of minimal arity n among
those which absorb B. Note that n ≥ 2 since B is a proper subalgebra of A. Now iterate t on its
first argument, i.e. define a sequence of terms ti with t1 = t and

ti+1(x, y1, ..., yn−1) := t(ti(x, y1, ..., yn−1), y1, ..., yn−1).

By induction on i, each ti absorbs B. Since A is finite, there is some i such that ti = t2i, set t∞ = ti.
Then we have

t∞(t∞(x, y1, ..., yn−1), y1, ..., yn−1) ≈ t∞(x, y1, ..., yn−1),

and t∞ absorbs B.
Now we argue as in the near-unanimity case: let a ∈ A and b1, b2, ..., bn−1 ∈ B, and set

b = t∞(a, b1, b2, ..., bn−1) ∈ B.
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Then we have

t∞

([
a b1 b2 · · · bn−1

b b1 b2 · · · bn−1

])
=

[
b
b

]
∈ ∆A,

so since (b1, b1) ≡Θ (a, a), we have

t∞

([
a a b2 · · · bn−1

b a b2 · · · bn−1

])
≡Θ

[
b
b

]
∈ ∆A.

Thus since ∆A is a congruence class of Θ and B absorbs A with respect to t∞, we have

t∞(a, a, b2, ..., bn−1) = t∞(b, a, b2, ..., bn−1) ∈ B.

Since a was an arbitrary element of A and b2, ..., bn−1 were arbitrary elements of B, we see that the
term

t∞(x, x, y2, ..., yn−1)

absorbs B and has arity n− 1, contradicting the choice of t.

Now we can put all the pieces together and get our main result.

Theorem 3.12.8 (Fundamental Theorem of Abelian Algebras, finite Taylor case [82], [23], [154],
[167]). If A is a finite abelian Taylor algebra, then A is affine.

Proof. Let Aid be the idempotent reduct of A, note that Aid is still abelian and Taylor (since Taylor
terms are idempotent by definition). Then every subalgebra of Aid is also abelian, so by Theorem
3.12.7 Aid is hereditarily absorption free. Since Aid is finite, idempotent, Taylor, and hereditarily
absorption free it has a Mal’cev term p by Theorem 3.12.5. Then p is also a Mal’cev term of A, so
we can apply Theorem 1.9.23 to see that A is affine.

Remark 3.12.1. It is not hard to generalize Theorem 3.12.7 to show that if a finite algebra A
is solvable, then A is hereditarily absorption free (this follows from the fact that every solvable
idempotent algebra A has a congruence θ such that A/θ is abelian and every congruence class of θ
is solvable). Thus finite solvable Taylor algebras are also Mal’cev by Theorem 3.12.5.

Now we can apply the fundamental theorem of abelian algebras to further constrain relations
on absorption free algebras.

Theorem 3.12.9 (Zhuk [164]). Suppose that A is finite, simple, idempotent, Taylor, has no binary
or centrally absorbing subalgebras, and is not affine. Then every subdirect relation R ≤sd An is
the intersection of its binary projections, each of which is either a full relation or the graph of an
automorphism of A.

Proof. We call a subdirect relation R ≤ An irredundant if no πij(R) is the graph of an automorphism
of A. We will prove by induction on n that every irredundant subdirect relation on A is the full
relation.

The base cases of the induction are the cases n = 1, 2, 3. The case n = 1 is trivial (a unary
subdirect relation must be full). The case n = 2 follows from the Absorption Theorem 3.11.1, since
every subdirect binary relation on A is either the graph of an automorphism of A, or is linked (since
A is simple) and therefore is equal to the full relation (since A has no binary or centrally absorbing
subalgebras).
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For the case n = 3, note by the n = 2 case both π13(R) and π23(R) must be full relations, so
for any a ∈ A the binary relation

Ra := π12(R ∩ (A2 × {a}))

is subdirect. Then by the n = 2 case again, we see that Ra is either the graph of an automorphism
or is equal to A2. If there is any a ∈ A such that Ra = A2, then a is contained in the right center of
R, considered as a binary relation on (A2)×A, so R = A3 by the Absorption Theorem 3.11.1 (or just
Corollary 3.10.8) and the fact that A2 has no proper binary or centrally absorbing subalgebras by
Proposition 3.10.2. Otherwise every Ra is the graph of an automorphism, and a similar argument
applies if we permute the coordinates of R, so we may apply Proposition 3.12.2 to see that A is
abelian. But then by the fundamental theorem of abelian algebras 3.12.8 we see that A is affine,
which contradicts our assumptions.

For the induction step, assume that n > 3. Then for every pair of distinct i, j ≤ n − 1, the
ternary relation πijn(R) is full by the n = 3 case, so for every a ∈ A, the binary relation

πij(R ∩ (An−1 × {a}))

is the full relation A2. Thus the relation

Ra := π[n−1](R ∩ (An−1 × {a}))

is irredundant, so by the inductive hypothesis, Ra is the full relation An−1 for every a ∈ A. In other
words, R is the full relation An.

Since the conclusion of Theorem 3.12.9 is actually much stronger than merely being polynomially
complete, we will give it a special name.

Definition 3.12.10. We say that an algebra A is subdirectly simple if every subdirect relation
R ≤sd An is the intersection of its binary projections, each of which is either a full relation or the
graph of an automorphism of A.

Proposition 3.12.11. Every subdirectly simple finite algebra is polynomially complete.

Corollary 3.12.12 (Zhuk’s four cases [164]). If A is a nontrivial finite idempotent Taylor algebra,
then at least one of the following is true.

• A has a proper binary absorbing subalgebra,

• A has a proper centrally absorbing subalgebra,

• A has a nontrivial affine quotient, or

• A has a nontrivial subdirectly simple quotient.

Proof. Let θ ∈ Con(A) be a maximal congruence on A, so A/θ is simple. If A/θ has a proper
binary or centrally absorbing subalgebra B, then the preimage of B under the projection A↠ A/θ
is a proper binary or centrally absorbing subalgebra of A. Otherwise, Theorem 3.12.9 shows that
if A/θ is not affine, then it is subdirectly simple.
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Remark 3.12.2. For the sake of proving Theorem 3.12.9 and Corollary 3.12.12, we only need to show
that if A is a finite idempotent Taylor algebra with a ternary relation R ≤sd A3 as in Proposition
3.12.2, then A is affine. It’s possible to give a direct argument for this, as follows.

First, we reinterpret R as the graph of a quasigroup operation · : A × A → A. Using this
quasigroup operation ·, we can define a Mal’cev operation p : A3 → A which is centralized by
the clone of A, such that p is invertible in its first and last variables. We then pick any element
0 ∈ A, and define the binary operation m : A2 → A by m(x, y) := p(x, 0, y). Then we have
m(x, 0) = p(x, 0, 0) = x and m(0, x) = p(0, 0, x) = x for all x ∈ A, so we can apply the variant
of the Eckmann-Hilton principle from Remark 1.5.3 to see that m must be commutative and
associative. This m will also be cancellative by construction, so by the finiteness of A we see that
m defines an abelian group structure on A, which shows that A is quasiaffine. One then needs
to check that any finite Taylor algebra which is quasiaffine has a Mal’cev polynomial to finish the
argument.

3.13 Bounded width: affine-free CSPs are solved by cycle-consistency

Really, the title of this section should be referring to pq-consistency (see Definition 3.9.1), but I
wanted to keep the table of contents understandable. We have already shown in Theorem 3.9.3
that if we have a pq-consistent instance of a CSP, then we can reduce some of the domains to find a
pq-consistent instance in which every domain is absorption free. In this section, we will show that
if every domain is absorption free and affine free, then we can reduce the instance further while
preserving pq-consistency.

Definition 3.13.1. We say that a finite idempotent algebra A is affine-free if no quotient of any
subalgebra of A is affine.

The argument strategy is very similar to the argument in the case of strongly connected algebras.
We already have most of the pieces.

• If a binary subdirect relation R ≤sd A× B is linked and A,B are absorption free and Taylor,
then R = A× B by the Absorption Theorem 3.11.1.

• If a binary relation R ≤ A×A absorbs the diagonal ∆A and A is absorption free, then ∆A ⊆ R
by Theorem 3.7.13.

• If a binary subdirect relation R ≤sd A×A is linked and A is Taylor, then R∩∆A ̸= ∅ by the
linked case of the Loop Lemma 3.11.11.

• If A is simple, idempotent, Taylor, absorption free, and not affine, then A is subdirectly
simple, by Theorem 3.12.9.

The missing ingredient is an analogue of Theorem 3.3.5.

Theorem 3.13.2. Suppose R ≤sd A × B × C is subdirect, A has no proper binary or centrally
absorbing subalgebra and no affine quotient, π23(R) has no proper binary absorbing subalgebra,
π12(R) = A × B, π13(R) = A × C, and A,B,C are finite idempotent Taylor algebras. Then R =
A× π23(R).
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Note that by the Absorption Theorem 3.11.1, we just need to prove that if we consider R as a
subdirect binary relation R ≤sd A × π23(R), then R is linked. If not, then the linking congruence
of R on A is contained in some maximal congruence θ ∈ Con(A), and if we replace R by the
quotient R/θ ≤sd A/θ × B × C, then we have a smaller counterexample to Theorem 3.13.2 such
that A is simple. So we just need to rule out the case where A is simple and R is the graph of a
homomorphism f : π23(R)↠ A. For this, we will use a consequence of the linked case of the Loop
Lemma 3.11.11.

Lemma 3.13.3. If A,B are finite Taylor algebras, R, S ≤sd A × B, and the linked components of
R on A ⊔ B contain the corresponding linked components of S, then R ∩ S ̸= ∅.

Proof. Let A′ ≤ A,B′ ≤ B be corresponding linked components of R, with R ∩ (A′ × B′) ̸= ∅. By
replacing A,B with A′,B′ and shrinking R,S, we may assume without loss of generality that R is
linked. Then R ◦ S− ≤sd A × A is also linked, so by the linked case of the Loop Lemma 3.11.11,
there is some a ∈ A such that (a, a) ∈ R ◦ S−. By the definition of R ◦ S−, this means that there is
some b ∈ B such that (a, b) ∈ R and (b, a) ∈ S−, so (a, b) ∈ R ∩ S.

Proof of Theorem 3.13.2. Write S = π23(R) ≤sd B× C. Assume for the sake of contradiction that
A is simple and that R is the graph of a homomorphism f : S↠ A. Note that by the idempotence
of A, for each a ∈ A the set f−1(a) ⊆ S is a subalgebra of S, and let Sa := f−1(a). The assumptions
π12(R) = A× B, π13(R) = A× C are equivalent to each Sa = f−1(a) being a subdirect relation on
B× C.

If we can show that there are a ̸= a′ ∈ A such that Sa,Sa′ ≤sd B × C have the same linked
components on B ⊔ C, then we can apply the lemma to see that f−1(a) ∩ f−1(a′) = Sa ∩ Sa′ ̸= ∅,
which will give us a contradiction. To accomplish this, we will show that each Sa has the same
linked components on B⊔C as S. In fact, we will show that for every a ∈ A, we have S ⊆ Sa◦S−a ◦Sa.

Let (b, c) be any element of S. Define a subalgebra Xbc ≤ A× A× A by

Xbc :=


xy
z

 ∣∣∣∣∣ ∃b′ ∈ B, c′ ∈ C s.t.

xb
c′

 ∈ R ∧

yb′
c′

 ∈ R ∧

zb′
c

 ∈ R

 .

Equivalently, we have xy
z

 ∈ Xbc ⇐⇒
[
b
c

]
∈ Sx ◦ S−y ◦ Sz.

Since each Sa is subdirect, we have (b, b) ∈ Sa ◦ S−a and (c, c) ∈ S−a ◦ Sa. Thus for each a ∈ A, we
have  a

a
f(b, c)

 ,
f(b, c)

a
a

 ∈ Xbc,

so Xbc is subdirect in A3, and for each i ̸= j ≤ 3 the projection πij(Xbc) is not the graph of an
automorphism of A. Thus by Theorem 3.12.9, we see that Xbc = A3, so in particular we have
(a, a, a) ∈ Xbc for all a ∈ A. Since this holds for every (b, c) ∈ S, we see that S ⊆ Sa ◦ S−a ◦ Sa
for all a ∈ A, so each Sa has the same linked components on B ⊔ C as S, which completes the
contradiction.
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Corollary 3.13.4. If A1, ...,An are finite idempotent Taylor algebras with no proper binary or
centrally absorbing subalgebras such that all but at most two of the Ais have no affine quotients,
and if R ≤sd A1×· · ·×An is a subdirect relation such that each πij(R) is full, then R = A1×· · ·×An.

Corollary 3.13.5. If A1, ...,An are finite idempotent Taylor algebras with no proper binary or
centrally absorbing subalgebras and no affine quotients, and if R ≤sd A1×· · ·×An×A1 is a subdirect
relation such that ∆A1 ⊆ π1,n+1(R) and πij(R) is full for all pairs (i, j) other than (1, n+ 1), then
R contains every tuple whose first and last coordinates are the same.

Proof. Suppose first that R has a proper binary or centrally absorbing subalgebra R′. Note that each
πij(R′) with (i, j) ̸= (1, n+1) is full since the Ai have no binary or centrally absorbing subalgebras.
Additionally, π1,n+1(R′) absorbs ∆A1 , so by Theorem 3.11.11 we see that ∆A1 ⊆ π1,n+1(R′) as well.
Thus we may replace R by R′, until we eventually reach a situation where R has no proper binary or
central absorption. In particular, we may assume that π1,n+1(R) has no proper binary or centrally
absorbing subalgebras.

For any 2 ≤ i ≤ n, we may apply Theorem 3.13.2 to πi,1,n+1(R) to see that πi,1,n+1(R) =
Ai × π1,n+1(R). Now consider R as an n-ary relation

R ≤sd π1,n+1(R)× A2 × · · · × An,

and apply the previous corollary to see that R = π1,n+1(R) × A2 × · · · × An. In particular, since
we have ∆A1 ⊆ π1,n+1(R), we see that R contains every tuple whose first and last coordinates are
equal.

Now that we’ve gathered up all the necessary ingredients, we argue as in the case of strongly
connected algebras. We start by picking some variable x with |Ax| > 1, pick a maximal congruence
θx ∈ Con(Ax), pick a congruence class A′

x ≤ Ax of θx. Then we refer back to Definition 3.5.2 to
define the “proper” variables y to be the variables such that there exists a path p from y to x such
that

Pp/θx ≤sd Ay × Ax/θx
is the graph of a homomorphism ιy : Ay ↠ Ax/θx, and define θy to be the kernel of ιy and A′

y to
be ι−1

y (A′
x).

As in the case of strongly connected algebras, we need to check that the homomorphism ιy does
not depend on the choice of path p. This time, we will check this using pq-consistency instead of
cycle-consistency.

Lemma 3.13.6. Suppose that the instance X is pq-consistent, and that x, θx are chosen as above.
Suppose that y is a proper variable, and that p, q are two paths from y to x such that Pp/θx,Pq/θx
are the graphs of homomorphisms ιp, ιq : Ay ↠ Ax/θx. Then ιp = ιq.

Proof. Consider the cycles p − q and q − p from y to y, then by the definition of pq-consistency
(Definition 3.9.1) we see that there must be some j ≥ 0 such that for all a ∈ Ay, we have

a ∈ {a}+ j(p− q + q − p) + p− q.

For any b ∈ Ax, we have b/θx− p+ p = b/θx and b/θx− q+ q = b/θx by the assumptions on Pp,Pq,
so we see that

{a}+ j(p− q + q − p) + p− q ⊆ ιp(a)− q = ι−1
q (ιp(a)),

so we must have ιq(a) = ιp(a).
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As a consequence, we have the following analogue of Lemma 3.5.4.

Lemma 3.13.7. Suppose that the instance X is pq-consistent, and that each domain has no proper
binary or centrally absorbing subalgebra. Suppose p is a path from y to a proper variable z. Then
one of the following is true:

• Pp/θz = Ay × Az/θz, or

• y is also proper, and Pp/(θy × θz) is the graph of an isomorphism ιp : Ay/θy
∼−→ Az/θz such

that ιy = ιz ◦ ιp.

Proof. Since Az/θz is simple, the linking congruence of Pp/θz must either be trivial or full. If the
linking congruence of Pp/θz is full, then by the Absorption Theorem 3.11.1 we see that Pp/θz =
Ay×Az/θz. Otherwise, Pp/θz is the graph of a homomorphism from Ay to Az/θz, so then by joining
the path p with a path from z to x we see that y is proper and ιy = ιz ◦ ιp.

To finish, we just need to show that restricting each proper variable’s domain Ax to A′
x gives

us a pq-consistent instance X′. To see that X′ is arc-consistent, we apply Corollary 3.13.4 as in the
proof of Lemma 3.5.5. To see that X′ is pq-consistent, we apply Corollary 3.13.5 as in the proof of
Lemma 3.5.6. We have proven our main result.

Theorem 3.13.8 (Kozik [112]). If X is a pq-consistent instance of a CSP such that every domain
is finite, idempotent, Taylor, and affine-free, then X has a solution.

As a curiously roundabout consequence, we see that we can’t build an affine (or even abelian)
algebra out of affine-free algebras.

Corollary 3.13.9 (A special case of Lemma 1.5.9). If A1, ...,An are finite, idempotent, Taylor,
and affine-free, then the variety V(A1, ...,An) which they generate does not contain any nontrivial
abelian algebras.

Proof. Since the variety V(A1, ...,An) is finitely generated, it is locally finite, so any nontrivial
abelian algebra in this variety must contain a finite abelian algebra B with |B| > 1. Since B is
finite, Taylor, and abelian, we see that B is affine by Theorem 3.12.8. But then B is a subquotient
of some finite product of Ais, so CSP(

∏
iAki ) fails to have bounded width for some finite k, which

contradicts the fact that CSP(A1, ...,An) is solved by pq-consistency.

Using commutator theory, we have the following consequence (see Corollary 1.9.34).

Corollary 3.13.10. If A is a finite idempotent algebra, then A is Taylor and affine-free if and only
if the variety V(A) is congruence meet-semidistributive.

Using the language of pp-constructability (see Definition 1.4.14), we can rephrase Theorem
3.13.8 as follows.

Corollary 3.13.11. A relational structure A with a finite domain has CSP(A) solved by pq-
consistency if and only if A does not pp-construct any of the relational structures (Z/p, {1}, x+y =
z), p prime.
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Proof. Since A pp-constructs its rigid core and vice-versa, we may assume without loss of generality
that A is a rigid core. Then the associated algebra A is idempotent, so A is Taylor if and only
if there is any relational structure which A does not pp-construct. To finish, we need to check
that if A is not affine-free, then A pp-constructs some (Z/p, {1}, x + y = z). Since restricting to
a subalgebra of A and taking a quotient can both be accomplished by pp-constructions, we may
suppose that A is affine and nontrivial.

If A is affine, then by definition A is polynomially equivalent to some module M. If A is also
idempotent, then the relation x+y = z is preserved by A, as are all singleton unary relations, so A
pp-constructs the relational structure (M, x+ y = z)rig (the superscript is shorthand for throwing
in all unary singleton relations). Since M is finite, some element of M must have prime order,
say order p. Then the set of all elements of M with order p is pp-definable, so we may suppose
without loss of generality that every nonzero element of M has order exactly p. As an abelian group
we then have M ∼= (Z/p)k for some k. Letting c be any nonzero element of M, we then see that
(M, {c}, x+ y = z) is homomorphically equivalent to (Z/p, {1}, x+ y = z).

3.13.1 Weak Prague instances

The original proofs of the bounded width conjecture (i.e., that affine-free CSPs have bounded
width) didn’t use the concepts of pq-consistency or cycle-consistency. Bulatov’s argument [44] used
(2, 3)-consistency, and leveraged a local structure theory of bounded width algebras in terms of two
element semilattice and majority subalgebras. The early arguments due to Barto and Kozik [12],
[21] used simpler algebraic ingredients, but used a more complicated consistency condition satisfied
by instances called Prague instances, which were then simplified to weak Prague instances. We
won’t go over the original Prague instance concept until later, but weak Prague instances have a
nice definition.

Definition 3.13.12. An instance X of a CSP with variable domains Ax is called a weak Prague
instance if it satisfies the following three conditions.

(P1) The instance X is arc-consistent, that is, each constraint relation R ≤
∏
xi
Axi is subdirect.

(P2) For every variable x, every set A ⊆ Ax, and every cycle p from x to x, we have the implication

A+ p = A =⇒ A− p = A.

(P3) For every variable x, every set A ⊆ Ax, and every pair of cycles p, q from x to x, we have the
implication

A+ p+ q = A =⇒ A+ p = A.

We can understand what condition (P2) says about an individual cycle p in terms of the digraph
associated to the binary relation Pp ≤sd Ax × Ax.

Proposition 3.13.13. A subdirect binary relation P ≤sd A× A on a finite algebra A satisfies the
implication

A+ P = A =⇒ A− P = A

for all A ⊆ A if and only if the digraph P = (A,P) satisfies one of the following equivalent
conditions:
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• every weakly connected component of P is strongly connected,

• every edge of P is contained in a directed cycle of P,

• there is some k ≥ 0 such that P− ⊆ P◦k.

Based on Proposition 3.13.13, a more memorable name for consistency condition (P2) might be
reversibility. An alternative form of condition (P2) is given in [20].

Proposition 3.13.14 (Barto, Kozik [20]). If an instance satisfies condition (P1), then (P2) is
equivalent to the following condition.

(P2*) For all variables x, sets A ⊆ Ax, and cycles p from x to x such that A + p = A, if p1 is the
first step of the cycle p, then we have A+ p1 − p1 = A.

Note that A+ p1 − p1 = A if and only if A is a union of linked components of p1.

Proof. It’s easy to see that (P1) and (P2) imply (P2*), so we’ll focus on proving the more difficult
implication: that (P2*) implies (P2). Suppose that A + p = A, and write p = p1 + p2 + · · · + pk,
where each pi has length one. By the assumption A+ p = A, we have

(A+ p1 + · · ·+ pi) + (pi+1 + · · ·+ pk + p1 + · · ·+ pi) = (A+ p) + p1 + · · ·+ pi = A+ p1 + · · ·+ pi,

so we can apply (P2*) to see that

(A+ p1 + · · ·+ pi) + pi+1 − pi+1 = A+ p1 + · · ·+ pi.

Thus we have

A− p = (A+ p)− p
= A+ p1 + · · ·+ pk−1 + pk − pk − pk−1 − · · · − p1
= A+ p1 + · · ·+ pk−1 − pk−1 − · · · − p1
= · · ·
= A+ p1 − p1 = A.

Conditions (P1) and (P2) are closely related to the basic linear relaxation of a CSP, from
subsection 1.6.1.

Theorem 3.13.15. If X is an instance of a CSP such that the basic linear relaxation of X has
a solution assigning probability vectors pC to each constraint C of X and probability vectors px to
each variable x, then the instance X′ obtained by restricting each constraint relation of X to the
support of the corresponding probability distribution pC (and similarly for the variable domains)
satisfies conditions (P1) and (P2).

Proof. Assume for simplicity that X = X′, that is, that all of the probability vectors have full
support. The compatibility of the probability vectors pC with the probability vectors on the
variable domains ensures that X is arc-consistent, so (P1) is satisfied. For (P2), it is easier to check
condition (P2*) from Proposition 3.13.14. We attach to each set A ⊆ Ax a probability P (A), given
by

P (A) =
∑
a∈A

px,a.

253



Now consider any step p1 from a variable x to an adjacent variable y within a constraint C. Let
P ⊆ Ax × Ay be the binary projection of the corresponding constraint relation onto x and y, and
let pP be the corresponding marginal distribution of pC . Then we have

P (A+ P) =
∑

b∈A+P

py,b ≥
∑

b∈A+P

∑
a∈A

pP,(a,b) =
∑
a∈A

px,a = P (A),

with equality when A+ P− P = A. Thus if A+ p = A, then we have

P (A) ≤ P (A+ p1) ≤ P (A+ p) = P (A),

so P (A+ p1) = P (A), and thus we have A+ p1 − p1 = A.

In fact, Theorem 3.13.15 has a converse when we restrict our attention to a single cycle at a
time.

Theorem 3.13.16. If X is an instance of a CSP such that the associated hypergraph of variables
and relations consists of a single cycle, then X has properties (P1) and (P2) if and only if the
basic linear relaxation of X has a solution such that for each constraint C of X, the support of the
corresponding probability distribution pC is exactly equal to the relation corresponding to C.

Proof. Let v1, ..., vn be the variables of X which occur in two constraints, in the order in which
they appear around the cycle, and let the constraints C1, ..., Cn be numbered such that vi and vi+1

are variables of Ci for each i (here we interpret the subscripts i, i+ 1 modulo n, so vn+1 = v1).
Consider the following directed graph on the set of pairs (i, a) where i ∈ Z/nZ and a ∈ Avi :

for every element r of the relation corresponding to constraint Ci, we make a directed edge from
(i, πvi(r)) to (i + 1, πvi+1(r)). Then conditions (P1) and (P2) guarantee that every edge of this
digraph is contained in a directed cycle. Choose some finite set of directed cycles C of this digraph
which covers each edge at least once. Then for each constraint Ci, we let pCi be the probability
distribution defined by first choosing a cycle from C uniformly at random, and then choosing
uniformly among the elements r of the relation corresponding to the constraint Ci such that the
edge from (i, πvi(r)) to (i+ 1, πvi+1(r)) is contained in our chosen cycle.

Example 3.13.1. When there is more than one cycle, properties (P1) and (P2) do not necessarily
imply that the basic linear relaxation has a solution, even if all relations are binary. Consider the
following instance, with two variables x, y taking values in the domain Ax = Ay = {a, b, c}:[

x
x

]
∈
{[

a
b

]
,

[
b
a

]
,

[
c
c

]}
∧[

x
x

]
∈
{[

a
c

]
,

[
b
c

]
,

[
c
a

]
,

[
c
b

]}
∧[

x
y

]
∈
{[

a
a

]
,

[
b
b

]
,

[
b
c

]
,

[
c
b

]
,

[
c
c

]}
∧[

y
y

]
∈
{[

a
b

]
,

[
b
c

]
,

[
c
a

]}
.

First we check that the basic linear relaxation to this instance has no solutions. Suppose for a
contradiction that the basic linear relaxation had a solution p. The first constraint implies that
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px,a = px,b, and the second constraint implies that px,a + px,b = px,c, so we must have px,a = px,b =
1/4 and px,c = 1/2. Similarly, the last constraint implies that py,a = py,b = py,c = 1/3. But the
constraint connecting x to y implies that px,a = py,a, which is a contradiction as 1/4 ̸= 1/3.

Now we check that this instance satisfies (P2), using Proposition 3.13.14. We only need to
check condition (P2) for singletons, since the domains have size 3 and for A ⊆ Ax and for any
cycle p from x to x, A+ p = A is equivalent to (Ax \ A)− p = (Ax \ A) as long as the instance is
arc-consistent. In order to check (P2) for singletons, first we check that there is no path through
the instance which takes {a, c}, {b, c} ⊆ Ax or {a, b}, {a, c}, {b, c} ⊆ Ay to any singleton, and we
check that there is no path from x to x which takes {c} ⊆ Ax to either of {a}, {b} ⊆ Ax. Then
we check that for any path p1 of length 1 such that A + p1 doesn’t contain one of the bad sets
which can never reach a singleton, either A is a union of linked components of p1 or else A is one
of {a}, {b} ⊆ Ax, p1 corresponds to the second constraint, and A+ p1 = {c} ⊆ Ax.

The condition (P3) can be rephrased to look slightly more similar to the condition for pq-
consistency.

Proposition 3.13.17. An instance X with finite variable domains Ax satisfies condition (P3) if
and only if it satisfies the following condition.

(P3*) For all variables x, for all pairs of cycles p, q from x to x, and for all a ∈ Ax, there is some
j ≥ 0 such that

{a}+ j(p+ q) = {a}+ j(p+ q) + p = {a}+ j(p+ q) + p+ q.

Proof. First we show that (P3) implies (P3*). For this, note that if we define a sequence of subsets
Ai ⊆ Ax by Ai = {a}+i(p+q), then by the finiteness of Ax there must be some j, k with k > 0 such
that Aj = Aj+k. But then (P3) implies that Aj + p = Aj and similarly that (Aj + p) + q = Aj + p.

For the reverse direction, let A ⊆ Ax satisfy A+ p+ q = A. Then by the finiteness of A we can
find j sufficiently large such that for each a ∈ A we have {a}+ j(p+ q) = {a}+ j(p+ q) + p. For
this choice of j, we then have

A = A+ j(p+ q) = A+ j(p+ q) + p = A+ p.

There is also a natural way to certify that a given instance satisfies condition (P3), following a
similar philosophy to the method we used to find absorbing reductions of cycle consistent majority
CSPs.

Proposition 3.13.18. An instance X satisfies condition (P3) at a variable x if and only if there
is a partial order ⪯ on the power set P(Ax), such that for every cycle p from x to x and every
A ⊆ Ax, we have

A ⪯ A+ p.

The instance X satisfies (P3) everywhere if and only if there is a quasiorder ⪯ on the set of
ordered pairs (x,A) with A ⊆ Ax, such that for each binary projection Rij ≤ Ax × Ay of any
constraint relation of X and for each A ⊆ Ax, we have

(x,A) ⪯ (y,A+ Rij),

and such that for each x, the restriction of ⪯ to {x} × P(Ax) defines a partial order on P(Ax).
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Weak Prague instances are closely related to pq-consistent instances, but they are not quite the
same.

Theorem 3.13.19. Every weak Prague instance is pq-consistent.

Proof. Suppose X is a weak Prague instance, that x is a variable of X, that p, q are cycles from x
to x, and that a ∈ Ax. We need to check that there is some j ≥ 0 such that

a ∈ {a}+ j(p+ q) + p.

Since Ax is finite, there must be some j > 0 such that

{a}+ j(p+ q) = {a}+ 2j(p+ q).

Let A = {a}+ j(p+ q) be the common value of both sides of the above equation (note that if Ax
is idempotent, then A will actually be a subalgebra of Ax). Then by (P2) we have

A = A+ j(p+ q) =⇒ A = A− j(p+ q),

so
a ∈ {a}+ j(p+ q)− j(p+ q) = A− j(p+ q) = A.

Additionally, by (P3) we have

A = A+ p+ (q + (j − 1)(p+ q)) =⇒ A = A+ p,

so
a ∈ A = A+ p = {a}+ j(p+ q) + p.

Example 3.13.2. Here we give an example of a pq-consistent instance (in fact, even a singleton arc-
consistent instance!) which is not a weak Prague instance. Consider the instance of 2-SAT with
just one variable x, domain Ax = ({0, 1},maj), and a binary constraint relation R ≤sd Ax × Ax
imposed on (x, x) given by R = {(0, 0), (0, 1), (1, 1)} (that is, R is the binary relation ≤).

Since ∆{0,1} ⊆ R, we see that this instance is pq-consistent. However, this instance does not
satisfy property (P2) of a weak Prague instance: we have

{1}+ R = {1},

but
{1} − R = {0, 1} ≠ {1}.

Alternatively, we can check that (P2) is not satisfied by noting that the digraph ({0, 1},≤) is weakly
connected but not strongly conected.

Although not every pq-consistent instance satisfies (P2), we at least have the following implica-
tion.

Theorem 3.13.20 (Kozik [112]). Every pq-consistent instance satisfies conditions (P1) and (P3).
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Proof. Suppose X is a pq-consistent instance, that x is a variable of X, that p, q are cycles from x
to x, and that A ⊆ Ax satisfies

A+ p+ q = A.

By pq-consistency, there is some j ≥ 0 such that

A ⊆ A+ j(p+ q) + p = A+ p.

Similarly, from
(A+ p) + q + p = A+ p,

we see that
A+ p ⊆ (A+ p) + q = A.

Thus we have A = A+ p.

Example 3.13.3. There is an example of an instance which satisfies (P1) and (P3), but which is
not pq-consistent. As in the previous example, this instance will have just a single variable x and
a single binary constraint R ≤sd Ax × Ax. We take the algebra Ax to be the three-element dual
discriminator algebra ({0, 1, 2}, d(x, y, z)) from Example 1.6.5. The binary relation R is the 0/1/all
constraint displayed below.

0

1

2

0

1

2

To see that this is not pq-consistent, note that there is no j such that (0, 0) ∈ R◦j . To see that
this instance satisfies condition (P3), we use the following total ordering on P({0, 1, 2}):

∅ ⪯ {0} ⪯ {0, 1} ⪯ {1} ⪯ {0, 2} ⪯ {2} ⪯ {1, 2} ⪯ {0, 1, 2}.

We can use weak Prague instances to see that there is a sense in which the linear programming
relaxation almost solves general CSPs of bounded width.

Definition 3.13.21. We say that a probability distribution µ on a finite set A is in general position
if we have µ(S) ̸= µ(T ) for every pair of disjoint subsets S, T ⊆ A with µ(S), µ(T ) ̸= 0. We say
that a solution to the linear relaxation of an instance X is in general position if the probability
distribution which it assigns to each variable domain is in general position.

Proposition 3.13.22. If there is a solution to the linear programming relaxation of X which is in
general position, then the instance we get by restricting each variable domain and relation to the
support of this solution is a weak Prague instance (and is therefore pq-consistent as well).

Proof. We just need to verify condition (P3). Suppose that the solution to the linear relaxation
assigns each variable x to the probability distribution µx on the variable domain Ax. If S ⊆ Ax is
contained in the support of µx and p, q are cycles from x to x such that S + p + q = S, then we
have

µx(S) ≤ µx(S + p) ≤ µx(S + p+ q) = µx(S),
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so µx(S) = µx(S + p). Thus we have

µx(S \ (S + p)) = µx((S + p) \ S),

so the assumption that µx is in general position implies that S = S + p.

Libor Barto has raised the following question.

Problem 3.13.1. Is it true that every instance of an affine-free CSP which satisfies conditions
(P1) and (P3) has a solution?

We will solve this problem later in these notes.

3.14 Terms for bounded width and the meta-problem

In this section we’ll prove the existence of nice ternary terms characterizing bounded width algebras,
which were first conjectured to exist by Jovanović [93] and later proved to exist using a Ramsey
argument and the fact that bounded width CSPs are solved by (2, 3)-consistency [94]. Using pq-
consistency instead of (2, 3)-consistency, it is possible to prove the existence of these terms directly,
as noted by Kozik [112]. These nice ternary terms will allow us to efficiently solve the meta-problem
for bounded width CSPs: given a core relational structure A as input, determine whether CSP(A)
has bounded width.

Theorem 3.14.1 (Height 1 identities for bounded width [93], [94], [112]). Suppose A is a relational
structure on a finite domain. Then CSP(A) has bounded relational width iff there are ternary
polymorphisms f, g ∈ Pol3(A) satisfying the height 1 identities

g(x, x, y) ≈ g(x, y, x) ≈ g(y, x, x) ≈ f(x, x, y) ≈ f(x, y, x) ≈ f(x, y, y).

In this case, every pq-consistent instance of CSP(A) has a solution.

The identities in the statement of Theorem 3.14.1 may be interpreted as follows. If the common
values c(x, y) of g(x, x, y), etc. are all equal to x, then g is a majority function, and f behaves as
if it is first projection. If instead we have c(x, y) = x ∨ y, then f, g both behave as if they are the
three-element semilattice operation x ∨ y ∨ z. Finally, if c(x, y) = y, then f is a Pixley operation,
so f(x, f(x, y, z), z) is a majority operation, and additionally Theorem 3.1.14 applies.

Since having bounded relational width is preserved by homomorphic equivalence, we may reduce
proving Theorem 3.14.1 to the special case where A is a core, and then we can use Theorem 1.4.7
to reduce to the case of a rigid core, so that the associated algebra A is idempotent. Since any
idempotent algebra A such that CSP(A) has bounded width must be Taylor and affine-free, we see
from Theorem 3.13.8 that CSP(A) is solved by pq-consistency. Furthermore, by Corollary 3.13.9
we see that the free algebra F = FA(x, y) ≤ AA2

is also affine-free, so CSP(F) is also solved by
pq-consistency. The plan is to construct a pq-consistent instance of CSP(F) which encodes the
existence of such ternary terms f, g, but before we do this we need a basic result about taking
closures under algebraic operations.

Definition 3.14.2. Suppose that X is an instance of a CSP such that every variable domain is
contained in A, but possibly the variable domains and the relations of X are not closed under the
operations of A. Define SgA(X) to be the instance of CSP(A) where every variable domain and
every relation of X is replaced by the subalgebra it generates.
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Proposition 3.14.3. If X is a pq-consistent instance as above, then SgA(X) is also pq-consistent.

Proof. For arc-consistency, let R ⊆ An be any relation, and note that SgA(π1(R)) = π1(SgA(R)).
For paths, let R,S ⊆ A×A be any binary relations, then we have SgA(R◦S) ⊆ SgA(R)◦SgA(S). For
cycles interacting well with the diagonal, note that for any B ⊆ A we have SgA2(∆B) = ∆SgA(B).

We have a similar result for weak Prague instances (Definition 3.13.12), which we won’t actually
need.

Proposition 3.14.4. If X is a weak Prague instance as above, then SgA(X) is also a weak Prague
instance.

Proof. That SgA(X) satisfies (P1) and (P3) follows from the fact that X is a pq-consistent instance
(Theorem 3.13.19), which implies that SgA(X) is also pq-consistent by the previous proposition,
and this in turn implies that SgA(X) satisfies (P1) and (P3) (Theorem 3.13.20). To check that
SgA(X) satisfies (P2), we use Proposition 3.13.13: note that if P ⊆ A×A satisfies P− ⊆ P ◦k, then
SgA(P )− = SgA(P−) ⊆ SgA(P ◦k) ⊆ SgA(P )◦k.

Lemma 3.14.5. Suppose X is an instance of a CSP over the two-element domain {x, y} with no
unary relations, such that every binary projection πi,j(R) of every relation R is subdirect in {x, y}2
and has (x, x) ∈ πi,j(R). Then X is pq-consistent.

Proof. The assumptions on X directly imply that X is arc-consistent. Now consider any pair
of cycles p, q from a variable v of X to itself. Note that the collection of binary relations on
{x, y} which are subdirect and contain (x, x) is closed under composition and reversal, so Pp,Pq
are both subdirect and contain (x, x). We just need to show that there is some j such that
y ∈ {y}+ j(p+ q) + p.

If (y, y) ∈ Pp, then we may take j = 0. Otherwise, we must have Pp = {(x, x), (x, y), (y, x)},
and since (x, x) ∈ Pq this implies that Pp ◦ Pq ◦ Pp = {x, y}2, so we may take j = 1.

Proof of Theorem 3.14.1. First we prove the existence of such terms in any finite idempotent Taylor
affine-free algebra A. Consider the ternary relations R,S ⊆ {x, y}3 given by

R =


xx
y

 ,
xy
x

 ,
yx
x


and

S =


xx
x

 ,
xy
y

 ,
yx
y

 .

It’s easy to check that each binary projection of R and S is subdirect in {x, y}2 and contains (x, x).
Now consider the CSP instance X with just a single variable v, and the apply the constraints R
and S to the triple (v, v, v) (if this makes you uncomfortable, you can instead use several different
variables and impose equality constraints between them). By the lemma, X is a pq-consistent
instance.

If we let F = FA(x, y) ≤ AA2
, then we may consider {x, y} to be a subset of F, and apply

the proposition to see that SgF(X) is also pq-consistent. Since F is finite, idempotent, Taylor, and
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affine-free, we can apply Theorem 3.13.8 to see that SgF(X) has a solution. Suppose that this
solution assigns the variable v to the value c ∈ F. Then we havecc

c

 ∈ SgF(R) ∩ SgF(S) = SgF


x x y
x y x
y x x

 ∩ SgF


x x y
x y x
x y y

 .

Thus there are ternary terms f, g of A such that

g

x x y
x y x
y x x

 =

cc
c

 = f

x x y
x y x
x y y

 ,

and these f, g satisfy the required identities.
For the converse direction, we will suppose that such terms f, g exist for some idempotent

algebra A, and prove that A is Taylor and affine-free. It’s easy to see that A must be Taylor, since
the identities satisfied by g can’t be satisfied by any projection. Since any identities which hold
in A also hold in any subquotient of A, we may suppose for contradiction that A is a nontrivial
idempotent affine algebra. Then A is polynomially equivalent to some module M over some ring
R, and we may write

g(x, y, z) ≈ αx+ βy + γz

for some α, β, γ ∈ R with α+ β + γ = 1. Plugging in x = 0 to the identities

g(x, x, y) ≈ g(x, y, x) ≈ g(y, x, x)

gives αy ≈ βy ≈ γy, so
g(x, y, z) ≈ α(x+ y + z)

and 3αx ≈ x. Then if we plug in x = 0 to the identities

2αx+ αy ≈ f(x, x, y) ≈ f(x, y, x) ≈ f(x, y, y),

we see that αy ≈ 2αy, so αy ≈ 0. Multiplying by 3, we get y ≈ 0, so in fact the algebra A must
consist of just the single element 0, a contradiction.

The proof technique of Theorem 3.14.1 can be used to produce many further terms which mimic
the monotone self-dual functions found in the clone of a two-element majority algebra.

Theorem 3.14.6. Suppose CSP(A) has bounded relational width and A is finite. Then there is a
binary polymorphism c(x, y), and an infinite family of polymorphisms hFn ∈ Poln(A) indexed by the
collection of maximal intersecting families F of subsets of [n], such that for each set S ∈ F with
S ̸= [n], if we define vSi by

vSi =

{
x i ∈ S,
y i ̸∈ S,

we have the identity
hFn (vS1 , ..., v

S
n ) ≈ c(x, y).

Now we show how we can use the ternary terms f, g from Theorem 3.14.1 to solve the meta-
problem.
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Theorem 3.14.7. Suppose we are given a finite relational structure A = (A,R1, ..., Rn), where
each relation Ri has arity mi and is described by explicitly listing out its tuples, and suppose that
we are promised that A is core. Then we can determine whether CSP(A) has bounded width in
polynomial time, and in the case where CSP(A) has bounded width, we can explicitly find ternary
functions f, g ∈ Pol3(A) as in Theorem 3.14.1.

Proof. We will define an instance X of CSP(A) such that every solution to X corresponds to a pair
of terms f, g as in Theorem 3.14.1. The instance X will have two sets of |A3| variables, one variable
for each value f(a, b, c) for a, b, c ∈ A and one variable for each value g(a, b, c) for a, b, c ∈ A.

The relations of X will do two jobs: they will ensure that f, g ∈ Pol3(A), and they will ensure
that f, g satisfy the required identities. To ensure that f ∈ Pol3(A), we consider every three tuples
a, b, c ∈ Ri (note that each of a, b, c is an mi-tuple of values in A), and we impose the constraint

f(a1, b1, c1)
f(a2, b2, c2)

...
f(ami , bmi , cmi)

 ∈ Ri
for each such tuple. The number of such constraints we need to impose to ensure that f ∈ Pol3(A)
is then ∑

i

|Ri|3,

which is at most cubic in the size of the description of A. We ensure that g ∈ Pol3(A) with a
similar collection of constraints.

To enforce the required identities between f, g, for every pair a, b ∈ A, we impose the equality
constraints

g(a, a, b) = g(a, b, a) = g(b, a, a) = f(a, a, b) = f(a, b, a) = f(a, b, b).

This requires a total of 5|A|2 equality constraints. Thus, the instance X has overall size at most
cubic in the size of the description of A.

In order to solve X, we view it as an instance of CSP(Arig), where Arig is the rigid core obtained
from A by adding a singleton unary relation {a} for each element a ∈ A. Note that if A is a core,
then A has bounded width iff Arig has bounded width (since each pp-constructs the other). We
now attempt to solve the instance X by using the cycle-consistency algorithm, as follows. For each
variable v of X, we go through the values a ∈ A in order, and temporarily modify X by adding the
extra constraint v ∈ {a} to make an instance Xv=a. Then we reduce Xv=a until it either becomes
cycle-consistent or until we reach a contradiction. If there is any a ∈ A such that Xv=a becomes
cycle-consistent, then we replace X by Xv=a and move on to the next variable. If every choice of
a ∈ A leads to Xv=a reaching a contradiction, then we give up and report that CSP(A) does not
have bounded width.

If the procedure ends without us giving up, then we have found f, g as in Theorem 3.14.1 and
these terms prove that CSP(A) has bounded width. Conversely, if CSP(A) has bounded width,
then the original instance X has a solution, and each time we replace X by Xv=a, the fact that
Xv=a can be reduced to a cycle-consistent instance implies that it has a solution, so the whole
procedure will end by successfully finding a pair of functions f, g. Of course, if CSP(A) does not
have bounded width, then we will fail to find a solution to X.
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A simple iteration argument allows us to give a criterion for bounded width involving just one
ternary term and a binary term derived from it - however, the identities involved will not have
height 1, so these new terms are unsuitable for the application to the meta-problem.

Theorem 3.14.8. A finite relational structure A has bounded relational width if and only if it has
a ternary polymorphism g ∈ Pol3(A) such that, if f is the binary term f(x, y) := g(x, x, y), we have

g(x, x, y) ≈ g(x, y, x) ≈ g(y, x, x) ≈ f(x, y) ≈ f(f(x, y), f(y, x)) ≈ f(f(x, y), f(x, y)).

Proof. Suppose first that A has bounded relational width, and let f3, g3 ∈ Pol3(A) be terms as in
Theorem 3.14.1. By an iteration argument applied to the unary operation x 7→ g3(x, x, x), we may
assume without loss of generality that we have

g3(x, y, z) = h ◦ g3(x, y, z),

where h(x) := g3(x, x, x). Define a sequence of terms gi by g1 := g3 and

gi+1(x, y, z) := gi(f3(x, y, z), f3(y, z, x), f3(z, x, y)).

Define binary terms f i by f i(x, y) := gi(x, x, y). Then we have

f1(x, y) ≈ g3(x, x, y) ≈ f3(x, x, y) ≈ f3(x, y, x) ≈ f3(x, y, y),

and for each i we have

f i+1(x, y) ≈ gi+1(x, x, y) ≈ gi(f3(x, x, y), f3(x, y, x), f3(y, x, x))

≈ gi(f1(x, y), f1(x, y), f1(y, x)) ≈ f i(f1(x, y), f1(y, x)).

Thus the sequence f i(x, y) is generated by iterating the map (x, y) 7→ (f1(x, y), f1(y, x)). Since A
is finite, there is some N such that gN ≈ g2N and fN ≈ f2N . Take f := fN and g := gN to finish
the construction.

Now suppose that f, g satisfy the assumed identities. Let e be the unary operation e(x) :=
f(x, x) = g(x, x, x). The identity

f(x, y) ≈ f(f(x, y), f(x, y)) = e(f(x, y))

implies that
e(e(x)) ≈ e(x),

so A is homomorphically equivalent to e(A), and the restrictions of f, e◦g to e(A) are idempotent.
Let Ae be the idempotent algebra (e(A), f |e(A), e ◦ g|e(A)). We will show that Ae is Taylor and
affine-free.

That Ae is Taylor follows from the identity

e ◦ g(x, x, y) ≈ e ◦ g(x, y, x) ≈ e ◦ g(y, x, x).

For the sake of contradiction, assume that B ∈ HSP (Ae) is a nontrivial affine algebra. Then we
can write

e ◦ g(x, y, z) ≈ α(x+ y + z)
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on B, for some α with 3αx ≈ x. Then we have

f(x, y) ≈ 2αx+ αy,

so
f(f(x, y), f(y, x)) ≈ 2α(2αx+ αy) + α(2αy + αx) ≈ 5α2x+ 4α2y.

Equating these and setting y to 0, we see that 2αx ≈ 5α2x. Multiplying by 9 and using 3αx ≈ x,
we get 6x ≈ 5x, so x ≈ 0 on B, a contradiction.

The identities satisfied by the term g of Theorem 3.14.8 have the following nice consequence.

Proposition 3.14.9. Suppose that g is a ternary term as in Theorem 3.14.8, and that f is the
associated binary term. Then for any a, b, either f(a, b) = f(b, a), or the set {f(a, b), f(b, a)} is
closed under g, and ({f(a, b), f(b, a)}, g) is isomorphic to a two-element majority algebra.

For small examples of bounded width algebras A which do not contain large majority subalge-
bras, most of the structure of a bounded width algebra seems to be controlled by the binary term
f from Theorem 3.14.8, with the exact values of the ternary term g only playing an important role
on the majority subalgebras. I have also conjectured a very strong refinement of Theorem 3.14.8,
which would give a much more explicit structure theory for bounded width algebras.

Conjecture 3.14.1. A finite idempotent algebra A has bounded relational width if and only if
it has a ternary term m and an associated binary term s(x, y) := m(x, x, y), which satisfy the
identities

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ s(x, y)

and
s(x, s(x, y)) ≈ s(s(x, y), x) ≈ s(x, y).

3.15 Stable subalgebras, and even weaker consistency for bounded
width

In this section we will introduce a new concept, which is similar to absorption but which is tar-
geted at subdirect relations rather than arbitrary relations. This allows us to unify the treatment
of centrally absorbing subalgebras with congruence classes of polynomially complete absorption
free quotients, eliminating most of the casework we need to deal with. We will demonstrate the
usefulness of this concept by solving the (P1)-(P3) problem (Problem 3.13.1). The approach used
in this section is based on Zhuk’s theory of “strong subalgebras” [165].

Rather than directly defining stable subalgebras, we will give an axiomatic description of what
we want from a concept of “stability”.

Definition 3.15.1. Suppose that V is a pseudovariety of finite algebras. We say that a binary
relation � on V is a stability concept (or just a stability) on V if � satisfies the following axioms.

(Subalgebra) If B � A, then B ≤ A.

(Transitivity) If C � B � A, then C � A.

(Intersection) If B,C � A and B ∩ C ̸= ∅, then B ∩ C � B.
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(Propagation) If f : A↠ B is a surjective homomorphism, then

(Pushforward) if C � A, then f(C) � B, and

(Pullback) if D � B, then f−1(D) � A.

(Helly) If B,C,D � A are such that B ∩ C ̸= ∅, C ∩ D ̸= ∅, and B ∩ D ̸= ∅, then B ∩ C ∩ D ̸= ∅.

(Ubiquity) If A ∈ V has |A| > 1, then either

– there is some B � A such that B ̸= A, ∅, or

– there is some proper congruence θ ∈ Con(A) such that A/θ is an affine algebra.

Given a stability concept � on V, we say that B is a stable subalgebra of A if B � A. We say that
an element a ∈ A is a stable element if {a} � A.

The axioms of a stability concept imply apparently stronger versions of themselves.

Proposition 3.15.2. If � is a binary relation on V which satisfies the propagation axiom from
Definition 3.15.1, then for any subdirect relation R ≤sd A× B in V, we have

C � A =⇒ C + R � B.

Proof. Let π1, π2 be the surjective projection maps from R to A and B, respectively. Then π−1
1 (C)�A

by the pullback part of the propagation axiom, so C+R = π2(π
−1
1 (C))�B by the pushforward part

of the propagation axiom.

Proposition 3.15.3. If � satisfies the Helly axiom and the intersection axiom from Definition
3.15.1, then for any n and any B1, ...Bn � A such that Bi ∩ Bj ̸= ∅ for all i, j ∈ [n], we have⋂
i∈[n] Bi ̸= ∅.

Proof. We induct on n - the base case n = 3 is the Helly axiom. For n > 3, set A′ = Bn and
B′
i = Bi ∩ Bn for i < n, then by the Helly axiom we have

B′
i ∩ B′

j = Bi ∩ Bj ∩ Bn ̸= ∅

for all i, j < n, and by the intersection axiom we have B′
i = Bi ∩ Bn � Bn = A′ for all i < n, so we

can apply the induction hypothesis to A′ to see that⋂
i∈[n]

Bi =
⋂
i<n

B′
i ̸= ∅.

Proposition 3.15.4. If � satisfies the Helly, intersection, and propagation axioms from Definition
3.15.1, then for any subdirect relation R ≤sd A1 × · · · × An in V, if Bi � Ai for each i and

πij(R) ∩ (Bi × Bj) ̸= ∅

for all i, j ∈ [n], then we have R ∩
∏
i∈[n] Bi ̸= ∅.

If � additionally satisfies the transitivity axiom, then we also have

R ∩
( ∏
i∈[n]

Bi
)

� R.
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Proof. For each i, the pullback part of the propagation axiom implies that π−1
i (Bi) � R, so the

previous proposition implies that
⋂
i∈[n] π

−1
i (Bi) ̸= ∅.

Proposition 3.15.5. If � satisfies the transitivity and ubiquity axioms from Definition 3.15.1, then
for any idempotent bounded-width algebra A ∈ V there is some a ∈ A such that {a} � A.

The precise choice of stability concept doesn’t matter to us - we can use the following fact as a
black box.

Theorem 3.15.6. If V is an affine-free pseudovariety of finite idempotent Taylor algebras, then
there is at least one stability concept � on V.

Before we prove Theorem 3.15.6, we will apply it to prove that a weaker form of consistency
suffices for bounded width CSPs.

Definition 3.15.7. An arc-consistent instance X of a CSP, with variable domains Ax, is called
weakly consistent if it satisfies

(W) for all nonempty subsets A ⊆ Ax and cycles p, q from x to x, we have

A+ p+ q = A =⇒ A ∩ (A+ p) ̸= ∅.

Weak consistency is clearly implied by properties (P1) and (P3) from Definition 3.13.12. We
can also rephrase weak consistency to make it look more similar to pq-consistency.

Proposition 3.15.8. An arc-consistent instance X with finite variable domains Ax is weakly con-
sistent if and only if it satisfies

(W’) for all a ∈ Ax and cycles p, q from x to x, there exist j, k ≥ 0 such that

a ∈ {a}+ j(p+ q) + p− k(p+ q).

In fact, if X is weakly consistent then for each x and each pair of cycles p, q we can find some j ≥ 0
such that ∆Ax ⊆ Pj(p+q)+p−j(p+q).

Proof. First we prove that (W) implies (W’). By finiteness we can pick some j ≥ 1 such that
{a}+j(p+q) = {a}+2j(p+q) for all a ∈ Ax. Setting A = {a}+j(p+q) and q′ = (j−1)(q+p)+q,
we have

A+ p+ q′ = A+ j(p+ q) = {a}+ 2j(p+ q) = A,

so A ∩A+ p ̸= ∅, that is,

({a}+ j(p+ q)) ∩ (a+ j(p+ q) + p) ̸= ∅.

Since this is true for all a ∈ Ax, we have ∆Ax ⊆ Pj(p+q)+p−j(p+q).
Next we show that (W’) implies (W). Suppose that A ⊆ Ax satisfies A + p + q = A, and pick

any element a ∈ A. If j, k ≥ 0 are such that a ∈ {a}+ j(p+ q) + p− k(p+ q), then we have

A ∩ (A+ p) ⊇ ({a}+ k(p+ q)) ∩ ({a}+ j(p+ q) + p) ̸= ∅.
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Our argument for showing that weakly consistent instances of bounded-width CSPs have solu-
tions will follow the same general strategy as the argument for pq-consistent instances. First we will
show that we can find an arc-consistent reduction where the reduced variable domains are all stable
subalgebras of the original variable domains, and then we will try to show that any arc-consistent
stable reduction is also weakly consistent. Unfortunately, we run into a snag: it is not clear that
every arc-consistent stable reduction will really remain weakly consistent. To get around this, we
introduce a still weaker condition which will make the strategy work.

Definition 3.15.9. An arc-consistent instance X of a CSP, with variable domains Ax contained
in a variety V with a stability concept �, is called stably consistent if it satisfies

(S) for all nonempty stable subalgebras B � Ax and cycles p, q from x to x, we have

B + p+ q = B =⇒ B ∩ (B + p) ̸= ∅.

If all of the variable domains are finite affine-free algebras, then stable consistency is equivalent
to the following:

(S’) for all stable elements {a} � Ax and cycles p, q from x to x, there exist j, k ≥ 0 such that

a ∈ {a}+ j(p+ q) + p− k(p+ q).

Lemma 3.15.10. If X is stably consistent and the variable domains Ax are affine free and are not
all singletons, then there is some arc-consistent reduction X′ of X such that every variable domain
of X′ is a stable subalgebra of the corresponding variable domain in X, and such that at least one
variable domain shrinks.

Proof. Consider the directed graph with vertices given by pairs (x,B) such that B � Ax and B ̸=
Ax, ∅, with an edge from (x,B) to (y,B + p) for each path p from x to y such that B + p ̸= Ay.
Note that by the propagation axiom and the assumption that X is arc-consistent, we always have

B � Ax =⇒ B + p � Ay.

Let S be a maximal strongly connected component of this directed graph.
Claim: For any (x,B) ∈ S and any cycle p from x to x, we have B ∩ (B + p) ̸= ∅.
Proof of claim: If (x,B + p) ̸∈ S, then by maximality of S we must have B + p = Ax, so

B ∩ (B + p) = B ̸= ∅. Otherwise, if (x,B + p) ∈ S, then there must be some cycle q from x to x
such that B + p+ q = B. Then condition (S) from the definition of stable consistency implies that
B ∩ (B + p) ̸= ∅.

Now define the universal cover T of X to be the instance whose underlying constraint hyper-
graph is an infinite tree with a surjective map π : T ↠ X on the sets of variables, such that for
every path p from x to y in X and every preimage u of x in T there is a unique lift of the path p
to T which starts at u. The fact that X is arc-consistent is equivalent to the fact that the solution
set to the infinite instance T is a subdirect relation of infinite arity.

Then for every pair of variables u, v of T and B,C such that (π(u),B), (π(v),C) ∈ S, there is a
unique non-backtracking path p from u to v in T, and by the claim we have (B+p)∩C ̸= ∅. Applying
Proposition 3.15.4, we see that the set of solutions to T such that u ∈ B whenever (π(u),B) ∈ S is
a nonempty, stable subalgebra of the solution set to T (well, every finite subinstance of T has this
property). Applying the pushforward part of the propagation axiom to this solution set, we obtain
an arc-consistent stable reduction X′ of the instance X.
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Lemma 3.15.11. If X is stably consistent and X′ is an arc-consistent stable reduction of X, then
X′ is also stably consistent.

Proof. Let the variable domains of X and X′ be Ax,A′
x, respectively. It’s enough to show that

if B � A′
x is a nonempty stable subalgebra, and if p is any cycle from x to x in X such that

B ∩ (B + p) ̸= ∅, then B ∩ (B + p′) is also nonempty, where p′ is the corresponding path in X′. For
this, consider the path instance P we get by unrolling the path p in X, and let

R ≤sd Ax0 × · · · × Axn

be the solution set to P, with x0 = xn = x. Now apply Proposition 3.15.4 to R, setting Bx0 =
Bxn = B and Bxi = A′

xi for i ̸= 0, n.

Putting these results together, we see that weak consistency implies that a solution exists in
bounded width CSPs.

Theorem 3.15.12. If X is a weakly consistent instance of CSP(A1, ...,An), where the Ai are finite
bounded width algebras, then X has a solution. In fact, in this case X has a stable solution (i.e. a
solution in which each variable x is assigned to a stable element of its variable domain Ax).

Of course, this all hinged on the existence of a stability concept: we still need to prove Theorem
3.15.6. Our construction of a stability concept won’t be particularly elegant, but it will get the job
done. First we will show that we can restrict to the case where every binary absorbing algebra is
centrally absorbing.

Proposition 3.15.13. Suppose that V is a pseudovariety of finite idempotent algebras, and that
V ′ is an affine-free reduct of V. If � is a stability concept on V ′, then the restriction of � to V is
also a stability concept.

Proof. The only nontrivial axiom to check is ubiquity. For this, note that since V ′ is affine-free,
we can apply Proposition 3.15.5 to see that every A ∈ V ′ has a stable element {a} � A. Since V is
idempotent, we also have {a} ≤ A in V.

Proposition 3.15.14. A pseudovariety V of finite algebras has a stability concept iff every finitely
generated subvariety of V has a stability concept.

Proof. This is an application of König’s Lemma: for each algebra A in V with |A| > 1 which has no
affine quotients, we need to choose at least one proper subalgebra B to be a stable subalgebra of A.
Since there are only a finite number of choices for B for each finite A, if we can make a consistent
set of choices for every finite collection of algebras A1, ...,An, then there exists a globally consistent
set of choices.

Definition 3.15.15. We say that a pseudovariety is strongly prepared if every binary absorbing
algebra B�bin A ∈ V is also strongly absorbing.

Proposition 3.15.16. Every locally finite variety of idempotent bounded width algebras has a
strongly prepared, bounded width reduct.

Proof. This follows by repeatedly applying Proposition 3.2.17 and Proposition 3.2.12, and using
the fact that the set of two-variable terms can only be shrunk finitely many times if the free algebra
on two generators is finite.
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To finish the proof of Theorem 3.15.6, we only need to construct stability concepts on pseu-
dovarieties of idempotent, strongly prepared Taylor algebras.

Definition 3.15.17. If V is a pseudovariety of finite idempotent strongly prepared Taylor algebras,
then we say that B � A if there is a sequence of subalgebras

A = A0 ≥ A1 ≥ · · · ≥ An = B

such that for each i, one of the following is true:

• Ai+1 contains a strongly absorbing subalgebra of Ai,

• Ai+1 centrally absorbs Ai, or

• there is a congruence θ on Ai such that Ai/θ is polynomially complete, binary absorption-free
and central absorption-free, and such that Ai+1 is a congruence class of θ.

We say that B is stable in one step if we can take n = 1 in the above. Following [165], if the third
bullet point above holds for B, then we say that B is a PC subalgebra of A with PC congruence θ.

Algebras which are stable in one step are almost the same thing as what Zhuk calls strong
subalgebras in [165] - the only difference is in how we handle the case of binary absorption.

Theorem 3.15.18. If V is a pseudovariety of finite idempotent strongly prepared Taylor algebras,
then the binary relation � on V from Definition 3.15.17 is a stability concept.

Proof. We just need to verify the axioms for �. Obviously � satisfies the subalgebra axiom, and
by Corollary 3.12.12 and the assumption that V is strongly prepared � satisfies ubiquity as well.
Transitivity holds for � by construction. The remaining axioms are intersection, propagation, and
the Helly property.

To verify the intersection axiom, suppose that B,C � A: we need to check that B ∩ C � B.
Inducting on |A|+ |B|+ |C|, we see that it’s enough to prove this when B and C are both stable in
one step. For this, we divide into four cases: either C �Z A (1), C contains a strongly absorbing
subalgebra of A (2), B contains a centrally absorbing subalgebra of A and C is a PC subalgebra
(3), or each of B,C is a PC subalgebra (4). Case (1) follows from B ∩ C �Z B. For case (2), we
need a claim which we will also use elsewhere.

Claim: If S�str A and B � A, then B ∩ S ̸= ∅ and B ∩ S�str B.
Proof of claim: We just need to check this when B is stable in one step. If B contains a

strongly absorbing subalgebra of A, we can apply Proposition 3.2.22. If B�Z A, then we can apply
Proposition 3.2.22 and Proposition 3.10.18. If B is a PC subalgebra with PC congruence θ, then
S/θ �str A/θ implies that S/θ = A/θ, so S meets every congruence class of θ, and in particular
B ∩ S ̸= ∅.

Case (2) for intersection axiom: Let C′ be a subalgebra of C such that C′ �str A. Then
C′ ∩ B ̸= ∅ and B ∩ C′ �str B, so B ∩ C contains a strongly absorbing subalgebra of B.

Case (3) for intersection axiom: Let B′ be a subalgebra of B such that B′ �Z A, and let
θ be the PC congruence for C. Then B′/θ �Z A/θ by Proposition 3.10.14, so since A/θ is central
absorption-free, we must have B′/θ = A/θ. Since B′ ≤ B ≤ A, we must have B/θ = A/θ as well, so
C is a PC subalgebra of B with PC congruence θ|B.
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Case (4) for intersection axiom: Suppose that B has PC congruence θ and C has PC
congruence ψ. We can consider A/(θ ∧ ψ) as a binary subdirect relation:

A/(θ ∧ ψ) ≤sd (A/θ)× (A/ψ).

Since A/θ,A/ψ are both simple (all polynomially complete algebras are simple), this binary relation
is either linked or is the graph of an isomorphism. If A/(θ ∧ ψ) is the graph of an isomorphism,
then we must have θ = ψ, so if B ∩ C ̸= ∅ then B = C. Otherwise, if A/(θ ∧ ψ) is linked, then by
the Absorption Theorem 3.11.1 we must have

A/(θ ∧ ψ) = (A/θ)× (A/ψ),

since neither A/θ nor A/ψ has a binary or centrally absorbing subalgebras. Thus B/ψ = A/ψ, so
B ∩ C is a PC subalgebra of B with PC congruence ψ|B.

That completes the proof of the intersection axiom. For the propagation axiom, the pullback
part is almost immediate from the definition. For the pushforward part of the propagation axiom,
we can suppose that A ↠ A/θ and that C is stable in one step in A. If C ⊇ C′ �str A, then
C′/θ�str A/θ. If C�Z A, then by Proposition 3.10.14 we have C/θ�Z A/θ. The tricky case is the
case where C is a PC subalgebra of A with PC congruence ψ. In this case, we consider A/(θ ∧ ψ)
as a binary subdirect relation:

A/(θ ∧ ψ) ≤sd (A/θ)× (A/ψ).

Since A/ψ is simple, this binary relation is either the graph of a homomorphism (A/θ) ↠ (A/ψ)
or is linked. If it is the graph of a homomorphism, then we must have θ ≤ ψ, so C/θ is a PC
subalgebra of A/θ with PC congruence ψ/θ. Now suppose that it is linked, and let S be a minimal
strongly absorbing subalgebra of A/θ, which exists by Proposition 3.2.22. Then by Theorem 3.7.12,
the binary relation

A/(θ ∧ ψ) ∩ (S× (A/ψ)) ≤sd S× (A/ψ)

is also linked, and then by the Absorption Theorem 3.11.1 it must be the full relation, since S has
no binary absorbing subalgebras and A/ψ has no binary/centrally absorbing subalgebras. This
means that C/θ contains S, so C/θ is a stable subalgebra of A/θ.

To finish, we just need to verify the Helly axiom, which states that if B,C,D �A and each pair
has a nonempty intersection, then B ∩ C ∩ D ̸= ∅. We induct on

|A|+ |A \ B|+ |A \ C|+ |A \ D|.

Suppose that one of B,C,D is not stable in one step, say B. Then there is some A′ with B �A′ �A
such that |A \ A′| < |A \ B| and |A′| < |A|. By the induction hypothesis, we have A′ ∩ C ∩ D ̸= ∅.
Set C′ = A′∩C, D′ = A′∩D, and B′ = B. Then by the intersection property we have B′,C′,D′ �A′,
and we have

C′ ∩ D′ = A′ ∩ C ∩ D ̸= ∅,

while
B′ ∩ C′ = B ∩ C ̸= ∅

and similarly B′ ∩ D′ ̸= ∅. Applying the induction hypothesis again, we see that

B ∩ C ∩ D = B′ ∩ C′ ∩ D′ ̸= ∅.
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So we only need to check the Helly property when each of B,C,D is stable in one step.
Suppose that one of B,C,D contains a strongly absorbing subalgebra S�strA, say B ⊇ S. Then

S ∩ C is a nonempty strongly absorbing subalgebra of C by the earlier claim, and applying that
claim again together with the fact that C ∩ D � C, we see that S ∩ C ∩ D ̸= ∅. So we may assume
that each of B,C,D is either centrally absorbing or is a PC subalgebra.

If all three of B,C,D are centrally absorbing, then by Corollary 3.10.13 there is a ternary term
t such that each of B,C,D absorbs A with respect to t. If we pick x ∈ B ∩C, y ∈ C ∩D, z ∈ B ∩D,
then we must have t(x, y, z) ∈ B ∩ C ∩ D.

If two of B,C,D are centrally absorbing, suppose that B,C are centrally absorbing and D is a
PC subalgebra with PC congruence θ. Then B ∩ C �Z A, so we must have (B ∩ C)/θ �Z A/θ, so
(B ∩ C)/θ = A/θ. Thus B ∩ C intersects D.

If one of B,C,D is centrally absorbing, we may suppose that B �Z A and that C,D are PC
subalgebras with PC congruences θ, ψ. As before, we must have B/θ = A/θ and B/ψ = A/ψ.
Considering A/(θ ∧ ψ) as a subdirect binary relation on (A/θ) × (A/ψ), we see that it must be
linked if C ̸= D, since both of A/θ,A/ψ are simple. Then by Theorem 3.7.12, the binary relation

B/(θ ∧ ψ) ≤sd (A/θ)× (A/ψ)

is also linked, so by the Absorption Theorem 3.11.1 it must be the full relation. Thus we have
B ∩ C ∩ D ̸= ∅.

Finally, suppose that all three of B,C,D are PC subalgebras, with PC congruences θ, ψ, η. Then
we can think of A/(θ ∧ ψ ∧ η) as a ternary subdirect relation:

A/(θ ∧ ψ ∧ η) ≤sd (A/θ)× (A/ψ)× (A/η).

If no two of B,C,D are equal to each other, then every binary projection of this relation is linked,
so every binary projection is full by the Absorption Theorem 3.11.1. If this ternary relation is the
full relation, then we have B ∩ C ∩ D ̸= ∅. Otherwise, pick some x ∈ A/θ such that the binary
relation

π23(A/(θ ∧ ψ ∧ η) ∩ ({x} × (A/ψ)× (A/η))) ≤sd (A/ψ)× (A/η)

is not the full relation. Applying the Absorption Theorem 3.11.1 again, we see that the binary
relation above must be the graph of an isomorphism between A/ψ and A/η. A similar argument
shows that A/θ is isomorphic to A/ψ. Thus we can apply Theorem 3.12.9 to show that all three of
A/θ,A/ψ,A/η are affine, which contradicts the assumption that they are polynomially complete.

Problem 3.15.1. Is there a less ad-hoc stability concept?

3.15.1 Ramsey-theoretic upgrade: vague solutions imply solvability

Unsatisfyingly, even weak consistency is too demanding to directly prove the existence of a 4-ary
Siggers term satisfying the identity t(x, x, y, z) ≈ t(y, z, z, x). Using Ramsey’s theorem, we can cure
this particular defect. The material in this subsection is based on the theory developed in [36].

In this subsection, we are mainly concerned with the following question: given an instance X
whose variable domains and relations are not assumed to be closed under the basic operations of our
bounded width algebra, under what circumstances can we guarantee that Sg(X) has a solution? If
the variable domains of X consist of generating sets for free algebras, then this question is equivalent
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to asking which systems of height 1 identities can be solved in every finite bounded width algebra.
We will show that if the instance X has a “vague” solution, then Sg(X) is guaranteed to have a
solution in any finite bounded width algebra which contains the variable domains of X.

Definition 3.15.19. Let P∅(A) be the set of non-empty subsets of a set A. A vague element of A
is defined to be a total quasiorder ⪯ on P∅(A) such that there is no pair of disjoint subsets S, T ⊂ A
with S ∼ T , where S ∼ T means that S ⪯ T and T ⪯ S.

If R ⊆sd A1 × · · · × An is subdirect, then we say that a collection of vague elements ⪯i of the
Ais vaguely satisfies the relation R if there exists a total quasiorder ⪯R on the disjoint union

P∅(A1) ⊔ · · · ⊔ P∅(An)

such that the restriction of ⪯R to P∅(Ai) is ⪯i for each i, and such that for each i, j ∈ [n] and each
nonempty S ⊆ Ai, we have

S ⪯R S + πij(R).

If X is an arc-consistent instance with variable domains Ax, then a collection of vague elements ⪯x
of the Axs is a vague solution to X if it vaguely satisfies every relation of X.

Total quasiorders are also known as preference relations - so a vague element of A is a preference
relation on the nonempty subsets of A which our hypothetical element might live in, which avoids
being caught out as incoherent by requiring that any pair of equally preferable subsets has a
nonempty intersection. Vague solutions are closely connected to weak consistency.

Proposition 3.15.20. Every weakly consistent instance has a vague solution. In fact, there is
always a vague solution where each vague element ⪯x extends the inclusion order ⊆ on P∅(Ax)
(possibly identifying some subsets with each other as well).

Proof. Suppose X is a weakly consistent instance with variable domains Ax, and define a quasiorder
⪯0 on ⊔

x

P∅(Ax)

by
S ⪯0 S + p

for every path p in X. Let ⪯ be any extension of ⪯0 to a total quasiorder which does not identify
any pair of sets which were not already identified by ⪯0. Then if we take ⪯x to be the restriction
of ⪯ to P∅(Ax) for each variable x, we see that each ⪯x is a vague element of Ax (since X is weakly
consistent) and that the collection of vague elements ⪯x is a vague solution to X.

For the second claim, we note that if we add additional tuples to any relation of a weakly
consistent instance then it remains weakly consistent by Proposition 3.15.8. If we add extra equality
relations from a variable to itself then clearly the instance remains weakly consistent as well, so we
see that we may add in the binary relation

∆Ax ∪ {(a, b)} ⊆sd Ax ×Ax

for any a, b ∈ Ax without causing the instance to stop being weakly consistent. If we add all such
binary relations in, then we see that the quasiorder ⪯0 has (x, S) ⪯0 (x, T ) for any S ⊆ T , so the
same will be true in the extension ⪯ of ⪯0.
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The converse isn’t true - there are instances which have vague solutions, but which are not
weakly consistent.

Example 3.15.1. Consider the Siggers instance, which has one variable u with domain Au = {x, y, z},
and one binary relation R ⊆sd Au ×Au given by

R =

{[
x
y

]
,

[
x
z

]
,

[
y
z

]
,

[
z
x

]}
.

This instance is not weakly consistent: we have

{z}+R = {x}, {x} −R = {z}

and {x} ∩ {z} = ∅. Nevertheless, the Siggers instance does have a vague solution: take ⪯u to be
the total order

{y} ≺u {x} ≺u {z} ≺u {x, y} ≺u {y, z} ≺u {x, z} ≺u {x, y, z}.

To see that (⪯u,⪯u) vaguely satisfies R, use the following total quasiorder ⪯R on [2]× P∅(Au):

(1, {y}) ≺R (2, {y}) ≺R (1, {x}) ≺R (2, {x}) ∼R (1, {z}) ≺R (2, {z})
≺R (2, {x, y}) ≺R (1, {x, y}) ∼R (2, {y, z}) ≺R (1, {y, z}) ≺R (2, {x, z}) ≺R (1, {x, z})
≺R (1, {x, y, z}) ∼R (2, {x, y, z}).

In order to show that vaguely solvable instances have solutions (after taking the closure by
algebraic operations), we will construct a very large weakly consistent instance with many copies of
each variable and relation from the original instance. In fact, by König’s Lemma we may even allow
ourselves to build an infinitely large weakly consistent instance (although we will only truly need a
finite portion of it). Roughly speaking, we will take the variables and relations of this instance to
be indexed by subsets of N of certain fixed sizes, which will put us in a position to apply Ramsey’s
theorem for hypergraphs.

Definition 3.15.21. If f : S → N is any function, then we define the associated total quasiorder
⪯f on S by

a ⪯f b ⇐⇒ f(a) ≤ f(b).

If ⪯ is a vague element of A, then we say that a function f : P∅(A) → N is compatible with ⪯ if
⪯f=⪯.

More generally, if R ⊆sd A1×· · ·×An is a subdirect relation with a vague solution (⪯1, ...,⪯n),
then we say that a function

f :
⊔
i

P∅(Ai)→ N

is compatible with R and (⪯1, ...,⪯n) if ⪯f can be used as the total quasiorder ⪯R from the
definition of vague satisfaction.

Definition 3.15.22. If X is an arc-consistent instance with a vague solution given by vague
elements ⪯x of the variable domains Ax, then we define the associated weakly consistent instance
X∗ as follows:

272



• for each variable x of X and each f : P∅(Ax) → N which is compatible with ⪯x, we have a
variable (x, f) of X∗, and

• for each constraint relation R ⊆sd Ax1 × · · · × Axn of X and each f :
⊔
i P∅(Axi)→ N which

is compatible with R and (⪯x1 , ...,⪯xn), we impose

((x1, f |P∅(Ax1 )
), ..., (xn, f |P∅(Axn )

)) ∈ R

as a constraint in X∗.

Proposition 3.15.23. If X has a vague solution, then the associated weakly consistent instance
X∗ is indeed weakly consistent.

Proof. By the construction of X∗, if there is a path p from (x, f) to (y, g) in X∗ and if S ⊆ Ax,
then we have

f(S) ≤ g(S + p).

Thus if we have S + p+ q = S and p, q are cycles from (x, f) to (x, f), then

f(S) ≤ f(S + p) ≤ f(S + p+ q) = f(S)

implies that f(S) = f(S + p). Then since f is compatible with ⪯x we must have S ∼x S + p, so
S ∩ (S + p) ̸= ∅ since ⪯x is a vague element.

Proposition 3.15.24. If X∗ is weakly consistent and its variable domains are contained in a finite
bounded width algebra, then Sg(X∗) has a stable solution.

Proof. By Proposition 3.15.8, an instance is weakly consistent if and only if certain cycles take
every element of the variable domain back to themselves, so if X∗ is weakly consistent then so is
Sg(X∗). By König’s Lemma, in order to check that Sg(X∗) has a solution we just need to check
that every finite subinstance of Sg(X∗) has a stable solution, and for this we can apply the main
result of the previous section.

Theorem 3.15.25. If X is an arc-consistent instance which has a vague solution, and if the
variable domains of X are contained in a finite bounded width algebra, then Sg(X) has a stable
solution.

Proof. Let X∗ be the associated weakly consistent instance. By the previous proposition, Sg(X∗)
has a stable solution. Fix one particular stable solution to Sg(X∗).

To finish, we imagine “coloring” the compatible functions f : P∅(Ax) → N by the values that
the variables (x, f) are assigned to in our solution of Sg(X∗). Since the variable domains in the
instance Sg(X∗) are finite, we only have finitely many colors to choose from, so Ramsey’s theorem
for hypergraphs implies that there is an infinite subset S ⊆ N such that each compatible function
f : P∅(Ax) → S has the same color. Iterating this for each variable x of the instance X, we
finally find an infinite subset U ⊆ N such that for each variable x of X and each compatible
f : P∅(Ax)→ U , the value assigned to (x, f) in our solution to Sg(X∗) only depends on x and does
not depend on f .

We claim that assigning the variable x of X to the value assigned to any such (x, f) (with
f : P∅(Ax)→ U compatible with ⪯x) in our solution to Sg(X∗) solves the instance Sg(X). To see
this, let R ⊆ Ax1 × · · · × Axn be any constraint relation of X. Then since (⪯x1 , ...,⪯xn) vaguely
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satisfies R, there is some total quasiorder ⪯R as in the definition of vague satisfaction. Since U ⊆ N
is infinite (or just sufficiently large), we can then find a function f :

⊔
i P∅(Axi) → U such that

⪯f=⪯R, and for this f we see that

((x1, f |P∅(Ax1 )
), ..., (xn, f |P∅(Axn )

)) ∈ Sg(R)

is a constraint of Sg(X∗). Therefore, the tuple of values assigned to (x1, ..., xn) by this procedure
satisfies the constraint Sg(R) of the instance Sg(X).

Remark 3.15.1. The same Ramsey argument can be used to show that if an instance has a vague
solution, then it has a vague solution where each vague element ⪯x extends the inclusion order ⊆
on P∅(Ax). A refinement of this argument shows that we can also assume that our vague elements
⪯x have the following property: whenever S ⪯x T , we also have Ax \ T ⪯x Ax \ S.

We can use stability to upgrade this result further: we don’t need to find a vague solution to
the full instance X, it’s enough to find a vague solution to just the binary part of X.

Definition 3.15.26. If X is an instance, then we define the binary part of X to be the instance
Xbin given by replacing each k-ary constraint relation R ⊆ Ax1 × · · · × Axk by the collection of
binary relations πij(R) ⊆ Axi ×Axj for i, j ∈ [k].

Corollary 3.15.27. If X is an arc-consistent instance such that Xbin has a vague solution, and if
the variable domains of X are contained in a finite bounded width algebra, then Sg(X) has a stable
solution.

Proof. By Proposition 3.15.4 and arc-consistency, any stable solution to Sg(Xbin) is also a stable
solution to Sg(X).

Example 3.15.2. There is an arc-consistent instance X such that Xbin has a vague solution but X
does not: take the 5-ary relation R ⊆sd {a, b, c, d}5 given by

R =




a
a
b
c
d

 ,

a
b
c
d
a

 ,

b
c
d
a
a

 ,

c
d
a
a
b

 ,

d
a
a
b
c


 ,

and let X be the instance with a single variable x which is supposed to satisfy the constraint
(x, x, x, x, x) ∈ R. To see that X has no vague solution, it’s enough to consider the relative order of
the singleton sets {b} and {c}. On the other hand, Xbin has a vague solution where all five vague
elements are given by

{d} ≺ {c} ≺ {b} ≺ {c, d} ≺ {b, d} ≺ {a} ≺ {b, c} ≺ {a, d} ∼ · · · ∼ {a, b, c, d}.

The fact that examples like this exist seems to be a hint that vague solutions are nowhere near to
being the last word on bounded width CSPs.

Problem 3.15.2. If the sizes of the variable domains in X are bounded by a constant (perhaps
just 3), how hard is it to determine whether Xbin has a vague solution?
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We can at least make it a bit simpler for ourselves to check that a particular assignment of
vague elements really gives us a vague solution.

Proposition 3.15.28. If R ⊆sd Ax × Ay and ⪯x,⪯y are vague elements of Ax, Ay, respectively,
then the pair (⪯x,⪯y) vaguely satisfies R iff the following implication holds for all S ⊆ Ax, T ⊆ Ay:

S +R ⪯y T ∧ T −R ⪯x S =⇒ S +R ∼y T ∧ T −R ∼x S.

Proof. Consider the digraph on P∅(Ax) ⊔ P∅(Ay) with an edge from S ⊆ Ax to T ⊆ Ay whenever
S + R ⪯y T , and similarly with an edge from T ⊆ Ay to S ⊆ Ax whenever T − R ⪯x S. We just
need to check that for every cycle (S1, T1, S2, T2, ..., Sk, Tk) of this digraph, all Sis are related by ∼x
and all Tjs are related by ∼y. For this, suppose that Si is ⪯x-minimal and that Tj is ⪯y-minimal.
Then from

Sj +R ⪯y Tj ⪯y Ti−1

and
Ti−1 −R ⪯x Si ⪯x Sj ,

we see that Si ∼x Sj and Ti−1 ∼y Tj , so Sj is ⪯x-minimal and Ti−1 is ⪯y-minimal. Applying the
same reasoning to Sj , Ti−1, we see that Si−1 is ⪯x-minimal and Tj−1 is ⪯y-minimal. Continuing in
this fashion, we see that all of the Ss are related by ∼x and all of the T s are related by ∼y, which
is what we had to check.

As our first illustration of the theory, we can show the existence of a Siggers term which satisfies
a strong collection of additional identities.

Proposition 3.15.29. A finite algebra A has bounded relational width if and only if it has a 4-ary
term t which satisfies the identities

t(x, x, y, z) ≈ t(y, z, z, x) ≈ t(z, x, y, x)

and
t(x, y, x, z) ≈ t(x, z, y, x) ≈ t(y, z, x, x)

simultaneously.

Proof. It is easy to see that the identities satisfied by t imply that the ternary terms f, g defined
by

g(x, y, z) := t(x, x, y, z), f(x, y, z) := t(x, y, x, z)

satisfy the equations

g(x, x, y) ≈ g(x, y, x) ≈ g(y, x, x) ≈ f(x, x, y) ≈ f(x, y, x) ≈ f(x, y, y).

from Theorem 3.14.1, so if such a t exists then A has bounded relational width.
Now suppose that A has bounded relational width. Let R be the following 6-ary relation on

{x, y, z}:

R =





x
y
z
x
x
y

 ,


x
z
x
y
z
z

 ,


y
z
y
x
y
x

 ,


z
x
x
z
x
x




.
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Consider the following instance X on the six variables a, b, c, d, e, f :

(a, b, c, d, e, f) ∈ R ∧ a = b = c ∧ d = e = f.

If we consider the domain {x, y, z} as a subset of the free algebra FA(x, y, z) ≤ AA3
in the natural

way, then we just need to show that Sg(X) has a solution. Since X is arc-consistent, by Corollary
3.15.27 we just need to find a vague solution to the binary part Xbin. We assign the variables a, b, c
to the vague element ⪯g given by

{y} ≺g {z} ≺g {x} ≺g {y, z} ≺g {x, y} ≺g {x, z} ≺g {x, y, z},

and we assign the variables d, e, f to the vague element ⪯f given by

{y} ≺f {z} ∼f {y, z} ≺f {x} ∼f {x, y} ≺f {x, z} ≺f {x, y, z}.

The reader may check that this assignment vaguely satisfies every binary projection of the relation
R.

As another illustration of the theory, we will show how the Loop Lemma 3.11.17 can be proved
for finite bounded width algebras by constructing suitable vague solutions.

Theorem 3.15.30. If R ⊆ Ax × Ax is a smooth, weakly connected digraph of algebraic length 1,
then the instance X which consists of only the variable x and the constraint (x, x) ∈ R has a vague
solution. As a consequence, the instance Sg(X) has a stable solution in any finite bounded width
algebra.

Proof. We will attempt to find a function f : [2]×P∅(Ax)→ Q such that for each proper nonempty
S ⊂ Ax we have

|f(1, S)− f(2, S)| = 1,

along with
f(1, S) ≤ f(2, S +R)

and
f(2, S) ≤ f(1, S −R).

To this end, we define a weighted directed graph G with vertices corresponding to proper nonempty
subsets S ⊂ Ax, and with an edge of weight +1 from S to S +R and an edge of weight −1 from S
to S −R for each such S (assuming S +R,S −R ̸= Ax). We will handle each strongly connected
component of G separately.

We call a directed cycle of G positive if the sum of the weights along the cycle is strictly greater
than 0, and we define negative cycles similarly. For each positive directed cycle of G from a vertex
S ⊂ Ax to S, there is a corresponding cycle p of the instance X which has strictly more +R steps
than −R steps, with S + p = S, and we call such a cycle p “positive” as well.

Claim. No strongly connected component of G contains both a positive directed cycle and a
negative directed cycle.

Proof of claim. Suppose otherwise. Then we can find a vertex S ⊂ Ax of G, a positive cycle
p, and a negative cycle q, such that

S = S + p = S + q.
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We may assume without loss of generality that the total weights of p and q are opposite to each
other, so p+ q has total weight 0. Then we have

S +R◦j −R◦j ⊆ S + jp+ jq = S

for all j ≥ 0, so S must be a union of linked components of R◦j for all j. This contradicts Proposition
3.11.15: some R◦j must be linked if R has algebraic length 1.

Now suppose that C is a strongly connected component of G which does not contain any positive
directed cycles. We will define the restriction of f to C such that

f(2, S) = f(1, S)− 1

for all S ∈ C. To do this, we pick any S0 ∈ C and any constant cC , and define f(1, T ) to be cC plus
the maximum total weight of any directed path from S0 to T , for all T ∈ C. That this maximum
total weight is well-defined follows from the fact that C does not contain any positive directed cycles
together with the finiteness of C. This definition is easily seen to satisfy

f(1, T ) ≤ f(2, T +R) = f(1, T +R)− 1,

f(1, T )− 1 = f(2, T ) ≤ f(1, T −R),

so long as T + R, T − R are in C. Additionally, if f(1, T ) = f(1, U) for some T,U ∈ C, then there
is some k such that S0 has paths of total weight k to each of T and U - in this case, we see that

S + kR ⊆ T ∩ U,

so T ∩ U ̸= ∅.
We handle strongly connected components which do not have any negative directed cycles

similarly, looking at the negative of the minimum total weight instead of the maximum total
weight, and taking f(2, S) = f(1, S) + 1 on such components.

To finish, we pick any total order on the strongly connected components of G which extends
the reachability order, and we choose the constants cC for the various connected components C
according to this order, with sufficient distance between them that there is no interaction between
the various strongly connected components of G.

3.16 Semidefinite Programming robustly solves bounded width
CSPs

In this section we finally touch on a difficult topic: trying to maximize the number of satisfied
constraints in a CSP instance which has no perfect solution. We consider only a very special case
of this problem here: the problem of trying to approximately solve a CSP when we are promised
that there exists a way to satisfy all but a tiny fraction of the constraints. This problem was
considered by Guruswami and Zhou in [77].

Definition 3.16.1. We say that CSP(A) is robustly solvable if there is a function f : [0, 1]→ [0, 1]
such that

lim
ϵ→0

f(ϵ) = 0,
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and a polynomial time algorithm that takes as input an instance X of CSP(A), and outputs
an assignment to the variables of X such that if it is possible to satisfy a 1 − ϵ fraction of the
constraints of X, then the assignment found by the algorithm satisfies at least a 1 − f(ϵ) fraction
of the constraints of X.

Before we dive into our main topic, we first give evidence that certain CSPs are not robustly
solvable. We won’t prove the next result here.

Theorem 3.16.2 (H̊astad [87]). Let A be the affine CSP template with domain A, where A is the
idempotent reduct of any finite abelian group, with relations given by Rc = {(x, y, z) | x + y + z =
c} ≤sd A3 for every possible c ∈ A.

Then for every fixed ϵ > 0, it is NP-hard to solve the following problem: given an instance X of
CSP(A) such that there exists an assignment satisfying at least a 1− ϵ fraction of the constraints,
find an assignment which satisfies at least a 1

|A| + ϵ fraction of the constraints.

Note that for the affine CSP defined above, randomly guessing values for variables will produce
an assignment which satisfies a 1

|A| fraction of the constraints, on average. So H̊astad’s result tells
us that it’s NP-hard to find any improvement on randomly guessing, for affine CSPs which are not
perfectly solvable.

Corollary 3.16.3. If CSP(A) is robustly solvable and P ̸= NP , then A must be affine-free (and
therefore A has bounded width).

The best known approach to approximately solving CSPs, based on semidefinite programming,
was laid out in Raghavendra’s thesis [145] (see [144] for a short overview of the results). Under
the Unique Games Conjecture, Raghavendra proved that this approach is actually optimal. The
strategy is as follows.

As in the linear programming relaxation of a CSP, we imagine that we are looking for a prob-
ability distribution over solutions to the CSP. We do not give a full description of this unknown
probability distribution: we only describe the marginal distribution over assignments to tuples of
variables belonging to constraints of the CSP, as well as the marginal distribution over assignments
to each pair of variables in the CSP. We impose compatibility conditions between the marginal dis-
tributions over each tuples of variables (v1, ..., vm) belonging to some constraint and the marginal
distribution over each pair (vi, vj) for i, j ≤ m.

So far all the conditions given can be described by a system of linear inequalities. The semidef-
inite aspect comes from the following observation: every covariance matrix of any collection of
random variables must be positive semidefinite.

To be more concrete, for each pair of variables x, y and each pair of values a ∈ Ax, b ∈ Ay, we
have some variable p(x,a),(y,b) between 0 and 1, describing the probability that x is assigned the
value a and y is assigned the value b. We create a matrix Mp with rows and columns indexed by
ordered pairs (x, a) with a ∈ Ax, and fill the (x, a), (y, b) entry with p(x,a),(y,b) (I like to imagine
Mp as a block matrix, with each block of rows or columns corresponding to a particular variable
x). Then the matrix Mp must be positive semidefinite if these probabilities come from an actual
probability distribution.

Before defining everything formally, we give an example.

Example 3.16.1. Consider the following instance of 2-SAT: we have three variables x, y, z, and each
pair of variables has a ̸= constraint imposed between them. This instance has no perfect solution,
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but the standard linear programming relaxation is incapable of noticing this. Let’s see how the
semidefinite relaxation does.

The matrix Mp has six rows and six columns, corresponding to the pairs (x, 0), (x, 1), (y, 0),
(y, 1), (z, 0), (z, 1), in that order. If Mp comes from a probability distribution over perfect solutions
to this instance of 2-SAT, then it must have the following shape:

Mp =



∗ 0
0 ∗

0 ∗
∗ 0

0 ∗
∗ 0

0 ∗
∗ 0

∗ 0
0 ∗

0 ∗
∗ 0

0 ∗
∗ 0

0 ∗
∗ 0

∗ 0
0 ∗

 .

Additionally, the entries in each block of Mp must sum to 1 (and be ≥ 0), and for each fixed row
or column of Mp, the sum of the entries in the intersection of the row/column with any block must
only depend on the row/column. Putting these linear constraints together, we quickly see that
every nonzero entry of Mp must actually be equal to 1

2 . So far, this is exactly what the linear
programming relaxation will guess.

The matrix Mp found above, with all nonzero entries equal to 1
2 , is not positive semidefinite.

To see this, note that we have

(
1 −1 1 −1 1 −1

)


1
2 0
0 1

2

0 1
2

1
2 0

0 1
2

1
2 0

0 1
2

1
2 0

1
2 0
0 1

2

0 1
2

1
2 0

0 1
2

1
2 0

0 1
2

1
2 0

1
2 0
0 1

2





1
−1

1
−1

1
−1

 = −3 < 0.

So the semidefinite relaxation of the problem can detect that we can’t perfectly solve this instance
of 2-SAT.

Now suppose that we give up on finding a perfect solution, and instead look for an approximate
solution. This means that some of the entries of Mp which were required to be 0 before are instead
required to be small. One choice of Mp that works is

Mp =
1

8



4 0
0 4

1 3
3 1

1 3
3 1

1 3
3 1

4 0
0 4

1 3
3 1

1 3
3 1

1 3
3 1

4 0
0 4

 ,

which the reader may verify is positive semidefinite. This seems to satisfy each particular constraint
with a probability of 3

4 . So the semidefinite relaxation thinks it might be possible to satisfy a 3
4

fraction of the constraints. An easy brute force search reveals that the best we can do in reality is
to satisfy a 2

3 fraction of the constraints.

There is one further step we will take to analyze the semidefinite relaxation, based on a standard
fact from linear algebra about positive semidefinite matrices.
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Proposition 3.16.4. If M is an n × n positive semidefinite matrix, then there is a collection of
vectors x1, ..., xn ∈ Rn such that Mij = xi · xj for all i, j ≤ n. Such a collection of vectors x1, ..., xn
can be computed from M in polynomial time.

Proof. Perhaps the simplest approach is to compute a Cholesky decomposition of M , writing M =
LLT for some lower triangular matrix L. The columns of LT can then be used as the vectors
x1, ..., xn.

Example 3.16.2. The matrix Mp from the end of the previous example is positive semidefinite, so
there should exist vectors x0, x1, y0, y1, z0, z1 ∈ R6 whose matrix of dot products is equal to Mp.
Since Mp has rank 3, we should even be able to find such vectors in R3. One particularly satisfying
choice of vectors that works is

x0 =
1√
24


√

2−
√

3√
2√

2 +
√

3

 , x1 =
1√
24


√

2 +
√

3√
2√

2−
√

3

 , y0 =
1√
24


√

2√
2 +
√

3√
2−
√

3

 , y1 =
1√
24


√

2√
2−
√

3√
2 +
√

3

 ,
with z0, z1 defined similarly by cyclically shifting y0, y1.

Now we can give the definition of the basic semidefinite relaxation of a CSP (this is the LC
relaxation from [145]).

Definition 3.16.5. Given an instance X of a CSP, with variable domains Av and constraints C
imposing relations RC ≤

∏
i≤mC

AvC,i on the variables vC,1, ..., vC,m, the basic semidefinite relax-
ation of X is the following optimization problem. We wish to find a system of “probabilities” pC,r
for r ∈

∏
i≤mC

AvC,i , such that ∑
r

pC,r = 1

for each constraint C and
pC,r ≥ 0

for each C, r, and to find vectors
xa ∈ RN

for each variable x and value a ∈ Ax, where N =
∑

x |Ax| is the number of pairs (x, a), such that
for each C and each pair of variables x = vC,i, y = vC,j involved in the constraint C, we satisfy the
compatibility condition

xa · yb =
∑

ri=a,rj=b

pC,r.

For each pair of variables x, y of X which occur together in some constraint C, any solution to
the basic semidefinite relaxation will automatically have the following properties:

• For all a ̸= b ∈ Ax, we have xa · xb = 0.

• We have
∑

a∈Ax
∥xa∥2 = ∥

∑
a∈Ax

xa∥2 = 1.

• For all a ∈ Ax, b ∈ Ay, we have xa · yb ≥ 0.

• We have
∑

a∈Ax,b∈Ay
xa · yb = 1.
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Our goal is to find such a system of probabilities pC,r and vectors xa such that the quantity

1
#C

∑
C

∑
r∈RC

pC,r

is maximized. The maximum possible value of that sum is called the value of the semidefinite
relaxation. If the value of the semidefinite relaxation is equal to 1, then we say that the system of
probabilities pC,r and vectors xa perfectly solves the semidefinite relaxation.

Note that the constraints we make on the vectors xa only involve their dot products, and that
they are always linear equalities/inequalities in terms of these dot products. We can deduce from
these constraints a result which involves the vectors directly.

Proposition 3.16.6. Suppose that a system of probabilities pC,r and vectors xa are as in the basic
semidefinite relaxation of a CSP instance X. Then for any variables x, y of X which occur together
in some constraint, we have ∑

a∈Ax

xa =
∑
b∈Ay

yb.

Proof. Let xAx =
∑

a∈Ax
xa and similarly let yAy =

∑
b∈Ay

yb. Then we have ∥xAx∥2 = ∥yAy∥2 =
xAx · yAy = 1, so by the equality case of Cauchy-Schwarz we must have xAx = yAy .

A useful generalization of the notation for the vectors xa was used heavily in [20].

Definition 3.16.7. Suppose we are in the setup of the basic semidefinite relaxation of a CSP
instance X. If x is a variable of X and A ⊆ Ax, then we define the vector xA by

xA =
∑
a∈A

xa.

Note that since the vectors xa are pairwise orthogonal for a fixed variable x, we have

∥xA∥2 =
∑
a∈A
∥xa∥2 = xA · xAx .

Additionally, for each pair of variables x, y, we have

xA · yB =
∑

a∈A,b∈B
xa · yb

by the distributive law.
Before explaining how to use the basic semidefinite relaxation to robustly solve affine-free CSPs,

we will first show that if an instance X of an affine-free CSP has a perfect solution to its basic
semidefinite relaxation, then in fact X has a solution. The main idea is to prove that the set of
values a ∈ Ax such that the vectors xa are nonzero can be used to restrict the instance to get a weak
Prague instance, which will then be pq-consistent by Theorem 3.13.19. The crucial computation is
analyzing what happens to the vector xA when we take a single step along a path.
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Lemma 3.16.8. Suppose we are in the setup of the basic semidefinite relaxation of a CSP instance
X. Let x, y be variables of X which occur together in some constraint, and define a binary relation
P ⊆ Ax × Ay by

(a, b) ∈ P ⇐⇒ xa · yb > 0.

Then for any set A ⊆ Ax, we have
∥xA∥2 ≤ ∥yA+P ∥2,

with equality only when xA = yA+P . In fact, we have

xA · (yA+P − xA) = 0,

that is, yA+P is the sum of xA with a vector which is perpendicular to xA. Furthermore, we have
xA = yA+P if and only if A+ P − P ⊆ A.

Proof. Before diving into the algebraic details of the proof, it may be helpful to note that the
dot products xa · yb define a probability distribution µ supported on P ⊆ Ax × Ay such that for
A ⊆ Ax, B ⊆ Ay we have Pµ[A×B] = xA · yB, and such that the marginal distributions µx, µy on
Ax,Ay have probabilities given by Pµx [A] = ∥xA∥2, Pµy [B] = ∥yB∥2. It’s possible to argue purely
in terms of the probability distribution µ, but the proof we give below won’t directly refer to µ at
all.

We have xA · xA = xA · xAx , and by the definition of P we have

xA · yA+P =
∑

a∈A,b∈A+P
xa · yb =

∑
a∈A,b∈Ay

xa · yb = xA · yAy .

Since xAx = yAy , we have

xA · xA = xA · xAx = xA · yAy = xA · yA+P ,

so xA is orthogonal to yA+P − xA.
From the orthogonality of xA with yA+P − xA, we have

∥yA+P ∥2 = ∥xA + (yA+P − xA)∥2 = ∥xA∥2 + ∥yA+P − xA∥2 ≥ ∥xA∥2,

with equality exactly when yA+P = xA.
For the last statement, note that we have ∥xA∥2 ≤ ∥yA+P ∥2 ≤ ∥xA+P−P ∥2, so we just need to

check the implication xA = yA+P =⇒ xA+P−P = xA. Under the assumption xA = yA+P , we have

xA · yA+P = ∥yA+P ∥2 = yAy · yA+P = xAx · yA+P .

Suppose for contradiction that there was some a ∈ (A + P − P ) \ A. Then by the definition of
A+ P − P there would be some b ∈ A+ P such that (a, b) ∈ P , that is, such that xa · yb > 0. But
then we would have

xAx · yA+P ≥ xa · yb + xA · yA+P > xA · yA+P ,

which contradicts the assumption xA = yA+P .

Theorem 3.16.9. Suppose X is an instance of an affine-free CSP, and that there is a system of
probabilities pC,r and vectors xa which perfectly solves the basic semidefinite relaxation of X. Then
X has a solution.
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Proof. We define a restriction X′ of X by restricting each relation RC to the support R′
C of the

marginal distribution pC,r, and restricting each variable domain Ax to the set A′
x of a ∈ Ax such

that ∥xa∥2 ̸= 0. Note that each R′
C will be contained in the original relation RC if we have a

perfect solution to the basic semidefinite relaxation. Additionally, for each C and each pair of
variables x = vC,i, y = vC,j , the binary projection πi,j(R

′
C) will be equal to the set of ordered pairs

(a, b) ∈ A′
x × A′

y such that xa · yb ̸= 0, by the compatibility between the probabilities pC,r and the
vectors xa.

We will check that X′ is a weak Prague instance (see Definition 3.13.12). Arc-consistency (aka
condition (P1)) of X′ follows from the compatibility between the probabilities and the vectors. To
check (P2) and (P3), we use Lemma 3.16.8. Let A ⊆ A′

x and let p be a cycle from x to x in the
instance X′, with p1 from x to y the first step of the cycle p. If we have

A+ p = A,

then by Lemma 3.16.8 we have

∥xA∥2 ≤ ∥yA+p1∥2 ≤ ∥xA+p∥2 = ∥xA∥2,

so by the equality case of Lemma 3.16.8 we must have

xA = yA+p1 .

Thus for any a′ ̸∈ A, we must have xa′ · yA+p1 = xa′ · xA = 0, so we have

A+ p1 − p1 = A.

Thus by Proposition 3.13.14 we see that X′ satisfies condition (P2). We could have also checked
condition (P2) using only the system of probabilities pC,r, without mentioning the vectors xa, by
Theorem 3.13.15.

To check (P3), let A ⊆ A′
x, and let p, q be cycles from x to x in the instance X′, with

A+ p+ q = A.

Then by Lemma 3.16.8 we have

∥xA∥2 ≤ ∥xA+p∥2 ≤ ∥xA+p+q∥2 = ∥xA∥2,

so by the equality case of Lemma 3.16.8 we must have

xA = xA+p.

In particular, we must have A = A+ p, which proves (P3).
To finish, we note that X′ is pq-consistent by Theorem 3.13.19, so Sg(X′) is also pq-consistent

by Proposition 3.14.3, and Sg(X′) is a restriction of the instance X since X = Sg(X). Thus Sg(X′)
has a solution by Theorem 3.13.8 and its corollaries, which is also a solution to the original instance
X.
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In order to extend the previous result to an algorithm for robustly solving affine-free CSPs, we
need to find some approximate analogue of Lemma 3.16.8. The plan is to start by arguing as in
Theorem 1.6.17, using the probabilities pC,r to produce an arc-consistent instance with variable
domains A′

x and constraint relations R′, such that each tuple r ∈ R′ has probability above some
(random) threshold θ. Then we will randomly cut the unit ball of possible values for the vectors xA
into finitely many pieces, so that a version of Lemma 3.16.8 holds when we forget what the exact
values of the vectors xA are, and instead only keep track of which piece of the ball xA is contained
in.

The proof becomes slightly simpler if we use the concept of weak consistency, from the previous
section, instead of condition (P3). The simplification we get by aiming for weak consistency instead
of (P3) is that when we have

A+ p+ q = A,

we only have to ensure that

xA · xA+p > 0 ( =⇒ A ∩ (A+ p) ̸= ∅),

rather than needing to ensure that xA = xA+p. This means we only need to make sure that we
chop the ball into fine enough pieces to separate each pair xA, xB with xA · xB = 0, instead of
needing to separate each pair xA, xB with xA ̸= xB.

In order to produce our weakly consistent instance, we will define a quasiorder ⪯ (with an
associated strict partial order ≺ and equivalence relation ∼) on the ball. We will first choose a
(randomized) sequence of radii r1, r2, ..., and a (random) collection of hyperplanes Hi such that
for every variable x, any pair of vectors xA, xB which are orthogonal are (with high probability)
separated from each other by at least one of the hyperplanes Hi. The plan is to define ⪯ by

u ≺ v ⇐⇒ ∃i s.t. ∥u∥ < ri ≤ ∥v∥

and

u ∼ v ⇐⇒ (∀i ∥u∥ < ri ⇐⇒ ∥v∥ < ri) ∧ (∀j u, v are on the same side of Hj).

The plan is to throw away any constraint relation R′ which is incompatible with the quasiorder ⪯,
where we say that R′ is incompatible with ⪯ if there are variables x, y and some A ⊆ A′

x such that

xA ̸⪯ yA+πxy(R′).

We will choose the radii ri to guarantee that

A+ πxy(R
′)− πxy(R′) ̸= A =⇒ xA ≺ yA+πxy(R′),

by taking r2i+1 < r2i + θ. On the other hand, if

A+ πxy(R
′)− πxy(R′) = A,

then xA will be very close to yA+πxy(R′). In this case, we will ensure that the ri are spaced widely
enough to make it unlikely that

yA+πxy(R′) ≺ xA.
We also need to rule out the possibility that xA and yA+πxy(R′) are separated by some hyperplane
Hi. The chance that a particular random hyperplane separates xA and yA+πxy(R′) is proportional
to the angle between xA and yA+πxy(R′), which will be low as long as xA is sufficiently close to
yA+πxy(R′). All we have left to do is to carefully work out the details.
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Theorem 3.16.10 (Slight refinement of [20]). If Γ is a finite constraint language and A = (A,Γ)
has bounded relational width, then the basic SDP relaxation can be used to robustly solve CSP(A).

More precisely, if we are given an instance X such that the basic SDP relaxation is 1 − ϵ
satisfiable, then we can efficiently find a solution which satisfies a

1−O
( log(log(log(1/ϵ)))

log(1/ϵ)

)
fraction of the constraints.

Proof. Suppose we have a system of probabilities pC,r and vectors xa which solves the basic SDP
relaxation of our instance X with value at least 1− ϵ, that is, such that

1
#C

∑
C

∑
r∈RC

pC,r ≥ 1− ϵ.

As an initial simplification to the problem, we will preemptively give up on any constraint C such
that ∑

r∈RC

pC,r < 1−
√
ϵ.

This gives up on at most a
√
ϵ = o(1/ log(1/ϵ)) fraction of the constraints of X, and allows us to

focus on solving the problem in the special case where every individual constraint C satisfies∑
r∈RC

pC,r ≥ 1−
√
ϵ. (3.1)

The advantage of this step is that from here on, we can look for a randomized algorithm which has
a high probability of satisfying each constraint relation in isolation.

Let N = log(1/
√
ϵ). We will make a series of randomized choices in order to produce a weakly

consistent instance X′, and after each choice we will give up on some of the constraints of our
original instance X. At each step, we just need to confirm that for each constraint C which satisfies
(3.1), the chance of giving up on the constraint C is at most

O
( log(log(N))

N

)
.

First we will try to produce an arc-consistent instance. Choose a threshold θ = exp(−t) ∈ [
√
ϵ, 1]

by choosing t = log(1/θ) uniformly at random from [0, N ]. For each constraint C with corresponding
constraint relation RC , we define the reduced relation R′

C by

R′
C = {r ∈ RC | pC,r ≥ 2θ}.

For each variable x, we define the reduced variable domain A′
x by

A′
x = {a ∈ Ax | ∥xa∥2 ≥ θ}.

Our reduced instance X′ will have variable domains A′
x and constraint relations R′

C for all of the
constraints C which we do not choose to give up on by the end of our randomized procedure. In

285



order to ensure arc-consistency of X′, we preemptively give up on any constraint C which does not
satisfy ∑

r ̸∈R′
C

pC,r < θ. (3.2)

Claim 1. If a constraint C with R′
C ⊆ A′

x1 × · · · ×A
′
xm satisfies (3.2), then we have

πxi(R
′
C) = A′

xi

for each i ∈ {1, ...,m}.
Proof of Claim 1. Let x = xi. First, note that for any r ∈ R′

C , if we set a = πx(r), then we
have ∥xa∥2 ≥ pC,r ≥ θ, so a ∈ A′

x. Thus we have πx(R′
C) ⊆ A′

x.
Conversely, if a ̸∈ πx(R′

C) then we have

∥xa∥2 =
∑

πx(r)=a

pC,r ≤
∑
r ̸∈R′

C

pC,r < θ

by (3.2), so a ̸∈ πx(R′
C) =⇒ a ̸∈ A′

x. Thus πx(R′
C) ⊇ A′

x, so πx(R′
C) = A′

x.
Claim 2. If θ = exp(−t) and t is chosen uniformly at random from [0, N ], then

E
[1

θ

∑
r ̸∈R′

C

pC,r

]
= O(1/N),

and the implied constant only depends on the number of tuples in the constraint RC . As a conse-
quence, the probability that (3.2) fails to hold for any given constraint C is O(1/N).

Proof of Claim 2. We have

E
[1

θ

∑
r ̸∈R′

C

pC,r

]
=

1

N

∫ N

t=0

1

θ

∑
r ̸∈R′

C

pC,r dt

=
1

N

∑
r ̸∈RC

pC,r

∫ N

t=0

1

θ
dt+

1

N

∑
r∈RC

pC,r

∫ max(N,log(2/pC,r))

t=0

1

θ
dt

≤ 1

N

∫ N

t=0

√
ϵ

θ
dt+

1

N

∑
r∈RC

∫ log(2/pC,r)

t=0

pC,r
θ

dt

<
2|RC |+ 1

N
.

Next we slice the ball B containing the xAs into shells in order to ensure that the consistency
condition (P2) is satisfied (note that (P2) is not required in the definition of weak consistency -
however, enforcing it makes the rest of the proof simpler). To do this, we choose a second threshold
θ2 uniformly at random from the interval [0, θ], and define radii ri by

r2i = iθ + θ2.

We define the strict partial order ≺ on the ball B by

u ≺ v ⇐⇒ ∃i s.t. ∥u∥ < ri ≤ ∥v∥

⇐⇒
⌊∥u∥2 − θ2

θ

⌋
<

⌊∥v∥2 − θ2
θ

⌋
.
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In order to ensure that (P2) is satisfied, we will preemptively give up on any constraint C such
that there is a pair of variables x, y involved in the constraint C which do not satisfy

∀A ⊆ A′
x, yA+πxy(R′

C) ̸≺ xA. (3.3)

By the next claim, we will only need to check (3.3) in the special case where A+πxy(R
′
C)−πxy(R′

C) =
A.

Claim 3. If A ⊆ A′
x has A + πxy(R

′
C) − πxy(R′

C) ̸= A, and if the constraint C satisfies (3.2),
then we automatically have

xA ≺ yA+πxy(R′
C).

Proof of Claim 3. We just need to prove that

∥yA+πxy(R′
C)∥2 ≥ ∥xA∥2 + θ.

If A + πxy(R
′
C) − πxy(R′

C) ̸= A, then there must be some a ̸∈ A and some b ∈ A + πxy(R
′
C) with

(a, b) ∈ πxy(R′
C). Picking r ∈ R′

C with πxy(r) = (a, b), we see that

xa · yb ≥ pC,r ≥ 2θ

by the definition of R′
C . Since

∥yA+πxy(R′
C)∥2 = xAx · yA+πxy(R′

C) ≥ xA · yA+πxy(R′
C) + xa · yb,

we just need to check that
xA · yA+πxy(R′

C) ≥ ∥xA∥2 − θ.

For this, we just note that

∥xA∥2 − xA · yA+πxy(R′
C) = xA · yAy − xA · yA+πxy(R′

C)

=
∑

πx(r)∈A
πy(r)̸∈A+πxy(R′

C)

pC,r

≤
∑
r ̸∈R′

C

pC,r < θ.

In order to put a bound on the probability that (3.3) fails to hold when A+πxy(R
′
C)−πxy(R′

C) =
A, we need to show that the expected value of∣∣∣∥xA∥2 − ∥yA+πxy(R′

C)∥2
∣∣∣

θ

is small when θ = exp(−t) and t is chosen uniformly at random from [0, N ]. In this case we have∣∣∣∥xA∥2 − ∥yA+πxy(R′
C)∥2

∣∣∣ ≤ max
(
∥xA∥2 − xA · yA+πxy(R′

C), ∥yA+πxy(R′
C)∥2 − xA · yA+πxy(R′

C)

)
≤

∑
r ̸∈R′

C

pC,r,
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so by Claim 2 this is O(1/N) on average.
So far, everything we have done could have been phrased in terms of the linear relaxation rather

than the semidefinite relaxation. The next step, where we enforce weak consistency, is the step
where we finally use the full power of the semidefinite relaxation. Set

M = ⌈log2(N)⌉,

and independently pick M uniformly random hyperplanes H1, ...,HM . Now define the equivalence
relation ∼ on B by

u ∼ v ⇐⇒ (∀i ∥u∥ < ri ⇐⇒ ∥v∥ < ri) ∧ (∀j u, v are on the same side of Hj).

In order to guarantee weak consistency, we need to preemptively give up on any variable x (along
with any constraint involving x) which does not satisfy

∀A,B ⊆ A′
x, A,B ̸= ∅, xA ∼ xB =⇒ A ∩B ̸= ∅ (3.4)

and we need to preemptively give up on every constraint C such that there is a pair of variables
x, y involved in the constraint C which do not satisfy

∀A ⊆ A′
x, A+ πxy(R

′
C)− πxy(R′

C) = A =⇒ yA+πxy(R′
C) ∼ xA. (3.5)

Claim 4. The chance that any particular variable x fails to satisfy (3.4) is at most 3|A
′
x|

2M
=

O(1/N). As a consequence, the chance that we give up on any particular constraint C due to (3.4)
is also O(1/N) by the union bound.

Proof of Claim 4. There are less than 3|A
′
x| pairs of disjoint, nonempty subsets A,B of A′

x.
For any particular pair A,B, the chance that any particular random hyperplane Hi separates xA
from xB is exactly 1/2, since xA ·xB = 0. Thus the chance that none of the M independent random
hyperplanes H1, ...,HM separate xA from xB is 1/2M ≤ 1/N .

To finish the argument, we need to find an upper bound on the probability that (3.5) is violated.
For a given A ⊆ A′

x with A + πxy(R
′
C) − πxy(R′

C) = A, this probability depends mainly on the
angle α between xA and yA+πxy(R′

C). From

max
(
∥xA∥2 − xA · yA+πxy(R′

C), ∥yA+πxy(R′
C)∥2 − xA · yA+πxy(R′

C)

)
≤

∑
r ̸∈R′

C

pC,r

we get

xA · yA+πxy(R′
C) ≥ ∥xA∥∥yA+πxy(R′

C)∥ −
∑
r ̸∈R′

C

pC,r.

Using the fact that ∥xA∥2, ∥yA+πxy(R′
C)∥2 ≥ θ, we get

cos(α) ≥ 1− 1

θ

∑
r ̸∈R′

C

pC,r,

so

α2 = O
(1

θ

∑
r ̸∈R′

C

pC,r

)
.
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The chance that at least one of the M hyperplanes Hi separates xA from yA+πxy(R′
C) is then given

by

1−
(

1− α

π

)M
≤ max

(
1,
Mα

π

)
≪ max

(
1,M

(1

θ

∑
r ̸∈R′

C

pC,r

)1/2)
.

To finish the proof, we just need to verify one final claim.
Claim 5. If θ = exp(−t) and t is chosen uniformly at random from [0, N ], then

E
[

max
(

1,M
(1

θ

∑
r ̸∈R′

C

pC,r

)1/2)]
= O

( log(M)

N

)
.

Proof of Claim 5. The argument is similar to the proof of Claim 2, just slightly more involved.
First, we use the inequality

√
a+ b ≤

√
a+
√
b to get the bound

max
(

1,M
(1

θ

∑
r ̸∈R′

C

pC,r

)1/2)
≤ max

(
1,M

√√
ϵ

θ

)
+

∑
r∈RC
pC,r<θ

max
(

1,M

√
pC,r
θ

)
.

We then bound the contribution of each summand individually. Each max takes the value 1 for a
range of values of t = log(1/θ) of length 2 log(M), and from then on takes exponentially decaying
values, so the total expectation ends up being bounded by

2(log(M) + 1)(|RC |+ 1)

N
= O

( log(M)

N

)
.

Thus, after preemptively giving up on at most a

O
( log(M)

N

)
= O

( log(log(N))

N

)
= O

( log(log(log(1/ϵ)))

log(1/ϵ)

)
fraction of the constraints, we finally manage to construct a weakly consistent instance X′. Then
Sg(X′) ⊆ X will also be weakly consistent, so it will have a solution by Theorem 3.15.12.

The bound given in Theorem 3.16.10 is slightly better than the bound from [20], which only
guaranteed that we could find a solution of quality

1−O
( log(log(1/ϵ))

log(1/ϵ)

)
.

We can improve this further, getting rid of the unsightly log(log(log(1/ϵ))) factor entirely, if we try
to construct a vague solution (to the binary part) instead of aiming for weak consistency.

Theorem 3.16.11 (Perfected form of [20]). Suppose Γ is a finite constraint language such that
A = (A,Γ) has bounded relational width. If we are given an instance X such that the basic SDP
relaxation is 1− ϵ satisfiable, then we can efficiently find a solution which satisfies a

1−O
( 1

log(1/ϵ)

)
fraction of the constraints. In other words, the function f from Definition 3.16.1 satisfies f(ϵ) =
O(1/ log(1/ϵ)).
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Proof. We argue as in the proof of Theorem 3.16.10, using the same notation, up to the point
where we obtained an arc-consistent instance X′ which satisfied (P2). From here on, we modify the
argument: instead of trying to define an equivalence relation ∼ on the shell of the ball B between
radius ri and ri+1, we extend ≺ to a (nearly) total order. We do this by picking a uniformly random
unit vector U , and setting

∀∥u∥, ∥v∥ ∈ (ri, ri+1], u ≺ v ⇐⇒ U · (u− v) < 0.

Now we use the (almost) total order ≺ to define a vague element ≺x for each variable x, by setting

A ≺x B ⇐⇒ xA ≺ xB.

Note that with probability 1, each ≺x will be a total order on P∅(A′
x), so ≺x is indeed a vague

element of A′
x.

We will now preemptively give up on any constraint relation C if there is any pair of variables
x, y such that the vague elements ≺x,≺y fail to vaguely satisfy the binary relation πxy(R

′
C). We

need to find an upper bound on the probability that we will give up on any particular constraint
C due to the pair of variables x, y. Set R′ = πxy(R

′
C) to simplify the notation.

We begin trying to construct a quasiorder ⪯R′ extending ≺x,≺y on P∅(A′
x)⊔P∅(A′

y) by setting

xA ≺R′ yB when ∃i ∥xA∥ < ri ≤ ∥yB∥,

and similarly with the roles of x and y reversed. This ensures that

A ̸= A+R′ −R′ =⇒ xA ≺R′ yA+R′ ,

and similarly with the roles of x and y reversed. So far we encounter no problems with the
construction of ⪯R′ .

We will also need to require that

A = A+R′ −R′ =⇒ xA ∼R′ yA+R′ ,

and this is the step which could potentially cause an issue. Note that if we haven’t already given
up on the constraint C while ensuring that (P2) holds, then in this case we have the guarantee that
xA and yA+R′ are contained in the same shell of the ball B.

Since the different shells of B don’t interact in any of the orderings ≺x,≺y,⪯R′ , we can focus
on just one particular shell of B corresponding to a pair of adjacent radii ri, ri+1. Within such a
shell, all ⪯R′ does is identify certain vectors xA with corresponding vectors yA+R′ . The only way
we could run into trouble is if there was some pair A,B ⊆ A′

x with

A ∼R′ A+R′,

B ∼R′ B +R′,

A ≺x B,

but
B +R′ ≺y A+R′.

In other words, we only need to preemptively give up on the constraint C due to the pair x, y if we
can find such a pair of sets A,B ⊆ A′

x with

U · (xA − xB) < 0 < U · (yA+R′ − yB+R′).
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For a randomly chosen U , the probability of this occuring is proportional to the angle between the
vector xA − xB and the vector yA+R′ − yB+R′ .

Since A,B are different subsets of A′
x, at least one coordinate of xA − xB must have absolute

value at least
√
θ, so we have ∥xA−xB∥2 ≥ θ, and similarly ∥yA+R′ − yB+R′∥2 ≥ θ. As in the proof

of Theorem 3.16.10, we have

∥xA − yA+R′∥2, ∥xB − yB+R′∥2 ≤
∑
r ̸∈R′

C

pC,r,

so the angle between xA − xB and yA+R′ − yB+R′ is

O
( 1√

θ

√ ∑
r ̸∈R′

C

pC,r

)
.

By Claim 5 of Theorem 3.16.10, the average value of this upper bound is at most

O(1/N) = O(1/ log(1/ϵ)),

so we only need to give up on O(1/N) of our constraints in order to get an arc-consistent instance
X′ whose binary part has a vague solution. Then by Corollary 3.15.27 the instance Sg(X′) ⊆ X
has a solution, which finishes the proof.

Remark 3.16.1. The algorithm from Theorem 3.16.11 can be derandomized without too much effort
using the method of conditional expectations. After throwing away constraints which are violated
by more than a

√
ϵ fraction, we pick θ in [

√
ϵ, 1] such that

1

#C

∑
C

1

θ

∑
r ̸∈R′

C

pC,r +
1

#C

∑
C

1√
θ

√ ∑
r ̸∈R′

C

pC,r

is minimized - the minimum is guaranteed to be O(1/N), and we only have to examine values
of θ which are equal to some pC,r/2. Then we use θ to do the first bit of rounding to get to an
arc-consistent instance. Next we pick θ2 ∈ [0, θ] to minimize the number of problems we run into
while ensuring that (P2) is satisfied - we only need to try values of θ2 which are just above or just
below a remainder of some ∥xA∥2 modulo θ, so this can be done efficiently.

For the final step, we want to pick a unit vector U which is dual to a hyperplane which separates
as few pairs of vectors xA− xB, yA+R′ − yB+R′ with A+R′−R′ = A,B+R′−R′ = B as possible.
This step is trickier, but in Appendix C of [20] they cite the paper [95], which shows that you can
find a U which is worse by at most O(1/N) compared to what you would get with a uniformly
random choice, using a deterministic algorithm which runs in time ∥X∥O(1) times 2log(N)2 = o(1/ϵ).

We may naturally wonder whether f(ϵ) = O( 1
log(1/ϵ)) is really the best possible asymptotic one

can get in Theorem 3.16.11. The next example shows that at least for HORN-SAT, it is impossible
to improve the asymptotic.
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Example 3.16.3 (Guruswami and Zhou [77]). For every n, consider the following “simultaneous
induction” instance of HORN-SAT, on the 2n+ 2 variables p0, ..., pn, q0, ..., qn:

(p0 = 1) ∧ (q0 = 1)

∧ (p0 ∧ q0 =⇒ p1) ∧ (p0 ∧ q0 =⇒ q1)

∧ · · ·
∧ (pn−1 ∧ qn−1 =⇒ pn) ∧ (pn−1 ∧ qn−1 =⇒ qn)

∧ (pn = 0) ∧ (qn = 0).

This instance has 2n+ 4 constraints, and it is possible to satisfy at most 2n+ 3 of them. However,
the basic SDP relaxation of this instance thinks it can satisfy a 1−(3/4)n fraction of the constraints!

Checking that the SDP relaxation has such a solution (for all n) is fairly tricky. One simpli-
fication which helps quite a bit is to note that the variables pi, qi only interact with pi±1, qi±1,
so we just need to analyze the set of solutions to the basic SDP relaxation for the four-variable
HORN-SAT instance

(x ∧ y =⇒ z) ∧ (x ∧ y =⇒ w)

in order to understand the possible behavior in the general case where we string together many of
these “simultaneous induction” steps.

A second simplification is that since the overall vector

x{0,1} = y{0,1} = z{0,1} = w{0,1}

is a fixed unit vector, and since x0 and x1 are perpendicular with

x0 + x1 = x{0,1},

etc., we only have to describe the dot products between the four vectors x0, y0, z0, w0 to determine
the whole configuration. (In particular, if our SDP relaxation of this instance has a solution, then
it has a solution where all of the vectors live on a 4-dimensional sphere of diameter 1 in R5, which
passes through the origin and is centered at 1

2x{0,1}.)
The plan is to make the probabilities that z, w are equal to 0 grow to be a constant factor larger

than the probabilities that x, y are equal to 0, while keeping the correlation between z and w under
control. To this end, we claim that the SDP relaxation of this four-variable instance has a solution
which satisfies

∥x0∥2 = ∥y0∥2 = 9ϵ,

x0 · y0 = 3ϵ,

∥z0∥2 = ∥w0∥2 = 12ϵ,

z0 · w0 = 4ϵ,

x0 · z0 = ... = y0 · w0 = 6ϵ

for any 0 ≤ ϵ ≤ 1/18. Note that this way we have

∥z0∥2

∥x0∥2
=
∥w0∥2

∥y0∥2
=
z0 · w0

x0 · y0
=

4

3
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and
z0 · w0

∥z0∥∥w0∥
=

x0 · y0
∥x0∥∥y0∥

=
1

3
,

so we can glue the solutions to many units like this together, as long as we can show that each
unit is a valid solution to the SDP relaxation on its own. For this, we check that the matrix of dot
products between our hypothetical vectors x{0,1}, x0, y0, z0, w0 below is positive semidefinite:

1 9ϵ 9ϵ 12ϵ 12ϵ
9ϵ 9ϵ 3ϵ 6ϵ 6ϵ
9ϵ 3ϵ 9ϵ 6ϵ 6ϵ
12ϵ 6ϵ 6ϵ 12ϵ 4ϵ
12ϵ 6ϵ 6ϵ 4ϵ 12ϵ

 ?
⪰ 0,

and we use the probability distribution

P[(x, y, z) = (1, 1, 1)] = 1− 15ϵ,

P[(x, y, z) = (1, 0, 0)] = 6ϵ,

P[(x, y, z) = (0, 1, 0)] = 6ϵ,

P[(x, y, z) = (0, 0, 1)] = 3ϵ

over the set of solutions (x, y, z) to the constraint x ∧ y =⇒ z (and similarly for the constraint
x ∧ y =⇒ w).

In order to check that the 5 by 5 matrix above is always positive semidefinite, the simplest
method is to replace the 1 in the upper left corner by 18ϵ (which is at most 1 by assumption)
and divide out the ϵs, to get a fixed matrix that doesn’t depend on ϵ. In order to check that the
resulting matrix is positive semidefinite, we can make our lives easier by rewriting it as the sum

18 9 9 12 12
9 9 3 6 6
9 3 9 6 6
12 6 6 12 4
12 6 6 4 12

 =


18 9 9 12 12
9 6 6 6 6
9 6 6 6 6
12 6 6 8 8
12 6 6 8 8

 +


0 0 0 0 0
0 3 −3 0 0
0 −3 3 0 0
0 0 0 4 −4
0 0 0 −4 4

 .
Since the second summand is clearly positive semidefinite, we just need to check that the first
summand is positive semidefinite, which boils down to checking positive semidefiniteness of the
submatrix determined by the first, second, and fourth rows and columns. We can check this by
directly computing the Cholesky decomposition:18 9 12

9 6 6
12 6 8

 =

 1 0
1/2 1
2/3 0

[
18 0
0 3/2

] [
1 1/2 2/3
0 1 0

]
.

Examples of vectors x{0,1}, x0, y0, z0, w0 ∈ R5 with the desired dot products can be extracted from
this computation:

x{0,1} =


√

1− 18ϵ√
18ϵ
0
0
0

 , x0 =


0√
9ϵ/2√
3ϵ/2√
3ϵ
0

 , y0 =


0√
9ϵ/2√
3ϵ/2

−
√

3ϵ
0

 , z0 =


0√
8ϵ
0
0√
4ϵ

 , w0 =


0√
8ϵ
0
0

−
√

4ϵ

 .
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When we join copies of this configuration with varying values of ϵ together, they will need to be
rotated appropriately so that the x0, y0 from the next unit become the z0, w0 from the previous
unit, and the x{0,1} from the next unit is the same as the x{0,1} from the previous unit.

By joining together many copies of the unit described above, we can find a solution to the SDP
relaxation where the only constraints which aren’t satisfied exactly are the constraints p0 = 1, q0 = 1
- instead, these will be satisfied with the exponentially small error 3

5 · (
3
4)n−1. We arrange things

so that at the second-to-last step, we have

P[pn−1 = 0] = P[qn−1 = 0] = 3/5

and
P[pn−1 = qn−1 = 0] = 1/5,

at which point we can no longer continue to use the unit described above (since ϵ exceeds 1/18 at
this point). For the last step, we join this with an honest probability distribution over the set of
solutions to the 4-variable instance we get by restricting to pn−1, qn−1, pn, qn:

P[(pn−1, qn−1, pn, qn) = (0, 0, 0, 0)] = 1/5,

P[(pn−1, qn−1, pn, qn) = (1, 0, 0, 0)] = 2/5,

P[(pn−1, qn−1, pn, qn) = (0, 1, 0, 0)] = 2/5.

The construction described here was optimized for readability, rather than for obtaining the
best constants, and can be improved. A slight modification to our basic unit, which instead has
z0·w0

∥z0∥∥w0∥ = x0·y0
∥x0∥∥y0∥ = 1

4 and ∥z0∥2
∥x0∥2 = ∥w0∥2

∥y0∥2 = z0·w0
x0·y0 = 3

2 , can be used in all but the last few steps of

the construction, leading to a solution to the SDP relaxation which satisfies a 1 − (2/3)n fraction
of the constraints. With some more fiddly work, we can improve the base of the exponential from

2/3 to ϕ2/4 ≈ 0.6545..., where ϕ =
√
5+1
2 ≈ 1.618... is the golden ratio - I don’t know whether it’s

possible to do any better than that.

As a consequence of this example, we can’t hope for improved asymptotics for any relational
structure A which can pp-construct HORN-SAT unless the Unique Games Conjecture is false (by
the main result of Raghavendra’s thesis [145]). On the other hand, it is certainly possible to get
better asymptotics for 2-SAT! Under the Unique Games Conjecture, the best possible function f
as in Definition 3.16.1 for 2-SAT is given by f(ϵ) ∼

√
ϵ (see [60] for references and discussion).

Problem 3.16.1 (From [60]). Suppose that a finite relational structure A has bounded width and
does not pp-construct HORN-SAT. Is it necessarily the case that there is some k such that CSP(A)
can be robustly solved with the function f from Definition 3.16.1 satisfying f(ϵ) = O(ϵ1/k)?

In [59], the authors show that for every A with a near-unanimity term, there is some k such that
CSP(A) can be robustly solved (via the basic SDP relaxation) with the function f from Definition
3.16.1 satisfying f(ϵ) = O(ϵ1/k). The proof involves a consistency condition which doesn’t rely on
arc-consistency.

Remark 3.16.2. The first part of the proof of Theorem 3.16.10 shows that given a solution to the
LP relaxation of an instance X with value 1− ϵ, we can find a subinstance X′ which satisfies (P1)
and (P2) after giving up on an O(1/ log(1/ϵ)) fraction of the constraints. A positive answer to the
following problem would then prove that every CSP which is solved by its LP relaxation is also
robustly solved by its LP relaxation.
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Problem 3.16.2 (Conjectured in [37]). Suppose that CSP(A) is solved by its LP relaxation. Is
it necessarily the case that every instance X of CSP(A) which satisfies the consistency conditions
(P1) and (P2) has a solution?

We will solve this problem in the next section.

3.17 Linear Programming, rounding rules, and reversibility

The goal of this section is to show that every CSP which is solved by the basic linear programming
relaxation is also robustly solved by linear programming. This will follow once we prove that
instances of such CSPs which satisfy the consistency conditions (P1) and (P2) always have solutions.
Since we will be referring to these conditions frequently, we will give them a name.

Definition 3.17.1. An instance is called reversible if it satisfies the consistency conditions (P1)
and (P2) from Definition 3.13.12.

Recall that by Theorems 3.13.15 and 3.13.16, an instance is reversible if and only if every cycle
in the instance has a linear programming solution of full support (on both the variables and the
relations). However, we will need to have a characterization of reversibility which is more similar to
to the characterization of condition (P3) from Proposition 3.13.18. Since both the variable domains
and the relation domains are equally relevant to the basic linear programming relaxation, this turns
out to be most convenient if we adopt an alternative perspective on CSPs which puts relations and
variables on the same footing.

Mainly, the idea is to change the way we visualize a constraint relation. In order to visualize a
ternary relation R ≤ Ax × Ay × Az, we will use the following diagram:

R

Ax

Ay Az.

πx

πy πz

In order to check that an assignment x 7→ a ∈ Ax, y 7→ b ∈ Ay, z 7→ c ∈ Az satisfies the correspond-
ing constraint, we need to find an element r ∈ R such that

πx(r) = a, πy(r) = b, πz(r) = c.

Note that it isn’t necessary for R to actually be a subalgebra of Ax × Ay × Az: all that matters
is that we know the three maps πx, πy, πz from R to Ax,Ay,Az. (Of course, we also gain no extra
generality by allowing R to not be a subpower, since we could always replace R by its image in
Ax × Ay × Az.)

By stitching these pictures together, we can visualize any instance X of the multisorted CSP
CSP(A1, ...,An) as a diagram DX in the concrete category HSPfin(A1, ...,An). A solution of the
instance X corresponds to an assignment from each object A of the diagram DX to an element
aA ∈ A, such that for every homomorphism π : R → A which occurs in the diagram DX , the
elements aR ∈ R and aA ∈ A are related by

π(aR) = aA.
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To a category-theorist, a solution to the instance X is just another name for an element of the
“inverse limit” of the diagram DX.

Conversely, to any diagram D in a concrete category V, we can associate an instance XD of a
multisorted CSP. The instance XD will have one variable xA for each object A of the diagram D,
and for each morphism π : R→ A of the diagram D, there will be a binary constraint

π(xR) = xA.

In this way, we can transform any instance X of any multisorted CSP into an instance X′ where
every constraint relation of X′ is binary, and is furthermore the graph of a homomorphism, at the
cost of introducing a new variable (with a large domain) of X′ for each of the constraint relations
of the original instance X. This is what makes this perspective well-suited to studying the basic
linear programming relaxation: in the basic linear programming relaxation, we have to introduce
these new variables just to describe the relaxation, so we may as well work these new variables into
our theory from the very beginning.

Definition 3.17.2. We say that an instance X of a multisorted CSP is diagrammatic if every
constraint relation of X is binary and is the graph of a homomorphism.

As it turns out, reversibility has a nice characterization in terms of orderings when we restrict
to diagrammatic instances.

Proposition 3.17.3. If an instance X is arc-consistent and diagrammatic, then X is reversible iff
there is a quasiorder ⪯ on the collection of pairs (x,B) with B ⊆ Ax with the following properties:

(a) for any B ⊂ C ⊆ Ax, we have the strict inequality (x,B) ≺ (x,C), and

(b) for any constraint of X corresponding to a homomorphism π : Ax ↠ Ay, and for any B ⊆ Ay,
(y,B) and (x, π−1(B)) are in the same equivalence class of ⪯.

Proof. First suppose that X is reversible. Define a quasiorder ⪯ on the collection of pairs (x,B)
with B ⊆ Ax by setting (x,B) ⪯ (y, C) iff there is a path p from x to y in X such that

B + p ⊆ C.

This will automatically satisfy (b).
In order to ensure that (a) is satisfied, we just need to show that there is no path p from x to

x in X such that
C + p ⊂ C

for some C ⊆ Ax. Suppose for the sake of contradiction that there is such a p and C. Then we
have

C + (k + 1)p = (C + p) + kp ⊆ C + kp

for all k ≥ 0, so there must be some first k such that

C + (k + 1)p = C + kp.

Since C + p ̸= C, we have k ≥ 1, so if we define B = C + kp then we have B + p = B, but

B − p = C + kp− p ⊇ C + (k − 1)p ⊃ B,
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where the strict containment follows from the minimality of k. However, B − p ̸= B contradicts
the assumption that X is reversible, so such a p and C do not exist.

To finish, we need to check that if such a quasiorder ⪯ can be found, then X is reversible. For
this, we will use Proposition 3.13.14. So we may suppose that B ⊆ Ax and that B + p = B for a
path p from x to x with first step p1 from x to x1, and we just need to prove that B+ p1− p1 = B.
If p1 is the graph of a homomorphism π1 from Ax1 to Ax, then we have

B + p1 − p1 = π−1
1 (B)− p1 = π1(π

−1
1 (B)) = B

by the assumption that X is arc-consistent. The interesting case is the case where p1 is the graph
of a homomorphism π1 from Ax to Ax1 : in this case, we have

B + p1 − p1 = π1(B)− p1 = π−1
1 (π1(B)) ⊇ B.

Suppose for the sake of contradiction that π−1
1 (π1(B)) is a strict superset of B. Suppose that

p = p1 + p2 + · · ·+ pk

where each pi is a single step, and define Bi by

Bi = B + p1 + · · ·+ pi,

so that B = B0 = Bk. If xi is the ith variable along the path p, then we claim that for each i we
have

(xi, Bi) ⪯ (xi+1, Bi+1).

If pi+1 is the graph of a homomorphism πi+1 from Axi+1 to Axi then Bi+1 = π−1
i+1(Bi), so (xi, Bi)

and (xi+1, Bi+1) must be in the same equivalence class of ⪯ by (b). Otherwise, pi+1 is the graph
of a homomorphism πi+1 from Axi to Axi+1 and Bi+1 = πi+1(Bi), so

Bi ⊆ π−1
i+1(Bi+1) =⇒ (xi, Bi) ⪯ (xi, π

−1
i+1(Bi+1)) ⪯ (xi+1, Bi+1)

by (a) and (b). Thus we have

(x, π−1
1 (B1)) ⪯ (x1, B1) ⪯ · · · ⪯ (xk, Bk) = (x,B),

and this contradicts (a) if B is a strict subset of π−1
1 (B1) = π−1

1 (π1(B)).

Corollary 3.17.4. If an instance X is diagrammatic and reversible, then for each variable domain
Ax we can find a total quasiorder ⪯x on P(Ax) with the following properties:

(a) for any B ⊂ C ⊆ Ax, we have the strict inequality B ≺x C, and

(b) for any constraint of X corresponding to a homomorphism π : Ax ↠ Ay, and for any B,C ⊆
Ay we have

B ⪯y C ⇐⇒ π−1(B) ⪯x π−1(C).

Proof. Extend the quasiorder ⪯ from the previous proposition to a total quasiorder ⪯′ with the
same equivalence classes as ⪯, and then restrict ⪯′ to P(Ax) to define ⪯x.
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Remark 3.17.1. With a little bit more work, we can also assume that the total quasiorders ⪯x
satisfy

B ⪯x C ⇐⇒ Ax \ C ⪯x Ax \B.

Definition 3.17.5. A strictly monotone preference on a set A is defined to be a total quasiorder
⪯ on P(A) such that

B ⊂ C ⊆ A =⇒ B ≺ C.

Note the strict inequalities!

Strictly monotone preferences are closely related to vague elements - the main difference is that a
strictly monotone preference on A may allow disjoint subsets B,C of A to be in the same equivalence
class. The plan is to combine the fact that vague solutions can be converted to solutions if the
variable domains have bounded width with the assumption that we have symmetric operations
of every arity, by replacing each strictly monotone preference with a weighted average of vague
elements by randomly breaking ties in a way that is compatible with homomorphisms. To make
this precise, it is convenient to use some of the language of category theory.

If we restrict our attention to diagrammatic CSPs, then “relaxations” can be viewed as functors
F which take the one-element set to itself. Given a diagram D in the category of sets, we can apply
the functor F to get a new diagram F (D). The new diagram F (D) will correspond to an easier
CSP than the original diagram D, since any solution to D corresponds to a cone over D, that is,
a diagram D′ consisting of D together with a new one-element set with a collection of compatible
maps to all of the objects in D, and F maps any such cone D′ to a cone F (D′) over the relaxed
diagram F (D).

To make things a bit more concrete, let’s see how we can describe the basic linear programming
relaxation as a functor ∆. The functor ∆ transforms a set by

∆({1, ..., n}) =
{

(p1, ..., pn) ∈ Rn |
∑
i

pi = 1 and pi ≥ 0 for all i
}
,

and for a function f : [n]→ [m], we have

∆(f) : (p1, ..., pn) 7→
( ∑
i∈f−1(1)

pi, ...,
∑

i∈f−1(m)

pi

)
.

Let’s see what this does if we are given the unsolvable 2-SAT instance

x, y ∈ {0, 1} ∧ x = y ∧ x ̸= y.

This instance corresponds to a diagram with two sets Ax,Ay of size two, and two homomorphisms
between them, given by y = x and y = 1− x. When we apply ∆, we get a diagram with two sets
∆(Ax),∆(Ay) and two homomorphisms between them:

∆(Ax) = {(1− px, px) | 0 ≤ px ≤ 1} −→
−→ ∆(Ay) = {(1− py, py) | 0 ≤ py ≤ 1},

where the two homomorphisms correspond to the constraints

(1− py, py) = (1− px, px),

(1− py, py) = (px, 1− px).
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While the original 2-SAT instance has no solution, the relaxed instance has the solution px = py =
1/2.

For another concrete example of a relaxation considered as a functor, we have arc-consistency.
Arc-consistency corresponds to the functor P∅, which takes a set A to the set of nonempty subsets
S of A, and acts on f : A→ B by

P∅(f) : S 7→ {f(a) | a ∈ S}.

We can make the claim that arc-consistency is more relaxed than the basic linear programming
relaxation precise by exhibiting a natural transformation from ∆(A) to P∅(A). This natural trans-
formation takes a probability distribution to its support :

supp : (pa)a∈A 7→ {a | pa > 0}.

In order to show that a relaxation (corresponding to a functor F ) solves CSP(A), where A
is a (possibly multisorted) relational structure, we need a rounding rule. A rounding rule is a
homomorphism of relational structures

r : F (A)→ A,

where we make sense of F (A) by noticing that a relational structure corresponds in a natural way
to a diagram, and we can apply functors to diagrams. As long as F maps the one point set to itself,
there will automatically be a homomorphism

A→ F (A),

so what a rounding rule is really doing is proving that A and the relaxation F (A) are homomor-
phically equivalent - which is exactly what it means for the relaxation F to solve CSP(A), if you
unwind the definitions (an element of the inverse limit of the diagram F (DX) is the same thing as a
homomorphism X→ F (A)). We’ve already seen that CSP(A) is solved by arc-consistency iff there
is a homomorphism P∅(A)→ A (Theorem 1.6.9) - now we can view that as a special case of a more
general principle. Similarly, if you squint a bit, then Theorem 1.6.17 can be viewed as saying that
CSP(A) is solved by the basic linear programming relaxation iff there is a homomorphism from a
simplification of ∆(A) (where we only consider probability vectors with rational entries) to A.

If we view an entire pseudovariety V = HSPfin(A1, ...,An) as a giant multisorted relational
structure, then a rounding rule for F on V is a natural transformation from F , considered as a
functor from V to the category of sets, to the functor which takes each algebra in V to its underlying
set. In other words, a rounding rule for F on V gives us a map

rA : F (A)→ A

for each A ∈ V, where A is the underlying set of A. These maps need to be compatible with
homomorphisms π : A→ B in the following sense: for any x ∈ F (A), we must have

π(rA(x)) = rB(F (π)(x)) ∈ B.

In order to describe a rounding rule for F on V more compactly, it helps to note that we only
need to know how the rounding rule behaves on free algebras, since every algebra in V is a quotient
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of a free algebra. If FV(S) is the free algebra in V with generators corresponding to the elements
of S, then the map

S
is
↪→ FV(S)

which takes each element of S to the corresponding generator of FV(S) turns into a map

F (iS) : F (S)→ F (FV(S)),

and I claim that all we need to know in order to describe a rounding rule is the result of composing
F (iS) with the map

rFV (S) : F (FV(S))→ FV(S).

Why is this the case? Well, for any algebra A ∈ V, we have maps

A
iA
↪→ FV(A)

πA
↠ A,

where iA is just a map of sets while πA is the homomorphism sending each generator of FV(A) to
the corresponding element of A. Applying F , we get

F (A)→ F (FV(A))→ F (A),

and the composition of the two maps is the identity since F is a functor. Then for any x ∈ F (A),
we have

rA(x) = rA(F (πA ◦ iA)(x))

= rA(F (πA)(F (iA)(x)))

= πA(rFV (A)(F (iA)(x))),

so
rA = πA ◦ rFV (A) ◦ F (iA),

and we see that rA is determined by rFV (A) ◦ F (iA) : F (A)→ FV(A), as promised.

Definition 3.17.6. If F is a functor from finite sets to sets, and if V is a variety, then a rounding
rule for F on V is defined to be a family of maps

rS : F (S)→ FV(S)

such that for every map π : S → T and every x ∈ F (S) we have

FV(π)(rS(x)) = rT (F (π)(x)),

where FV(π) : FV(S) → FV(T ) is the corresponding map of free algebras. In other words, r is a
natural transformation (also known as a minion homomorphism) from F to FV .

Another way of understanding this is that for every variety V, the free algebra functor FV is itself
a type of relaxation which can be applied to diagrams, and for diagrams in V it doesn’t introduce
new solutions to problems which didn’t already have solutions. So to show that a relaxation F is
safe for V, we just need to show that it is no stronger than the relaxation FV , and we do this by
describing a recipe which turns elements of F (S) into term operations of arity S.

The point of all of this was to introduce and justify the language we will use to repackage
our results about vague solutions into something we can use to resolve our questions about how
reversibility relates to linear programming.
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Definition 3.17.7. The vague minion is defined to be the functor W which takes a finite set A to

W(A) = {(S,⪯) | S ∈ P∅(A) and ⪯ is a vague element of S which extends the inclusion order ⊆},

and which takes a map π : A→ B to

W(π) : (S,⪯) 7→ (π(S),⪯π),

where ⪯π is the vague element of π(S) defined by

U ⪯π V ⇐⇒ π−1(U) ⪯ π−1(V )

for U, V ⊆ π(S). (See Definition 3.15.19 for the definition of vague elements.)

Theorem 3.17.8. If V is a locally finite bounded width variety, then there is a rounding rule for
the vague minion W on V, that is, there is a minion homomorphism

rW :W → FV .

Proof. With an eye towards applying Theorem 3.15.25, we define an (infinite) diagrammatic in-
stance X with Sg(X) an instance of CSP(V) as follows:

• for every finite set S and for every vague element ⪯ on S which extends the inclusion order
⊆, introduce a variable x(S,⪯) with variable domain Ax(S,⪯)

= S considered as a subset of the
algebra Ax(S,⪯)

= FV(S),

• for every surjective map π : S ↠ T and every vague element ⪯ of S extending ⊆, introduce
the constraint

x(T,⪯π) = π(x(S,⪯)).

By construction, the instance X is arc-consistent, and we claim that it has a vague solution given
by sending x(S,⪯) to the vague element ⪯. For this, we just need to check that the pair of vague
elements (⪯,⪯π) vaguely satisfies the binary relation

Rπ = {(s, π(s)) | s ∈ S},

where vague satisfaction is defined in Definition 3.15.19. This is the step where it is important to
restrict to vague elements which extend the inclusion order!

We define a total quasiorder ⪯Rπ on P∅(S) ⊔ P∅(π(S)) by putting each element U ∈ P∅(π(S))
into the same equivalence class as π−1(U) ∈ P∅(S), and ordering P∅(S) via ⪯. By definition, ⪯Rπ

restricts to ⪯ on P∅(S) and restricts to ⪯π on P∅(π(S)), and for any U ∈ P∅(π(S)) we have

U ⪯Rπ U − Rπ = π−1(U).

Finally, for V ∈ P∅(S), we have
V ⊆ π−1(π(V )),

so since we only consider vague elements ⪯ which extend the inclusion order ⊆ we have

V ⪯Rπ π
−1(π(V )) ⪯Rπ π(V ) = V + Rπ.
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Therefore, the pair (⪯,⪯π) vaguely satisfies the binary relation Rπ.
Now we can apply Theorem 3.15.25 to see that Sg(X) has a solution r taking each variable

x(S,⪯) to a stable element of FV(S), such that for every surjective map π : S ↠ T we have

(r(x(S,⪯)), r(x(T,⪯π))) ∈ SgFV (S)×FV (T )(Rπ) = {(f,FV(π)(f)) | f ∈ FV(S)},

that is,
r(x(T,⪯π)) = FV(π)(r(x(S,⪯))).

Remark 3.17.2. The basic semidefinite relaxation considered in the previous section doesn’t ob-
viously fit into the functor framework, since it treats relations differently from the way it treats
variable domains. However, if we restrict to diagrammatic instances, then it can be described as
the following functor. Let H be the infinite-dimensional inner product space

H =
{
v : N→ R |

∑
i

v2i <∞
}
,

and define the semidefinite relaxation functor S on sets A by

S(A) =
{
v : A→ H |

∑
a∈A
∥v(a)∥2 = 1 ∧ ∀a ̸= b, v(a) · v(b) = 0

}
,

and on maps π : A→ B by

S(π) : v 7→
(
b 7→

∑
π(a)=b

v(a)
)
.

There is a minion homomorphism

S → W,

v ∈ S(A) 7→ (supp(v),⪯v) ∈ W(A),

where supp(v) is the set of a ∈ A such that ∥v(a)∥2 > 0, and ⪯v is the vague element of supp(v)
given by

U ≺v V ⇐⇒ ∥v(U)∥2 < ∥v(V )∥2 ∨
(
∥v(U)∥2 = ∥v(V )∥2 ∧ v(U) <lex v(V )

)
,

where v(U) =
∑

u∈U v(u) and <lex is the total ordering on H which compares vectors based on the
first coordinate which differs between them. Composing this with the minion homomorphism

rW :W → FV

from Theorem 3.17.8, we get a rounding rule for (exact) solutions to the (diagrammatic) basic
semidefinite relaxation in any locally finite variety V which has bounded width. (The restriction to
diagrammatic instances turns out to be inessential: it’s a good exercise to check that if the basic
SDP relaxation of an instance X has a solution, then that solution can always be extended to a
solution to S(DX).)

Now that the preliminaries are out of the way, we can define the relaxation which is connected
to reversibility.
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Definition 3.17.9. The reversible minion is defined to be the functor M which takes a finite set
A to

M(A) = {(S,⪯) | S ∈ P∅(A) and ⪯ is a strictly monotone preference on S},

and which takes a map π : A→ B to

M(π) : (S,⪯) 7→ (π(S),⪯π),

where ⪯π is the strictly monotone preference on π(S) defined by

U ⪯π V ⇐⇒ π−1(U) ⪯ π−1(V )

for U, V ⊆ π(S).

Note that there is a natural transformation

pref : ∆→M

from the basic linear programming relaxation to the reversible minion, given by

pref(p) = (supp(p),⪯p),

where ⪯p is the strictly monotone preference on supp(p) defined by

U ⪯p V ⇐⇒
∑
u∈U

pu ≤
∑
v∈V

pv.

Theorem 3.17.10. If V is a locally finite variety which has symmetric term operations of every
arity, then there is a rounding rule for the reversible minion M on V, that is, there is a minion
homomorphism

rM :M→ FV .

Proof. Since no finite affine algebra can have symmetric term operations of all arities, V must have
bounded width by Theorem 3.13.8, so we can apply Theorem 3.17.8 to see that there is a rounding
rule for the vague minion on V:

rW :W → FV .

Additionally, by Theorem 1.6.17 there is a rounding rule for the basic linear programming relaxation
∆ on V:

r∆ : ∆→ FV .

We will apply these rounding rules as black-boxes, by finding a minion homomorphism

µ :M→ ∆ ◦W

and composing it with the rounding rule

r∆ ◦ rW : ∆ ◦W → FV ◦ FV

and the fact that we can compose term operations

◦ : FV ◦ FV → FV .
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The map µ is rather simple: for any strictly monotone preference ⪯ on S, we take every
equivalence class E of ⪯, and break ties by choosing a uniformly random total ordering on E,
independently of the total orderings we pick on the other equivalence classes of ⪯.

Alternatively, we can describe µ as follows. Say that a total order ⪯! on P∅(S) is compatible
with ⪯ if

U ⪯! V =⇒ U ⪯ V.

Then µ(S,⪯) is defined to be the uniform distribution on the set of total orders ⪯! which are
compatible with ⪯.

We need to check that µ(S,⪯) ∈ ∆(W(S)), that is, that every compatible total order ⪯! is
actually a vague element of S which extends the inclusion order ⊆. That ⪯! is a vague element
follows immediately from the fact that it is a total order, so we just need to check that it extends
the inclusion order. For this, note that since ⪯ was strictly monotone, we have

U ⊂ V =⇒ U ≺ V =⇒ V ̸⪯! U =⇒ U ≺! V.

To finish the proof we need to check that µ is actually a natural transformation, that is, that
for any surjective map π : S ↠ T we have

(∆ ◦W)(π)(µ(S,⪯)) = µ(M(π)(T,⪯)).

The left hand side is the probability distribution we get by first picking uniformly among compatible
total orders ⪯! on P∅(S) and then applying π to get a total order (⪯!)

π on P∅(T ). The right hand
side is the probability distribution we get by first applying π to get a strictly monotone preference
⪯π on T , and then picking uniformly among compatible total orders (⪯π)! on P∅(T ).

To check that these two random processes have the same distributions, it’s convenient use yet
another way to describe the random tie-breaking process: independently for each set U ⊆ S, we
pick a uniformly random real number ϵU in the range [0, 1], and we define ⪯! by

U ⪯! V ⇐⇒ U ≺ V ∨ (U ∼ V ∧ ϵU ≤ ϵV ),

where ∼ is the equivalence relation associated to ⪯. Then if we define ϵπU for U ⊆ T by

ϵπU = ϵπ−1(U),

then the real numbers ϵπU will also be independent (since U ̸= V =⇒ π−1(U) ̸= π−1(V ), as π is
surjective onto T ) and uniformly distributed in [0, 1], and for this coupling between the random
numbers we choose for T and the ones we choose for S we have (⪯!)

π = (⪯π)!.

Remark 3.17.3. We could have defined the vague minion and the reversible minion to only involve
self-dual quasiorders ⪯. Theorem 3.17.10 would remain true with the revised definitions, with a
slight modification to the map µ which occured in the proof.

Corollary 3.17.11. If V is a locally finite variety such that CSP(V) is solved by the basic linear
programming relaxation, then every reversible instance of CSP(V) has a solution.

Corollary 3.17.12. Suppose that Γ is a finite constraint language such that CSP(Γ) is solved by
the basic linear programming relaxation. If we are given an instance X of CSP(Γ) such that the
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basic linear programing relaxation of X is 1 − ϵ satisfiable, then we can efficiently find a solution
which satisfies a

1−O
( 1

log(1/ϵ)

)
fraction of the constraints of X.

Corollary 3.17.13. If A is a finite relational structure, then CSP(A) is solved by the basic linear
programming relaxation iff there is a homomorphism

M(A)→ A.

In particular, if A has a finite relational signature, then we can decide whether CSP(A) is solved
by the basic linear programming relaxation in a finite amount of time.

While Corollary 3.17.13 resolves the decidability of the meta-problem for finitely related struc-
tures, there are natural examples like Example 1.6.8 of algebraic structures A with finitely many
basic operations which have symmetric term operations of all arity, but which are not finitely
related.

Problem 3.17.1. Given a finite algebraic structure A as input, can we decide whether or not A
has symmetric term operations of all arities?

Define the relaxation ∆n to be the subfunctor of ∆ consisting of probability distributions p
such that ps is a multiple of 1/n for each s. Then it’s easy to check that A has a symmetric n-ary
polymorphism iff there is a homomorphism

∆n(A)→ A.

Additionally, if we define ∆k
n to be the functor

∆k
n : S 7→ Sn/∼k,

where ∼k is the equivalence relation which identifies two sequences a, b ∈ Sn as long as b is a
permutation of a and at most k distinct elements of S occur in a, then a homomorphism

∆k
n(A)→ A

corresponds to an n-ary polymorphism of A which is symmetric on all tuples where at most k
distinct entries show up. So one approach to resolving Problem 3.17.1 is to try to find a minion
homomorphism ⋃

m

∆k
m → ∆n ◦W

for k ≥ |A|, with n depending only on k. Somewhat surprisingly, this approach actually works for
k = 2 and k = 3!

Definition 3.17.14. Call an operation k-symmetric if it is symmetric on all tuples where at most
k distinct values show up.

Proposition 3.17.15. If a locally finite variety V has bounded width and has a binary symmetric
term operation s2(x, y), then V has 2-symmetric term operations of every arity.
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Proof. For every n, let ⪯0 be the graded lexicographic total ordering on P([n]), given by

U ≺0 V ⇐⇒ |U | < |V | ∨
(
|U | = |V | ∧ ∃k ∈ V \ U s.t. [k − 1] ∩ U = [k − 1] ∩ V

)
,

and let ⪯1 be the graded reverse lexicographic total order, given by

U ≺1 V ⇐⇒ |U | < |V | ∨
(
|U | = |V | ∧ ∃k ∈ U \ V s.t. [k − 1] ∩ U = [k − 1] ∩ V

)
.

By Theorem 3.17.8 there is a rounding rule

rW :W → FV .

for the vague minion on V, and plugging in ⪯0,⪯1 we get n-ary term operations

rW([n],⪯0), r
W([n],⪯1) ∈ FV(n).

Let t be the n-ary term operation we get by applying s2 to these two term operations, i.e.

t = s2
(
rW([n],⪯0), r

W([n],⪯1)
)
∈ FV(n).

We claim that t is 2-symmetric.
For any set U ⊆ [n], we can plug in xs and ys into t with the xs occuring at the positions

corresponding to the elements of U to get a binary term operation tU ∈ FV(x, y). This tU is given
by

tU = FV(πU )(t),

where πU : [n]→ {x, y} is given by

πU (i) =

{
x i ∈ U,
y i ̸∈ U.

We need to check that the value of tU only depends on |U |. We may as well assume that |U | ≠ 0, n.
Then since rW is a minion homomorphism, it satisfies

FV(πU )
(
rW([n],⪯i)

)
= rW

(
W(πU )([n],⪯i)

)
= rW({x, y},⪯πUi ).

Since ⪯πUi is a total ordering on P({x, y}) which extends the inclusion order, it is completely
determined by how it orders {x} and {y}, which is determined by

{x} ⪯πUi {y} ⇐⇒ π−1
U ({x}) ⪯i π−1

U ({y}) ⇐⇒ U ⪯i [n] \ U.

If |U | ≠ n/2, then whether or not U ⪯i [n] \U only depends on whether or not |U | < n/2, so if we
let s1(x) = s2(x, x) then we get

0 < |U | < n/2 =⇒ tU = s1

(
rW

(
{x, y}, ∅ ≺ {x} ≺ {y} ≺ {x, y}

))
,

n/2 < |U | < n =⇒ tU = s1

(
rW

(
{x, y}, ∅ ≺ {y} ≺ {x} ≺ {x, y}

))
.
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If |U | = n/2, then the definitions of ⪯0,⪯1 imply that

U ⪯0 [n] \ U ⇐⇒ [n] \ U ⪯1 U,

so the symmetry of s2 implies that we have

|U | = n/2 =⇒ tU = s2

(
rW

(
{x, y}, ∅ ≺ {x} ≺ {y} ≺ {x, y}

)
, rW

(
{x, y}, ∅ ≺ {y} ≺ {x} ≺ {x, y}

))
.

The combinatorial core of the construction for 3-symmetric operations is encapsulated in the
next lemma, which is a variation of a construction found by Marcin Kozik (personal communica-
tion).

Lemma 3.17.16. For any set S, we can find three total orderings ⪯0,⪯1,⪯2 on P(S), such that
for every partition of S into three disjoint nonempty sets U, V,W with

W ≺0 V ≺0 U,

the restrictions of ⪯1,⪯2 to {U, V,W} are given by

U ≺1 W ≺1 V,

V ≺2 U ≺2 W.

In particular, the three restrictions ⪯i |{U,V,W} together with their three reversals ⪰i |{U,V,W} make
up all six total orderings of the set {U, V,W}, each occuring once.

Proof. Let < be a well-ordering of the set S. Define ⪯0 to be the lexicographic ordering of P(S)
with respect to <, i.e.

U ≺0 V ⇐⇒ ∃k ∈ V \ U s.t. ∀i < k (i ∈ U ⇐⇒ i ∈ V ).

Suppose (for the sake of keeping the notation under control) that 0 is the <-minimal element in S.
Then we define ⪯1 to be the ordering given by

U ≺1 V ⇐⇒ 0 ∈ U \ V ∨
(
(0 ∈ U ⇐⇒ 0 ∈ V ) ∧ U ≺0 V

)
.

Finally, introducing the notation

U# =

{
U 0 ̸∈ U,
S \ U 0 ∈ U,

we define ⪯2 to be the ordering given by

U ≺2 V ⇐⇒
(

min(U#) < min(V #)
)
∨

(
min(U#) = min(V #) ∧ 0 ∈ V \ U

)
∨

(
min(U#) = min(V #) ∧ (0 ∈ U ⇐⇒ 0 ∈ V ) ∧ V # ≺0 U

#
)
.

Now suppose that S is the disjoint union of three nonempty sets U, V,W . Exactly one of U, V,W
contains 0, suppose without loss of generality that 0 ∈ U . Additionally, since U ̸= S, exactly one
of V,W contains min(S \ U). Suppose without loss of generality that we have min(S \ U) ∈ V , in
which case

min(V ) = min(S \ U) < min(W ).
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Then the three orderings ⪯i restricted to {U, V,W} are given by

W ≺0 V ≺0 U,

U ≺1 W ≺1 V,

V ≺2 U ≺2 W.

Theorem 3.17.17. If a locally finite variety V has bounded width and has a binary symmetric
term operation s2(x, y) and a ternary cyclic term operation c3(x, y, z), then V has 3-symmetric
term operations of every arity.

Proof. Fix an arity n, and let ⪯0,⪯1,⪯2 be the three total orderings on P([n]) from Lemma 3.17.16.
For each i, define ⪯+

i and ⪯−
i by

⪯+
i = ⪯i, ⪯−

i = ⪰i .

For any i ∈ {0, 1, 2} and any a, b ∈ {+,−}, we will define the graded, self-dual total ordering ⪯iab
by

U ⪯iab V ⇐⇒ |U | < |V | ∨
(
|U | = |V | < n/2 ∧ U ⪯ai V

)
∨

(
|U | = |V | = n/2 ∧ U ⪯b0 V

)
∨

(
|U | = |V | > n/2 ∧ ([n] \ V ) ⪯ai ([n] \ U)

)
.

By Theorem 3.17.8 there is a rounding rule

rW :W → FV .

for the vague minion on V. Define n-ary term operations riab ∈ FV(n) by

riab = rW([n],⪯iab),

and define the n-ary term operation t by

t = s2(s2(c3(r0++, r1++, r2++), c3(r2−+, r1−+, r0−+)),

s2(c3(r0+−, r1+−, r2+−), c3(r2−−, r1−−, r0−−))).

We claim that t is 3-symmetric.
If we apply t to a tuple consisting of variables among u, v, w, and if we let U, V,W ⊆ [n] be the

sets of inputs assigned to u, v, w respectively, then the result is the ternary term operation

FV(πUVW )(t) ∈ FV(u, v, w),

where πUVW : [n]→ {u, v, w} is the map

πUVW : i 7→


u i ∈ U,
v i ∈ V,
w i ∈W.

Since rW is a minion homomorphism, we have

FV(πUVW )(riab) = rW({u, v, w},≺πUV W
iab ),
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so FV(πUVW )(riab) is determined by the restriction of ⪯iab to the eight sets of the form π−1
UVW (S)

for S ⊆ {u, v, w}. Since ⪯iab is monotone and self-dual, so is ⪯πUV W
iab . We will need some notation

for the monotone self-dual total orders on P({u, v, w}).
Up to permuting the variables u, v, w, there are just two monotone self-dual total orderings on

P({u, v, w}), which we will name ⪯f and ⪯g:

∅ ⪯f {w} ⪯f {v} ⪯f {v, w} ⪯f {u} ⪯f {u,w} ⪯f {u, v} ⪯f {u, v, w}

and
∅ ⪯g {w} ⪯g {v} ⪯g {u} ⪯g {v, w} ⪯g {u,w} ⪯g {u, v} ⪯g {u, v, w}.

Note that ⪯f is just the lexicographic order, while ⪯g is the graded lexicographic order. Define
ternary term operations f, g by

f(u, v, w) = rW({u, v, w},⪯f ), g(u, v, w) = rW({u, v, w},⪯g).

As an aside, these ternary terms f, g will automatically satisfy the identities

f(x, x, y) ≈ f(x, y, x) ≈ f(x, y, y) ≈ g(x, x, y) ≈ g(x, y, x) ≈ g(y, x, x).

Writing
tUVW = FV(πUVW )(t) ∈ FV(u, v, w),

our goal is to show that the ternary operation tUVW is completely determined by the sizes |U |, |V |, |W |.
We may as well assume that

|W | ≤ |V | ≤ |U |.

There are several cases to consider. To verify that we have covered every case, I suggest drawing
a triangle with vertices labeled U, V,W , drawing the midpoints of each side, and drawing the line
segments connecting the midpoints to the vertices and to each other - each case corresponds to one
or more of the smaller triangles, line segments, or points in the resulting diagram.

Case 1. Suppose that |U |, |V |, |W | and |V | + |W | are all different from each other. In this
case, the orderings ⪯πUV W

iab do not depend on the choice of i, a, b, and if we let s1(x) = s2(x, x) and
c1(x) = c3(x, x, x) then we get

|W | < |V | < |W |+ |V | < |U | =⇒ tUVW = s1(s1(c1(f(u, v, w)))

|W | < |V | < |U | < |W |+ |V | =⇒ tUVW = s1(s1(c1(g(u, v, w))).

Case 2. Suppose that |U | = |V | + |W | = n/2 and |V | ≠ |W | ̸= 0. In this case, the orderings
⪯πUV W
iab only differ in how they order {u} with {v, w}, with the ordering determined by whether or

not we have V ∪W ⪯b0 U . Since

V ∪W ≺+
0 U ⇐⇒ U ≺−

0 V ∪W,

by the symmetry of s2 we have

|W | < |V | < |U | = |W |+ |V | =⇒ tUVW = s2(s1(c1(f(u, v, w))), s1(c1(g(u, v, w)))).

Case 3. Suppose that |U | = |V |+ |W | = n/2 and |V | = |W | = n/4. In this case, the orderings
⪯πUV W
iab differ in how they order {u} with {v, w} as well as in how they order {v} with {w}. The
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ordering between {u} and {v, w} is once again determined by b, but the ordering between {v} and
{w} is a bit more interesting. By Lemma 3.17.16, either one out of three of the is will have W ⪯i V
and two out of three of the is will have V ⪯−

i W , or vice-versa, so we get

|W | = |V | < |U | = |W |+ |V | =⇒
tUVW = s1(s2(c3(f(u, v, w), f(u, v, w), f(u,w, v)), c3(f(u, v, w), f(u,w, v), f(u,w, v))),

s2(c3(g(u, v, w), g(u, v, w), g(u,w, v)), c3(g(u, v, w), g(u,w, v), g(u,w, v)))).

Case 4. Suppose that |V | = |W | ≠ 0 and |U | ̸= |V | + |W |. By a similar argument to the
previous case, we get

|W | = |V | < |U | < |W |+ |V | =⇒
tUVW = s1(s2(c3(g(u, v, w), g(u, v, w), g(u,w, v)), c3(g(u, v, w), g(u,w, v), g(u,w, v))))

and

|W | = |V | < |W |+ |V | < |U | =⇒
tUVW = s1(s2(c3(f(u, v, w), f(u, v, w), f(u,w, v)), c3(f(u, v, w), f(u,w, v), f(u,w, v)))).

Case 5. Suppose that |U | = |V | ≠ |W | ≠ 0. In this case we get

|W | < |V | = |U | < |W |+ |V | =⇒
tUVW = s1(s2(c3(g(u, v, w), g(u, v, w), g(v, u, w)), c3(g(u, v, w), g(v, u, w), g(v, u, w)))).

Case 6. Suppose that |U | = |V | = |W | = n/3. In this case, b becomes irrelevant and Lemma
3.17.16 shows that for a fixed, the restrictions of the orders ⪯πUV W

iab to {u}, {v}, {w} are cyclic
permutations of each other, so we get

|W | = |V | = |U | =⇒
tUVW = s1(s2(c3(g(u, v, w), g(v, w, u), g(w, u, v)), c3(g(v, u, w), g(u,w, v), g(w, v, u)))).

Case 7. Suppose that |W | = 0. If |V | = 0 as well, then we get

0 = |W | = |V | < |U | = n =⇒ tUVW = s1(s1(c1(g(u, u, u)))),

and if 0 < |V | < |U | then we get

0 = |W | < |V | < |U | =⇒ tUVW = s1(s1(c1(g(u, u, v)))),

while if |U | = |V | = n/2 then we get

0 = |W | < |V | = |U | =⇒ tUVW = s2(s1(c1(g(u, u, v))), s1(c1(g(u, v, v)))).

We can take things a little bit further, but how much further is unclear. We’ll start with a
construction of 4-ary symmetric operations from [51], the existence of which is closely connected
to the fact that the symmetric group S4 on four elements is solvable.
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Proposition 3.17.18 (Lemma 4 of [51]). If s2(x, y) is a binary symmetric operation and c3(x, y, z)
is a ternary cyclic operation, then

s3(x, y, z) := s2(c3(x, y, z), c3(z, y, x))

is a ternary symmetric operation, and if we define 4-ary operations t, s4 by

t(x, y, z, w) := s2(s2(x, y), s2(z, w)),

s4(x, y, z, w) := s3(t(x, y, z, w), t(x, z, w, y), t(x,w, y, z)),

then s4 is a 4-ary symmetric operation.

Proposition 3.17.19. If a locally finite variety V has bounded width and has a binary symmetric
term operation s2(x, y) and a ternary cyclic term operation c3(x, y, z), then V has a 4-symmetric
term operation of arity 5.

Proof. For every pair of permutations σ, τ ∈ S5, we define a graded self-dual total quasiorder ⪯σ,τ
on P([5]) as follows. First, as usual if |U | < |V | then we have U ≺σ,τ V . Next, if U and V are
singletons, then we define ⪯σ,τ by

{u} ⪯σ,τ {v} ⇐⇒ σ(u) ≤ σ(v).

For sets of size 2, we define ⪯σ,τ by

{u1, u2} ⪯σ,τ {v1, v2} ⇐⇒ τ(min(σ(u1), σ(u2))) ≤ τ(min(σ(v1), σ(v2))),

so that the associated equivalence relation ∼σ,τ on sets of size 2 is given by

{u1, u2} ∼σ,τ {v1, v2} ⇐⇒ min(σ(u1), σ(u2)) = min(σ(v1), σ(v2)).

The ordering on sets of size 3 and 4 is then defined to be the dual to the ordering on the sets of
size 2 and 1:

U ⪯σ,τ V ⇐⇒ [5] \ V ⪯σ,τ [5] \ U.

Then ⪯σ,τ is a vague element of [5] which extends the inclusion order ⊆ for each pair σ, τ ∈ S5, so
by Theorem 3.17.8 we can find associated 5-ary term operations

rσ,τ := rW([5],⪯σ,τ ) ∈ FV(5).

Letting ι ∈ S5 be the order-reversing permutation

ι : i 7→ 6− i,

we define
rσ,{τ,ιτ} := s2(rσ,τ , rσ,ιτ ).

Next, by Theorem 3.17.17 we can find in V a 3-symmetric term operation f60 of arity 60, and we
define

rσ := f60(rσ,{τ1,ιτ1}, ..., rσ,{τ60,ιτ60})
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for any ordering τi of a system of right coset representatives for the subgroup ⟨ι⟩ < S5. To finish
the construction, we define

r{σ,ισ} := s2(rσ, rισ),

t5 := f60(r{σ1,ισ1}, ..., r{σ60,ισ60}).

In order to check that t5 is a 4-symmetric operation, we need to check that as long as two of the
inputs to t5 are equal, each application of f60 has at most 3 distinct inputs - this is left as an
exercise to the reader.

Similar techniques can be used to construct 4-symmetric term operations of arities 6 and 7, but
I haven’t found a way to construct a 4-symmetric term operation of arity 8 with this approach.
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Chapter 4

Finite Taylor Algebras

4.1 Cyclic terms

In this section we will prove that every finite Taylor algebra has a cyclic term.

Definition 4.1.1. An m-ary operation c is called cyclic if it satisfies the identity

c(x1, x2, ..., xm) ≈ c(x2, ..., xm, x1).

Cyclic terms were first proved to exist for finite congruence modular algebras [22], and most
of the basic facts about cyclic terms are developed in that paper. This was extended to finite
congruence join-semidistributive algebras in [18], and then finally to all finite Taylor algebras in
[19]. We’ll start by showing that we only care about cyclic terms of prime arity.

Proposition 4.1.2 (Multiplicative property of cyclic terms [22]). A variety V has a cyclic term
cmn of arity mn if and only if V has cyclic terms cm, cn of arity m and n, respectively.

Proof. Suppose first that cmn is a cyclic term of arity mn. Then we can define a cyclic term of
arity m by plugging in

cmn(x1, ..., x1︸ ︷︷ ︸
n

, x2, ..., x2︸ ︷︷ ︸
n

, ..., xm, ..., xm︸ ︷︷ ︸
n

),

and we can define a cyclic term of arity n similarly.
Conversely, suppose that cm, cn are cyclic terms of arity m and n. We define a cyclic term of

arity mn by renumbering the inputs of the star composition cn ∗ cm:

cn


cm(x1, xn+1, ..., x(m−1)n+1),

cm(x2, xn+2, ..., x(m−1)n+2),
...

...
. . .

...
cm(xn, x2n, ..., xmn)

 ≈ cn


cm(x2, xn+2, ..., x(m−1)n+2),
...

...
. . .

...
cm(xn, x2n, ..., xmn),
cm(xn+1, ..., x(m−1)n+1, x1)

 .

Corollary 4.1.3. A variety V has a cyclic term of arity m if and only if V has a cyclic term of
arity p for every prime p which divides m.

Next we will describe the main obstruction to the existence of a cyclic term of a given arity.
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Proposition 4.1.4 (Semantic meaning of cyclic terms [22]). Suppose that V is a variety. Then for
any m ∈ N, the following are equivalent.

(a) V has no cyclic term of arity m.

(b) There is some A ∈ V and an automorphism σ ∈ Aut(A) such that σm = 1 and σ has no fixed
point.

Proof. We start by showing that (b) implies (a). Suppose that A, σ are as in (b), and suppose for
contradiction that A has some cyclic term cm of arity m. Let a be any element of A, and define ai
by ai = σi(a). Then we have

cm

(
a1, a2, ..., am
a2, a3, ..., a1

)
∈ σ,

so cm(a1, ..., am) is a fixed point of σ, contradicting the assumption in (b).
Now suppose that (a) holds. Let A = FV(x1, ..., xm) be the free algebra on m generators, and

let σ be the automorphism of A defined by cyclically permuting the generators x1, ..., xm. Then a
fixed point of σ is precisely the same thing as a cyclic term of V of arity m, so if V has no cyclic
term of arity m, then σ has no fixed points (and satisfies σm = 1).

For finite algebras, we can give a local criterion for the existence of a cyclic term.

Proposition 4.1.5 (Local criterion for cyclic terms [22]). If A is a finite algebra, then A has an
m-ary cyclic term if and only if it is the case that for all a1, ..., am ∈ A, there exists some m-ary
term t such that

t(a1, a2, ..., am) = t(a2, ..., am, a1) = · · · = t(am, a1, ..., am−1).

Proof. Say that an m-ary term t is cyclic for a tuple (a1, ..., am) if it satisfies the displayed equation
from the statement of the proposition. Let c be an m-ary term which is cyclic for a maximal set
of tuples (we are using finiteness of A here). Suppose for contradiction that c is not cyclic, and let
a = (a1, ..., am) be any tuple such that c is not cyclic for a.

Define a tuple a′ = (a′1, ..., a
′
m) by

a′i = c(ai, ai+1, ..., ai−1),

with indices taken modulo m. By assumption, there is some m-ary term t which is cyclic for a′.
But then the m-ary term

t(c(x1, x2..., xm), c(x2, ..., xm, x1), ..., c(xm, x1, ..., xm−1))

is cyclic for a, and is also cyclic for every tuple which c was cyclic for, contradicting the maximality
assumption on c.

For the sake of checking the local condition of Proposition 4.1.5 for a particular tuple a1, ..., am,
the natural approach is to compute the m-ary relation

SgAm



a1 a2 · · · am
a2 a3 · · · a1
...

... . .
. ...

am a1 · · · am−1


 ,
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and to check if it contains any constant tuples. This relation is invariant under cyclically permuting
its coordinates, which leads us to make the following definition.

Definition 4.1.6. A relation R ≤ Am is called cyclic if R is invariant under cyclically permuting
its coordinates, that is,

(a1, a2, ..., am) ∈ R ⇐⇒ (a2, ..., am, a1) ∈ R.

Corollary 4.1.7 (Relational criterion for cyclic terms [22]). If A is a finite algebra, then A has a
cyclic term of arity m if and only if every m-ary cyclic relation R ≤ Am contains a constant tuple.

Now we are finally ready to prove one of the main results of [19], which states that every finite
Taylor algebra A has cyclic terms of every prime arity p > |A|. In fact, we will prove a stronger
version of this result due to Zhuk (currently unpublished).

Theorem 4.1.8 (Finite Taylor algebras have cyclic terms [19], refined by Zhuk). Suppose A is a
finite idempotent Taylor algebra and that p is prime. Then one of the following is true:

(a) either A has a cylic term of arity p, or

(b) there is some B ∈ HS(A) and some automorphism σ ∈ Aut(B) such that σp = 1 and σ has
no fixed points.

In particular, if p > |A| then A has a cyclic term of arity p.

Proof. We prove this by induction on |A|. Suppose that there is no B ∈ HS(A), σ ∈ Aut(B) as in
(b), and let R ≤ Ap be any p-ary cyclic relation. It’s enough to show that R contains a constant
tuple.

If π1(R) ̸= A, then since R is cyclic we have R ≤ π1(R)p, so we can apply the induction
hypothesis to the algebra π1(R) to see that R has a constant tuple. Thus we may assume without
loss of generality that R is subdirect in Ap.

If A has a nontrivial congruence θ ∈ Con(A), then R/θp ≤ (A/θ)p is a cyclic relation on
A/θ, so by the induction hypothesis applied to A/θ there is some congruence class a/θ such that
R ∩ (a/θ)p ̸= ∅. Setting R′ = R ∩ (a/θ)p, we see that R′ is a cyclic relation on a/θ, so by the
induction hypothesis applied to a/θ we see that R′ (and therefore also R) has a constant tuple.
Thus we may assume that A is simple.

If any πij(R) is the graph of an automorphism σ of A, then since R is cyclic, we see that
πj,2j−i(R) is also the graph of σ, and similarly so is π2j−i,3j−2i(R), etc., so

πii(R) = πij(R) ◦ πj,2j−i(R) ◦ · · · ◦ π2i−j,i(R)

is the graph of σp, which implies σp = 1. Since p is prime, we see that in fact every πkl(R) is the
graph of some power of the automorphism σ. In this case we see that R has a constant tuple if
and only if σ has a fixed point. Thus we may assume without loss of generality that every πij(R)
is linked.

By Zhuk’s four cases (Corollary 3.12.12), we see that A is either affine, subdirectly simple, or
has a proper ternary absorbing subalgebra.
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If A is affine, with underlying abelian group (A,+,−, 0), then since x− y+ z is a term of A (by
the definition of an affine algebra), we see that k1x1+ · · ·+kmxm is a term of A for all k1, ..., km ∈ Z
such that k1 + · · ·+ km ≡ 1 (mod |A|). In particular, if p ∤ |A|, then

p−1(x1 + · · ·+ xp)

is a p-ary cyclic term of A. On the other hand, if p | |A|, then by elementary group theory there
must be some element c ∈ A of order p, and then by the idempotence of A the relation

{(x, y) | x = y + c}

is a subalgebra of A2, and it is then the graph of an automorphism σ of A which has order p and
has no fixed points.

If A is subdirectly simple, then since R ≤sd Ap is subdirect and every πij(R) is linked, we must
have R = Ap. In this case R contains every constant tuple.

If A has a proper ternary absorbing subalgebra, then we define a directed graph D whose
vertices are proper ternary absorbing subalgebras B�3 A, and with a directed edge (B,B+ πij(R))
whenever B + πij(R) ̸= A and i ̸= j.

Claim: The digraph D has no directed cycles.
Proof of claim: Note first that since R is cyclic we have

πij(R)− ⊆ πij(R)◦(p−1),

so if B + πij(R) = B then we must have

B + πij(R)− πij(R) = B,

so B is a union of linked components of πij(R). Since πij(R) is linked and B is proper, this is
impossible. Thus D has no directed cycles of length 1. Since R is cyclic, we also have

πij(R) ◦ πkl(R) ⊇ πi+k,j+l(R),

so if D has a directed cycle, then D has a directed cycle of length 2, of the form B+πij(R)+πkl(R) =
B. If i + k ̸= j + l this gives us a directed cycle of length 1, while if i + k = j + l then we have
B + πij(R) − πij(R) = B, so once again B must be a union of linked components of πij(R), which
is impossible. The claim is proved.

Since the digraph D is finite, nonempty, and has no directed cycles, there must be a proper
ternary absorbing subalgebra B�3 A such that B + πij(R) = A for all i ̸= j. In particular, we see
that πij(R) ∩ B2 ̸= ∅ for all i, j. Since B is ternary absorbing, this implies that in fact R ∩ Bp ̸= ∅
by Corollary 3.8.4. Setting R′ = R∩Bp, we can apply the induction hypothesis to B to see that R′

contains a constant tuple. Thus R contains a constant tuple, and we are done.

Corollary 4.1.9. If A is a finite Taylor algebra and m has no prime factors p which are less than
or equal to |A|, then A has an idempotent m-ary cyclic term.

Example 4.1.1. Let An be the dual discriminator algebra from Example 1.6.5 on a domain of size
n. Then every subset of An is a subalgebra with full automorphism group, so An does not have
cyclic terms of any arity between 2 and n. By the previous results, we see that An has a cyclic
term of arity m if and only if m has no prime factors which are less than or equal to n.
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Corollary 4.1.10 (Siggers term from cyclic term). If A is a finite Taylor algebra, then A has an
idempotent 4-ary Siggers term t, satisfying the identity t(x, x, y, z) ≈ t(y, z, z, x).

Proof. Let c be an idempotent m-ary cyclic term for some m > 1. Then there are numbers a, b ∈ N
such that 2a+ 3b = m, and we may define t by

t(x, y, z, w) := c(x, ..., x︸ ︷︷ ︸
b

, y, ..., y︸ ︷︷ ︸
a

, z, ..., z︸ ︷︷ ︸
b

, w, ..., w︸ ︷︷ ︸
a+b

).

Corollary 4.1.11 (Daisy chain terms). If A is a finite Taylor algebra, then there are idempotent
terms wi(x, y, z) for i ∈ Z such that for all i we have

wi(x, x, y) ≈ wi(y, x, x) ≈ wi−1(x, y, x),

and the sequence of terms wi is periodic with some finite period.

Proof. Choose p to be an extremely huge prime, let c be an idempotent p-ary cyclic term, and let
a = ⌊p3⌋. Define a long sequence of numbers a0, a1, ... by a0 = a and

ai+1 = p− 2ai,

stopping as soon as we hit the first ai with ai >
p
2 . Define terms w′

i by

w′
i(x, y, z) := c(x, ..., x︸ ︷︷ ︸

ai

, y, ..., y︸ ︷︷ ︸
ai+1

, z, ..., z︸ ︷︷ ︸
ai

).

Since c is cyclic, these w′
is will satisfy the identities

w′
i(x, x, y) ≈ w′

i(y, x, x) ≈ w′
i−1(x, y, x).

If p is large enough, then there must be some j < k such that w′
j = w′

k. Then we define wi by
picking some i′ ∈ [j, k] such that i ≡ i′ (mod k − j) and setting wi = w′

i′ .

Corollary 4.1.12. A finite algebra A is Taylor if and only if it has a pair of idempotent ternary
terms p, q satisfying the identities

p(x, x, y) ≈ p(y, x, x),

q(x, x, y) ≈ q(y, x, x) ≈ p(x, y, x).

Proof. To see that such p, q must exist in a Taylor algebra, we can take p, q to be any pair of
consecutive daisy chain terms from the previous corollary. To see that any such p, q define Taylor
terms, note that if p is a projection then p must be second projection, but in this case q must be a
Mal’cev term.

4.2 Minimal Taylor clones

Since our main aim in these notes is to understand the most general CSPs which can be solved in
polynomial time, it makes sense to study (core) relational structures A such that CSP(A) is in P,
but such that adding any additional relations to A makes the problem NP-complete. According to
the CSP dichotomy theorem of Bulatov [48] and Zhuk [164], these maximal relational structures
correspond under the Inv−Pol Galois correspondence to minimal Taylor clones.
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Definition 4.2.1. A clone O on a finite domain is called a minimal Taylor clone if O is Taylor
and every proper subclone of O is not Taylor. A finite algebra A is called a minimal Taylor algebra
if Clo(A) is a minimal Taylor clone.

At first it may not be clear that minimal Taylor clones even exist: perhaps every Taylor clone
contains a proper Taylor subclone, with the relevant Taylor operations having higher and higher
arity. We can rule this out by using the existence of a Siggers term (Corollary 3.11.18).

Proposition 4.2.2. Every Taylor clone on a finite domain contains a minimal Taylor clone.

Proof. By Corollary 3.11.18, every Taylor clone contains a 4-ary Siggers operation t satisfying the
identity t(x, x, y, z) ≈ t(y, z, z, x). Since any such t is Taylor, and since there are only finitely
many 4-ary operations on a given finite domain, at least one of the 4-ary Siggers operations t ∈ O
generates a minimal Taylor clone.

Since every minimal Taylor clone is generated by a single 4-ary operation, we see that the
number of minimal Taylor clones on a domain of size n is at most nn

4
. We can get a much better

upper bound on the number of minimal Taylor clones by using the daisy chain terms from the
previous section.

Proposition 4.2.3. The number of minimal Taylor clones on a domain of size n is at most n2n
3
.

Proof. By Corollary 4.1.12, every minimal Taylor clone O contains a pair of ternary idempotent
operations p, q satisfying the identities

p(x, x, y) ≈ p(y, x, x),

q(x, x, y) ≈ q(y, x, x) ≈ p(x, y, x).

Since ⟨p, q⟩ generates a Taylor clone, we must have O = ⟨p, q⟩. Since the number of ordered pairs
of ternary operations p, q on a domain of size n is n2n

3
, we see that the number of minimal Taylor

clones is at most n2n
3
.

Remark 4.2.1. The paper [14] showed that the upper bound n2n
3

can be reduced to nn
3
, by showing

that every minimal Taylor clone is generated by a single ternary operation. On a domain of size
2, it is easy to check that every minimal Taylor algebra is term equivalent to either a semilattice,
a majority algebra, or to the idempotent reduct of Z/2. On a domain of size 3, there turn out to
be a total of 24 minimal Taylor algebras, up to term equivalence and isomorphism.

Unfortunately, the number of minimal Taylor algebras grows quite rapidly as the size of the do-
main increases: even if we only consider majority algebras, it turns out that the number of minimal
majority algebras (up to term-equivalence) such that every three-element subset is a subalgebra

is 7(n3), and identifying isomorphic algebras can only reduce this by a factor of at most n!, which
makes little difference to the asymptotics.

The key fact that makes the theory of minimal Taylor algebras work is the following result,
which essentially says that anything that “looks like” it “could be” a subalgebra or quotient of a
minimal Taylor algebra actually is a subalgebra or quotient, and is also minimal Taylor as well.

Theorem 4.2.4. If A is a minimal Taylor algebra and B ∈ HSPfin(A), then B is also a minimal
Taylor algebra.

In fact, if S ⊆ B is a subset of B (not assumed to be a subalgebra), t ∈ Clo(A) is any term of
A, and θ is an equivalence relation on S such that

318



• the set S is closed under t,

• every equivalence class of θ is a subalgebra of B,

• the equivalence relation θ is a congruence of the algebraic structure (S, t), and

• the quotient (S, t)/θ is a Taylor algebra,

then in fact the following must all be true:

• the set S is actually the underlying set of a subalgebra S of B (i.e. S is a subuniverse of B),

• the equivalence relation θ is actually a congruence on the subalgebra S, and

• the restriction of every term of A to the quotient S/θ is in the clone generated by the restriction
of t to (S, t)/θ.

Note that taking θ to be the trivial equivalence relation 0S is always allowed, since every minimal
Taylor algebra is automatically idempotent.

Proof. Let p be any prime such that p > |A| and p > |(S, t)/θ|. By Theorem 4.1.8, there is a p-ary
cyclic term c ∈ Clo(A), as well as a p-ary term u ∈ Clo(t) such that the restriction of u to (S, t)/θ
is cyclic. Define a p-ary term c′ by

c′(x1, ..., xp) := c(u(x1, ..., xp), u(x2, ..., xp, x1), ..., u(xp, x1, ..., xp−1)).

Then since c is cyclic, c′ will automatically be cyclic as well. Since A is assumed to be minimal
Taylor, we must have Clo(A) = ⟨c′⟩.

Suppose that x1, ..., xp ∈ S. Then since u ∈ Clo(t) preserves S and acts cyclically on (S, t)/θ,
we must have

u(x1, ..., xp) ≡θ u(x2, ..., xp, x1) ≡θ · · · ≡θ u(xp, x1, ..., xp−1) ∈ S,

and since equivalence classes of θ were assumed to be subalgebras of B, we have

c′(x1, ..., xp) ≡θ u(x1, ..., xp) ∈ S.

Thus c′ preserves S as well as the equivalence relation θ, and the restriction of c′ to (S, t)/θ is the
same as the restriction of u to (S, t)/θ. Since c′ generates Clo(A), this finishes the proof.

An immediate consequence of Theorem 4.2.4 is that minimal Taylor algebras are prepared in
the sense of Definition 3.2.19.

Proposition 4.2.5. If A is a minimal Taylor algebra, then a, b ∈ A have[
b
b

]
∈ SgA2

{[
a
b

]
,

[
b
a

]}
if and only if {a, b} is a semilattice subalgebra of A with absorbing element b.
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Proof. If (b, b) ∈ Sg{(a, b), (b, a)}, then there must be some binary term t such that t(a, b) =
t(b, a) = b. By idempotence, we automatically have t(a, a) = a and t(b, b) = b, so the set S = {a, b}
is closed under t and (S, t) is a two-element semilattice. Thus we can apply Theorem 4.2.4 to see
that {a, b} must be a subalgebra of A, and that the restriction of every term of A to {a, b} is in the
clone generated by the restriction of t to {a, b}.

Similarly, we can recognize two-element majority subalgebras and Z/2aff subalgebras. To sim-
plify the statements of these results, it is convenient to assume the existence of an order two
automorphism.

Proposition 4.2.6. If A is a minimal Taylor algebra and a, b ∈ A are such that SgA2

{[
a
b

]
,

[
b
a

]}
is the graph of an automorphism of order two, then

• we have

aa
a

 ∈ SgA3


aa
b

 ,
ab
a

 ,
ba
a

 iff {a, b} is a majority subalgebra of A, and

• we have

bb
b

 ∈ SgA3


aa
b

 ,
ab
a

 ,
ba
a

 iff {a, b} is a Z/2aff subalgebra of A.

Corollary 4.2.7. If a minimal Taylor algebra A is generated by two elements a, b, then A is not
subdirectly simple. As a consequence, either A has an affine quotient or A has a proper ternary
absorbing subalgebra.

Proof. Suppose for contradiction that A is subdirectly simple. Define a subdirect binary relation
S ≤sd A2 by

S = SgA2

{[
a
b

]
,

[
b
a

]}
.

If (a, a) or (b, b) is in S, then {a, b} must be a two-element semilattice, which is not subdirectly
simple. Otherwise, S must be the graph of an automorphism of order two by our assumption that
A is subdirectly simple. Now define a subdirect ternary relation R ≤sd A3 by

R = SgA3


aa
b

 ,
ab
a

 ,
ba
a

 .

Since no πij(R) can be the graph of an automorphism, we see that we must have R = A3 by our
assumption that A is subdirectly simple. Thus we have (a, a, a) ∈ R, so {a, b} must be a two-
element majority algebra, which is not subdirectly simple. This contradiction proves that A must
not be subdirectly simple.

For the last claim, we recall Zhuk’s four cases (Corollary 3.12.12), and note that both binary
absorption and central absorption imply ternary absorption.

Problem 4.2.1. Suppose that a minimal Taylor algebra A is generated by two elements. Is it
possible for A to be polynomially complete?

The general recognition theorem for two-element majority subalgebras is as follows.
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Proposition 4.2.8. If A is a minimal Taylor algebra, then a, b ∈ A havea b
a b
a b

 ∈ SgA3×2


a b
a b
b a

 ,
a b
b a
a b

 ,
b a
a b
a b


if and only if {a, b} is a majority subalgebra of A.

It is also easy to recognize copies of the free semilattice on two generators.

Proposition 4.2.9. If A is a minimal Taylor algebra and a, b, c ∈ A satisfy a → c, b → c (i.e.
{a, c} and {b, c} are semilattice subalgebras of A with absorbing element c), then we have[

c
c

]
∈ SgA2

{[
a
b

]
,

[
b
a

]}
if and only if {a, b, c} is isomorphic to the free semilattice on two generators.

We can also characterize binary absorbing subalgebras of minimal Taylor algebras, and show
that they are always automatically strongly absorbing (and therefore are automatically centrally
absorbing as well).

Proposition 4.2.10. Suppose that A is a minimal Taylor algebra, and that B �bin A is a binary
absorbing subalgebra of A. Then the following must hold.

(a) B is a strongly absorbing subalgebra of A, that is, any term f ∈ Clo(A) which depends on its
first input satisfies f(B,A, ...,A) ⊆ B.

(b) There is an equivalence relation θB ∈ Con(A) such that B is a congruence class of θB, and all
other congruence classes of θB are singletons.

(c) For every a ̸∈ B, B ∪ {a} is a subalgebra of A, and (B ∪ {a})/θB is a two-element semilattice
with absorbing element B/θB.

(d) For every a ̸∈ B, there is some b ∈ B such that {a, b} is a two-element semilattice with
absorbing element b.

(e) For every a, b ̸∈ B such that SgA{a, b} ∩ B ̸= ∅, SgA{a, b}/θB is isomorphic to the free semi-
lattice on two generators.

(f) For every a1, ..., ak ̸∈ B such that SgA{ai, aj} ∩ B ̸= ∅ for all i ̸= j, SgA{a1, ..., ak}/θB is
isomorphic to a semilattice of size k + 1.

In particular, if A is generated by two elements and B is a proper binary absorbing subalgebra, then
A/θB is either a two-element semilattice, or is isomorphic to the free semilattice on two generators.

For the sake of concretely writing down minimal Taylor algebras, we should pick convenient
terms. My preference is to write them down in terms of the daisy chain terms from Corollary
4.1.11.

Definition 4.2.11. We say that a sequence of idempotent ternary terms wi, defined for all i ∈ Z,
is a sequence of daisy chain terms if it satisfies the following properties:
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• the sequence wi is purely periodic in i with some finite period, and

• for all i ∈ Z, we have wi(x, x, y) ≈ wi(y, x, x) ≈ wi−1(x, y, x).

It is useful to work out all possible sequences of daisy chain terms in our three basic examples
of minimal Taylor algebras: semilattices, majority algebras, and affine algebras.

Proposition 4.2.12. If A = (A,∨) is a semilattice, then any sequence of daisy chain terms of A
must have

wi(x, y, z) ≈ x ∨ y ∨ z

for all i ∈ Z.

Proof. It’s enough to show that wi(x, x, y) ≈ wi(x, y, x) ≈ wi(y, x, x) ≈ x ∨ y for all i. Note that
since wi(x, x, y) ≈ wi(y, x, x), we can’t have wi(x, x, y) = y, since semilattices have no Mal’cev
terms. Additionally, if we had wi(x, x, y) = wi(y, x, x) = x, then wi could not depend on its first
or last coordinates, so we would have wi+1(x, x, y) ≈ wi+1(y, x, x) ≈ wi(x, y, x) = y, which again
contradicts the fact that semilattices have no Mal’cev terms.

Since the only binary terms of a semilattice are x, y, and x∨ y, we see by process of elimination
that we must have wi(x, x, y) ≈ wi(y, x, x) ≈ x ∨ y, and similar reasoning shows that wi(x, y, x) ≈
wi+1(x, x, y) ≈ x ∨ y, so we are done.

Proposition 4.2.13. If A = (A,m) is a majority algebra, then in any sequence of daisy chain
terms of A, each wi must be a majority term, that is, we have

wi(x, x, y) ≈ wi(x, y, x) ≈ wi(y, x, x) ≈ x

for all i ∈ Z.

Proof. Note that every ternary term of a majority algebra is either a projection or a majority term
(as is easily checked by induction on the construction of the term in terms of the majority operation
m). If some wi is a projection, then the identity wi(x, x, y) ≈ wi(y, x, x) implies that it must be
second projection, but then the identity wi+1(x, x, y) ≈ wi+1(y, x, x) ≈ wi(x, y, x) = y implies that
wi+1 is a Mal’cev term, which is impossible. Thus each wi must be a majority term.

For the affine case, we have the following simplification in the setting of minimal Taylor algebras.

Proposition 4.2.14. If A is minimal Taylor and affine, then there is an abelian group structure
on the underlying set A such that A is term equivalent to (A, x− y + z).

Proof. Every affine algebra has the ternary function x−y+z as a term, by Proposition 1.9.6. Since
the ternary operation x− y+ z is Mal’cev, it generates a Taylor clone, so a minimal Taylor algebra
is affine if and only if its clone is generated by x− y + z.

Because of this result, we don’t need to think about the general case of a module over a (possibly
noncommutative) ring if we are only interested in minimal Taylor algebras: we only need to think
about algebras of the form (A, x − y + z) for A an abelian group. By the classification of finite
abelian groups, we can write such an algebra as a product of cyclic factors of prime power order.
Recall that the exponent of a group is the least number n such that every cyclic subgroup has order
dividing n.
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Proposition 4.2.15. If A = (A, x− y + z) is an affine algebra such that the abelian group A has
exponent n, then for any sequence of daisy chain terms wi of A, there is a sequence of elements
ai ∈ Z/n such that

wi(x, y, z) ≈ aix+ (1− 2ai)y + aiz

and
ai+1 ≡ 1− 2ai (mod n)

for all i ∈ Z.

Proof. Every m-ary term t ∈ Clo(x− y + z) can be written in the form

t(x1, ..., xm) ≈ k1x1 + · · ·+ kmxm,

for some ki ∈ Z satisfying
k1 + · · ·+ km = 1.

Of course, only the congruence classes of the values of the coefficients ki modulo n matter, and
the set of m-ary terms t ∈ Clo(A) is in bijection with the set of tuples of ki ∈ Z/n such that
k1 + · · ·+ km ≡ 1 (mod n).

Thus we can write
wi(x, y, z) ≈ aix+ biy + ciz

for some ai, bi, ci ∈ Z/n such that ai + bi + ci ≡ 1 (mod n). The identity wi(x, x, y) ≈ w(y, x, x)
then implies that ai ≡ ci, so bi ≡ 1− 2ai, while the identity wi+1(y, x, x) ≈ wi(x, y, x) implies that
ai+1 ≡ bi ≡ 1− 2ai.

Proposition 4.2.16. If A = (A, x− y + z) is an affine algebra such that |A| is a power of 2, then
any sequence of daisy chain terms of A must have

wi(x, y, z) ≈ x+ y + z

3

for all i ∈ Z. In particular, if the abelian group A has exponent 2, then each wi is the Mal’cev
operation x− y + z ≈ x+ y + z.

Proof. Suppose the exponent of A is 2k. Then if we let ai ∈ Z/2k be the sequence from Proposition
4.2.15, we see from ai+1 ≡ 1− 2ai (mod 2k) that we have

ai+1 − 1/3 ≡ −2(ai − 1/3) (mod 2k)

for all i ∈ Z, so in fact we must have

ai − 1/3 ≡ 0 (mod 2k)

for all i ∈ Z.

Proposition 4.2.17. If A = (A, x− y + z) is an affine algebra such that the abelian group A has
exponent 3k, then any sequence of daisy chain terms of A must have period equal to 3k, and there
must be some i ∈ Z such that

wi−1(x, y, z) ≈ x+ z

2
,

wi(x, y, z) ≈ y,
wi+1(x, y, z) ≈ x− y + z.
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Proof. We just need to show that the map a 7→ 1 − 2a (mod 3k) defines a cyclic permutation of
Z/3k for all k ≥ 0. To see this, it’s enough to check that the cycle containing 0 has length exactly
3k.

Lifting to the integers, if we define a sequence ai ∈ Z by a0 = 0 and ai+1 = 1 − 2ai, then we
can solve the recurrence to obtain

ai =
1− (−2)i

3
.

Then we see that ai ≡ 0 (mod 3k) if and only if 3k+1 | 1−(−2)i. By induction on k we may assume
that 3k−1 divides i, and by the binomial theorem, we have

1− (−2)i = 1− (1− 3)i = 3i− 9

(
i

2

)
+ 27

(
i

3

)
−+ · · · ≡ 3i− 0 + 0−+ · · · (mod 3k+1),

so 3k+1 | 1− (−2)i if and only if 3k divides i.

By going back to the original construction of the daisy chain terms from a huge cyclic term, we
can simplify the situation slightly for affine algebras of odd order.

Proposition 4.2.18. If A is a minimal Taylor algebra, then it is possible to choose a sequence of
daisy chain terms wi of A such that for every affine B ∈ HSPfin(A) of odd order, the restriction
of w1 to B is the Mal’cev operation x− y + z.

Proof. Since there are only finitely many ternary terms w1 ∈ Clo(A), it’s enough to prove that for
every finite k we can find a w1 that is part of a sequence of daisy chain terms of A, such that w1

restricts to the Mal’cev operation x− y + z on every affine B ∈ HSP (A) such that |B| is odd and
|B| ≤ k.

Note that for any large prime p, the restriction of a p-ary cyclic term c to B must be given by

c(x1, ..., xp) =
x1 + · · ·+ xp

p
.

Thus, in the construction of the terms w′
i from Corollary 4.1.11 where we plugged in

w′
i(x, y, z) := c(x, ..., x︸ ︷︷ ︸

ai

, y, ..., y︸ ︷︷ ︸
p−2ai

, z, ..., z︸ ︷︷ ︸
ai

),

we will have

w′
i(x, y, z) =

aix+ (p− 2ai)y + aiz

p

on B. So as long as we choose a1 such that a1 ≡ p (mod k!) and a1 ≈ p
3 (which is possible as

long as we take p much larger than k!), we will have w′
1(x, y, z) = x− y+ z on every affine algebra

B ∈ HSP (A) of size at most k. For |B| odd, the restriction of the sequence of terms w′
i to B will be

purely periodic, so the final sequence of daisy chain terms constructed will have w1 = w′
1 on such

B.

Remark 4.2.2. A similar argument shows that we can instead choose daisy chain terms wi such that
wi(x, y, z) ≈ x+y+z

3 for all i on every affine algebra B ∈ HSP (A) such that |B| is not a multiple

of 3. In fact, for any profinite integer a ∈ Ẑ = lim←−Z/n such that a ≡ 1
3 (mod 2k) for all k, we

can choose daisy chain terms such that w0(x, y, z) ≈ ax + (1 − 2a)y + az on every affine algebra
B ∈ HSP (A).
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We can also limit the collection of affine algebras which may show up in HSP (A).

Proposition 4.2.19. If A is a minimal Taylor algebra and B ∈ HSP (A) is affine, then the
exponent n of B is finite, with n ≤ |A||A|2, and every prime p which divides n is bounded by |A|.

Proof. First we show that every n such that Z/naff ∈ HSP (A) has n ≤ |A||A|2 . To see this,
note that Z/naff is generated by two elements (to be more specific, it is generated by 0 and 1),
so if Z/naff ∈ HSP (A) then Z/naff must be a quotient of the free algebra on two generators
FA(x, y) ≤ AA2

.
Next, note that if p is prime and Z/paff ∈ HSP (A), then A can’t have any cyclic term of arity

p, since Z/paff has an automorphism of order p with no fixed points. Thus by Theorem 4.1.8 there
is no prime p > |A| such that Z/paff ∈ HSP (A).

We will end this section by characterizing Zhuk’s centrally absorbing subalgebras in the case of
minimal Taylor algebras, and using them to naturally produce majority subquotients of minimal
Taylor algebras. First, we need a quick detour to show that (up to term equivalence) we can put
any minimal Taylor algebra into a minimal Taylor variety which also contains a majority algebra.

Proposition 4.2.20. If A, B are minimal Taylor algebras, then there are minimal Taylor algebras
A′,B′ such that

• A is term equivalent to A′ and B is term equivalent to B′,

• A′ and B′ have the same signature, and

• A′ × B′ is minimal Taylor.

Proof. We may assume without loss of generality that the basic operations of A and B are a sequence
of daisy chain terms wi(x, y, z) by Corollary 4.1.11. In this case, A and B already have the same
signature, and by the daisy chain identities we see that A×B is Taylor (alternatively, we can apply
Lemma 1.5.9 to see directly that if A,B are idempotent Taylor algebras with the same signature,
then A × B is also Taylor). Pick any minimal Taylor reduct A′ × B′ of A × B to complete the
proof.

Theorem 4.2.21. Suppose that A is minimal Taylor, and that there is a majority algebra M on
the domain {0, 1} (with the same signature as A) such that A ×M is minimal Taylor. For any
C ≤ A, the following are equivalent:

(a) C is a ternary absorbing subalgebra of A,

(b) for every prime p > |A| there is a p-ary cyclic term c of A×M such that whenever #{i | xi ∈
C} > p

2 , we have
c(x1, ..., xp) ∈ C,

and furthermore the restriction of c to M is the p-ary majority operation,

(c) the binary relation R ⊆ A×M given by

R = (A× {0}) ∪ (C× {0, 1})

is a subalgebra of A×M,
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(d) C centrally absorbs A,

(e) every daisy chain term wi(x, y, z) witnesses the fact that C ternary absorbs A.

Proof. For (a) implies (b): let t be a ternary term which witnesses C � A. If m is a ternary term
of A which acts as majority on M, then the ternary term

t′(x, y, z) := m(t(x, y, z), t(y, z, x), t(z, x, y))

also witnesses the absorption C�A, and the restriction of t′ to M is the majority operation. Now
let p > |A| be prime, and let u ∈ Clo(t′) be any term such that the restriction of u to M is a p-ary
majority operation. Any such u must have the property that whenever #{i | xi ∈ C} > p

2 , we have

u(x1, ..., xp) ∈ C.

Now let c′ be any p-ary cyclic term of A, and define c by

c(x1, ..., xp) := c′(u(x1, ..., xp), u(x2, ..., xp, x1), ..., u(xp, x1, ..., xp−1)).

For (b) implies (c), note that the cyclic term c must generate the clone of A, so it’s enough to
check that the relation R is preserved by c, which is easy to prove directly.

That (c) implies (d) follows from Zhuk’s Corollary 3.10.8, since the left center of R is C and
the majority algebra M is binary absorption free.

That (c) implies (e) follows from a direct computation: we have[
wi(C,A,C)

1

]
= wi

([
C
1

]
,

[
A
0

]
,

[
C
1

])
⊆ R,

so wi(C,A,C) ⊆ C, and similarly wi(A,C,C), wi(C,C,A) ⊆ C.
That (d) implies (a) follows from Zhuk’s Corollary 3.10.10, while (e) implies (a) is immediate.

Corollary 4.2.22. Suppose that A is minimal Taylor and that C,D�ZA are two ternary absorbing
subalgebras of A. Then C ∪ D is a subalgebra of A.

If C ∩ D = ∅, then the equivalence relation θ on C ∪ D with parts C and D is a congruence on
C ∪ D, and (C ∪ D)/θ is isomorphic to the two element majority algebra.

Proof. Note that since A is minimal Taylor, the clone of A is generated by any pair of consecutive
daisy chain terms, so we just need to check that C ∪ D is closed under each daisy chain term wi.
For any a, b, c ∈ C ∪ D, we either have at least two of a, b, c in C or at least two of a, b, c in D, so
the fact that wi witnesses both C� A and D� A implies that wi(a, b, c) ∈ C ∪ D.

If C ∩ D = ∅, then the fact that wi witnesses both C � A and D � A implies that wi is
compatible with θ, and that the restriction of wi to the two-element algebra (C ∪ D)/θ is the
majority operation.

The following conjecture, if true, would wrap everything up quite neatly.

Conjecture 4.2.1. If A is a minimal Taylor algebra which is generated by two elements a, b ∈ A,
then at least one of the following is true:
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• there is a congruence θ ∈ Con(A) such that A/θ is an affine algebra of prime order,

• there is a congruence θ ∈ Con(A) such that A/θ is a two element semilattice,

• there is a congruence θ ∈ Con(A) such that A/θ is a two element majority algebra, or

• there are proper ternary absorbing subalgebras C,D�Z A such that a ∈ C, b ∈ D, C∪D = A,
and C ∩ D ̸= ∅.

Partial progress towards this conjecture was made in [14]: if A is minimal Taylor, generated by
two elements, and has no affine quotient, then at least one of the two generators must be contained
in a proper ternary absorbing subalgebra. Embarrassingly, we don’t even know the answer to the
following basic question.

Problem 4.2.2. Is there any minimal Taylor algebra which is simple, is generated by two elements,
has size at least 3, and is not affine?

A brute force search found no examples of size 3 or 4 - but this search was carried out by hand
and never written up, so I may have made a mistake.

4.3 Bulatov’s colored graph

In Bulatov’s approach to the CSP dichotomy conjecture [48], the theory of absorbing subalgebras
isn’t used. Instead, Bulatov introduces a colored graph in [39] and [47], and uses connectivity
properties of this graph to analyze finite Taylor algebras.

Definition 4.3.1. Suppose A is a finite idempotent algebra, and a, b are any pair of distinct
elements of A.

• We say that (a, b) is a semilattice edge if there is a binary term t such that t(a, b) = t(b, a) = b.

• We say that {a, b} is a weak majority edge if there is a congruence θ on Sg{a, b} and a ternary
term m such that {a/θ, b/θ} is closed under m and ({a/θ, b/θ},m) is a two-element majority
algebra.

• We say that {a, b} is a weak affine edge if there is a congruence θ on Sg{a, b} and a term p
such that (Sg{a, b}/θ, p) is an affine algebra.

We drop the modifier “weak” on an edge if θ is a maximal congruence on Sg{a, b}, and for any
a′, b′ ∈ Sg{a, b} such that a′ ≡θ a and b′ ≡θ b, we have Sg{a, b} = Sg{a′, b′}. Note that semilattice
edges are directed, while majority and affine edges are undirected.

Note that a semilattice edge might not be a subalgebra, and similarly the set a/θ ∪ b/θ might
not be a subalgebra if {a, b} is a majority edge. If A is a minimal Taylor algebra, however, then
Theorem 4.2.4 shows that a/θ ∪ b/θ is a subalgebra if (a, b) is a weak majority edge, and similarly
for semilattice edges. In [48], Bulatov calls an algebra sm-smooth if this special case of Theorem
4.2.4 applies to it.

We could have also defined “weak semilattice edges” in a similar way to the way we defined
weak majority edges, but this is unnecessary.
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Proposition 4.3.2. If there is a congruence θ on Sg{a, b} and an idempotent binary term t such
that t(a, b) ≡θ t(b, a) ≡θ b, then there is some b′ ∈ Sg{a, b} such that b′ ≡θ b and a partial semilattice
term s ∈ Clo(t) such that s(a, b′) = s(b′, a) = b′.

Bulatov defines his colored graph by coloring the semilattice edges red, coloring the majority
edges yellow, and coloring the affine edges blue (I don’t know why these particular colors were
chosen).

Definition 4.3.3. We say that a finite idempotent algebra A has a hereditarily connected colored
graph if for all B ≤ A, the colored graph of B is connected (ignoring the directions on the semilattice
edges).

For the purposes of checking if an algebra is hereditarily connected, weak edges are interchange-
able with edges by the following result.

Proposition 4.3.4. Let A be a finite idempotent algebra. If the colored graph of weak edges of A
is hereditarily connected, then the colored graph of edges of A is also hereditarily connected.

Proof. Suppose that {a, b} is a weak edge of A, with corresponding congruence θ. We will prove
by induction on |Sg{a, b}| that a and b are connected in the colored graph of edges of Sg{a, b}. We
may enlarge θ to a maximal congruence on Sg{a, b} without loss of generality, since any congruence
of Sg{a, b} which identifies a and b is the full congruence. If (a, b) is not an edge, then we may pick
a′ ∈ a/θ and b′ ∈ b/θ such that Sg{a′, b′} is strictly smaller than Sg{a, b}, and by the inductive
hypothesis we see that a′, b′ are connected in the colored graph of edges of Sg{a, b}. Since Sg{a, a′} ⊆
a/θ and Sg{b, b′} ⊆ b/θ, we also see by the inductive hypothesis that a is connected to a′ and b is
connected to b′ in the colored graph of edges of Sg{a, b}.

Algebras with hereditarily connected colored graphs are closed under the usual algebraic oper-
ations.

Proposition 4.3.5. If A,B are finite idempotent algebras (of the same signature) with hereditarily
connected colored graphs, then so is A × B. More generally, if A is a finite idempotent algebra
and θ ∈ Con(A) is such that A/θ is hereditarily connected and every congruence class of θ is also
hereditarily connected, then A is hereditarily connected.

Proof. We prove the more general statement. Let a, b ∈ A be any pair of elements. We will show
that a and b are connected by weak edges in Sg{a, b}. If a/θ = b/θ, then Sg{a, b} is contained in
a congruence class of θ, so a, b are connected by edges of Sg{a, b}. Otherwise, since a/θ, b/θ are
connected by edges in Sg{a, b}/θ, we can find a sequence of elements a = a0, a1, ..., an = b such
that (ai/θ, ai+1/θ) is an edge of A/θ for all i. Then each (ai, ai+1) will be a weak edge of Sg{a, b},
with the corresponding congruence containing θ.

Proposition 4.3.6. If A is a finite idempotent algebra with a hereditarily connected colored graph
and θ ∈ Con(A), then A/θ also has a hereditarily connected colored graph.

Proof. We just need to show that if (a, b) is an edge of A with a/θ ̸= b/θ, then a/θ is connected
to b/θ within the subalgebra they generate. We will induct on the size of | Sg{a, b}|. If (a, b) is a
semilattice edge, then (a/θ, b/θ) will automatically be a semilattice edge as well. Otherwise, let η
be the maximal congruence on Sg{a, b} corresponding to the edge (a, b).
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Since every congruence class of η is a proper subalgebra of Sg{a, b}, we see by induction that
if c ≡η d, then c/θ and d/θ are connected in the subalgebra they generate, which is contained in
Sg{a/θ, b/θ}. Thus if the restriction of θ to Sg{a, b} is not contained in the maximal congruence
η, then a/θ must be connected to b/θ in the subalgebra Sg{a/θ, b/θ}. Otherwise, if the restriction
of θ to Sg{a, b} is contained in η, then (a/θ, b/θ) is an edge, with witnessing congruence η/θ.

Corollary 4.3.7. If A is a finite idempotent algebra with a hereditarily connected colored graph,
then A is Taylor.

Bulatov’s main result in [39] and [47] is that the converse to the above corollary holds. Since
Bulatov didn’t have the theory of absorbing subalgebras available to him, he proved this by using
tame congruence theory. We will give a different proof, using a pair of consecutive daisy chain
terms (whose existence followed from the existence of a cyclic term), and the fact that abelian
Taylor algebras are affine.

Theorem 4.3.8 (Bulatov [39], [47]). A finite idempotent algebra A is Taylor if and only if it has
a hereditarily connected colored graph.

We will prove Theorem 4.3.8 by induction on |A|. A minimal counterexample A must be
simple by Proposition 4.3.5, and every proper subalgebra of a minimal counterexample must have
a hereditarily connected colored graph.

Definition 4.3.9. If A is any algebra, we define the hypergraph of proper subalgebras of A to be
the hypergraph with vertex set equal to the underlying set of A, and with a hyperedge B for every
proper subalgebra B ≤ A. We say that A is disconnected if the hypergraph of proper subalgebras
of A is not connected.

We define the connected component equivalence relation ∼A (or just ∼ if A is clear from context)
on A by a ∼A b if a is connected to b by a sequence of proper subalgebras of A (note that in general,
∼A will not be a congruence).

Proposition 4.3.10. If A is a disconnected algebra, then for any a ̸∼A b we have Sg{a, b} = A.

Proposition 4.3.11. Suppose that A is finite, idempotent, simple, and disconnected. For any
binary relation R ≤ A×A with π2(R) = A, either R is the graph of an automorphism of A or there
is some a ∈ A such that {a} × A ⊆ R.

Proof. If R is not the graph of an automorphism, then the linking congruence must be nontrivial,
hence full (since A is simple). Thus there is some a ∈ A such that (a, b), (a, c) ∈ A for some pair of
elements b, c with b ̸∼ c, and from SgA{b, c} = A and idempotence, we see that {a} × A ⊆ R.

Proposition 4.3.12. Suppose that A is finite, idempotent, simple, and disconnected, and that
a ̸∼A b are such that neither (a, b) nor (b, a) are semilattice edges. Then the binary relation

Sab := SgA2

{[
a
b

]
,

[
b
a

]}
is the graph of an automorphism of order two which interchanges a and b.
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Proof. Assume not. Then by Proposition 4.3.11, there is some c ∈ A with {c} × A ⊆ Sab. Since
a, b are in different connected components of A, at least one of them is in a different component
than c, so we may suppose that a and c are in different connected components of A without loss of
generality. Then since (b, a), (b, c) ∈ Sab and b ∈ SgA{a, c} = A, we have (b, b) ∈ Sab, so (a, b) is a
semilattice edge.

Definition 4.3.13. Define the equivalence relation ∼sA by a ∼sA b if a can be connected to b by a
chain of proper subalgebras and semilattice edges.

Corollary 4.3.14. If A is finite, idempotent, and simple, and if ∼sA is not the full equivalence
relation A× A, then Aut(A) acts transitively on A.

Proof. For any pair a, b ∈ A, either a ̸∼sA b, or there is some c ∈ A such that a ̸∼sA c and c ̸∼sA b.

Proposition 4.3.15. Suppose that A is finite, idempotent, and simple. For any a ̸∼sA b, if the
ternary relation

Rab := SgA3


ba
a

 ,
ab
a

 ,
aa
b


contains (a, a, a) or (b, a, b), then {a, b} is a majority edge.

Proof. Suppose that there is some ternary term t witnessing the presence of one of those tuples in
Rab. By Proposition 4.3.12, we see that {a, b} is closed under t, and the restriction of t to {a, b}
is either a majority operation or a Pixley operation. Either way, the ternary term t(x, t(x, y, z), z)
acts like a majority operation on {a, b}.

Proof of Theorem 4.3.8. We only need to show that if A is a finite idempotent Taylor algebra, then
A has a connected colored graph. Suppose that A is a counterexample of minimal size, and note
that A must be simple by Proposition 4.3.5.

Our aim is to show that for any a ̸∼sA b such that {a, b} is not a majority edge, the ternary
relation

Rab := SgA3


ba
a

 ,
ab
a

 ,
aa
b


must satisfy the conditions of Proposition 3.12.2, which will imply that A is affine. Note that a ̸∼A b
implies that Rab is subdirect.

The first step to proving that Rab satisfies the conditions of Proposition 3.12.2 is showing
that π12(Rab) = A × A. Since π12(Rab) contains (a, a), (a, b), and (b, a), we need to check that
(b, b) ∈ π12(Rab). So it is natural to study the set of tuples in Rab such that two of the coordinates
are equal.

The next claim is the main place where we will use the fact that A is Taylor.
Claim 1: If we define Dab ≤ A × A to be the set of pairs (c, d) such that (c, d, c) ∈ Rab, then

π1(Dab) ∩ π2(Dab) ̸= ∅.
Proof of Claim 1: Let p, q be consecutive daisy chain terms, i.e. p and q are ternary terms

satisfying the identities

p(x, x, y) ≈ p(y, x, x),

q(x, x, y) ≈ q(y, x, x) ≈ p(x, y, x).

330



If we set c = p(a, a, b), d = p(a, b, a) = q(a, a, b), and e = q(a, b, a), then we have

p

b a a
a b a
a a b

 =

cd
c


and

q

b a a
a b a
a a b

 =

de
d

 ,
so (c, d), (d, e) ∈ Dab, and d ∈ π1(Dab) ∩ π2(Dab).

Claim 2: The binary relation Dab from Claim 1 has π1(Dab) = A.
Proof of Claim 2: Suppose not. First consider the case where neither π1(Dab), π2(Dab) are

equal to A. Then if c ∈ π1(Dab)∩π2(Dab), we see that both {a, c} and {b, c} are contained in proper
subalgebras of A, so a ∼ c ∼ b, contradicting the assumption a ̸∼ b.

Suppose now that π1(Dab) ̸= A but π2(Dab) = A. Then by Proposition 4.3.11, there is some
c ∈ A such that {c} × A ⊆ Dab. By Corollary 4.3.14, there is an automorphism σ ∈ Aut(A) with
σ(a) = c, and from (σ(a), σ(b)) ∈ {c} × A ⊆ Dab, we see that (σ(a), σ(b), σ(a)) ∈ Rab, so in fact
σ(Rab) ⊆ Rab, and so σ(Dab) = Dab. Thus (a, a) = σ−1(c, c) ∈ Dab, so by Proposition 4.3.15 this
contradicts the assumption that {a, b} is not a majority edge.

Claim 3: We have π1,2(Rab) = A× A.
Proof of Claim 3: By Claim 2, there is some c such that (b, c) ∈ Dab. Thus (a, a), (a, b), (b, a), (b, b) ∈

π1,2(Rab), and these four elements generate A2.
Claim 4: For any c, the binary relation Rcab ≤ A2 defined as the set of pairs (d, e) such that

(c, d, e) ∈ Rab is the graph of an automorphism of order two.
Proof of Claim 4: Suppose not. Note that by Claim 3, the relation Rcab is subdirect. Thus

if Rcab is not the graph of an automorphism, then by Proposition 4.3.11 there is some d such that
{d} × A ⊆ Rcab.

First suppose that c = a, so (a, b) ∈ Raab. Then either a ̸∼ d or b ̸∼ d. If a ̸∼ d, then from
(a, b), (d, b) ∈ Raab we see that (b, b) ∈ Raab, contradicting Proposition 4.3.15. Similarly if b ̸∼ d, then
from (a, b), (a, d) ∈ Raab we see that (a, a) ∈ Raab, contradicting Proposition 4.3.15.

Now suppose that c ̸= a. There is some e ̸= a such that d ̸∼ e (if not, then ∼ has just two
equivalence classes, which are interchanged by the automorphism Sab, and which both have size 1,
reducing us to the case |A| = 2). Then Sde is the graph of an automorphism of order two which
interchanges d and e, and from (d, e), (e, d) ∈ Rcab we see Sde ⊆ Rcab. Then since e ̸= a there is some
f ̸= d such that (a, f) ∈ Sde ⊆ Rcab. Then from (a, d), (a, f) ∈ Rcab we see that (c, d), (c, f) ∈ Raab,
contradicting the fact that Raab is the graph of an automorphism of order two.

To finish the proof, note that Claim 4 shows that the relation Rab satisfies the assumptions of
Proposition 3.12.2, so A must be abelian. Thus we can apply the Theorem 3.12.8 to see that A
must be affine.

4.4 Conservative Taylor algebras

Bulatov’s colored graph was originally inspired by the study of conservative Taylor algebras. These
algebras are easy to classify, and they are a great toy case for testing conjectures about general
Taylor algebras.
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Definition 4.4.1. A k-ary operation f : Ak → A is conservative if for all a1, ..., ak ∈ A we have

f(a1, ..., ak) ∈ {a1, ..., ak}.

An algebraic structure A is called conservative if every basic operation of A is conservative.

Note that conservative algebras are automatically idempotent.

Proposition 4.4.2. An algebraic structure A is conservative if and only if every subset S ⊆ A is
actually a subalgebra of A.

On the relational side, we define conservative relational structures as follows.

Definition 4.4.3. A relational clone Γ on a domain A is called conservative if every unary relation
U ⊆ A is an element of Γ, i.e. P(A) ⊆ Γ. A relational structure A is called conservative if every
unary relation U can be primitively positively defined using the basic relations of A.

Proposition 4.4.4. If a relational structure A and an algebraic structure A are related by the
Inv−Pol Galois correspondence, then A is conservative if and only if A is conservative.

If we are handed a relational structure, then the next result can be useful to decrease the amount
of work needed to verify that it is conservative.

Proposition 4.4.5. A relational structure A with finite underlying set A is conservative if and
only if, for every a ∈ A, the unary relation A \ {a} is primitively positively definable from the basic
relations of A.

Example 4.4.1. A natural example of a conservative CSP template (on an infinite domain) is the
list-coloring problem for graphs: the domain A is an infinite set, and the relations consist of the
binary ̸= relation and the collection of all possible subsets U ⊆ A as unary relations.

Example 4.4.2. A conservative 2-semilattice is called a tournament. The rock-paper-scissors algebra
is probably the most famous example of a tournament which is not totally ordered.

Example 4.4.3. If an affine CSP is conservative, then the domain must have size two: the only
conservative affine algebra is Z/2aff , up to term equivalence.

Sometimes we will want to use the following refinement of the concept of conservative algebras.

Definition 4.4.6. We say that a relational clone Γ is k-conservative if every unary relation U ⊆ A
with size |U | ≤ k is an element of Γ, and we define k-conservative clones, algebras, and relational
structures similarly.

Example 4.4.4. An algebra is idempotent iff it is 1-conservative.

Example 4.4.5. The k-list-coloring problem for graphs corresponds to the relational structure with
infinite domain A, and relations consisting of the binary ̸= relation and the collection of all possible
subsets U ⊆ A with |U | ≤ k. This problem is equivalent to 2-SAT for k = 2, and is NP-hard for
k ≥ 3.

Example 4.4.6. The only 2-conservative affine algebras are (Z/2aff)k, up to term equivalence and
isomorphism.
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For the sake of understanding CSPs, we would like to focus on minimal Taylor algebras. The
next result shows that we can reduce the study of conservative Taylor algebras to conservative
minimal Taylor algebras without losing anything essential.

Proposition 4.4.7. Every reduct of a conservative algebra is also conservative. In particular,
every conservative Taylor clone contains a minimal Taylor clone which is also conservative.

Since every minimal Taylor clone can be generated by a pair of ternary terms (for instance,
we can take a pair of consecutive daisy chain terms), we only have to focus on understanding
conservative Taylor algebras of size 3.

Proposition 4.4.8. A minimal Taylor algebra is conservative if and only if it is 3-conservative.

In fact, looking carefully at how a daisy chain term must act on a conservative Taylor algebra,
we have the following simplification.

Proposition 4.4.9. If A is a 2-conservative minimal Taylor algebra and wi is any daisy chain
term for A, then we have

wi(x, x, y) ≈ wi(x, y, x) ≈ wi(y, x, x),

so in fact every wi is a ternary weak near-unanimity operation. The binary function

f(x, y) := wi(x, x, y)

is independent of i, and completely determines the colored graph of A. In addition, the binary
function

s(x, y) := f(x, f(y, x))

is a partial semilattice term of A.

Proof. Note that every pair of distinct elements a, b ∈ A must form an edge of the colored graph
of A if A is a 2-conservative Taylor algebra. By our analysis of daisy chain terms on the basic
two-element minimal Taylor algebras, we see that:

• if (a, b) is a semilattice edge, then wi(x, x, y) = wi(x, y, x) = wi(y, x, x) = x∨y for x, y ∈ {a, b},

• if {a, b} is a majority edge, then wi(x, x, y) = wi(x, y, x) = wi(y, x, x) = x for x, y ∈ {a, b},

• if {a, b} is a Z/2aff edge, then wi(x, x, y) = wi(x, y, x) = wi(y, x, x) = y for x, y ∈ {a, b}.

Thus we can tell what sort of edge {a, b} is (as well as how it is directed, in case it is a semilattice
edge) by examining the restriction of f(x, y) to the set {a, b}. The claim about s(x, y) follows easily
by considering each of the three possible types of edge individually.

Thus, from now on we imagine that all conservative minimal Taylor algebras live in a variety
V having just one ternary basic operation w, which satisfies the weak near-unanimity identity

w(x, x, y) ≈ w(x, y, x) ≈ w(y, x, x).

Proposition 4.4.10. The free algebra FV(x, y) on two generators in the variety V generated by
conservative minimal Taylor algebras has size 6: its elements are x, y, f(x, y), f(y, x), s(x, y), s(y, x)
(defined as in the previous proposition). The colored graph of the algebra FV(x, y) is as follows.
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x ys(x, y) s(y, x)

f(x, y)

f(y, x)

Here the semilattice edges are directed, the majority edges are straight and undirected, and the Z/2aff
edges are drawn as zigzags. This algebra has {f(x, y), f(y, x), s(x, y), s(y, x)} as a binary absorbing
subalgebra, corresponding to a semilattice quotient, and has {x, f(x, y), s(x, y)} and {y, f(y, x), s(y, x)}
as ternary absorbing subalgebras, corresponding to a majority quotient.

In order to understand conservative minimal Taylor algebras, Proposition 4.4.8 implies that it’s
most important to understand the conservative algebras of size 3. Additionally, Proposition 4.4.9
implies that we just need to figure out which ternary weak near-unanimity operations on a three
element set generate minimal Taylor clones. We get a further simplification by dividing into cases
based on whether or not there is a ternary cyclic term. In the case where there is no cyclic term,
the following result is useful.

Theorem 4.4.11. If w is a ternary weak near-unanimity term of a finite algebra A, then there is
a ternary weak near-unanimity term g ∈ Clo(w) which also satisfies the identity

g(g(x, y, z), g(y, z, x), g(z, x, y)) ≈ g(x, y, z).

If |A| = 3 and A has no ternary cyclic term, then any such g satisfies g(x, y, z) = x whenever x, y, z
are all different.

Proof. Let γ : A3 → A3 be the map given by

γ

xy
z

 :=

w(x, y, z)
w(y, z, x)
w(z, x, y)

 .
Then since A3 is finite, there is some k such that γ◦2k = γ◦k. If we define g by

γ◦k

xy
z

 =

g(x, y, z)
g(y, z, x)
g(z, x, y)

 ,
then γ◦k ◦ γ◦k = γ◦k implies that g satisfies the identity

g(g(x, y, z), g(y, z, x), g(z, x, y)) ≈ g(x, y, z).

Note that since w is a weak near-unanimity term, if any two of x, y, z are equal, then γ(x, y, z) is a
constant tuple, and then by idempotence so is γ◦k(x, y, z). Therefore g is also a weak near-unanimity
operation, and γ◦k(x, y, z) can only avoid being a constant tuple if x, y, z are all different.

If A has no ternary cyclic term and has underlying set {a, b, c}, then by Theorem 4.1.8 A must
have an automorphism of order three, so γ(a, b, c) must be one of (a, b, c), (b, c, a), or (c, a, b), and
in each case we have γ◦k(a, b, c) = (a, b, c). Similarly, we must also have γ◦k(a, c, b) = (a, c, b), so
we have g(x, y, z) = x whenever x, y, z are all different.
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Theorem 4.4.12. If a minimal Taylor algebra has size 3 and has no ternary cyclic term, then
(after renaming elements) it is term equivalent to one of the following four algebras:

• the affine algebra Z/3aff ,

• the rock-paper-scissors algebra Arps from Section 3.1,

• the three element dual discriminator algebra from Example 1.6.5, or

• the three element simple nonabelian Mal’cev algebra from Example 1.7.2.

All but the first are conservative, all but the second have a full automorphism group, and the first
two have binary cyclic terms.

Proof. By Theorem 4.1.8, if a minimal Taylor algebra A with underlying set {a, b, c} has size 3
and has no ternary cyclic term, then A must have an automorphism of order three with no fixed
points, so the permutation (a b c) is in Aut(A). By Theorem 4.3.8, either A is affine - in which
case it must be term-equivalent to Z/3aff - or A has some proper subalgebra of size 2 (since A has
an edge (a, b), and either Sg{a, b} has size 2, or Sg{a, b} = A has a proper quotient, and one of the
congruence classes is a subalgebra of size 2). Since (a b c) ∈ Aut(A), if any 2-element subset of A is
a subalgebra, then every 2-element subset of A is a subalgebra, and all three 2-element subalgebras
of A are isomorphic to {a, b}.

If {a, b} is a semilattice, then any binary operation s that acts like the semilattice term on
{a, b} has ({a, b, c}, s) isomorphic to the rock-paper-scissors algebra. If {a, b} is a majority algebra
and g is a ternary weak near-unanimity operation as in the previous theorem, then g is a majority
operation which acts as first projection whenever all three of its inputs are distinct, so ({a, b, c}, g)
is isomorphic to the three-element dual discriminator algebra. If {a, b} is an affine algebra and g is
a ternary weak near-unanimity operation as in the previous theorem, then g is a Mal’cev operation
which acts as a minority operation whenever two of its inputs are equal, and which acts as first
projection whenever all three of its inputs are distinct, so ({a, b, c}, g) is isomorphic to the three
element simple nonabelian Mal’cev algebra from Example 1.7.2.

In most of the remaining cases, the colored graph already does not have any automorphisms
of order 3. In these cases, it turns out to be relatively easy to pick out a specific ternary cyclic
operation which is determined by the colored graph alone. In fact, we have the following slightly
stronger statement.

Theorem 4.4.13. Suppose that a minimal Taylor algebra A has the following properties:

• A is 2-conservative, that is, for all a, b ∈ A the subset {a, b} is a subalgebra of A,

• the colored graph of A does not contain any majority triangles, and

• the colored graph of A does not contain any affine triangles.

Then A is conservative, and Clo(A) is determined by the colored graph of A.

Proof. Let w be any daisy chain term for A. Define a map γ : A3 → A3 as in Theorem 4.4.11. We
will make sure to only apply γ to triples where some pair of coordinates are equal, since the values
γ takes on such triples is completely determined by the colored graph of A by Proposition 4.4.9.

335



Define binary terms f, s as in Proposition 4.4.9, and note that f and s are uniquely determined by
the colored graph of A. Define maps αf , βf : A3 → A3 by

αf

xy
z

 :=

f(x, y)
f(y, z)
f(z, x)


and

βf

xy
z

 :=

f(x, z)
f(y, x)
f(z, y)

 ,
and define maps αs, βs : A3 → A3 similarly, with f replaced by s. Note that αf , βf , etc. each have
the property that if the input has two coordinates the same, then so does the output. As long as
a, b, c do not form a majority triangle, an affine triangle, or a rock-paper-scissors subalgebra, then
the triple

αf ◦ βf ◦ αs ◦ βs

xy
z


has two of its three coordinates equal (to check this, consider the case where {a, b, c} contains
at least one semilattice edge separately from the case where it contains only majority and affine
edges). Thus the ternary term

t := π1 ◦ γ ◦ αf ◦ βf ◦ αs ◦ βs : A3 → A

is cyclic on every such triple. Since we assumed that A has no majority triangles or affine triangles,
the only possible triples of A such that the value of t is not uniquely determined by the colored
graph of A are the rock-paper-scissors subsets of A, which are necessarily subalgebras of A by
Theorem 4.2.4. If we iterate t as in Theorem 4.4.11, then the resulting ternary function g has
its values on rock-paper-scissors subalgebras fixed as well, so all of the values of g are determined
purely by the colored graph of A. Furthermore, this g is conservative and generates a Taylor clone,
so Clo(A) = Clo(g) and A is conservative.

Finally, we need to understand the case of a majority triangle or affine triangle {a, b, c} with a
cyclic term. In these cases, it is helpful to keep track of the subalgebra

π1

(
SgA2

{[
a
b

]
,

[
b
c

]
,

[
c
a

]}
∩∆A

)
≤ A,

since the set of possible outputs of a cyclic term applied to (a, b, c) must be contained in this
subalgebra. This subalgebra is an invariant of Clo(A), and it shrinks when Clo(A) shrinks.

Definition 4.4.14. If A is a three element minimal Taylor algebra with underlying set {a, b, c},
then we will say that an element x of A is circled if (x, x) ∈ Sg{(a, b), (b, c), (c, a)}. Note that the
set of circled elements of A does not depend on the ordering of a, b, c.

Theorem 4.4.15. Suppose that A is a conservative three element minimal Taylor algebra with a
ternary cyclic term g, such that either all three of the edges of A are majority or all three are affine.
Then (after renaming elements) A is term equivalent to one of the following three algebras:
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• the three element solvable nonabelian Mal’cev algebra from Example 1.7.3, with ∗ as the unique
circled element,

• the three element median algebra {0, 1, 2}, with the median element 1 as the unique circled
element, or

• the three element minimal majority algebra ({a, b, c},m), with m a cyclic majority operation
such that m(a, b, c) = b and m(a, c, b) = c, with {b, c} as the set of circled elements.

In particular, every conservative three element minimal Taylor algebra is determined up to term
equivalence by its colored graph and set of circled elements.

Furthermore, in any conservative minimal Taylor algebra, we can choose a ternary operation
g as in Theorem 4.4.11 such that if we take g as the basic operation, then every three element
majority subalgebra with two circled elements is isomorphic to the third algebra listed above (not
just term-equivalent).

Proof. Let g be a ternary cyclic term for A, and suppose that A has underlying set {a, b, c}. Once
we know the types of the edges of A, we only need to know the values of g(a, b, c) and g(a, c, b) to
completely determine g. For each choice of edges, we have two cases: either g(a, b, c) = g(a, c, b),
or g(a, b, c) ̸= g(a, c, b). This gives us four cases total.

First consider the case where all three edges of A are affine (so g is Mal’cev), and g(a, b, c) ̸=
g(a, c, b). Without loss of generality, we may assume that g(a, b, c) = b and g(a, c, b) = c. We will
show that this case does not occur, by constructing a term w which generates a strictly smaller
Taylor clone. Note that the order two permutation which swaps b and c is an automorphism of
({a, b, c}, g). Then if we define the ternary operation t by

t(x, y, z) := g(x, g(x, y, z), g(x, g(x, y, z), g(x, z, y))),

then t is also Mal’cev and satisfies

t(a, b, c) = a, t(b, c, a) = c, t(c, a, b) = c,

so if we define the ternary operation w by

w(x, y, z) := g(t(x, y, z), t(y, z, x), t(z, x, y)),

then w is a symmetric Mal’cev operation, with w(a, b, c) = w(a, c, b) = a. Then w generates a
strictly smaller Taylor clone, since w preserves the equivalence relation with equivalence classes {a}
and {b, c}, while g does not. Thus this case does not occur.

In the remaining three cases, we get the three algebras described in the theorem statement. We
need to check that these three algebras are really minimal Taylor. Note that in each case, there is
a nontrivial congruence on A with quotient of size two and congruence classes of size at most two,
so every Taylor reduct of A is forced to have a cyclic ternary term. We will show that the clone
of each of these algebras contains only one or two ternary cyclic operations w. Note that the only
values of w(x, y, z) which are not determined by the types of the edges are the ones where x, y, z
are all distinct.

In the case of the solvable Mal’cev algebra from Example 1.7.3 with underlying set {0, 1, ∗}, the
congruence with congruence classes {∗}, {0, 1} forces the value of w(0, 1, ∗) to be ∗, and similarly
for other permutations of the inputs. Thus there is only one ternary cyclic operation w in the clone.
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In the case of the three element median algebra {0, 1, 2}, the congruences corresponding to the
partitions {0, 1}, {2} and {0}, {1, 2} force the value of w(0, 1, 2) to be in {0, 1} ∩ {1, 2} = {1}, and
similarly for other permutations of the inputs. Thus there is only one ternary cyclic operation w
in the clone.

In the last case, the congruence corresponding to the partition {a}, {b, c} forces the value of
w(a, b, c) to be either b or c. Additionally, the order two automorphism which interchanges b and
c forces us to have

w(a, b, c) = b ⇐⇒ w(a, c, b) = c.

Thus we either have w(x, y, z) ≈ m(x, y, z), or w(x, y, z) ≈ m(x, z, y), so there are exactly two
ternary cyclic operations w in the clone.

For the last statement, suppose that we have a minimal conservative algebra A, with several
majority subalgebras with two circled elements. Let g be any ternary operation as in Theorem
4.4.11. By the last case above, the restriction of g to any of these majority subalgebras either acts
like m(x, y, z) or like m(x, z, y). Suppose for contradiction that two of these subalgebras are not
isomorphic, i.e., that g acts as m(x, y, z) on one and acts as m(x, z, y) on the other. We will produce
a ternary weak near-unanimity term w which acts like m(x, y, z) on both, which will generate a
proper Taylor subclone. To this end, we define a ternary term t by

t(x, y, z) := g(x, g(x, y, z), g(x, z, y)),

and define w by
w(x, y, z) := g(t(x, y, z), t(y, z, x), t(z, x, y)).

Then w is cyclic on any subalgebra of A where g is cyclic, so in particular w is a weak near-
unanimity operation. Note that if {a, b, c} is a majority subalgebra of A with {b, c} as the set of
circled elements, then regardless of whether the restriction of g to {a, b, c} is m(x, y, z) or m(x, z, y),
we always have

t(a, b, c) = b, t(b, c, a) = b, t(c, a, b) = c,

so w(a, b, c) = b, and so the restriction of w to {a, b, c} is m(x, y, z).

Putting the proofs of the above theorems together, we get a procedure which puts the basic
ternary weak near-unanimity operation g of any minimal conservative Taylor algebra into a standard
form, such that the restriction of g to any three element subalgebra is completely determined by
the edge types and the set of circled elements. In particular, we can exactly count the number of
conservative minimal Taylor clones of a given size.

Corollary 4.4.16. The number of conservative minimal Taylor clones on a set of size n is exactly∑
3-edge-colorings of Kn

2#(semilattice)4∆(affine)7∆(majority) = (1 + o(1)) · 7(n3),

where ∆(c) is the number of monochromatic triangles of color c. In particular, for large n almost
all conservative minimal Taylor clones are clones of majority algebras.

If we only want to know the number of conservative minimal Taylor algebras of a given size up
to term equivalence and isomorphism, then we can use the Burnside counting theorem, together
with the fact that the automorphism group of a conservative minimal Taylor algebra is determined
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by its colored graph and the choices of circled vertices on its three-element majority and Mal’cev
subalgebras in the obvious way. The number of conservative minimal Taylor clones on domains of
sizes 2, 3, 4, 5 is listed below (note: these were computed by hand, so there might be some mistakes).

Domain size # up to term equiv. # up to term equiv. and iso.

2 4 3
3 73 19
4 9829 520
5 320668024 2686891

4.4.1 Classification of three-element minimal Taylor algebras

As it turns out, up to term equivalence and isomorphism there are just 24 minimal Taylor algebras
on a set of size 3. Of these, 19 are conservative, and the remaining 5 are easy to describe. One
of the most obvious non-conservative minimal Taylor algebras of size 3 is the affine algebra Z/3aff .
Three more are subdirect products of two-element minimal Taylor algebras: specifically, the free
semilattice on two generators (which is a subdirect product of two two-element semilattices), the
subdirect product of a two-element semilattice and a two-element majority algebra, and the sub-
direct product of a two-element semilattice and Z/2aff (all three of these are quotients of the free
algebra from Proposition 4.4.10). There is no three-element subdirect product of a two-element
majority algebra and Z/2aff , but the final example is nearly this: it is the algebra from Example
2.2.1, which has a 3-edge term, a Z/2aff quotient, and a two-element centrally absorbing algebra.
In this subsection we will prove that this is the complete list of minimal Taylor algebras on a
three-element set.

By Theorem 4.4.12, we only have to classify the minimal Taylor algebras of size 3 which have
a ternary cyclic term g, and since we have already classified the conservative ones, we just need
to classify those which are generated by two elements. By Bulatov’s Theorem 4.3.8, each of these
algebras has a connected colored graph. Our first step will be to show that for minimal Taylor
algebras of size 3, every edge of Bulatov’s colored graph is a two-element subalgebra.

Proposition 4.4.17. If A is a minimal Taylor algebra of size 3 other than Z/3aff , then the graph
on A with edges given by the two-element subalgebras of A is connected - in other words, A has at
least two subalgebras of size two.

Proof. Suppose for contradiction that the graph of two-element subalgebras of A is disconnected,
and suppose the underlying set of A is {a, b, c}. By Theorem 4.3.8, Bulatov’s colored graph of A
must be connected, so if A is not Z/3aff then there must be some nontrivial congruence θ ∈ Con(A)
such that A/θ is either Z/2aff or the two-element majority algebra (it can’t be the two-element
semilattice by Proposition 4.3.2). Suppose without loss of generality that {b, c} is the congruence
class of θ which has size 2, so that {b, c} is a two-element subalgebra of A. By our assumption that
the graph of two-element subalgebras is disconnected, neither {a, b} nor {a, c} can be a subalgebra
of A. Let g be a ternary cyclic operation on A, which exists by Theorem 4.4.12 (or directly from
Theorem 4.1.8).

Suppose first that A/θ is Z/2aff . Then since any ternary cyclic term of Z/2aff acts as the
minority operation, we must have

g(a, b, b) = g(a, c, c) = a.
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Since {a, b} and {a, c} are not closed under g, we must then have

g(a, a, b) = c, g(a, a, c) = b.

Define a ternary term t by

t(x, y, z) = g(g(x, x, y), g(y, y, z), g(z, z, x)).

Then t is also cyclic, and we have

t(a, a, b) = g(a, c, a) = b,

so {a, b} is closed under t, and similarly {a, c} is also closed under t. Thus t generates a strictly
smaller Taylor clone, contradicting the assumption that A is minimal Taylor.

Now suppose that A/θ is the two-element majority algebra. Then since any ternary cyclic term
acts on a majority algebra as a majority operation, we must have

g(a, a, b) = g(a, a, c) = a,

and
g(a, b, c), g(a, c, b) ∈ {b, c}.

Since {a, b} and {a, c} are not closed under g, we must have

g(a, b, b) = c, g(a, c, c) = b.

Assume without loss of generality that g(a, b, c) = b, otherwise swap b, c and reorder the last two
arguments to g. Define a ternary term t by

t(x, y, z) = g(g(x, x, y), g(y, y, z), g(z, z, x)).

Then t is also cyclic, and we have

t(a, b, b) = g(a, b, c) = b,

so {a, b} is closed under t. As before, this contradicts the assumption that A is minimal Taylor.

From here on, we just need to classify the minimal Taylor algebras on the set {a, b, c} such that
a and b generate the algebra, while {a, c} and {b, c} are two-element subalgebras. First we handle
the case where one of these subalgebras is a two-element semilattice.

Proposition 4.4.18. If A is a minimal Taylor algebra with underlying set {a, b, c} such that A is
generated by a and b, then A does not have a semilattice subalgebra of the form c→ a.

Proof. Suppose for contradiction that A is generated by a and b, but that c→ a. Let g be a ternary
cyclic term of A, which exists by Theorem 4.4.12.

First suppose that we do not also have c → b. We will initially attempt to prove that (a, a) ∈
SgA2{(a, b), (b, a)}, so that by Proposition 4.2.5 {a, b} will be a two-element semilattice subalgebra
with b → a, which will contradict the assumption that a and b generate A. Let s ∈ Clo(g) be a
partial semilattice term of A with s(a, c) = s(c, a) = a. Since by assumption we do not have a→ b,
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we have s(a, b) = a as well, and since we assumed that {b, c} is a subalgebra and that we do not
have c→ b, we have s(c, b) = c. Define S by

S = SgA2

{[
a
b

]
,

[
b
a

]}
.

If we have (a, c) ∈ S, then by symmetry we also have (c, a) ∈ S, so

s

([
a
c

]
,

[
c
a

])
=

[
a
a

]
is in S as well. If we have (c, c) ∈ S, then

s

([
c
c

]
,

[
a
b

])
=

[
a
c

]
,

so (a, c) ∈ S, and then we have (a, a) ∈ S as before. Since c ∈ SgA{a, b} = π2(S), if neither (a, c)
nor (c, c) are in S, then we must have (b, c) ∈ S. So the only way to avoid a contradiction in this
case is for S to be given by

S =
{[

a
b

]
,

[
b
a

]
,

[
b
c

]
,

[
c
b

]}
.

Then the linking congruence θ of S corresponds to the partition {a, c}, {b}, and A/θ is isomorphic to
the two-element subalgebra {b, c}. Since (b, b), (c, c) ̸∈ S, A/θ ∼= {b, c} is either a majority algebra
or is Z/2aff . Define a ternary term t by

t(x, y, z) = g(s(g(x, y, z), x), s(g(x, y, z), y), s(g(x, y, z), z)).

Then t is also cyclic, and we will show that {a, b} is closed under t, contradicting the assumption
that A is minimal Taylor. If A/θ is Z/2aff , then we have

t(a, a, b) = g(s(b, a), s(b, a), s(b, b)) = g(b, b, b) = b,

and since {a, b} is not closed under g we have

g(a, b, b) = c,

so
t(a, b, b) = g(s(c, a), s(c, b), s(c, b)) = g(a, c, c) = a.

If A/θ is a majority algebra, then we have

t(a, b, b) = g(s(b, a), s(b, b), s(b, b)) = g(b, b, b) = b,

and since {a, b} is not closed under g we have

g(a, a, b) = c,

so
t(a, a, b) = g(s(c, a), s(c, a), s(c, b)) = g(a, a, c) = a.
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Either way, {a, b} is closed under t, which gives us a contradiction.
Now suppose that we have both c → a and c → b. Consider the binary relation S =

SgA2{(a, b), (b, a)} as we did before - if either (a, c) or (b, c) are in S, then we easily see that
one of (a, a), (b, b) is in S, which together with Proposition 4.2.5 would contradict the assumption
that A is generated by a and b. Thus the only way to immediately avoid a contradiction is for S to
be given by

S =
{[

a
b

]
,

[
b
a

]
,

[
c
c

]}
.

In particular, there must be some binary term f ∈ Clo(g) such that f(a, b) = f(b, a) = c, and since
A is prepared by Proposition 4.2.5, this f must be the commutative binary operation described in
the following table.

f a b c

a a c a
b c b b
c a b c

Then ({a, b, c}, f) is isomorphic to the algebra ({−, 0,+}, s2) from Example 1.6.8, with the iso-
morphism given by a 7→ +, b 7→ −, c 7→ 0. This algebra is not minimal Taylor: Clo(s2) properly
contains the clone of the conservative bounded width algebra ({−, 0,+}, g) described in Example
3.6.1. Explicitly, consider the ternary term t on A given by

t(x, y, z) = f(f(f(x, y), f(y, z)), f(x, z)).

It is easy to check that this t is symmetric, and that {a, b} is closed under t, contradicting the
assumption that A is minimal Taylor. In fact, even this operation t does not generate a minimal
Taylor clone (this claim is left as an exercise).

Proposition 4.4.19. If A is a minimal Taylor algebra with underlying set {a, b, c} such that A is
generated by a and b, and if A has a semilattice subalgebra of the form a→ c, then A is isomorphic
to a subdirect product of its two-element subalgebras {a, c} and {b, c}.

Proof. By assumption, we do not have b → a or c → a, so s({b, c},A) ⊆ {b, c} for every partial
semilattice term s ∈ Clo(A). Since a → c and c ∈ SgA{a, b}, we can apply Proposition 3.10.19
to see that {b, c} is a binary absorbing subalgebra of A. Then by Proposition 4.2.10, we see that
there is a congruence θ on A corresponding to the partition {a}, {b, c}, such that A/θ ∼= {a, c} is
a two-element semilattice. To finish, we just need to show that the equivalence relation ψ on A
corresponding to the partition {a, c}, {b} is also a congruence of A.

If b→ c, then the same argument as in the last paragraph shows that {a, c} is a binary absorbing
subalgebra of A and that ψ is a congruence of A - in this case, A is the free semilattice on two
generators. Additionally, the previous proposition shows that we can’t have c→ b. Thus the only
remaining cases are the case where {b, c} is a majority algebra and the case where {b, c} is Z/2aff ,
and we assume from here on that we are in one of these two cases.

Consider the binary relation S = SgA2{(a, b), (b, a)}. Letting s be a partial semilattice operation
of A with s(a, c) = c, we must have s(a, b) ≡ s(a, c) = c (mod θ), so since we do not have a → b
we must have s(a, b) = c. Then by our assumption that we do not have b→ c, we have

s

([
a
b

]
,

[
b
a

])
=

[
c
b

]
,
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so

S ⊇
{[

a
b

]
,

[
b
a

]
,

[
b
c

]
,

[
c
b

]}
.

If this containment is an equality, then the linking congruence of S is ψ, which would prove that ψ
is a congruence of A and finish the proof. Otherwise, since (a, a), (b, b) are not contained in S by
Proposition 4.2.5, at least one of (a, c), (c, a) or (c, c) must be an element of S. Since a→ c and S
is symmetric, in each case we see that (c, c) ∈ S. From here on we assume that (c, c) ∈ S.

From (b, c), (c, c), (c, b) ∈ S but (b, b) ̸∈ S, we see that {b, c} can’t be Z/2aff (since the paral-
lelogram property fails for a binary relation on {b, c}). We are left with the case where {b, c} is a
majority algebra. Let g be a cyclic ternary term on A, which exists by Theorem 4.4.12, and let f
be a binary term with f(a, b) = f(b, a) = c, which must exist if (c, c) ∈ S. Define a ternary term t
by

t(x, y, z) = g(f(x, y), f(y, z), f(z, x)).

Then t is also cyclic, and we have

t(a, a, b) = g(a, c, c) = c, t(a, b, b) = g(c, b, c) = c, t(a, b, c) ∈ g(c, {b, c}, c) = {c}.

This completely determines t, and shows that {a, c} is a ternary absorbing subalgebra of A with
absorbing operation t. Therefore {a, c} is a centrally absorbing subalgebra of A by Theorem 4.2.21.
If we then define the cyclic ternary term u by

u(x, y, z) = t(s(x, y), s(y, z), s(z, x)),

then it is easy to check that {b} is a ternary absorbing subalgebra of A with absorbing operation
u, so by Theorem 4.2.21 and Corollary 4.2.22 the equivalence relation ψ is a congruence of A (note
that this actually contradicts the assumption (c, c) ∈ S).

So far we have classified every minimal Taylor algebra of size 3 which contains at least one
semilattice subalgebra. The remaining cases are the cases where our algebra A has two two-element
subalgebras, each of which is either a majority algebra or a copy of Z/2aff .

Proposition 4.4.20. If A is a minimal Taylor algebra with underlying set {a, b, c} which is gen-
erated by a and b, then at least one of {a, c}, {b, c} is not a Z/2aff-subalgebra of A.

Proof. Suppose for contradiction that {a, c}, {b, c} are both Z/2aff -subalgebras of A. By Corollary
4.2.7, A either has a proper absorbing subalgebra or an affine quotient. If A has a proper absorbing
subalgebra, then one of {a, c}, {b, c} has a proper absorbing subalgebra, which is impossible if they
are both copies of Z/2aff . Therefore there is a congruence θ of A such that A/θ is affine, and we
can assume without loss of generality that θ corresponds to the partition {a}, {b, c} of A.

Let g be a cyclic ternary term on A, which exists by Theorem 4.4.12. Then since A/θ ∼= {a, c}
is a copy of Z/2aff we must have

g(a, {b, c}, {b, c}) ∈ {a}, g(a, a, c) = c,

and since {a, b} is not closed under g we must have

g(a, a, b) = c
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as well. This, together with the fact that {b, c} is also a copy of Z/2aff , completely determines g.
Define a ternary term t by

t(x, y, z) = g(x, g(x, y, y), g(x, y, z)),

and note that

t

aa
b

 ,
ab
a

 ,
ba
a

 = g

aa
b

 ,
aa
c

 ,
cc
c

 =

cc
b

 .
Thus the ternary term u defined by

u(x, y, z) = g(t(x, y, z), t(y, z, x), t(z, x, y))

is a cyclic term with
u(a, a, b) = g(c, c, b) = b,

so {a, b} is closed under u, which contradicts the assumption that A is a minimal Taylor algebra.

Proposition 4.4.21. If A is a minimal Taylor algebra with underlying set {a, b, c} which is gen-
erated by a and b, then at least one of {a, c}, {b, c} is not a majority subalgebra of A.

Proof. Suppose for contradiction that {a, c}, {b, c} are both majority subalgebras of A. Then no
subquotient of A can be affine, so by Theorem 3.13.8 CSP(A) has bounded width, and so by
Theorem 3.14.8 A has a binary term f and a ternary term g satisfying the identities

g(x, x, y) ≈ g(x, y, x) ≈ g(y, x, x) ≈ f(x, y) ≈ f(f(x, y), f(y, x)).

We may assume without loss of generality that this g is also cyclic, by Theorem 4.4.12 and the cyclic
composition trick. Since {a, b} is not closed under g, we may assume without loss of generality that
f(b, a) = c.

First we show that f(a, b) ̸= b. If f(a, b) = b, then we have f(a, f(a, b)) = f(a, b) = b and

f(b, f(b, a)) = f(f(a, b), f(b, a)) = f(a, b) = b,

so (b, b) ∈ SgA2{(a, b), (b, a)}, and then by Proposition 4.2.5 we have a→ b, which contradicts the
assumption that A is generated by a and b.

Now suppose that f(a, b) = f(b, a) = c. Let t be the ternary term defined by

t(x, y, z) = g(f(x, f(y, z)), f(y, f(z, x)), f(z, f(x, y))).

Then t is cyclic, and we have

t(a, a, b) = g(f(a, c), f(a, c), f(b, a)) = g(a, a, c) = a

and similarly t(a, b, b) = b, so {a, b} is closed under t, contradicting the assumption that A is a
minimal Taylor algebra.

Finally, suppose that f(a, b) = a, f(b, a) = c. Let h be the ternary term defined by

h(x, y, z) = g(f(x, y), f(y, x), g(x, y, z)),
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let i be the ternary term defined by

i(x, y, z) = g(x, h(x, y, z), h(x, z, y)),

and let t be the cyclic ternary term defined by

t(x, y, z) = g(i(x, y, z), i(y, z, x), i(z, x, y)).

Then we have h(a, a, b) = h(a, b, a) = h(b, a, a) = a, so

t(a, a, b) = g(g(a, a, a), g(a, a, a), g(b, a, a)) = g(a, a, a) = a,

and h(a, b, b) = h(b, a, b) = c, h(b, b, a) = b, so

t(a, b, b) = g(g(a, c, c), g(b, b, c), g(b, c, b)) = g(c, b, b) = b.

Thus {a, b} is closed under t, contradicting the assumption that A is a minimal Taylor algebra.

Proposition 4.4.22. Suppose that A is a minimal Taylor algebra with underlying set {a, b, c} which
is generated by a and b, that {a, c} is a Z/2aff-subalgebra, and that {b, c} is a majority subalgebra
of A. Then A is the same as the algebra described in Example 2.2.1, up to isomorphism and term
equivalence. In particular, {a, c} is a centrally absorbing subalgebra of A, and A has a congruence
θ corresponding to the partition {a}, {b, c} such that A/θ ∼= {a, c} is Z/2aff .

Proof. Let S = SgA2{(a, b), (b, a)}, and let g be a ternary cyclic term of A, which exists by Theorem
4.4.12. By Proposition 4.2.5, we have (a, a), (b, b) ̸∈ S. If (c, c) ∈ S, then we have[

a
c

]
= g

([
a
b

]
,

[
c
c

]
,

[
c
c

])
∈ S,

and then that [
a
a

]
= g

([
a
c

]
,

[
c
a

]
,

[
c
c

])
∈ S,

which is a contradiction. Thus we have (c, c) ̸∈ S, so S ∩∆A = ∅. If both (a, c), (b, c) ∈ S, then we
have

g

([
a
b

]
,

[
b
c

]
,

[
c
a

])
∈ S ∩∆A,

which we just showed is impossible. Since π2(S) = SgA{a, b} = A, exactly one of (a, c), (b, c) is in
S.

Suppose first that (b, c) ∈ S. Then the linking congruence θ of S corresponds to the partition
{a, c}, {b} of A, and A/θ ∼= {b, c} is a majority algebra. This implies that

g(a, b, b) = g(b, b, c) = b, g(b, c, c) = c, g(a, c, c) = a.

Since {a, b} isn’t closed under g, we must have

g(a, a, b) = c.

Let f(x, y) = g(x, x, y), and define a ternary term t by

t(x, y, z) = g(f(g(x, y, z), f(x, y)), f(g(x, y, z), f(y, z)), f(g(x, y, z), f(z, x))).
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Then t is cyclic,
t(a, a, b) = g(f(c, a), f(c, c), f(c, b)) = g(a, c, c) = a,

and
t(a, b, b) = g(f(b, c), f(b, b), f(b, b)) = g(b, b, b) = b.

Thus {a, b} is closed under t, contradicting the assumption that A is a minimal Taylor algebra.
Now suppose that (a, c) ∈ S. Then the linking congruence θ of S corresponds to the partition

{a}, {b, c} of A, and A/θ ∼= {a, c} is Z/2aff . This implies that

g(a, {b, c}, {b, c}) = {a}, g(a, a, c) = c, g(b, b, c) = b, g(b, c, c) = c.

Since {a, b} is not closed under g, we must have

g(a, a, b) = c.

This completely determines g, and we see that {a, c} is a ternary absorbing subalgebra of A with
absorbing operation g, so by Theorem 4.2.21 {a, c} is a centrally absorbing subalgebra of A. After
swapping a and c, g is exactly the same operation as the one described in Example 2.2.1. To see
that A is really minimal Taylor in this case, note that any ternary cyclic g′ ∈ Clo(g) must also
satisfy all of the above identities, including g′(a, a, b) = c since {a, c} is centrally absorbing.

Putting all of the pieces together, we have completed the classification of minimal Taylor alge-
bras on a three-element domain.

Theorem 4.4.23. If A is a minimal Taylor algebra on a set of size 3, then up to term equivalence
and isomorphism A is one of the following 24 algebras:

• one of the 19 conservative minimal Taylor algebras classified in the previous section,

• the affine algebra Z/3aff = (Z/3, x− y + z),

• the free semilattice on two generators,

• the three-element subdirect product of ({0, 1}, x ∨ y ∨ z) with ({0, 1},maj(x, y, z)),

• the three-element subdirect product of ({0, 1}, x ∨ y ∨ x) with Z/2aff = (Z/2, x+ y + z),

• the three-element algebra from Example 2.2.1, which has a 3-edge term, a two-element cen-
trally absorbing subalgebra, and a Z/2aff quotient.

Problem 4.4.1. For each one of the 24 minimal Taylor algebras on a set of size 3, find a generating
set of relations for the corresponding relational clone. Are they all finitely related?

4.5 The strands of an unlinked CSP instance, and a safe recursive
strategy

Generally speaking, in order to guarantee a polynomial running time for solving CSPs we attempt
to avoid recursion. There is a form of recursion which can be safely applied, however: we can
recursively solve polynomially many subproblems as long as the size of every variable’s domain is
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strictly reduced in each subproblem. The resulting algorithms will then have the property that the
exponent in the running time will depend on the size of the largest domain of any variable. This
approach seems to have been introduced with the solutions to the CSP dichotomy conjecture for
conservative algebras by Bulatov [45], [46] and Barto [8], as well as Miklós Maróti’s “Tree on top
of Maltsev” algorithm [126] (which used this sort of recursive strategy in a very different way from
what we will consider in this section).

The challenge now is to find situations where we can usefully reduce to subproblems in which
every single variable domain is reduced. The prototypical example of how this may occur is when
a CSP instance is unlinked.

Definition 4.5.1. Let X be an instance of a CSP, with variable domains Ax for each variable x.
We say that X is unlinked at a variable x of X if there are some a, b ∈ Ax such that there are no
cycles p of X from x to x with b ∈ {a} + p. We say that X is unlinked if it is unlinked at every
variable.

If an instance X is unlinked at a variable x, then we define the linking relation θX of X at x
as the equivalence relation on Ax defined by (a, b) ∈ θX iff there is some cycle p from x to x such
that b ∈ {a}+ p.

Proposition 4.5.2. If X is cycle-consistent and unlinked at x, then the linking relation θX is a
congruence of Ax.

Proof. We just need to check that θX is closed under unary polynomial operations of Ax. So
suppose that (a, b) ∈ θX, c1, ..., cn ∈ Ax, and f is some n + 1-ary polymorphism of Ax. Since
(a, b) ∈ θX, there is some cycle p from x to x such that b ∈ {a}+ p. By cycle-consistency, we also
have ci ∈ {ci}+ p for each i, so if Pp ≤ A2

x is the binary relation corresponding to the cycle p, then
we have

f

([
a
b

]
,

[
c1
c1

]
, · · · ,

[
cn
cn

])
∈ Pp.

Thus we have (f(a, c1, ..., cn), f(b, c1, ..., cn)) ∈ θX, which completes the proof.

As a consequence, one way to discover unlinked subinstances of a cycle-consistent instance X
is to go through each maximal congruence θ on some variable domain Ax, and to greedily build
up a subinstance X′ which is as large as possible subject to the condition θX′ ≤ θ. The resulting
subinstance X′ only depends on θ and not on the choices we make during the greedy construction
of X′, so long as X is cycle-consistent: if there are two paths p, q from x to y such that p− p and
q− q each have linking congruences contained in θ, then cycle-consistency applied to −q+ p shows
that the linking congruence of p − q is also contained in θ. This is the approach Zhuk used in his
proof of the general CSP dichotomy conjecture [164].

Proposition 4.5.3. Suppose that we have a multisorted CSP template CSP(A1, ...,An) such that
the CSP template CSP(B1, ...,Bm) can be solved in polynomial time, where B1, ...,Bm is the collec-
tion of all algebras B which are isomorphic to a proper subalgebra of some Ai (note that max |Bi| <
max |Aj |). Then we can solve any unlinked instance X of CSP(A1, ...,An) in polynomial time.

Proof. We assume that every pair of variables of X can be connected by some path without loss
of generality, and we shrink X by enforcing cycle-consistency (if the shrunk instance is no longer
unlinked, then every single variable domain has been reduced, and we can solve the instance). Pick
any variable x of X, and let θX be the linking congruence on Ax. Then for each congruence class
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a/θX ∈ Ax/θX, if we restrict the possible values of x to a/θ and enforce arc-consistency, then every
other variable y of X has its domain restricted to some subset of a congruence class of Ay/θX
(where here we interpret θX as the linking congruence of X on Ay). Since the value of x must be
in some congruence class of Ax/θX, and since there are only a constant number of such congruence
classes to check, we can solve X by solving a constant number of instances of CSPs with templates
of the form CSP(B1, ...,Bm), where for each variable y the algebra Bi is contained in an congruence
class of Ay/θX.

Of course, an entire instance being unlinked is fairly rare. Additionally, the assumption of
cycle-consistency is probably unnecessarily strong. The approach used in the algorithms for the
conservative CSP dichotomy is a variant of the strategy of looking for unlinked subinstances, start-
ing from the idea of looking for any useful way of properly restricting the domains of some subset
of the variables. This will naturally lead to different consistency principles (which are likely to also
be unecessarily strong).

The most general thing we could do along these lines is the following. For each variable x, and
for each element a ∈ Ax, restrict the domain of x to the singleton {a}, and run arc-consistency (or
cycle-consistency, etc.). Restrict our attention to the set Y of variables y whose domain has shrunk
as a result of this restriction (replacing every relation which involves variables outside of Y by its
projection onto the variables contained in Y ), and solve the resulting instance recursively to see if
we can rule out the element a ∈ Ax as a possible value for x.

Although this scheme is readily implemented, it is hard to algebraically control what happens as
a result. Instead, we will consider the digraph of implications between restrictions on the individual
domains, and ask under which conditions this has a nice structure.

Definition 4.5.4. If X is an instance of a multisorted CSP with variable domains Ax, then we
define the implication digraph to be the directed graph on X where the vertices are pairs (x,B)
such that x is a variable and B ≤ Ax, and where we have a directed edge from (x,B) to (y,C) if
there is a path p of length 1 from x to y in X such that B + p = C.

We write (x,B) ⪯ (y,C) if there is a path p of any length from x to y such that B+ p = C. The
resulting quasiorder is the implication qoset.

Let E be a subdigraph of the implication digraph, and consider E as a subqoset of the implication
qoset by taking its transitive closure. A strand of E is just an equivalence class of E . Often we
might take E to be the subdigraph of pairs (x,B) such that B is a proper subalgebra of Ax (or
a proper absorbing subalgebra, etc.). We say that S is a maximal strand of E if it is a maximal
equivalence class of the qoset E . If E is not specified, then a strand can be any strongly connected
subset of the implication digraph.

A strand is called absorbing if for all (x,B) ∈ S we have B � Ax. Note that as long as X is
arc-consistent, if this occurs for some (x,B) ∈ S then it occurs for all (x,B) ∈ S.

We define the partial restriction of X to the strand S by reducing the domain of each variable
x to

⋂
(x,B)∈S B if some (x,B) ∈ S, and leaving the domain of x unchanged otherwise.

Proposition 4.5.5. If X is cycle-consistent, E is a subdigraph of the implication digraph, and we
are given some (x,B) ∈ E, then we can find a maximal strand of E in polynomial time.

Proof. We start from any element of E and keep following single-step paths until we stabilize at a
maximal strand. To see that this takes only polynomially many steps, note that if (x,B) ⪯ (x,C),
then cycle-consistency implies that B ≤ C, so if B ̸= C then |C| ≥ |B|+ 1.
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In order to restrict an instance X to a strand S in a way that guarantees that the restricted
instance is arc-consistent, it seems like we should require that the strand S includes at most one
pair (x,B) for each variable x ∈ X. This will be guaranteed as long as the instance X is sufficiently
consistent.

Proposition 4.5.6. If X is an arc-consistent instance, then each strand S of X includes at most
one pair (x,B) for each variable x as long as X satisfies property (P3) from Definiion 3.13.12:

B + p+ q = B =⇒ B + p = B

for all pairs of cycles p, q from x to x and all B ≤ Ax. In particular, this always occurs if X is
pq-consistent.

Definition 4.5.7. Suppose that X is an instance, and let S be any strand of X such that for each
variable x, there is at most one Bx such that (x,Bx) ∈ S. We define the full restriction of X to
S to be the instance X′ whose variable set is the set of variables x such that some (x,Bx) ∈ S,
with each variable domain reduced to Bx, where for each relation of X we project it onto the set
of variables in X′ and restrict each of its coordinates to Bx.

In order to mimic the situation of an unlinked instance as well as possible, we might also like to
have the property that for each variable x such that some (x,B) is in the strand S, we have parallel
strands S ′ which partition the domain Ax into disjoint subalgebras B′ with each (x,B′) ∈ S ′.

Proposition 4.5.8. If X is an arc-consistent instance, then for each strand S, each (x,B), and
each a ̸∈ B, there is a strand S ′, involving the same set of variables as S, such that (x,B′) ∈ S ′ for
some B′ ≤ Ax with a ∈ B′ and B∩B′ = ∅, as long as X also satisfies property (P2) from Definition
3.13.12:

B + p = B =⇒ B− p = B

for all cycles p from x to x and all B ≤ Ax.
In this case, a more precise statement is true: for each (x,B) ∈ S there is a congruence θS

on Ax such that B is a union of congruence classes of θS , and each congruence class B′ of θS is
contained in a parallel strand S ′.

Proof. Consider the set C of all cycles p from x to x such that B + p = B. Property (P2) is the
guarantee that for each p ∈ C, B will be a union of congruence classes of the linking congruence of
Pp. Define θS to be the join of the collection of all linking congruences of Pp for p ∈ C. Then B is
still a union of congruence classes of θS .

For any congruence class B′ of θS , we define the parallel strand S ′ as follows: for every way of
splitting some p ∈ C as p = q + r, where q is a path from x to a variable y, we include (y,B′ + q)
in S ′. Since B′ is a congruence class of θS , B′ will be a union of congruence classes of the linking
congruence of Pp, so B′ + p− p = B′, so (B′ + q) + r− p = B′, and we see that (x,B′) and (y,B′ + q)
are indeed part of the same equivalence class of the implication qoset of X.

To guarantee that the restriction of our instance X to any strand is arc-consistent, we need a
still stronger consistency principle. This consistency principle was used to give one of the original
proofs of the fact that (2, 3)-consistency was strong enough to ensure satisfiability of any CSP with
bounded width [12]. I will define it a bit differently here, but will show that the definition given
here is equivalent to the original definition by following an argument from [8].
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Definition 4.5.9. An arc-consistent instance X is called a Prague instance if for every (x,B), (y,C)
in the same equivalence class of the implication qoset, and for every path p of length 1 from x to
y, we have B + p = C.

Proposition 4.5.10. If X is a Prague instance, then X satisfies conditions (P2) and (P3) of
Definition 3.13.12, so X is a weak Prague instance.

Proposition 4.5.11 (Barto and Kozik [10], [8]). If X is arc-consistent, then the following are
equivalent:

(a) for every (x,B), (y,C) in the same equivalence class of the implication qoset, and for every
path p of length 1 from x to y, we have B + p ⊆ C.

(b) X is a Prague instance,

(c) for every variable x and every pair of paths p, q from x to x such that the variables involved
in p are a subset of the variables involved in q, if b ∈ {a} + p then there is some j ≥ 0 such
that b ∈ {a}+ jq,

(d) for every variable x and every pair of paths p, q from x to x such that the variables involved
in p are a subset of the variables involved in q, then for every sufficiently large j we have
{a}+ p ⊆ {a}+ jq.

Proof. For the implication from (a) to (b), note that from B + p ⊆ C and C − p ⊆ B we can
immediately conclude that B + p = C.

For (b) =⇒ (c), let p, q be as in (c). Find a j ≥ 1 such that {a} + jq = {a} + 2jq, write
B = {a} + jq, and let S be the strand of the implication digraph containing (x,B). Since every
Prague instance satisfies property (P3), for each variable y which shows up in the cycle q there is
a unique C such that (y,C) ∈ S. Since every step of the cycle p goes between variables involved in
S and X is a Prague instance, we have B + p = B, and for the same reason we have B − jq = B.
From

a ∈ {a}+ jq − jq = B− jq = B

and b ∈ {a}+ p, we get
b ∈ {a}+ p ⊆ B + p = B = {a}+ jq.

For (c) =⇒ (d), it’s enough to prove that (c) implies a ∈ {a}+ jq for every sufficiently large
j. Since X is arc-consistent, there is some b such that b ∈ {a}+ q, and since a ∈ {b}− q (c) implies
there is some j ≥ 0 such that a ∈ {b}+ jq. Since b ∈ {a}+ q, we have a ∈ {a}+ (j + 1)q. Now set
r = (j + 1)q, and by applying (c) again we see that there is some k ≥ 0 such that

a ∈ {b}+ kr ⊆ {a}+ q + k(j + 1)q = {a}+ (k(j + 1) + 1)q.

Since j + 1 and k(j + 1) + 1 are relatively prime positive integers, every sufficiently large number
can be written as a positive combination of j + 1 and k(j + 1) + 1, which proves (d).

For (d) =⇒ (a), let q be a path from y to x such that C+ q = B, and let r be a path from x to
y such that B+ r = C. Then for every j we have C+ j(q+ r) = C. Since the cycle q+p from y to y
only involves a subset of the variables involved in q+r, by part (d) we have C+(q+p) ⊆ C+j(q+r)
for every sufficiently large j, so

B + p = C + q + p ⊆ C + j(q + r) = C.
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Proposition 4.5.12. If X is a Prague instance, and if S is a strand of X, then the full restriction
of X to S (which restricts both the set of variables and the domains) will be arc-consistent - in fact,
it will also be a Prague instance.

If S is also a maximal strand in the qoset of pairs (x,B) such that B < Ax, then the partial
restriction of X to S (which restricts the domains but not the set of variables) is also arc-consistent.
If S is additionally absorbing, then the partial restriction of X to S will even be a Prague instance.

Proof. The statement about the full restriction follows from the fact that for any tuple r of any
constraint relation R ≤sd Ax1 × · · · ×Axn , if πxi(r) ∈ Bi and (xi,Bi) ∈ S, then we necessarily have
πxj (r) ∈ Bj for any (xj ,Bj) ∈ S, by the definition of a Prague instance.

For the statement about the partial restriction, suppose that some variable xi does not occur
in the strand S, and that the relation R involves a variable xj with (xj ,Bj) ∈ S. Then by the
maximality of S, we must have Bj +πxjxi(R) = Axi , so for each a ∈ Axi , there is a tuple r ∈ R with
πxi(r) = a and πxj (r) ∈ Bj , and then by the first part we have πxk(r) ∈ Bk for each (xk,Bk) ∈ S.

Now suppose that S is absorbing. By the equivalence between parts (b) and (c) of Proposition
4.5.11, it’s enough to show that for every cycle p from x to x in X, if we let p′ be the corresponding
path in the partially restricted instance, then for any a, b ∈ Bx with (x,Bx) ∈ S and

b ∈ {a}+ p,

there is some j ≥ 1 such that
b ∈ {a}+ jp′.

For this, we let R = Pp ≤ Ax × Ax and S = Pp′ ≤ Bx × Bx, and we aim to apply Corollary 3.7.10.
Since S is absorbing, we have S � R. Since the restriction of X to S is arc-consistent, S is

subdirect in Bx × Bx. Thus, there is some directed cycle Ca of S which can be reached from a in
S, and there is some directed cycle Cb of S with a directed path from Cb to b in S. Since X is a
Prague instance and Ca, Cb are contained in the same weakly connected component of R, there is
some directed path from Ca to Cb in R by Proposition 3.13.13. Now we can apply Corollary 3.7.10
to see that there is a directed path from Ca to Cb in S, so there is a directed path from a to b in S,
and we are done.

In practice, the local consistency algorithm used to reduce general instances to Prague in-
stances or to cycle-consistent instances actually produces an instance with an even greater level of
consistency.

Definition 4.5.13. An instance X is (l, k)-minimal, for k ≥ l, if

• every set of at most k variables of X is in the scope of some constraint, and

• for any set S of at most l variables and any pair of constraints C1, C2 of X whose scopes
contain S, the existential projections of C1 and C2 to the variables in S are the same.

Proposition 4.5.14. If X is (2, 3)-minimal, then X is a Prague instance, and X is cycle-consistent.

Proof. We leave cycle-consistency to the reader, and will prove that X is a Prague instance. By
the equivalence of (a) and (b) in Proposition 4.5.11, it’s enough to show that for (x,B) ⪯ (y,C)
and p a 1 step path from x to y, we always have B + p ⊆ C.

Let q be the path from x to y with B + q = C, and suppose that the variables which occur
along the path q are x = x0, x1, ..., xn = y, and let q = q1 + · · ·+ qn be the decomposition of q into
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single step paths. For each i, let Bi = B + q1 + · · ·+ qi, and let pi be a single step path from xi to
y (which exists by (2, 3)-minimality of X).

We prove by induction on i that B + p ⊆ Bi + pi. For the inductive step, we need to show that
Bi + pi ⊆ Bi+1 + pi+1, that is,

Bi + pi ⊆ Bi + qi+1 + pi+1.

This follows from the fact that there is some constraint whose scope contains the three variables
xi, xi+1, and y, together with the fact that the two-variable projections of this constraint onto pairs
of variables from {xi, xi+1, y} agree with the binary relations Ppi ,Pqi+1 ,Ppi+1 , by (2, 3)-minimality.

The relationships between the various types of consistency introduced so far are summarized in
the Hasse diagram below (to see that singleton arc-consistency is not implied by (2, 3)-minimality,
consider the four-variable instance of 1-IN-3 SAT where every group of three variables is required
to satisfy the 1-IN-3 constraint).

(2, 3)-minimal

Prague instance

weak Prague
(P1), (P2), (P3)

pq-consistent

cycle-consistent

singleton
arc-consistent

(P1), (P3)

SDP-relaxation

LP-relaxation

reversible
(P1), (P2)

arc-consistent
(P1)

weakly consistent

When our instance consists of just a single relation R (with no repeated variables), all of these
consistency conditions become equivalent to subdirectness of the relation R. Studying this very
special case is what leads to the main algebraic ingredient we will need for the conservative CSP
dichotomy.

Definition 4.5.15. If R ≤sd A1 × · · · × An, and if Bi ≤ Ai for all i, then an (R,B)-strand is an
equivalence class of the quasiorder ⪯ on [n] which is the transitive closure of

Bi + πij(R) = Bj =⇒ i ⪯ j.

The equivalence classes of this quasiorder are the same as the equivalence classes of the more
permissive quasiorder

i ⪯′ j ⇐⇒ Bi + πij(R) ⊆ Bj ,

and these quasiorders are the same in the special case where Bi is a minimal absorbing subalgebra
of Ai for each i.
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Using either the fact that the instance consisting of just R is cycle-consistent, or the fact that
it satisfies (P1) and (P2), we have the following result.

Proposition 4.5.16. If R ≤sd A1 × · · · × An, and if Bi ≤ Ai for all i, then for each (R,B)-strand
S ⊆ [n] there is a congruence θi ∈ Con(Ai) for each i ∈ S such that each Bi is a union of congruence
classes of θi, and for any i, j ∈ S, the binary relation

πij(R)/(θi × θj) ≤sd Ai/θi × Aj/θj

is the graph of an isomorphism.

The algebraic input needed for conservative CSPs is to show that if we take the Bis to be
minimal absorbing subalgebras of the Ais such that R∩ (B1×· · ·×Bn) ̸= ∅, then the (R,B)-strands
do not interact with each other. This algebraic miracle is a special property of conservative Taylor
algebras - it doesn’t seem to hold in general.

4.6 The rectangularity theorem for conservative Taylor algebras

There are two versions of the Rectangularity Theorem for conservative algebras: one uses the
theory of absorbing subalgebras and is proved in [8], while the other uses Bulatov’s theory of affine-
semilattice components (shortened to as-components) of the colored graph and is proved in [46].
Generally speaking, the affine-semilattice components of conservative Taylor algebras (and of sub-
direct products of conservative Taylor algebras) tend to behave like minimal absorbing subalgebras.
We will mainly focus on the absorbing subalgebra approach.

First we will state both versions of the Rectangularity Theorem, before diving into the proofs.

Theorem 4.6.1 (Rectangularity Theorem for conservative Taylor algebras, absorbing version [8]).
If R ≤sd A1 × · · · ×An is a subdirect product of conservative Taylor algebras Ai, and if a system of
minimal absorbing subalgebras Bi<�Ai for each i satisfies

R ∩ (B1 × · · · × Bn) ̸= ∅,

then
R ∩ (B1 × · · · × Bn) =

∏
S an (R,B)-strand

(
πS(R) ∩

∏
i∈S

Bi
)
.

The choice of absorption concept used in the Rectangularity Theorem is fairly arbitrary - we
could use Jónsson absorption or central absorption (as long as the algebras in question are minimal
Taylor) instead, and it would still be true. We will use �X in this section to refer to any choice of
an absorption concept as in Section 3.9 for which the Absorption Theorem 3.11.1 applies (so if we
take �X to be central absorption, then we need to assume that we are in a context where binary
absorption implies central absorption, such as the context of minimal Taylor algebras).

Definition 4.6.2. If A is a subdirect product of conservative minimal Taylor algebras, then we
define a quasiorder on the elements of A by a ⪯as b if there is a sequence a = a0, a1, ..., an = b such
that for each i either {ai, ai+1} is a Z/2aff -subalgebra or ai → ai+1.

We say that a subset B ⊆ A is an as-component of A if B is a maximal equivalence class of the
quasiorder ⪯as. We say that A is strongly as-connected if A consists of a single equivalence class of
the quasiorder ⪯as.
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Theorem 4.6.3 (Rectangularity Theorem for conservative Taylor algebras, as-component version
[46]). If R ≤sd A1×· · ·×An is a subdirect product of conservative minimal Taylor algebras Ai, and
if a system of as-components Bi ⊆ Ai for each i satisfies

R ∩ (B1 × · · · × Bn) ̸= ∅,

then
R ∩ (B1 × · · · × Bn) =

∏
S an (R,B)-strand

(
πS(R) ∩

∏
i∈S

Bi
)
.

We will frequently use the following consequence of the Absorption Theorem 3.11.1 throughout
the proof. Note that every strongly as-connected algebra is certainly absorption-free, so it applies
in that context as well (it’s a good exercise to give a direct proof of the analogue for strongly
as-connected algebras, along the lines of Theorem 3.3.1 - if you can’t solve it, see [46]).

Proposition 4.6.4. Let R ≤sd A1×A2 be a subdirect product of absorption-free idempotent algebras,
and let θ1 be a maximal congruence on A1. Then either θ1 contains the linking congruence of R on
A1, in which case there is a maximal congruence θ2 on A2 such that

R/(θ1 × θ2) ≤ A1/θ1 × A2/θ2

is the graph of an isomorphism from A1/θ1
∼−→ A2/θ2, or else we have

(a/θ1) + R = A2

for each congruence class a/θ1 of θ1.

Proof. This is a restatement of Corollary 3.11.4.

The next lemma is one of the key places where conservativity is really used in the argument. Its
analogue for as-components of conservative minimal Taylor algebras (replacing “absorption-free”
with “strongly as-connected”) is an easy exercise.

Lemma 4.6.5 (Barto [8]). If A is an absorption-free conservative algebra, θ is a proper congruence
on A, and B ≤ A is any subalgebra such that B has at least one element from each congruence class
of θ, then B is also absorption-free.

Proof. Suppose for contradiction that C�X B, with C ̸= B. Pick some b ∈ B \C such that C ̸⊆ b/θ
(this is possible as long as θ has at least two congruence classes), and let B′ be (B \ (b/θ)) ∪ {b},
that is, B′ is the subalgebra of B formed by removing every element which is congruent to b other
than b itself (that B′ is a subalgebra follows from the fact that B is conservative). Then since �X

is compatible with pp-formulas, if we set C′ = C ∩ B′, we have C′ �X B′. Applying compatibility
with pp-formulas again, we have

C′/θ �X B′/θ = A/θ,

and by the construction of C′ we see that C′/θ ̸= A/θ, since b/θ ̸∈ C′/θ. Therefore A has a proper
absorbing subalgebra (i.e. the preimage of C′/θ under the quotient homomorphism A ↠ A/θ),
which is a contradiction.
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The next result is also specific to conservative algebras (see Example 3.3.1 for a counterexample
in the 2-semilattice case). An analogue for strongly as-connected algebras can be proved using the
same argument (see [46]).

Theorem 4.6.6 (Barto [8]). If R ≤sd A1 × · · · × An is a subdirect product of absorption-free
conservative algebras, then R is also absorption-free.

Proof. We induct on n and on the sizes of the Ais. Suppose that S �X R - we aim to prove that
S = R. By compatibility with pp-formulas we have πi(S)�X πi(R) = Ai for each i, so since the Ais
are absorption-free S is also a subdirect product of the Ais.

Let θ1 be a maximal congruence on A1. By Proposition 4.6.4, for each i either

• there is a maximal congruence θi ∈ Con(Ai) such that π1i(R)/θ1 × θi is the graph of an
isomorphism between A1/θ1 and Ai/θi, or

• we have a/θ1 + π1i(R) = Ai for all congruence classes a/θ1 of θ1.

Rearrange the coordinates so that A1, ...,Ak are in the first case, with corresponding maximal
congruences θi, while Ak+1, ...,An are in the second case. Define a congruence θ on the product by

θ = θ1 × · · · × θk × 0Ak+1
× · · · × 0An ∈ Con(A1 × · · · × An).

First suppose that θ is the trivial congruence (i.e. each θi = 0Ai). In this case each Ai with
1 < i ≤ k is a redundant coordinate (since π1i(R) is the graph of an isomorphism between A1

and Ai), so we can assume without loss of generality that k = 1. Let a be any element of A, and
consider the relations Sa,Ra given by

Ra = {(x2, ..., xn) | (a, x2, ..., xn) ∈ R} ≤ A2 × · · · × An,

with Sa defined similarly. By compatibility with pp-formulas, we have Sa �X Ra, and since a +
π1i(R) = Ai for each i ≥ 2, Ra is a subdirect product of A2, ...,An. By the induction hypothesis,
we then have Sa = Ra, and since this is true for every a ∈ A, we have S = R.

Now suppose that θ is nontrivial - suppose without loss of generality that θ1 is a nontrivial
congruence of A1, with (a, a′) ∈ θ1 for some a ̸= a′. Let B = A \ {a}, and let B′ = A \ {a′}. By
Lemma 4.6.5, each of B,B′ is absorption-free. Define RB by

RB = {(x2, ..., xn) | ∃b ∈ B (b, x2, ..., xn) ∈ R} ≤ A2 × · · · × An,

and similarly define SB, RB′ ,SB′ . We have SB �X RB and SB′ �X RB′ by compatibility with pp-
formulas. For each i ≤ k, we have

πi(RB)/θi = πi(RB/θ) = B/θ1 + π1i(R/θ) = A1/θ1 + π1i(R/θ) = Ai/θi,

so by Lemma 4.6.5, πi(RB) is absorption-free for each i ≤ k. For i > k, we have

πi(RB) = B + π1i(R) = Ai,

since B contains at least one full congruence class of θ1. Thus for each i ∈ [n], πi(RB) is absorption-
free, so since |B| < |A1| we can apply the induction hypothesis to see that SB = RB. A similar
argument shows that SB′ = RB′ , and since B ∪ B′ = A1 we see that S = R.
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In order to get a foothold into the Rectangularity Theorem, we start with the case of binary
relations. We will only assume that one of the algebras involved is conservative - this way we can
later apply the result with the other algebra equal to a larger subdirect product of conservative
algebras. Once again, an analogous argument works for as-components (we need a version of
Theorem 3.3.1 for as-components to push the argument through, see [46]).

Lemma 4.6.7 (Barto [8]). Suppose R ≤sd A1×A2, where A1 is conservative, A2 is idempotent, and
both are finite Taylor algebras. Suppose further that Bi<�XAi for i = 1, 2, that R ∩ (B1 × B2) ̸= ∅,
and that there is some (a, b) ∈ R with a ∈ A1 \ B1 and b ∈ B2. Then B1 × B2 ⊆ R.

Proof. Since (B1 + R) ∩ B2 is a nonempty absorbing subalgebra of B2 and B2 is absorption-free,
we have B1 + R ⊇ B2, and similarly B1 ⊆ B2 − R. Thus R ∩ (B1 × B2) is subdirect in B1 × B2.
Additionally, B1∪{a} is a subalgebra of A1 since A1 is conservative, so by the assumption a ∈ B2−R
we can assume without loss of generality that A1 = B1 ∪ {a} and A2 = B2.

If R is linked, then by Theorem 3.7.12 so is R∩ (B1×B2), and then by the Absorption Theorem
3.11.1 we have B1 × B2 ⊆ R. Otherwise, the linking congruence of R is a proper congruence θ1 on
A1. If c ∈ ({b} − R) ∩ B1, then we have (a, c) ∈ θ1, so A1/θ1 = B1/θ1. Let

A′
1 = (A1 \ (a/θ1)) ∪ {a},

then by compatibility with pp-formulas we have

B1 \ (a/θ1) = B1 ∩ A′
1 �X A′

1,

so
(B1/θ1) \ (a/θ1) �X A′

1/θ1 = B1/θ1,

which implies that B1 \ (a/θ1) �X B1, which is a contradiction.

Now we bootstrap our way up.

Lemma 4.6.8 (Barto [8]). Suppose R ≤sd A1×· · ·×An×An+1, where A1, ...,An are conservative,
An+1 is idempotent, and each Ai is a finite Taylor algebra. Suppose that we have Bi<�XAi for all
i ∈ [n+ 1], that

R ∩ (B1 × · · · × Bn × Bn+1) ̸= ∅,

that [n] is an (R,B)-strand, and that there is some (a1, ..., an, bn+1) ∈ R such that ai ∈ Ai \ Bi for
i ∈ [n] while bn+1 ∈ Bn+1. Then we have

R ∩ (B1 × · · · × Bn × Bn+1) = (π[n](R) ∩ (B1 × · · · × Bn))× Bn+1.

Proof. We induct on n and on the sizes of the Ais, and note that we have already proved the case
n = 1 in the previous lemma. By Proposition 4.5.16 we can find maximal congruences θi ∈ Con(Ai)
for i ∈ [n] such that

πij(R)/(θi × θj) ≤ Ai/θi × Aj/θj

is the graph of an isomorphism for all i, j ∈ [n]. If any θi is trivial (i.e. if Ai is simple for some
i ∈ [n]) then the ith coordinate of R is redundant, so we can apply the induction hypothesis.
Otherwise, we have θ1 ̸= 0A1 .
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Let b1 be any element of B1. Let A′
1 be any proper subalgebra of A1 such that b1, a1 ∈ A′

1 and
such that A′

1/θ1 = A1/θ1, and let B′
1 = B1 ∩ A′

1. For each i ∈ [n+ 1] define A′
i,B′

i by

A′
i = A′

1 + π1i(R), B′
i = Bi ∩ A′

i.

Then since π1i(R)/(θ1 × θi) is the graph of an isomorphism for each i ∈ [n], we have A′
i/θi = Ai/θi

and B′
i = B′

1 + π1i(R) for all i ∈ [n]. Then since each B′
i/θi = Bi/θi, we can apply Lemma 4.6.5 to

see that B′
i is absorption-free for each i ∈ [n]. Additionally, by the previous lemma (i.e., the n = 1

case) we have
B1 × Bn+1 ⊆ π1,n+1(R),

so B′
n+1 = Bn+1. Thus if we set

R′ = R ∩ (A′
1 × · · · × A′

n × A′
n+1),

then (a1, ..., an, bn+1) ∈ R′ and we can apply the induction hypothesis to R′ to see that

R′ ∩ (B′
1 × · · · × B′

n × Bn+1) = (π[n](R′) ∩ (B′
1 × · · · × B′

n))× Bn+1.

In particular, any tuple in (π[n](R)∩
∏
i∈[n] Bi)×Bn+1 such that the first coordinate is b1 is contained

in R′, and therefore is also contained in R. Since b1 was an arbitrary element of B1, we are done.

Proof of the Rectangularity Theorem 4.6.1, following [8]. We induct on n, the number of algebras
occuring in the product. Suppose for the sake of contradiction that R is a counterexample, i.e. that
there is some

b = (b1, ..., bn) ∈
∏

S an (R,B)-strand

(
πS(R) ∩

∏
i∈S

Bi
)

such that b ̸∈ R. By the induction hypothesis, we have π[n]\{i}(b) ∈ π[n]\{i}(R) for each i ∈ [n].
Consider the quasiorder ⪯ on [n] from Definition 4.5.15 defined by

i ⪯ j ⇐⇒ Bi + πij(R) = Bj ,

and suppose without loss of generality that [k] is a ⪯-minimal (R,B)-strand for some k ≤ n. If
there is any tuple

(a1, ..., ak, b
′
k+1, ..., b

′
n) ∈ R

such that ai ∈ Ai \ Bi for i ∈ [k] and b′j ∈ Bj for j > k, then we can apply the previous lemma to
the situation

R ≤sd A1 × · · · × Ak × π[k+1,n](R)

with
π[k+1,n](R) ∩

∏
j>k

Bj <�X π[k+1,n](R),

by compatibility with pp-formulas and Theorem 4.6.6, to finish the proof. To arrange for this
situation, we consider the relation

R′ = R ∩
(( ∏

i∈[k]

(Ai \ Bi) ∪ {bi}
)
×

∏
j>k

Aj
)
,

= R ∩
((
{(b1, ..., bk)} ∪

∏
i∈[k]

(Ai \ Bi)
)
×

∏
j>k

Aj
)
,
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set A′
i = πi(R′), and set B′

i = A′
i∩Bi for each i. By the induction hypothesis applied to π[k]∪{j}(R),

we see that B′
j = Bj for each j > k, so we have B′

i<�XA′
i for all i ≤ n. We will apply the induction

hypothesis to π[k+1,n](R′), but first we need to check that π[k+1,n](R′) has more than one strand.
Let S ⊂ [n] be some (R,B)-strand which is disjoint from [k]. By the assumption that [k] was

a ⪯-minimal (R,B)-strand, there must be some (c1, ..., cn) ∈ R such that ci ̸∈ Bi for i ∈ [k] and
cj ∈ Bj for j ∈ S. Suppose without loss of generality that there is some m ≥ k such that cj ∈ Bj iff
j ∈ [m+ 1, n]. If m = k, then we take (a1, ..., ak, b

′
k+1, ..., b

′
n) = c to finish. Otherwise, since c is an

element of R′, we see that every strand of π[k+1,n](R′) is either contained in [k+ 1,m] or contained
in [m+ 1, n]. Thus, by the induction hypothesis we have

π[k+1,n](R′) ∩
∏
j>k

Bj =
(
π[k+1,m](R′) ∩

∏
j∈[k+1,m]

Bj
)
×
(
π[m+1,n](R′) ∩

∏
j∈[m+1,n]

Bj
)
.

Since we have π[k+1,m](b) ∈ π[k+1,m](R′) and π[m+1,n](b) ∈ π[m+1,n](R′) by the induction hypothesis
applied to π[1,m](R) and π[k]∪[m+1,n](R), we see that π[k+1,n](b) ∈ π[k+1,n](R′). Thus either b ∈ R,
or there are some ai ∈ Ai \ Bi for i ∈ [k] such that

(a1, ..., ak, bk+1, ..., bn) ∈ R,

which allows us to apply the previous lemma to finish the proof.

4.7 The algorithm for conservative CSPs

In this section we present Barto’s simple algorithm from [8]. Bulatov’s algorithm from [46] is similar
in spirit, but it relies on ideas from Maróti’s “Tree on top of Maltsev” algorithm [126] which we
haven’t covered yet.

The main idea of Barto’s algorithm for conservative CSPs is to try to reduce to the case where
all edges of the colored graphs occuring in each of the variable domains Ax are affine. In this case,
any daisy chain term will be a Mal’cev term for each variable domain, and we can solve the problem
by using the algorithm for CSPs with a Mal’cev polymorphism. In Bulatov’s algorithm from [46],
the main idea is to reduce to the case where there are no semilattice edges instead, in which case
any daisy chain term will be a ternary generalized majority-minority operation (that a ternary
generalized majority-minority operation exists in this case also follows from Theorem 2.1.5).

In order to accomplish this, we aim to show that if any semilattice or majority edge occurs in
any variable domain of an instance X, then we can reduce some variable domain by solving an
instance where every variable domain has been strictly decreased. We assume that our instance is
(2, 3)-minimal (or perhaps just that it is a Prague instance), and we consider the subdigraph E of
the implication digraph consisting of pairs (x,B) such that that B ≤ Ax is an algebra with at least
one proper absorbing subalgebra. The digraph E will be nonempty as long as any algebra Ax has
any non-affine edge.

We pick any maximal strand S of the digraph E , and we note that the full restriction (see
Definition 4.5.7) of our instance X to the strand S is then a Prague instance in which every
single domain has a proper absorbing subalgebra by Proposition 4.5.12. We can then repeatedly
apply Proposition 4.5.12 (or, alternatively, we could apply Kozik’s [112] result from Section 3.9,
using the fact that every Prague instance is pq-consistent), to find an arc-consistent absorbing
reduction X′ of the full restriction of X to the strand S, such that every variable domain in X′ is

358



absorption free - and as a consequence, such that each variable domain in X′ is a proper subagebra
of the corresponding variable domain in the original instance X. We can then apply the following
consequence of the Rectangularity Theorem 4.6.1.

Theorem 4.7.1 (Barto [8]). Suppose that X is a Prague instance such that each variable domain
Ax is a conservative Taylor algebra. Let E be the subdigraph of the implication digraph which
consists of pairs (x,B) such that B ≤ Ax and B has a proper absorbing subalgebra, and let S be any
maximal strand of E.

Suppose that for each (x,Bx) ∈ S we choose a minimal absorbing subalgebra Cx<�Bx, such that
the system of variable domains Cx defines an arc-consistent reduction of the full restriction of X
to the strand S. Then one of the following is true:

• the instance X has no solutions with any variable x assigned to any value in Bx, for any
(x,Bx) ∈ S,

• the instance X′ which we get by restricting to the variables in S and by restricting each
variable domain to the corresponding Cx has a solution, and every solution of X′ extends to
a solution of X, or

• for some strand T of the subqoset C of E consisting of the pairs (x,Cx) for x occuring in S,
the full restriction of X to T has no solutions.

Proof. Suppose that a ∈
∏
xAx is a solution to the instance X such that ax ∈ Bx for some (x,Bx) ∈

S, and suppose that for each strand T of the subqoset C there is a solution cT ∈
∏

(x,Cx)∈T Cx
of the full restriction of X to the strand T . We construct a tuple b ∈

∏
xAx by stitching these

solutions together:

bx =

{
ax x does not occur in the strand S,
cTx x occurs in the strand T of the subqoset C.

We claim that the tuple b is also a solution to the instance X. For this, we can focus our attention
on any particular constraint relation

R ≤sd Ax1 × · · · × Axn

of the instance X. Suppose without loss of generality that the variables x1, ..., xk occur in the
strand S and that the variables xk+1, ..., xn do not, and suppose that k ≥ 1. For each i ∈ [n], define
Bi by

Bi = Bx1 + π1i(R).

Since X is a Prague instance, we have Bi = Bxi for all i ≤ k, and since S is a maximal strand of E
each Bj with j ≥ k + 1 is absorption-free. Define the relation RB ≤ R by

RB = R ∩
(∏

i

Bi
)
≤sd B1 × · · · × Bn,

where subdirectness follows directly from the definition of the Bis. Set Ci = Cxi for i ≤ k, and set
Cj = Bj for j ≥ k + 1, so we have Ci<�Bi for all i ∈ [n]. Then since X is a Prague instance, the
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(RB,C)-strands are given by [k + 1, n] and by the intersections of the strands of C to {x1, ..., xk},
and we have

RB ∩
∏
i

Ci ̸= ∅

since the system of variable domains Cx defines an arc-consistent reduction of the full restriction
of X to the strand S. Then the Rectangularity Theorem 4.6.1 says that

R ⊇
∏

T an (RB,C)-strand

(
πT (RB) ∩

∏
i∈T

Ci
)
,

so the tuple b satisfies the constraint relation R.

Using this result, we get the following algorithm for solving conservative CSPs.

Algorithm 13 Algorithm for solving an instance X of a CSP with conservative Taylor variable
domains Ax, from [8].

1: Run a local consistency algorithm until X is a cycle-consistent Prague instance.
2: Let E be the subdigraph of the implication digraph consisting of pairs (x,B) such that B ≤ Ax

and B has a proper absorbing subalgebra.
3: if E is non-empty then
4: Let S be any maximal strand of E . ▷ Proposition 4.5.5.
5: Define Cx = Bx for each (x,Bx) ∈ S.
6: while some Cx is not absorption-free do
7: Let XC be the Prague instance we get by restricting to variables in S and restricting

each variable domain to Cx. ▷ Proposition 4.5.12
8: Pick any maximal strand T of the subqoset of the implication qoset of XC consisting of

(x,C′) such that C′ � Cx and C′ ̸= Cx.
9: Set Cx ← C′ for each (x,C′) ∈ T .

10: Let C be the subqoset consisting of (x,Cx) for x occuring in the strand S.
11: for all strands T of C do
12: Let XT be the full restriction of X to the strand T .
13: Solve the instance XT recursively. ▷ Cx < Bx for all (x,Cx) ∈ T .
14: if XT has no solutions then
15: Set Ax ← Ax \ Cx for each (x,Cx) ∈ T .
16: go to Step 1.
17: else
18: Let cT be a solution to the instance XT .

19: Set Ax ← (Ax \ Bx) ∪ {cTx } for all (x,Bx) ∈ S, where T is the strand of C which contains
(x,Cx). ▷ Theorem 4.7.1

20: go to Step 1.

21: Solve X by using the algorithm for CSPs with a Mal’cev polymorphism. ▷ Section 1.8

Theorem 4.7.2. Algorithm 13 correctly solves every instance X of any multisorted CSP where
each variable domain is a conservative Taylor algebra. If each variable domain has size at most k,
then Algorithm 13 runs in time ∥X∥O(k), where ∥X∥ is (up to a logarithmic factor) the number of
bits needed to describe the instance X.
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Corollary 4.7.3. The CSP dichotomy conjecture is true for all CSP templates on a domain of
size at most 3.

Proof. By the classification of minimal Taylor algebras of size 3 from Subsection 4.4.1, every mini-
mal Taylor algebra of size at most 3 is either a subdirect product of conservative Taylor algebras,
or has a 3-edge term.

It seems plausible that a much more careful analysis of the algorithm for conservative CSPs
might show that it runs in time ∥X∥O(1), regardless of the sizes of the variable domains.

Problem 4.7.1. Given as input an instance X of any CSP together with a conservative ternary
weak near-unanimity polymorphism which preserves the relations of X, can we solve the instance
X in time polynomial in ∥X∥?

The method we have been using to encode relations up to this point has been to explicitly list
out the tuples contained in the relation. An alternate way of describing constraint relations on the
domain {0, 1} via “extension oracles” was introduced in [117], and this way of describing constraint
relations seems to generalize naturally to conservative CSPs. I will use the phrase “restriction
oracle” instead of “extension oracle” for the generalization I have in mind.

Definition 4.7.4. A restriction oracle OR for a relation R ⊆ A1 × · · · × An is defined as a black
box function which takes as input a tuple of subsets Bi ⊆ Ai, and returns “true” if and only if we
have

R ∩ (B1 × · · · ×Bn) ̸= ∅.

The idea behind a restriction oracle is that it is the bare minimum which is needed to be able to
run the (generalized) arc-consistency algorithm. It’s easy to see how we could use restriction oracle
descriptions of constraint relations to establish cycle-consistency (or even singleton arc-consistency),
but it is not clear if it is possible to use restriction oracles to establish (2, 3)-minimality, or even to
reduce to a subinstance which satisfies condition (P2).

Example 4.7.1. A concrete example of a high-arity relation which has an efficient restriction or-
acle is the all-different relation

∧
i ̸=j xi ̸= xj . This relation occurs naturally in Sudoku and its

generalizations. For any sets B1, ..., Bn, we can determine whether or not

{x | ∀i ̸= j, xi ̸= xj} ∩ (B1 × · · · ×Bn) ̸= ∅

as follows. We start by drawing a bipartite graph with parts A = {1, ..., n} and B =
⋃
iBi, with

an edge from i ∈ A to b ∈ B exactly when b ∈ Bi. Then we use the standard augmenting path
algorithm to find a maximum matching in this graph - if there is a matching of size n, then the
edges of this matching can be viewed as an assignment from variables xi to values in Bi which are
all different.

Problem 4.7.2. Consider the problem where we are given an instance X of a CSP together with a
conservative ternary weak near-unanimity polymorphism which is promised to preserve the relations
of X, but instead of having explicit descriptions of the constraint relations, the constraint relations
are given to us implicitly in terms of restriction oracles. Is there an algorithm which determines
whether X has a solution and makes only polynomially many calls to the restriction oracles which
describe the constraint relations?
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When we leave the context of conservative CSPs, restriction oracles become a less natural
concept. The trouble is that it’s only natural to call the restriction oracle when the sets Bi are
subalgebras of the variable domains. The next example shows how this can become an issue for
the algebra Z/3aff .

Example 4.7.2. We can efficiently describe high-arity relations R on Z/3aff by writing down systems
of linear equations. If we could convert a description of R as the solution set of a system of linear
equations into an efficient restriction oracle OR, however, then we would be able to solve 1-IN-3
SAT. To see this, note that for x, y, z ∈ Z/3aff we have

(x, y, z) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)} ⇐⇒ x, y, z ∈ {0, 1} ∧ x+ y + z ≡ 1 (mod 3).

4.8 The meta-problem for conservative CSP templates

In this section we will go over Carbonnel’s solution to the meta-problem for conservative CSPs
from their thesis [50]. Recall that in the meta-problem, we are given a CSP template as a relational
structure A = (A,Γ) (which we usually assume to be a core), and we wish to either prove that
CSP(A) is NP-complete or to find a Taylor polymorphism of A, in time polynomial in the total
size ∥A∥ of the description of A, which we define as

∥A∥ :=
∑
R∈Γ

ar(R)|R|.

In the meta-problem for conservative CSPs, we restrict our attention to CSP templates where Γ
contains the unary relation A\{a} for each a ∈ A (in particular, any such A is automatically a rigid
core). Note that by our classification of conservative minimal Taylor algebras, if a conservative CSP
template A has a Taylor polymorphism, then it has a ternary weak near-unanimity polymorphism,
i.e. an idempotent ternary polymorphism w satisfying the identities

w(x, x, y) ≈ w(x, y, x) ≈ w(y, x, x).

Furthermore, we can consider the case of 3-conservative CSP templates without any additional diffi-
culty, since any 3-conservative Taylor algebra has a conservative Taylor reduct (by a 3-conservative
template, we mean a CSP template such that Γ contains every unary relation of size at most 3).
These facts were not known at the time that Carbonnel wrote their thesis, and by using them we
can make Carbonnel’s algorithm more concrete.

In Carbonnel’s thesis [50], the strategy for solving the meta-problem was described as being
similar to a treasure hunt (or perhaps a puzzle hunt): we have a sequence of locked boxes, and
a single key which opens the first box, such that each box contains the key to opening the next
box. Here, the key is a metaphor for the Taylor polymorphism - once we know a Taylor poly-
morphism, we can use it to solve instances of our CSP. More specifically, the key is a metaphor
for a partial description of a Taylor polymorphism. In order to see how a partial description of a
Taylor polymorphism can make sense, we first describe a useful rephrasing of the meta-problem for
a 3-conservative template in terms of a meta-problem for a multisorted CSP template.

Definition 4.8.1. Suppose that A = (A,Γ) is a 3-conservative CSP template. We define the
associated multisorted template A3 to have a sort for each subset of A of size at most 3, with two
types of relations:
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• for each relation R ∈ Γ of arity m, and for every triple of elements u, v, w ∈ R (not necessarily
distinct), we have a multisorted relation

R ∩ ({u1, v1, w1} × · · · × {un, vn, wn}) ⊆ {u1, v1, w1} × · · · × {un, vn, wn},

• for every a, b, c ∈ A (not necessarily distinct), we have the binary inclusion relation

{(a, a), (b, b)} ⊆ {a, b} × {a, b, c}.

Note that the size of the associated multisorted template A3 is bounded by

∥A3∥ ≤
∑
R∈Γ

∑
u,v,w∈R

ar(R)|R|+
∑

a,b,c∈A
2|{a, b}| ≤ ∥A∥4 + 4|A|3.

A polymorphism of a multisorted relational structure is defined to be an operation with a differ-
ent interpretation on each sort of the structure, such that applying the operation componentwise
preserves each multisorted relation.

Proposition 4.8.2. There is a bijection between conservative ternary polymorphisms of A and
ternary polymorphisms of the associated multisorted structure A3 which preserves height 1 identi-
ties.

Proof. There is an obvious way to convert any conservative ternary polymorphism of A into a
ternary polymorphism of A3. Conversely, any ternary polymorphism f of A3 can be stitched
together into a (necessarily conservative) ternary polymorphism f̃ of A: the fact that f preserves
the binary inclusion relations guarantees that the values of f̃ are well-defined on two-element sets,
and for every u, v, w ∈ R ∈ Γ the fact that f preserves the multisorted relation

R ∩ ({u1, v1, w1} × · · · × {un, vn, wn})

guarantees that f̃(u, v, w) ∈ R.

So we have reduced the problem of determining whether a given relational structure A has a
conservative Taylor polymorphism to the problem of determining whether the associated multi-
sorted relational structure A3 has a ternary weak near-unanimity polymorphism. Now we have a
way to understand what a partial description of a ternary weak near-unanimity polymorphism on
A3 should be.

Definition 4.8.3. Suppose that A = (A,Γ) is a 3-conservative CSP template, and let U ⊆ P(A)
be a collection nonempty subsets of A each of size at most 3 which is closed under taking nonempty
subsets. We define the multisorted template AU to be the template whose sorts are exactly the
elements of U , such that for each m-ary relation R of A3 with at least one coordinate of a sort in
U , if S ⊆ [m] is the set of coordinates of R which have a sort in U , then the relation πS(R) is a
relation of AU .

Later we will want to fix certain coordinates of various relations of A3 to have certain values,
before projecting to the coordinates with sorts in U . To reassure ourselves that this will not cause
unexpected problems, we have the following result.
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Proposition 4.8.4. Suppose that A = (A,Γ) is a 3-conservative CSP template. Let U ⊆ V ⊆
P(A) be collections of nonempty subsets of A each of size at most 3 which are closed under taking
nonempty subsets. Suppose that f is a ternary polymorphism of the multisorted structure AU , and
that R is an m-ary relation of AV . Let S ⊆ [m] be the set of coordinates of the relation R with
sorts from U . Then for any y ∈ π[m]\S(R), the relation

Ry := {x | ∃r ∈ R s.t. πS(r) = x, π[m]\S(r) = y} ⊆ πS(R)

is preserved by the polymorphism f .

Proof. We just need to check that for every three tuples u, v, w ∈ Ry, we have f(u, v, w) ∈ Ry.
If R is one of the binary inclusion relations, then this follows from the fact that f is conservative
on the sorts in U (which folows from the fact that U is closed under taking nonempty subsets).
Otherwise, R originally came from some relation R̃ ∈ Γ. Then there are lifts ũ, ṽ, w̃ ∈ R̃ such that
projecting to the coordinates of R̃ corresponding to S gives us u, v, w, and such that projecting to
the coordinates of R̃ corresponding to [m] \ S gives us y in each case. Then there is a relation R′

of AU given by restricting the ith coordinate of R̃ to the set {ũi, ṽi, w̃i} for all i and projecting to
the coordinates corresponding to S, and we have

f(u, v, w) ∈ R′ ⊆ Ry

since f preserves R′.

In order to find ternary weak near-unanimity polymorphisms of the structure AU , we use the
idea of solving an indicator instance (we used this idea once already to solve the meta-problem for
bounded width templates - this idea appears to have shown up for the first time in [90]).

Proposition 4.8.5. If B = (U ,Γ) is a multisorted relational structure with sorts U , then B has a
ternary weak near-unanimity polymorphism f iff the following instance of CSP(B) has a solution:

∃f = {fU ∈ UU
3}U∈U s.t.

∧
U∈U

( ∧
a∈U

fU (a, a, a) ∈ {a} ∧
∧
a,b∈U

fU (a, a, b) = fU (a, b, a) = fU (b, a, a)
)

∧
∧
R∈Γ

∧
u,v,w∈R

f(u, v, w) ∈ R.

Now we can describe the treasure hunt algorithm: we iteratively build ternary weak near-
unanimity polymorphisms fU of the multisorted structures AU for progressively larger collections
U of subsets of A of size at most 3. In each step, we add a single new subset V of A to U to produce
a larger collection V.

In order to solve the indicator instance for AV , we brute force over all possible ternary weak
near-unanimity operations on V , and for each one, we check if it extends to a solution to the
indicator instance, using the fact that all of the remaining variables have sorts in U . In fact, we
don’t need to consider all weak near-unanimity operations on V - we only need to check the 73
specific operations from the classification of conservative minimal Taylor algebras of size 3 (if V
has size 2, we only need to consider 4 possible operations).

Theorem 4.8.6. If A is a 3-conservative relational structure, then Algorithm 14 runs in time
polynomial in ∥A∥, and either correctly determines that CSP(A) is NP-complete or produces a
ternary weak near-unanimity polymorphism of A.
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Algorithm 14 Treasure hunt algorithm for solving the meta-problem for a 3-conservative relational
structure A = (A,Γ), from [50].

1: Set n←
(|A|

3

)
+
(|A|

2

)
.

2: Pick a sequence U0 ⊆ U1 ⊆ U2 ⊆ · · · ⊆ Un = {U ⊆ A | |U | ∈ [3]} such that U0 is the set of
singleton subsets of A, each Ui+1 contains exactly one more subset of A then Ui, and each Ui is
closed under taking nonempty subsets.

3: Let fU0 be the unique ternary polymorphism of AU0 , given by f{a}(a, a, a) = a for all a ∈ A.
4: for i ∈ [n] do
5: Let X be the indicator instance from Proposition 4.8.5 for the multisorted structure AUi .
6: Let V be the new set in Ui \ Ui−1.
7: for all ternary weak near-unanimity operations gV on V do
8: Let X′ be the instance we get from X by replacing each variable fV (a, b, c) of X with

sort V by the constant gV (a, b, c).
9: Solve the instance X′ by using Algorithm 13 with the Taylor operation fUi−1 .

10: if X′ has a solution then
11: Let fUi be any solution to X′.

12: if fUi hasn’t been defined then
13: return “NP-complete”.

14: Stitch fUn into a ternary polymorphism f of A using Proposition 4.8.2.
15: return f .

Proof. Given what we have already proved, the only thing left to check is that the algorithm runs
in polynomial time. The only step which looks dangerous is the step where we apply Algorithm
13, since the degree of the polynomial in the running time of that algorithm depends on the size of
the largest sort which shows up as a variable domain. However, we only ever apply Algorithm 13
to multisorted structures where every sort has size at most 3.

Remark 4.8.1. Algorithm 14 easily generalizes to multisorted CSP templates. Since an arbitrary
instance of an unstructured CSP can be thought of as an instance of a multisorted CSP where
each variable has a different sort, with only those relations which actually show up in the instance,
we can efficiently check whether there is any possible way to interpret each variable domain as a
conservative Taylor algebra such that the relations are compatible with the algebraic structure.
If we can impose such an algebraic structure, we can apply Algorithm 13 as long as the variable
domains are not too large. If we can solve Problem 4.7.1, then we may not even need the restriction
on the sizes of the variable domains!

4.9 Maróti’s “Maltsev on top”: combining few subpowers and
bounded width

This section is a bit of a breather: we will go over Maróti’s algorithm from [125], which gives us a
simple way to combine the few subpowers algorithm with bounded width reasoning that works in
the case where we can mostly disentangle the few subpowers parts of our algebras from the bounded
width parts. The nice thing about this algorithm is that we don’t need any new algebraic ideas to
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understand it, and it gives us a hint that there may be a simple algorithm which can handle the
case of general Taylor algebras.

The specific assumption that Maróti uses in [125] is that each variable domain Ax is an idem-
potent algebra with a special congruence θx ∈ Con(Ax) such that:

• Ax/θx has few subpowers, and

• the congruence classes ax/θx ≤ Ax have bounded width, for all ax ∈ Ax.

We will say that such a pair Ax, θx has the Mal’cev-on-top property to abbreviate this. Note that
by Corollary 2.2.15 and Corollary 3.13.9, this assumption implies that the multisorted CSP with
variable domains Ax/θx has few subpowers, and that for any ax ∈ Ax the multisorted CSP with
variable domains ax/θx has bounded width (equivalently, the products A =

∏
xAx and θ =

∏
x θx

have the Mal’cev-on-top property).
In the few subpowers setting it’s natural to consider global constraints (i.e. constraints which

involve all of the variables at once), specified by their compact representations, but in the bounded
width setting it is more natural to consider constraints with low arity. To get the best of both
worlds, Maróti introduced a new type of constraint, which he called a “Maltsev constraint” (we
will call them “M-constraints”).

Definition 4.9.1 (Maróti [125]). If X is the set of all variables, and if each variable domain Ax has
a congruence θx with the Mal’cev-on-top property, then an M-constraint on I ⊆ X is a subalgebra

R ≤
∏
x∈I

Ax ×
∏

y∈X\I

Ay/θy.

We will say that the M-arity of an M-constraint on I is |I|. By a compact representation of R, we
mean a collection of compact representations of the relations

aI + R =
{
b ∈

∏
y∈X\I

Ay/θy | (aI , b) ∈ R
}
,

for all aI ∈
∏
x∈I Ax.

The way we will actually think about M-constraints on I is reversed from how their compact
representations are defined: we think of an M-constraint R as a way of associating an |I|-ary relation
b− R ≤

∏
x∈I Ax to every tuple of congruence classes b ∈

∏
y∈X\I Ay/θy.

We might attempt to be a little bit more ambitious: let’s consider the more general case of
relations described by oracles which are just barely powerful enough to run the arc-consistency
algorithm.

Definition 4.9.2. A subalgebra restriction oracle OR for a relation R ≤ A1 × · · · × An is defined
as a black box function which takes as input a tuple of subalgebras Bi ≤ Ai, and returns “true” if
and only if we have

R ∩ (B1 × · · · × Bn) ̸= ∅.

Proposition 4.9.3. Let R ≤
∏
xAx, and for I ⊆ X consider the M-relation on I given by

R/θX\I ≤ AI × AX\I/θX\I ,
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where we have made the abbreviations AI =
∏
x∈I Ax, and similarly for AX\I and θX\I . If

AX\I/θX\I has a k-edge term, and if we are given a subalgebra restriction oracle OR for R, then
we can compute a compact representation for R/θX\I using at most∏

x∈I
|Ax| ×

( ∑
y∈X\I

|Ay/θy|
)k

calls to the oracle OR.

Proof. Left as an exercise for now.

Unfortunately, if we don’t restrict ourselves to M-constraints (of known M-arity) then subalgebra
restriction oracles seem to give us slightly too little information to run Maróti’s algorithm. So we
make the following definition instead.

Definition 4.9.4. Suppose that Ai, θi have the Mal’cev-on-top property. An M-restriction oracle
OM

R for a relation R ≤ A1×· · ·×An is defined as a black box function which takes as input a tuple
of compact representations of M-unary M-constraints

Bi ≤ Ai ×
∏
j ̸=i

Aj/θj ,

and returns a compact representation of(
R ∩ B1 ∩ · · · ∩ Bn

)
/
∏
i

θi.

M-restriction oracles are clearly at least as powerful as subalgebra restriction oracles. Further-
more, if we want to have any hope of solving CSPs involving R along with M-unary M-constraints,
then there had better be an efficient way to implement the M-restriction oracle OM

R . In particular,
if Maróti’s approach is going to work at all then there ought to be a way to efficiently implement
the M-restriction oracle OM

R when R happens to be an M-constraint!
We start with the case where R = A1 × · · · × An.

Proposition 4.9.5. Suppose that θi ∈ Con(Ai) for all i, and that for each i we have a relation

Bi ≤ Ai ×
∏
j ̸=i

Aj/θj .

Then we have (
B1 ∩ · · · ∩ Bn

)
/
∏
i

θi = (B1/θ1) ∩ · · · ∩ (Bn/θn).

Proof. It’s clear that the left hand side is contained in the right hand side. For the other contain-
ment, let b̄ be any tuple of congruence classes in

⋂
i Bi/θi. For each i, since b̄ ∈ Bi/θi, there is some

bi ∈ Ai such that bi/θi = πi(b̄) and
(bi, π[n]\{i}b̄) ∈ Bi.

Taking b = (b1, ..., bn), we have b/
∏
j ̸=i θj = (bi, π[n]\{i}b̄) ∈ Bi for each i, so

b ∈ B1 ∩ · · · ∩ Bn,

and b/
∏
i θi = b̄.
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Combining this with Algorithm 7 for intersecting compact representations of relations in alge-
bras with few subpowers, we get the following result.

Proposition 4.9.6. Suppose that we are given a k-edge term e for the algebras Ax/θx, along with
a compact representation of an M-constraint

R ≤ AI × AX\I/θX\I

and a tuple of compact representations of M-unary M-constraints

Bx ≤ Ax × AX\{x}/θX\{x}.

Then we can compute a compact representation of(
R ∩

⋂
x∈X

Bx
)
/θX

in time polynomial in the sum of the sizes of the compact representations of R and the Bxs.

Problem 4.9.1. Given black box access to the subalgebra restriction oracle OR for an unknown
relation R ≤ A1×· · ·×An of high arity, not necessarily an M-constraint, together with a k-edge term
e for the algebras Ai/θi, can we implement the M-restriction oracle OM

R using only polynomially
many calls to OR?

Let’s table this question for now, and move on to describing Maróti’s algorithm, assuming
that we have been provided with M-restriction oracles for each constraint relation. We start with
an easier case than the general case: let’s assume that for each ax ∈ Ax, the congruence class
ax/θx has totally symmetric polymorphisms of all arities, so that CSP(ax/θx) is solved by arc-
consistency. Note that a minor variation of the proof of Proposition 3.2.14 implies that in this case,
the multisorted problem CSP({ax/θx}) is also solved by arc-consistency.

Definition 4.9.7. Suppose that Ai, θi have the Mal’cev-on-top property. We say that an instance
of CSP({Ai}) is M-arc-consistent if for each constraint relation Ri ≤ AX =

∏
xAx and each tuple

of congruences
a/θX ∈ Ri/θX ,

the instance we get by restricting each variable domain Ax to the congruence class ax/θx is arc-
consistent.

The idea is to think of our instance of CSP({Ai}) as a giant bundle of restricted instances of
CSP({ax/θx}), one for each tuple a ∈ AX , and to try to run the arc-consistency algorithm on
each restricted instance simultaneously. The M-restriction oracles give us the exact tool needed to
accomplish this.

Proposition 4.9.8. Suppose that Ai, θi have the Mal’cev-on-top property, and that X is an instance
of CSP({Ai}). Then Algorithm 15 runs in polynomial time, and at the end of Algorithm 15, if we
define a new instance X′ by restricting each variable domain to

A′
x := πx(Bx)
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Algorithm 15 M-arc-consistency algorithm, given θi ∈ Con(Ai) such that Ai, θi have the Mal’cev-
on-top property and given M-restriction oracles OM

Ri
for each constraint relation Ri ≤ AX =

∏
xAx.

1: Set Bx ← Ax × AX\{x}/θX\{x} for each variable x. ▷ Bx is an M-unary M-constraint on {x}.
2: Compute a compact representation for Bx by sending each ax ∈ Ax to a compact representation

of AX\{x}/θX\{x}.
3: For any set S ⊆ X, we use BS as an abbreviation for

⋂
x∈S Bx ≤ AS × AX\S/θX\S .

4: repeat
5: for all constraint relations Ri ≤ AX and choices of x ∈ X do
6: for all a ∈ Ax do
7: Set Ca ← ({a} × AX\{x}/θX\{x}) ∩ Bx. ▷ Ca is an M-unary M-constraint on {x}.
8: Compute a compact representation for Ca by sending a to the known compact rep-

resentation of πX\{x}(a+ Bx), and sending every a′ ̸= a to the empty set.
9: Set Da ← (Ri ∩ BX\{x} ∩ Ca)/θX .

10: Call the M-restriction oracle OM
Ri

to compute a compact representation of Da.
11: Set Bx ←

⋃
a∈Ax
{a} × πX\{x}(Da) = (Ri ∩ BX)/θX\{x}.

12: Update the compact representation for Bx by sending each a ∈ Ax to the known compact
representation of πX\{x}(Da).

13: until no Bx changes.
14: If any Bx = ∅, there is no solution.
15: return a compact representation of BX/θX . ▷ Each Bx/θx is equal to BX/θX .

and restricting each constraint relation Ri ≤ AX of X to

R′
i := Ri ∩ BX ≤ A′

X ,

then the instance X′ is M-arc-consistent. Furthermore, for any tuple of congruence classes a/θX ∈
AX/θX we have

a/θX ∈ BX/θX ⇐⇒ running arc-consistency on Xa/θX doesn’t prove that no solution exists,

where Xa/θX is the instance we get by restricting each variable domain Ax to the congruence class
ax/θx.

Proof. Left as another exercise for now.

To generalize from the case where each ax/θx has width 1 to bounded width, we will use the
fact that finite-domain CSPs have bounded width iff they are solved by singleton arc-consistency
(since singleton arc-consistency implies cycle consistency).

Definition 4.9.9. Suppose that Ai, θi have the Mal’cev-on-top property. We say that an instance
of CSP({Ai}) is singleton M-arc-consistent if for each variable x ∈ X, each value ax ∈ Ax, each
constraint relation Ri ≤ AX , and each tuple of congruences

aX\{x}/θX\{x} ∈ (ax + Ri)/θX\{x},

running arc-consistency on the restricted instance we get by replacing Ax by {ax} and replacing
each Ay with ay/θy for y ̸= x doesn’t prove that the restricted instance has no solution.
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The algorithm for singleton M-arc-consistency is nearly the same as the algorithm for M-arc-
consistency, just with calls to the M-restriction oracles replaced by calls to the M-arc-consistency
algorithm.

Algorithm 16 Singleton M-arc-consistency algorithm, given θi ∈ Con(Ai) such that Ai, θi have
the Mal’cev-on-top property and given M-restriction oracles OM

Ri
for each constraint relation Ri ≤

AX =
∏
xAx.

1: Set Bx ← Ax × AX\{x}/θX\{x} for each variable x. ▷ Bx is an M-unary M-constraint on {x}.
2: Compute a compact representation for Bx by sending each ax ∈ Ax to a compact representation

of AX\{x}/θX\{x}.
3: For any set S ⊆ X, we use BS as an abbreviation for

⋂
x∈S Bx ≤ AS × AX\S/θX\S .

4: repeat
5: for all variables x ∈ X do
6: for all a ∈ Ax do
7: Set Ca ← ({a} × AX\{x}/θX\{x}) ∩ Bx. ▷ Ca is an M-unary M-constraint on {x}.
8: Compute a compact representation for Ca by sending a to the known compact rep-

resentation of πX\{x}(Bx), and sending every a′ ̸= a to the empty set.
9: Set R′

i ← Ri ∩ BX\{x} ∩ Ca. ▷ We can easily convert an M-restriction oracle for Ri
to an M-restriction oracle for R′

i.
10: Let X′

a be the restricted instance with each constraint relation Ri replaced by R′
i.

11: Let Da ≤ AX/θX be the output of the M-arc-consistency algorithm (Algorithm 15)
applied to the restricted instance X′

a, and remember the compact representation of Da.
12: Set Bx ←

⋃
a∈Ax
{a} × πX\{x}(Da).

13: Update the compact representation for Bx by sending each a ∈ Ax to the known compact
representation of πX\{x}(Da).

14: until no Bx changes.
15: If any Bx = ∅, there is no solution.
16: Pick any tuple of congruences a/θX ∈ BX/θX .
17: Let Xa/θX be the restricted instance we get by replacing each variable domain Ax by the

congruence class ax/θx.
18: Run your favorite bounded width algorithm to find a solution to Xa/θX .

Proposition 4.9.10. Suppose that Ai, θi have the Mal’cev-on-top property, and that X is an in-
stance of CSP({Ai}). Then Algorithm 16 runs in polynomial time, and if it doesn’t prove that there
is no solution to X, then it will find a solution to X.

Proof. Another exercise. This time, we need to be careful to check that Bx is actually a subalgebra
of AX at each step of the algorithm, which follows from a description of singleton arc-consistency in
terms of solutions to an instance defined by starting from a tree-like universal cover and identifying
all of the covers of a particular variable to each other.

4.10 Maróti’s reduction: taking advantage of semilattice quotients

Consider classifying Taylor algebras by which types of Bulatov’s edges (i.e., semilattice, majority,
and affine) occur in them. If only majority and semilattice edges occur, then our algebra has
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bounded width by Theorem 3.13.8, and we can handle it. If only majority and affine edges occur,
and if the algebra has been prepared as in Definition 3.2.19, then our algebra has few subpowers,
and we can handle that case too. How about the case where we only have affine and semilattice
edges?

To make it simpler, we can start by considering the case where we have an algebra A with a
congruence θ such that A/θ only has edges of one type, while the congruence classes of θ only has
edges of the other type. If A/θ is affine and the congruence classes of θ are semilattices (or more
generally, ancestral algebras), then Maróti’s Mal’cev-on-top algorithm from the previous section
handles the problem.

To make progress, we need to consider the case where A/θ is a semilattice and the congruence
classes of θ are affine - so far, we have no algorithms to handle this case (unless A happens to be
conservative). A concrete example of such an algebra is the 4-element algebra A = ({0, 1, 2, ∗}, ·)
with · given by

· 0 1 2 ∗
0 0 2 1 ∗
1 2 1 0 ∗
2 1 0 2 ∗
∗ ∗ ∗ ∗ ∗

,

which showed up in Subsection 1.9.1 as an example of a Taylor algebra where the term condition
commutator has

0A = [θ, 1A] ̸= [1A, θ] = θ.

Intuitively, however, the case where A/θ is a semilattice should be the easy case! The absorbing
element of A/θ corresponds to a binary absorbing subalgebra B �bin A, and in “many” cases, we
can assume that variables with domain equal to A “might as well” have their domain replaced by
B, unless there is some “clear reason” for the variable to not be contained in B (as an exercise,
use this intuition to find an algorithm which solves CSP(A) for the four-element algebra A above).
Binary absorption feels in many ways like having a unary operation which crushes A into B, but
which is somehow only available in certain contexts.

Maróti’s reduction from [126] makes the vague intuition above precise, by actually building a
bespoke unary operation out of a binary polymorphism satisfying the identity t(x, t(x, y)) ≈ t(x, y).
The catch is that what he builds is not a polymorphism of our original relational structure, but is
instead a polymorphism of a related multisorted relational structure which depends on the instance
we are trying to solve.

Once we start thinking of CSPs in a multisorted context, we find that there is no reason to avoid
giving each variable of an instance its own private variable domain, which is shared by no other
variable (this idea came up previously in Remark 4.8.1). If the (possibly multisorted) relational
structure A was the original template for our CSP, then by giving each variable of an instance X its
own private variable domain we end up taking each sort in A and copying it once for each variable
of X with that sort, and similarly for the relations. This ends up producing a new multisorted
relational structure, with a new signature, for each instance X. Let’s make up some notation for
it.

Definition 4.10.1. If X,A are (possibly multisorted) relational structures of the same signature,
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then we define a new multisorted relational structure∐
X

A

with a new signature (depending on X) as follows:

• for each sort Xi of X, and for each element x ∈ Xi, there is a sort Ax of
∐

XA, which is a
copy of the corresponding sort Ai of A, and

• for each relation
Cj ⊆ Xi1 × · · · ×Xim

of X, and for each tuple c = (x1, ..., xm) ∈ Cj , there is a relation

Rc ⊆ Ax1 × · · · ×Axm

of
∐

XA which is a copy of the corresponding relation Rj ⊆ Ai1 × · · · ×Aim of A.

So the main idea is to replace our original CSP template A by the instance-dependent CSP
template

∐
XA, in the hope that it will have extra unary polymorphisms for us to take advantage

of. First, however, we have to explain how to express the instance X in terms of the new template.
We need another definition.

Definition 4.10.2. For a given (possibly multisorted) relational signature, we define the terminal
structure ∗ to have one element of each sort, and to have a single tuple in each relation.

Note that for any relational structure A, the most natural definition of the structure A0 is just

A0 ∼= ∗,

and a homomorphism ∗ → A is the same as a constant (i.e. 0-ary) polymorphism of A. Since there
is always a unique homomorphism A→ ∗, A has a constant polymorphism iff ∗ is the core of A -
in which case CSP(A) is a trivial problem.

Proposition 4.10.3. If X,A are two relational structures of the same signature, then a homo-
morphism

X→ A

is the same thing as a homomorphism ∐
X

∗ →
∐
X

A,

which is the same thing as a constant (i.e., 0-ary) polymorphism of
∐

XA.

Proof. Just unwind the definitions.

Now that we’ve reinterpreted our original instance X of CSP(A) as the new instance
∐

X ∗ of
the bespoke CSP(

∐
XA), we want to understand the polymorphisms of

∐
XA.

• First of all, every polymorphism of A extends to a polymorphism of
∐

XA.
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• Second, as long as the instance X of CSP(A) had a solution, the new structure
∐

XA has a
constant polymorphism.

So the idea is to look for unary polynomials of the original algebraic structure A (i.e., unary
operations built out of constants and polymorphisms of A) and hope that they become unary
polymorphisms of

∐
XA. If we manage to find such a unary polynomial, then we can use it to

shrink some of the variable domains, thereby making progress towards solving the instance.
The simplest way to build a nontrivial unary polynomial of A is to start with a binary poly-

morphism t(x, y), and to plug a constant c into one of the arguments of t - we’ll use the second
argument here - making the unary polynomial

tc(x) := t(x, c).

The trouble is that we may need to choose a different constant c for each sort of the new template∐
XA, and at first it seems that searching for such a collection of constants is just as hard as solving

the original instance of the CSP. The trick is that if t acts like a semilattice, then the values of the
unary polynomial tc mostly won’t depend on the particular choice of c, giving us more flexibility
than we had in the original problem. If all goes according to plan, this will let us reduce the search
for a unary polymorphism of

∐
XA to an instance of a simpler CSP with smaller domains, which

we can solve recursively.
More concretely, we are searching for an unknown unary polymorphism

φ :
∐
X

A→
∐
X

A.

Rather than searching for just any polymorphism - after all, the identity map x 7→ x is not going
to be any help to us - we are searching for φ satisfying

φ(a) = tc(a) = t(a, c)

for each a ∈ Ax, with c ∈ Ax not depending on a (but possibly depending on x). So we need to
shrink the domain of φ(a) to {t(a, c) | c ∈ Ax} = ta(Ax), where ta is the unary polynomial defined
by

ta(x) := t(a, x).

Unfortunately, ta(Ax) is probably not closed under the polymorphisms f(x1, ..., xk) of A - instead,
it will be closed under operations of the form

(x1, ..., xk) 7→ ta(f(x1, ..., xk)).

So in order to find our hypothetical unary polymorphism φ which behaves like the unary polyno-
mials tc, we will end up needing to solve an auxiliary problem involving relational structures that
have been crushed down by various unary polynomials of the form ta.

Since it will be important for us to actually find a solution to the auxiliary problem, we will need
to require the operations of the form ta ◦f : ta(Ax)k → ta(Ax) to be idempotent when f : Akx → Ax
was idempotent - and for this, we need to require that t satisfies

ta(ta(x)) = ta(x)
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for all as and all xs. We won’t need to make such an assumption about the operations tc or φ,
however, since once we have constructed φ we will be free to iterate it to our heart’s content to
produce a unary polymorphism φ∞ satisfying φ∞ ◦ φ∞ = φ∞.

We still need to ensure that φAx = tc for some c ∈ Ax. Maróti’s approach in [126] is to relax
this requirement slightly: he just requires φAx to be contained in the multisorted relation

Sg∏
a t

a(Ax){tc | c ∈ Ax} ≤
∏
a∈Ax

ta(Ax).

This will allow φAx to have the form

φ : a 7→ t(a, f(t(a, c1), ..., t(a, ck)))

for any k-tuple of elements c1, ..., ck ∈ Ax and any k-ary polymorphism f of A - but more generally,
it also allows φAx to have the form

φ : a 7→ t(a, f(φ1(a), ..., φk(a)))

where φi are any previously constructed operations contained within this multisorted relation. The
approach we will follow in these notes will be even simpler - we will just directly search for φ such
that φAx∗ is not surjective for some particular x∗.

Time to iron out all of the details. The careful reader might have noticed that I cheated above,
by referring to the algebraic structure ta(Ax) without defining it - let’s start by addressing that.

Definition 4.10.4 (Following Maróti [126]). If A = (A, {fi}) is an algebraic structure and e : A→
A is any unary operation satisfying e(e(a)) = e(a) for all a ∈ A, we define the retract e(A) of A
with respect to e by

e(A) := (e(A), {e ◦ fi}),

considered as an algebraic structure with the same signature as A via f
e(A)
i = e ◦ fi.

Note that unlike several other constructions which shrink an algebra with an idempotent unary
operation, the retract e(A) has the same signature as the algebra A, so it makes sense to consider
multisorted CSPs which involve both A and e(A) as variable domains simultaneously. The price
we pay for this ability is that identities satisfied by term operations of A might not hold for
the corresponding term operations of e(A): the only identities which are definitely preserved are
identities between the basic operations of height at most 1.

Proposition 4.10.5. If the basic operations fi, fj of A satisfy an identity of height at most one,
i.e.

fi(x1, ..., xk) ≈ fj(y1, ..., yl)

for some sets of (possibly repeated) variables x1, ..., xk, y1, ..., yl or

fi(x1, ..., xk) ≈ x,

for some set of (possibly repeated) variables x1, ..., xk, x, then the basic operations e ◦ fi, e ◦ fj of
e(A) satisfy the same identity (as long as e(e(x)) ≈ e(x), for the second type of identity).
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So to take advantage of retracts, we had better make sure that the basic operations of A include
a Taylor operation, or at least a collection of idempotent operations satisfying a system of height
1 identities that can’t be satisfied by projections. Corollary 4.1.12 shows that any finite Taylor
algebra always has a suitable pair of idempotent ternary term operations, and adding them to our
collection of basic operations will ensure that e(A) is also Taylor.

Definition 4.10.6 (Maróti [126], slightly simplified). Let X be an instance of CSP({Ai}), and let t
be a binary term operation of {Ai} satisfying the identity t(x, t(x, y)) ≈ t(x, y). The decomposition
t(X) is defined to be the instance of

CSP({ta(Ai) | a ∈ Ai}),

where ta(x) := t(a, x), whose variables and relations are defined as follows:

• for each variable x of X with variable domain Ax, and for each a ∈ Ax, we have a variable
(a, x) of t(X) with variable domain ta(Ax), where ta(Ax) is the retract of Ax with respect to
ta,

• for each constraint tuple c = (x1, ..., xm) with constraint relation R ≤ Ax1 × · · · × Axm of X,
and for each tuple r = (a1, ..., am) ∈ R, we have a constraint tuple

(r, c) = ((a1, x1), ..., (am, xm))

with corresponding constraint relation given by

tr(R) ≤ ta1(Ax1)× · · · × tam(Axm),

where tr(R) is the retract of R with respect to tr.

The reader should take a moment to check that the constraint relation tr(R) really is a subalgebra
of ta1(Ax1)× · · · × tam(Axm).

Proposition 4.10.7 (Maróti [126]). If the instance X of CSP({Ai}) has a solution given by x 7→
cx ∈ Ax, then for any binary term operation t of {Ai} the decomposition t(X) has a solution given
by the mapping

(a, x) 7→ t(a, cx).

Proof. We need to check that for every constraint tuple (x1, ..., xm) of X with constraint relation
R ≤ Ax1 × · · · × Axm , and for each tuple r = (a1, ..., am) ∈ R, we have

(t(a1, cx1), ..., t(am, cxm)) ∈ tr(R).

But the left hand side is exactly tr((cx1 , ..., cxm)), and this is an element of tr(R) since (cx1 , ..., cxm) ∈
R, by the assumption that x 7→ cx was a solution to the original instance X.

Proposition 4.10.8 (Maróti [126]). Suppose that A = {A2, ...} is a finite collection of similar
finite idempotent algebras such that CSP(A) can be solved in polynomial time, and suppose that A1

is a finite idempotent algebra of the same signature with a binary term operation t satisfying the
identity t(x, t(x, y)) ≈ t(x, y) such that

a ∈ A ∈ {A1} ∪ A =⇒ ta(A) ∈ A.

Then for any instance X of CSP({A1} ∪A), we can check whether any given partial assignment to
the variables of t(X) extends to a solution to the decomposition t(X) in polynomial time.
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Proof. The assumptions imply that the decomposition t(X) is an instance of CSP(A), so we just
need to check that it is at most polynomially larger than the original instance X. The number of
variables of t(X) is at most the product of the number of variables of X with the maximum number
of elements occuring in any of the finitely many finite domains A ∈ A, and we have |ta(Ax)| ≤ |Ax|
for each one.

Similarly, the number of constraint relations of t(X) is at most the product of the number of
constraints of X with the maximum number of tuples occuring in any constraint relation R of the
instance, and we have |tr(R)| ≤ |R| in each case.

Proposition 4.10.9 (Maróti [126]). Let X be an instance of CSP(A), and let t be any binary
polymorphism of A. If the decomposition t(X) has a solution given by

(a, x) 7→ φAx(a),

then φ defines a homomorphism of multisorted relational structures

φ :
∐
X

A→
∐
X

A.

Proof. Recall that the relations of
∐

XA were indexed by constraint tuples c = (x1, ..., xm) ∈
Cj ⊆ Xi1 × · · · × Xim of X, and that if the corresponding constraint relation in A is given by
Rj ⊆ Ai1 × · · · ×Aim , then the relation of

∐
XA associated with c was given by

Rc ⊆ Ax1 × · · · ×Axm ,

which was a copy of Rj . We need to check that φ sends each tuple r = (a1, ..., am) ∈ Rc to a tuple
in Rc, that is, that

(φAx1 (a1), ..., φ
Axm (am))

?
∈ Rc = Rj .

But the constraint of t(X) corresponding to the pair (r, c) requires that

(φAx1 (a1), ..., φ
Axm (am)) ∈ tr(Rj),

and we have tr(Rj) ⊆ Rj since r ∈ Rj and t preserves Rj .

Of course, the decomposition t(X) might have useless solutions which fail to shrink the variable
domains. The key to Maróti’s argument from [126] is that we only need a single variable domain
to be shrunk by some φAx in order to make progress. So, for each variable x∗ of our original
instance X, we search for a solution (a, x) 7→ φAx(a) to the decomposition t(X) such that the
unary operation

φAx∗ : Ax∗ → Ax∗

satisfies
φAx∗ (a) = φAx∗ (b)

for some pair a ̸= b ∈ Ax∗ , brute-forcing over all choices of x∗ and a ̸= b ∈ Ax∗ (using Proposition
4.10.8 to test each possibility in turn). If we succeed, then we can use the unary polymorphism
φ∞ :

∐
XA→

∐
XA to produce a new instance where Ax∗ is mapped into

(φ∞)Ax∗ (Ax∗) ⊆ φAx∗ (Ax∗) ⊂ Ax∗ ,
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successfully shrinking at least one variable domain of our original instance X. Additionally, we can
replace all of the relevant algebraic structures Ax with the retracts (φ∞)Ax(Ax), which will remain
Taylor as long as the basic operations of the algebras Ax include, say, a pair of ternary operations
as in Corollary 4.1.12.

The bad case is the case where the decomposition t(X) has solutions, but there is no variable
x∗ such that the decomposition t(X) has a solution with φAx∗ which is not a permutation. By
Proposition 4.10.7 every solution x 7→ cx ∈ Ax of the original instance X produces a solution to
the decomposition t(X) where φ is given by

φAx(a) = t(a, cx),

so this implies that for each variable x∗, and for each solution x 7→ cx ∈ Ax of the original instance
X, the map a 7→ t(a, cx∗) is a permutation. But this means that we can replace every single variable
domain Ax by the subalgebra Cx which is generated by the collection of elements c ∈ Ax such that
the map a 7→ t(a, c) is a permutation, without losing any solutions to the instance X - and if we
have Cx ̸= Ax for any x, then we have once again made progress towards solving X.

We have proved Maróti’s main result.

Definition 4.10.10 (Maróti [126]). If A is a finite idempotent algebra, then we say that A can be
eliminated if A has a binary term operation t satisfying the identity

t(x, t(x, y)) ≈ t(x, y),

such that

• for each a ∈ A there is some x ∈ A such that t(a, x) ̸= x, and

• A is not generated by {c ∈ A | tc : x 7→ t(x, c) is a permutation}.

Theorem 4.10.11 (Maróti [126]). Suppose that A = {A2, ...} is a finite collection of similar finite
idempotent algebras such that CSP(A) can be solved in polynomial time, and suppose that A1 is a
finite idempotent algebra of the same signature such that

A ∈ {A1} ∪ A, φ(A) ̸= A, φ ◦ φ = φ =⇒ φ(A) ∈ A,

or in other words, such that {A1} ∪ A is closed under taking retracts.
Suppose additionally that A1 can be eliminated, in the sense of Definition 4.10.10. Then

CSP({A1} ∪ A) can be solved in polynomial time.

Maróti went on to prove that in many cases, algebras A with a semilattice quotient A/θ can
be eliminated. Recall that an element a of a semilattice with basic operation s is called neutral
if we have s(a, x) = x for all x. We extend this definition to partial semilattices (where partial
semilattices are defined as in Definition 3.2.4).

Definition 4.10.12. We say that an element a is a neutral element of a partial semilattice operation
s on A if we have s(a, x) = x for all x ∈ A.

Proposition 4.10.13 (Maróti [126], slight variation). If A is a finite idempotent algebra with a
partial semilattice term operation s and a quotient A/θ such that (A/θ, s) is a semilattice with at
least two elements, and if s has no neutral element on A, then A can be eliminated.
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Proof. By the definition of a partial semilattice, s satisfies the identity s(x, s(x, y)) ≈ s(x, y). Since
s has no neutral element by assumption, for every a ∈ A there is some x ∈ A with

s(a, x) ̸= x.

There are now two cases, based on whether or not the semilattice (A/θ, s) has a neutral element.
If the semilattice (A/θ, s) has no neutral element, then for every c ∈ A, there is some a ∈ A such
that

s(a, c) ≡θ s(c, a) ̸≡θ a,

and for this a we see that a/θ is not contained in the image of sc : x 7→ s(x, c). Thus in this case
there is no c ∈ A such that sc is a permutation.

In the remaining case, suppose that the congruence class a/θ is a neutral element of the semi-
lattice (A/θ, s). For any c ̸∈ a/θ, we then have

s(a/θ, c/θ) ⊆ c/θ

since a/θ was neutral, and
s(c/θ, c/θ) ⊆ c/θ

by idempotence, so sc : x 7→ s(x, c) can’t be a permutation for any c ̸∈ a/θ. Since a/θ is a
subalgebra of A, it can’t generate A, so A can be eliminated.

On the other hand, if we have a prepared algebra A (as in Definition 3.2.19) with a partial
semilattice term s which has a neutral element a on A, then every binary term operation t of A
which depends on both of its arguments will have t(a, x) = x for all x ∈ A. So the previous result
is essentially the best result of its kind when it comes to algebras with semilattices as quotients.

Example 4.10.1. The simplest algebra which the results we have proved so far still can’t handle is
the 4-element algebra A = ({0, 1, 2, ∗}, ·), where · is the commutative binary operation given by

· 0 1 2 ∗
0 0 2 1 0
1 2 1 0 1
2 1 0 2 2
∗ 0 1 2 ∗

,

which has ∗ as a neutral element. It’s a good exercise to find an algorithm which solves CSP(A) in
polynomial time.

We mentioned at the beginning of Section 4.7 that Bulatov’s algorithm for conservative CSPs
from [46] was based on Maróti’s reduction. We can now go over the main ideas of this algorithm.

Proposition 4.10.14. If A is an algebra and a unary operation e : A→ A with e ◦ e = e has e(A)
closed under the basic operations of A, then e(A) is the subalgebra of A with underlying set e(A).
In particular, if A is a conservative algebra, then every retract of A is a subalgebra of A.

Proof. Let f be a k-ary basic operation of A. Then for any a1, ..., ak ∈ e(A), we have

f(a1, ..., ak) = e(b)
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for some b ∈ A by the assumption that e(A) is closed under f , so

e ◦ f(a1, ..., ak) = e(e(b)) = e(b) = f(a1, ..., ak).

Thus we have fe(A) = f |e(A) for each basic operation f of A, so e(A) is exactly the subalgebra of A
with underlying set e(A).

Proposition 4.10.15 (Bulatov [46]). If A is a finite conservative algebra with a partial semilattice
term operation s such that s has no neutral element on A and such that there is at least one pair
of elements a ̸= b ∈ A with s(a, b) = b, then A can be eliminated.

Proof. By the definition of a partial semilattice, s satisfies the identity s(x, s(x, y)) ≈ s(x, y). Since
s has no neutral element by assumption, we just need to check that A is not generated by the
collection of elements c ∈ A such that sc : x 7→ s(x, c) is a permutation. For the pair a ̸= b with
s(a, b) = b we have

sb(a) = sb(b) = b,

so sb is not a permutation, and since A is conservative A \ {b} is a proper subalgebra of A.

Recall that by Theorem 2.1.5, any conservative algebra with no semilattice edges has a ternary
generalized majority-minority operation, and can therefore be solved by the few subpowers algo-
rithm. It’s easy to check that any finite collection of conservative algebras with no semilattice edges
also has a ternary operation whose restriction to each conservative algebra is gmm - and that such
an operation can be algorithmically constructed in polynomial time - so if we could eliminate every
conservative algebra which had a semilattice edge then we could simply apply the few subpowers
algorithm to finish. The only difficulty we face is the case where some of our variable domains have
neutral elements.

Note that if A is conservative and s is a partial semilattice term operation with a neutral element
a on A, then we have

A \ {a}�bin A,

with s witnessing the binary absorption. But then we are in position to apply Theorem 4.7.1, with
S taken to be the collection of all full variable domains which have a proper absorbing subalgebra!
Thus we can make progress in this case as well.

Example 4.10.2. Here is a 4-element example which can’t be handled by the results proved so
far, but which doesn’t have a neutral element. Of course, it will neither be conservative nor have
a semilattice quotient. We take A = ({a, b, c, ∗}, g), where g is the ternary operation which is
determined by the following properties:

• g is a symmetric function of its variables,

• ∗ is a strongly absorbing element for g, i.e. g(∗,A,A) = {∗},

• each of the sets {a, b}, {a, c}, {b, c} forms a two-element Z/2aff subalgebra of A, with g acting
as the minority operation on each of these pairs, and

• g(a, b, c) = ∗.

Note that A is 2-conservative (i.e., every two-element subset of A is closed under g), and it is not
too hard to check that A is also minimal Taylor. The reader should be able to find a polynomial
time algorithm which solves CSP(A) without much difficulty.
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[104] Keith A Kearnes and Ágnes Szendrei. The relationship between two commutators. Interna-
tional Journal of Algebra and Computation, 8(04):497–531, 1998.
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Appendix A

Commutator theory in congruence
modular varieties

Before diving into commutator theory, we’ll review of some of the theory of modular lattices. The
theory really begins with the observation that in any module, the lattice of submodules is always
ranked (so long as there are no infinite chains of submodules). In fact, not only is this lattice
ranked, but also every (finite) sublattice of the lattice of submodules is ranked as well. So it is
natural to study lattices which have this property.

Definition A.0.1. The length of a finite chain is the number of elements in the chain minus 1.
The length of a poset is the supremum of the lengths of all of its chains.

Definition A.0.2. A poset satisfies the Jordan-Dedekind chain condition if for any a ≤ b, any two
maximal chains from a to b have equal length.

The simplest situation to consider is the situation where some element a has two distinct covers
b, c. Then a = b∧c, and we may start by considering sublattices of the interval Ja, b∨cK. The claim
is that in this scenario, if we want every sublattice of the interval Ja, b ∨ cK to be ranked, then we
need b ∨ c to cover both b and c (so the interval Ja, b ∨ cK must have length two). If b ∨ c does not
cover c, say c < d < b ∨ c for some d, then we have a problem: the sublattice generated by b, c, d
is a copy of the pentagon lattice N5, which is not ranked. The only hard part of verifying this is
checking that b ∧ d = a, but this follows from a ≤ b ∧ d ≤ b and b ̸≤ d.

Definition A.0.3. A poset is called upper semimodular if whenever an element a has two distinct
covers b, c, there is some element d which covers both b and c.

Surprisingly, it turns out that any upper semimodular poset which has no infinite chains satisfies
the Jordan-Dedekind chain condition. Note that every chain is contained in a maximal chain (by
Zorn’s Lemma).

Proposition A.0.4. If a is any element of an upper semimodular poset which has no infinite
chains, then any two maximal chains starting at a (going upwards) have the same length.

Proof. Let a < a1 < · · · and a < a′1 < · · · be two maximal chains starting from a of lengths
m,n, and induct on min(m,n). We may assume without loss of generality that m ≤ n. By upper
semimodularity, there is some element a′′2 which covers both a1 and a′1. Pick some maximal chain
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a′′2 < a′′3 < · · · starting from a′′2. Then the maximal chains a1 < a2 < · · · and a1 < a′′2 < · · ·
must both have length m− 1 by the induction hypothesis. Since the maximal chain a′1 < a′′2 < · · ·
then also has length m − 1, we can apply the induction hypothesis to see that the maximal chain
a′1 < a′2 < · · · has length m− 1 as well, so m = n.

Corollary A.0.5 (Birkhoff [29]). An upper semimodular poset which has no infinite chains satisfies
the Jordan-Dedekind chain condition.

Proof. If a ≤ b, then we can pick some fixed maximal chain b < b1 < · · · starting from b. By
appending it to any two maximal chains from a to b of different lengths, we obtain two maximal
chains starting from a which have different lengths, contradicting the previous proposition.

On any poset of finite length which satisfies the Jordan-Dedekind chain condition and has upper
or lower bounds, we can define a height function h such that whenever a is covered by b, we have
h(b) = h(a) + 1.

Proposition A.0.6 (Birkhoff [29]). A ranked lattice of finite length is upper semimodular if and
only if its height function satisfies the inequality

h(x) + h(y) ≥ h(x ∨ y) + h(x ∧ y).

Proof. The inequality clearly implies upper semimodularity. Now suppose our lattice is upper
semimodular, and pick maximal chains

x ∧ y = x0 < x1 < · · · < xm = x,

x ∧ y = y0 < y1 < · · · < yn = y.

We claim that for each i, j, xi ∨ yj is either covered by or equal to xi+1 ∨ yj and xi ∨ yj+1. We can
prove this by induction on i, j: if it’s true for i, j, then by upper semimodularity xi+1 ∨ yj+1 will
either cover or be equal to both of xi+1 ∨ yj and xi ∨ yj+1.

Thus, the sequence
x = x ∨ y0 ≤ x ∨ y1 ≤ · · · ≤ x ∨ yn = x ∨ y

has every adjacent pair either equal or a cover, so

h(x ∨ y)− h(x) ≤ h(y)− h(x ∧ y).

There is also a corresponding notion of lower semimodularity, and a dual version of the above
result. Putting them together, we get the following.

Theorem A.0.7 (Birkhoff [29]). A lattice of finite length is modular iff it satisfies the Jordan-
Dedekind chain condition and its height function satisfies

h(x) + h(y) = h(x ∨ y) + h(x ∧ y).

Proof. Since modular implies both upper and lower semimodular, it implies the chain condition
and the condition on the height function. For the other direction, suppose that we have a ranked
lattice whose height function satisfies the given condition.

Suppose for contradiction that there is a sublattice isomorphic to the pentagon N5 (recall from
the discussion around Definition 1.7.7 that a lattice is modular iff it doesn’t haveN5 as a sublattice).

392



Suppose this sublattice is generated by a, b, c, with b < c and a ∧ b = a ∧ c, a ∨ b = a ∨ c. Then we
have

h(a) + h(b) = h(a ∨ b) + h(a ∧ b) = h(a ∨ c) + h(a ∧ c) = h(a) + h(c),

so h(b) = h(c), contradicting b < c.

The next result can be viewed as a strengthening of the fact that a modular lattice is both
upper and lower semimodular.

Theorem A.0.8 (Diamond Isomorphism Theorem). If a, b are elements of a modular lattice, then
the maps ϕ : Ja, a ∨ bK→ Ja ∧ b, bK and φ : Ja ∧ b, bK→ Ja, a ∨ bK given by

ϕ : x 7→ x ∧ b and φ : y 7→ y ∨ a

are lattice isomorphisms.

Proof. First we check that ϕ, φ are inverse to each other. By the modular law, for x ∈ Ja, a∨ bK we
have

φ(ϕ(x)) = (x ∧ b) ∨ a = x ∧ (b ∨ a) = x,

and for y ∈ Ja ∧ b, bK we have

ϕ(φ(y)) = (y ∨ a) ∧ b = y ∨ (a ∧ b) = y.

It is clear that ϕ respects meets and that φ respects joins, so from the fact that they are inverse to
each other we see that they are both lattice isomorphisms.

Definition A.0.9. If a, b are elements of a lattice, then we say that the intervals Ja, a ∨ bK and
Ja ∧ b, bK are perspective to each other, and we abbreviate this with either the notation

Ja, a ∨ bK↘ Ja ∧ b, bK

or the notation
Ja ∧ b, bK↗ Ja, a ∨ bK.

If two intervals in a lattice can be connected by a chain of perspectivities, then we say that they
are projective to each other.

The fact that all maximal chains in a finite length semimodular lattice have the same length
can be strengthened to a lattice version of the Jordan-Hölder Theorem.

Theorem A.0.10 (Jordan-Hölder for semimodular lattices [74]). Suppose we have two maximal
chains

0 = a0 < a1 < · · · < an = 1,

0 = b0 < b1 < · · · < bn = 1

in an upper semimodular lattice of finite length. Then there is a permutation σ ∈ Sn such that each
Jai−1, aiK is projective in two steps (going ↗, ↘) to Jbσ(i)−1, bσ(i)K.
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Proof. We induct on the length n. If a1 = b1 then we can apply the inductive hypothesis. Otherwise,
for each i, let ci = a1 ∨ bi. If k is maximal such that a1 ̸≤ bk, then

a1 = c0 < c1 < · · · < ck = ck+1 < · · · < cn = 1

where the strict inequalities up to ck follow from upper semimodularity, and in the portion after
ck+1 we have cj = bj .

Applying the induction hypothesis, we get a bijection σ′ : [n]\{1} → [n]\{k+1} such that each
Jai−1, aiK is projective going ↗, ↘ to Jcσ′(i)−1, cσ′(i)K. Since Jcσ′(i)−1, cσ′(i)K↘ Jbσ′(i)−1, bσ′(i)K, and
since Ja0, a1K↗ Jbk, bk+1K, we can take σ to be the extension of σ′ given by setting σ(1) = k+1.

To relate this to the usual Jordan-Hölder Theorem, we have to consider the lattice of subnormal
subgroups of a group. A subgroup M ≤ G is called subnormal if there is a finite chain of subgroups
connecting it to G, such that each is a normal subgroup of the next.

Proposition A.0.11. A subgroup M ≤ G is subnormal iff the sequence of groups G = G0 �G1 �

· · · defined by taking Gi+1 to be the normal closure of M inside Gi eventually reaches M. As a
consequence, the intersection of two subnormal subgroups is also subnormal.

Proposition A.0.12. If G is a group of finite composition length, then the collection of subnormal
subgroups of G forms a lower semimodular lattice. If JN1,M1K, JN2,M2K are↘,↗ projective covers
in this lattice, then M1/N1

∼= M2/N2.

Note that the modular law is equivalent to the following identity, which recovers the usual
modular law in the case a ≤ b by replacing a ∧ b with a:

(a ∧ b) ∨ (c ∧ b) ≈ ((a ∧ b) ∨ c) ∧ b.

Thus modular lattices form a variety of lattices. We finish our review of modular lattices by
mentioning a famous result of Dedekind.

Proposition A.0.13 (Dedekind [64]). The free modular lattice on 3 generators is finite, with
exactly 28 elements and length 8. It is isomorphic to a subdirect product of six copies of the two-
element lattice and a single copy of the diamond latticeM3.

In particular, one can test whether a given 3-variable lattice identity is a consequence of modu-
larity in finite time, by testing whether it holds onM3.

A corresponding result for 4 generators does not exist: the free modular lattice on 4 generators
is infinite. To see this, note that if you start with four generic points on the projective plane and
repeatedly generate new points and lines, the resulting set of points and lines you obtain is infinite.
Determining whether a 4-variable lattice identity follows from the modular law is undecidable in
general [80].

A.1 The Shifting Lemma and the Day terms

We will follow Freese and McKenzie [70], with some arguments taken from Gumm [76] and some
from [134]. The starting point for proving things in congruence modular varieties is the Shifting
Lemma (this is the main place in the theory where the modular law is actually used).
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Lemma A.1.1 (Shifting Lemma). If A is congruence modular, x, y, z, w ∈ A and α, β, γ ∈ Con(A)
with α ∧ β ≤ γ and x ≡α y, z ≡α w, x ≡β z, y ≡β w, then z ≡γ w =⇒ x ≡γ y.

x z

y w

β
α

β

α γγ

Proof. We have (x, y) ∈ α ∧ (β ◦ (α ∧ γ) ◦ β) ⊆ α ∧ (β ∨ (α ∧ γ)). Since α ∧ γ ≤ α, we can apply
the modular law to get α ∧ (β ∨ (α ∧ γ)) = (α ∧ β) ∨ (α ∧ γ), and this is contained in γ by the
assumption α ∧ β ≤ γ, so (x, y) ∈ γ.

Corollary A.1.2 (Day terms). In any congruence modular variety V, if FV(x, y, z, w) is the free
algebra on four generators, and if we let θa,b be the congruence generated by identifying a, b, then
there are quaternary terms m0, ...,mn ∈ FV(x, y, z, w) such that

m0 = x,

mi (θx,y ∨ θz,w) ∧ (θx,z ∨ θy,w) mi+1 for i even,

mi θz,w mi+1 for i odd,

mn = y.

In other words, the mi satisfy the following system of identities:

m0(x, y, z, w) ≈ x,
mi(x, x, z, z) ≈ x for all i,

mi(x, y, x, y) ≈ mi+1(x, y, x, y) for i even,

mi(x, y, z, z) ≈ mi+1(x, y, z, z) for i odd,

mn(x, y, z, w) ≈ y.

Proof. Apply the Shifting Lemma with α = θx,y ∨ θz,w, β = θx,z ∨ θy,w, and γ = (α ∧ β) ∨ θz,w to
see that (x, y) ∈ (α ∧ β) ∨ θz,w =

⋃
n((α ∧ β) ◦ θz,w)◦n.

Lemma A.1.3. Let A be an algebra with Day terms m0, ...,mn, θ ∈ Con(A), and a, b, c, d ∈ A with
(c, d) ∈ θ. Then (a, b) ∈ θ iff for all i ≤ n we have mi(a, b, a, b) ≡θ mi(a, b, c, d).

Proof. If (a, b) ∈ θ, then for each i we have mi(a, b, a, b) ≡θ mi(a, a, a, a) = a and mi(a, b, c, d) ≡θ
mi(a, a, c, c) = a. For the converse direction, we will show that if c ≡θ d and mi(a, b, a, b) ≡θ
mi(a, b, c, d) for all i, then mi(a, b, c, d) ≡θ mi+1(a, b, c, d) for all i, and then we can conclude
a = m0(a, b, c, d) ≡θ mn(a, b, c, d) = b.

For i even, we use mi(a, b, a, b) = mi+1(a, b, a, b) together with the assumed congruences relating
mi(a, b, a, b) to mi(a, b, c, d), while for i odd we use mi(a, b, c, c) = mi+1(a, b, c, c) together with
c ≡θ d.

The existence of Day terms implies a result slightly stronger than the Shifting Lemma, called
the Shifting Principle.
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Lemma A.1.4 (The Shifting Principle). If A has Day termsm0, ...,mn, then A satisfies the Shifting
Principle: if x, y, z, w ∈ A and α, γ ∈ Con(A) and Λ ≤ A2 is a reflexive relation preserved by the
mi with α ∩ Λ ⊆ γ and x ≡α y, z ≡α w, (x, z) ∈ Λ, (y, w) ∈ Λ, then z ≡γ w =⇒ x ≡γ y.

x z

y w

Λ
α

Λ

α γγ

Proof. By Lemma A.1.3, it’s enough to show that mi(x, y, x, y) ≡γ mi(x, y, z, w) for each i. Since
Λ is preserved by the mi and is reflexive, we have[

mi(x, y, x, y)
mi(x, y, z, w)

]
= mi

([
x
x

]
,

[
y
y

]
,

[
x
z

]
,

[
y
w

])
∈ Λ,

while mi(x, y, x, y) ≡α mi(x, y, z, w) by Lemma A.1.3, so (mi(x, y, x, y),mi(x, y, z, w)) ∈ α ∩ Λ ⊆
γ.

Lemma A.1.5. If the Shifting Principle holds for an algebra A in the special case where α ≥ γ,
then A is congruence modular.

Proof. Suppose that α, β, γ ∈ Con(A) with α ≥ γ ≥ α ∧ β, then to verify congruence modularity
we just need to check that α∧ (β ∨ γ) ≤ γ, as this rules out the existence of a sublattice of Con(A)
isomorphic to the pentagon N5. Defining reflexive, symmetric relations Λi by Λi = β ◦ (γ ◦β)◦i, we
see that we just need to prove that α ∩ Λi ⊆ γ for each i.

We will prove this by induction on i: note that the base case i = 0 is trivial, since Λ0 = β. For
the inductive step, we apply the Shifting Principle to α,Λi, and γ see that if α ∩ Λi ⊆ γ, then

α ∩ Λ2i+1 = α ∩ (Λi ◦ γ ◦ Λi) = α ∩ (Λi ◦ (α ∧ γ) ◦ Λi) ⊆ γ.

Corollary A.1.6. A variety is congruence modular iff it has Day terms.

Example A.1.1. If p(x, y, z) is a Mal’cev term, then we can take

m0(x, y, z, w) = x,

m1(x, y, z, w) = p(z, w, y),

m2(x, y, z, w) = y

as a sequence of Day terms. Rather than laboriously checking the Day identities, it is easier to
verify that this sequence of terms can be used in the Shifting Lemma setup to show that x ≡γ y.
We have x (α ∧ β) p(z, w, y) γ y, so from α ∧ β ≤ γ we get x γ y.

Example A.1.2. If g(x, y, z) is a majority term, then we can take

m0(x, y, z, w) = x,

m1(x, y, z, w) = g(x, y, z),

m2(x, y, z, w) = g(x, y, w),

m3(x, y, z, w) = y

as a sequence of Day terms. Again, in the Shifting Lemma setup, we have x (α∧β) g(x, y, z) γ g(x, y, w) (α∧
β) y, so x γ y.
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The next corollary gives us a large class of examples of congruence modular varieties, general-
izing groups and rings.

Definition A.1.7. An algebra is congruence regular if every congruence on A is uniquely deter-
mined by any of its congruence classes.

Corollary A.1.8 (Gumm [76]). If every subalgebra of A2 is congruence regular, then A is congru-
ence modular.

Proof. We just need to verify the Shifting Principle for A. Let Λ ≤ A2 be reflexive, let α ≥ γ be
congruences on A with α ∩ Λ ⊆ γ, and consider the congruences α × γ and γ × γ restricted to Λ.
We will show that for any a ∈ A, the congruence classes containing (a, a) in these restrictions are
equal, so congruence regularity will imply that α × γ|Λ = γ × γ|Λ, which is the Shifting Principle
for α,Λ, γ.

So suppose that (a, a) ≡α×γ (b, c) ∈ Λ. Then (b, c) ∈ α ◦ γ = α, so (b, c) ∈ α ∩ Λ ⊆ γ, and this
implies that (a, b) ∈ γ ◦ γ = γ. Thus (a, a) ≡γ×γ (b, c) as well, and we are done.

To finish this section, we will prove one of Gumm’s “geometric” results on congruence modular
varieties, which generalizes the result used to prove associativity of the loop operation in the case
of abelian Mal’cev algebras.

Lemma A.1.9 (The Cube Lemma [76]). Suppose every subalgebra of A2 satisfies the Shifting
Lemma. If α, β, γ ∈ Con(A) with γ ≥ α∧β, and if a, b, c, d, a′, b′, c′, d′ ∈ A with (a, b), (c, d), (a′, b′), (c′, d′) ∈
α, (a, d), (b, c), (a′, d′), (b′, c′) ∈ β, and (a, a′), (b, b′), (c, c′) ∈ γ, then (d, d′) ∈ γ.

b

b′

a

a′

c

c′

d

d′

β

α

γ

Proof. We apply the Shifting Lemma to the algebra β ≤ A2, and the congruences γ×1A|β, α×α|β,
and γ × γ|β. By the Shifting Lemma applied to α, β, γ, we have (α× α|β) ∧ (γ × 1A|β) ≤ γ × γ|β,
so the Shifting Lemma applies to γ × 1A|β, α× α|β, γ × γ|β.

Thus, from ((b, c), (b′, c′)) ∈ γ×γ|β, ((a, d), (a′, d′)) ∈ γ×1A|β, and ((b, c), (a, d)), ((b′, c′), (a′, d′)) ∈
α×α|β, the Shifting Lemma allows us to conclude that ((a, d), (a′, d′)) ∈ γ×γ|β, so (d, d′) ∈ γ.

A.2 The modular commutator

First we go over a slick proof of the main properties of the commutator, using the Day terms to
construct an explicit set of generators X(α, β) for the congruence [α, β] - however, as the approach
feels somewhat ad-hoc, we will also prove these properties via a different approach based on the
Shifting Lemma applied to congruences (as in the proof of the Cube Lemma). The definition of
X(α, β) is based on the algebra of matrices M(α, β) used to visualize the term condition (Definition
1.9.28) and Lemma A.1.3.
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Definition A.2.1. Suppose A has Day terms m0, ...,mn. For α, β ∈ Con(A), we define X(α, β) to

be the set of pairs (mi(a, b, a, b),mi(a, b, c, d)) for

[
a c
b d

]
∈M(α, β) and i ≤ n.

Example A.2.1. If we have a Mal’cev term p(x, y, z) and take m0 = x,m1 = p(z, w, y),m2 = y as

our sequence of Day terms, then X(α, β) is the set of pairs (a, p(c, d, b)) for

[
a c
b d

]
∈M(α, β).

Example A.2.2. If we have a majority term g(x, y, z) and take m0 = x,m1 = g(x, y, z),m2 =
g(x, y, w),m3 = y as our sequence of Day terms, then X(α, β) is the set of pairs (a, g(a, b, c)) for[
a c
b d

]
∈M(α, β). For (a, b) ∈ α ∧ β, we have

g

([
a a
b b

]
,

[
a b
a b

]
,

[
b b
b b

])
=

[
a b
b b

]
∈M(α, β),

so (a, g(a, b, b)) = (a, b) ∈ X(α, β). Thus X(α, β) = α ∧ β for majority algebras.

Theorem A.2.2 (Commutator via Day terms). If A has Day terms m0, ...,mn and α, β, δ ∈
Con(A), then the following are equivalent.

(i) X(α, β) ⊆ δ,

(ii) X(β, α) ⊆ δ,

(iii) C(α, β; δ) holds,

(iv) C(β, α; δ) holds,

(v) [α, β] ≤ δ.

Proof. It’s enough to show (iii) =⇒ (i) =⇒ (iv). For (iii) =⇒ (i), suppose that

[
a c
b d

]
∈M(α, β),

then

mi

([
a a
a a

]
,

[
a a
b b

]
,

[
a c
a c

]
,

[
a c
b d

])
=

[
a a

mi(a, b, a, b) mi(a, b, c, d)

]
∈M(α, β),

so C(α, β; δ) implies that we have (mi(a, b, a, b),mi(a, b, c, d)) ∈ δ.

For (i) =⇒ (iv), we apply Lemma A.1.3 to see that if

[
a c
b d

]
∈ M(α, β), (c, d) ∈ δ, and

X(α, β) ⊆ δ, then we must have (a, b) ∈ δ as well, so C(β, α; δ) holds.

Now we can finally prove some useful properties of commutators.

Proposition A.2.3. If A is contained in a congruence modular variety, then for congruences on
A we have

(a) [α, β] = [β, α],

(b) [α ∧ γ, β] ≤ [α, β] ∧ γ,
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(c) [
∨
i αi, β] =

∨
i[αi, β],

(d) if f : A↠ B is surjective, then f([α, β] ∨ ker f) = [f(α ∨ ker f), f(β ∨ ker f)],

(e) if B ≤ A, then [α|B, β|B] ≤ [α, β]|B,

(f) if A =
∏
i∈I Ai, then [

⊕
i αi,

⊕
i βi] =

⊕
i[αi, βi], where

⊕
i αi is the set of pairs (a, b) in∏

i αi such that for all but finitely many i we have ai = bi,

(g) if A =
∏
i∈I Ai, then [

∏
i αi,

∏
i βi] ≤

∏
i[αi, βi].

Proof. Part (a) follows from Theorem A.2.2, part (b) follows from Proposition 1.9.30(d), and part
(e) is Proposition 1.9.30(g). For part (c), Theorem A.2.2 shows that C(αj , β;

∨
i[αi, β]) holds for

each j, so we can use Proposition 1.9.30(e) to see that [
∨
i αi, β] ≤

∨
i[αi, β], while the other

inequality follows from monotonicity of the commutator.
For part (d), note that part (c) implies [α, β] ∨ ker f = [α ∨ ker f, β ∨ ker f ] ∨ ker f , so we

may assume that α, β ≥ ker f without loss of generality. By Theorem A.2.2, [α, β] ∨ ker f is
the congruence generated by X(α, β) ∪ ker f , and [f(α), f(β)] is the congruence generated by
X(f(α), f(β)) = f(X(α, β)), so f([α, β] ∨ ker f) = [f(α), f(β)].

Parts (f) and (g) follow directly from Theorem A.2.2, but they can also be proved using only
parts (a) - (d) (left as an exercise to the reader).

Proposition A.2.3(d) tells us that we can compute commutators on quotients of A directly in A.
Since Con(A/π) is naturally isomorphic to the interval Jπ, 1AK in Con(A), computing commutators
on A/π is equivalent to computing relative commutators on A. Recall that if α, β ≥ π, then their
relative commutator [α, β]π is defined to be the least δ ≥ π which satisfies the term condition
C(α, β; δ).

Corollary A.2.4. If α, β ≥ π are congruences in a congruence modular variety, then their relative
commutator is given by the formula [α, β]π = [α, β] ∨ π.

Theorem A.2.5 (Diamond Isomorphism Theorem for relative commutators). If A is in a con-
gruence modular variety and α, β ∈ Con(A), then the maps ϕ : Jα, α ∨ βK → Jα ∧ β, βK and
φ : Jα ∧ β, βK→ Jα, α ∨ βK given by

ϕ : x 7→ x ∧ β and φ : y 7→ y ∨ α

are lattice isomorphisms which respect the relative commutators [·, ·]α, [·, ·]α∧β.
Furthermore, in this case we have the equality of relative centralizers (α : α ∨ β) = (α ∧ β : β).

Proof. By Theorem A.0.8, ϕ and φ are lattice isomorphisms. If γ, δ ≥ α∧β, then from [γ∨α, δ∨α] ≤
[γ, δ] ∨ α we have

φ([γ, δ]α∧β) = [γ, δ]α∧β ∨ α = [γ, δ] ∨ α = [γ ∨ α, δ ∨ α] ∨ α = [φ(γ), φ(δ)]α.

If γ, δ ∈ Jα, α ∨ βK, then from γ = ϕ(γ) ∨ α, δ = ϕ(δ) ∨ α and [ϕ(γ), ϕ(δ)] ≤ β we have

ϕ([γ, δ]α) = [γ, δ]α ∧ β = [ϕ(γ) ∨ α, ϕ(δ) ∨ α]α ∧ β
= ([ϕ(γ), ϕ(δ)] ∨ α) ∧ β = [ϕ(γ), ϕ(δ)] ∨ (α ∧ β) = [ϕ(γ), ϕ(δ)]α∧β.
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For the last statement, note that

[δ, α ∨ β] ≤ α ⇐⇒ [δ, α] ∨ [δ, β] ≤ α ⇐⇒ [δ, β] ≤ α ⇐⇒ [δ, β] ≤ α ∧ β,

so δ ≤ (α : α ∨ β) ⇐⇒ δ ≤ (α ∧ β : β).

For the second approach to the commutator, we will follow Gumm [76] and take the transitive
closure of M(α, β) to produce a congruence on α, considered as a subalgebra of A2.

Definition A.2.6. For α, β ∈ Con(A), if we consider α ≤ A2 as an algebra of column vectors then

we can treat M(α, β) (from Definition 1.9.28) as a binary relation on α, so

([
a
b

]
,

[
c
d

])
∈ M(α, β)

means that

[
a c
b d

]
∈M(α, β). We define ∆β

α to be the transitive closure of this binary relation on

α.

Note that ∆β
α is the least congruence on α which contains the binary relation β × β|∆A . When

A has a Mal’cev term, ∆β
α simplifies to M(α, β).

Proposition A.2.7. If A has a Mal’cev polynomial p and α, β ∈ Con(A), then ∆β
α = M(α, β).

Proof. We just need to check that M(α, β) is transitively closed, so supposed that

[
a c
b d

]
,

[
c e
d f

]
∈

M(α, β). Then we have [
a e
b f

]
= p

([
a c
b d

]
,

[
c c
d d

]
,

[
c e
d f

])
∈M(α, β).

Theorem A.2.8. Suppose that the Shifting Lemma holds for every subalgebra of A2. Then for
x, y ∈ A and α, β ∈ Con(A), the following are equivalent:

(a) (x, y) ∈ [β, α],

(b)

[
x y
y y

]
∈ ∆β

α,

(c) there exists a ∈ A such that

[
x a
y a

]
∈ ∆β

α,

(d) there exists b ∈ A such that

[
x y
b b

]
∈ ∆β

α.

Proof. That (b) implies (c), (d) are clear, and (c) implies (a) directly from the term condition

C(β, α; [β, α]) and the definition of ∆β
α. That (c) implies (b) follows from the fact that (a, y) ∈

β =⇒
[
a y
a y

]
∈ M(α, β), and since ∆β

α is the transitive closure of M(α, β) we have

[
x y
y y

]
∈

∆β
α ◦M(α, β) = ∆β

α.
For (d) =⇒ (b) we apply the Shifting Lemma to the algebra α ≤sd A × A, the congruences

kerπ1, kerπ2,∆
β
α ∈ Con(α), and the elements

[
x
b

]
,

[
y
b

]
,

[
x
y

]
,

[
y
y

]
∈ α (that x ≡α y follows from

x ≡α b ≡α y).

400



[
x
y

] [
x
b

]

[
y
y

] [
y
b

]
kerπ1

kerπ2

kerπ1

kerπ2 ∆β
α∆β

α

For (a) =⇒ (b), we will show that the relation Θ defined by (x, y) ∈ Θ ⇐⇒
[
x y
y y

]
∈ ∆β

α

is a congruence which satisfies C(β, α; Θ), which will show that [β, α] ≤ Θ. That Θ is reflexive is
obvious, that it is symmetric follows from the equivalence of (b) with (c) or (d). If (x, y), (y, z) ∈ Θ,

then from

[
x y
y y

]
,

[
y z
y y

]
∈ ∆β

α and the fact that ∆β
α is transitively closed, we get

[
x z
y y

]
∈ ∆β

α,

so (x, z) ∈ Θ by the equivalence of (b) and (d).

To finish, we just need to show that Θ satisfies C(β, α; Θ), that is, if

[
a c
b d

]
∈ M(α, β) with

(c, d) ∈ Θ, then (a, b) ∈ Θ. But if (c, d) ∈ Θ, then

[
c d
d d

]
∈ ∆β

α, so since ∆β
α is the transitive closure

of M(α, β), we see that

[
a d
b d

]
∈ ∆β

α, so by the equivalence of (b) with (c) we have (a, b) ∈ Θ.

Corollary A.2.9. If every subalgebra of A2 satisfies the Shifting Lemma, then for α, βi ∈ Con(A)
we have [

∨
i βi, α] =

∨
i[βi, α].

Proof. We have ∆
∨

i βi
α =

∨
i ∆βi

α , so (x, y) ∈ [
∨
i βi, α] iff

[
x z
y z

]
∈

∨
i ∆βi

α for some z. So there

must be a sequence (xi, yi) ∈ α, ji, with

[
xi xi+1

yi yi+1

]
∈ ∆

βji
α and (x, y) = (xn, yn), x0 = y0.

We show by induction on i that

[
xi yi
yi yi

]
∈

∨
j(∆

βj
α ∧ kerπ2), this will show that (xi, yi) ∈∨

j [βj , α]. For the inductive step, we apply the Shifting Lemma to α ≤ A2 with the congruences

kerπ2,∆
βji
α ,

∨
j(∆

βj
α ∧ kerπ2).[

xi+1

yi+1

] [
xi
yi

]

[
yi+1

yi+1

] [
yi
yi

]
∆
βji
α

kerπ2

∆
βji
α

kerπ2
∨
j(∆

βj
α ∧ kerπ2)

Corollary A.2.10. If every subalgebra of A2 satisfies the Shifting Lemma, then for f : A ↠ B
surjective and α, β ≥ ker f , we have f([β, α] ∨ ker f) = [f(β), f(α)].
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Proof. The hard direction is to check that if (f(x), f(y)) ∈ [f(β), f(α)], then (x, y) ∈ [β, α]∨ ker f .

In this case we have

[
x y
y y

]
∈ ∆β

α ∨ (ker f × ker f |α). Using a similar argument to the previous

corollary, we can show that this implies

[
x y
y y

]
∈ (∆β

α ∧ kerπ2) ∨ (ker f × ker f |α) by repeatedly

applying the Shifting Lemma on α. Thus we have (x, y) ∈ [β, α] ∨ ker f by Theorem A.2.8.

To prove the symmetry of the commutator, we will actually prove a stronger statement: ∆β
α is

in fact the transpose of ∆α
β . In particular, if we view ∆β

α as a binary relation on row vectors in β,

then ∆β
α will be transitively closed (which is far from obvious from the definition!).

Theorem A.2.11. Suppose that the Shifting Lemma holds for every subalgebra of A4. If ∆
β
α denotes

the set of transposes of matrices from ∆β
α, then ∆

β
α is transitively closed as a binary relation on β

and we have ∆
β
α = ∆α

β . In particular, we have [α, β] = [β, α].

Proof. It’s enough to prove that ∆
β
α is transitively closed as a binary relation on β, as we will

then have ∆α
β =

⋃
nM(β, α)◦n ⊆ ∆

β
α, and a symmetric argument with α, β swapped will show that

∆β
α ⊆ ∆

α
β , so ∆α

β ⊆ ∆
β
α ⊆ ∆α

β .

Suppose that

[
a b
c d

]
,

[
c d
e f

]
∈ ∆β

α. To finish, we just need to show that

[
a b
e f

]
∈ ∆β

α.

This follows from the following application of the Cube Lemma (Lemma A.1.9) applied to the

congruences kerπ1, kerπ2,∆
β
α on α.

[
c
c

]
[
d
d

]
[
a
c

]
[
b
d

]

[
c
e

]
[
d
f

]
[
a
e

]
[
b
f

]

kerπ1

kerπ2

∆β
α

Theorem A.2.12. In a congruence modular variety, any alternative commutator [·, ·]′ which sat-
isfies [α, β]′ ≤ α ∧ β and f([α, β]′ ∨ ker f) = [f(α), f(β)]′ for f surjective and α, β ≥ ker f has
[α, β]′ ≤ [α, β] for all α, β.

Proof. Consider congruences on α ≤sd A× A. We have [∆β
α, kerπ2]

′ ≤ ∆β
α ∧ kerπ2 ≤ π−1

1 [β, α] by

Theorem A.2.8. Also, α = π1(kerπ2 ∨ kerπ1), β = π1(∆
β
α ∨ kerπ1), so

[β, α]′ = [π1(∆
β
α ∨ kerπ1), π1(kerπ2 ∨ kerπ1)]

′ = π1([∆
β
α, kerπ2]

′ ∨ kerπ1) ≤ [β, α].
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A.3 The Gumm difference term

In this section we prove that congruence modular varieties have a ternary term p, called a Gumm
difference term, which acts like a Mal’cev operation on all abelian algebras. This will imply that
abelian algebras in congruence modular varieties are affine.

Theorem A.3.1 (Gumm difference term). For any variety with Day terms m0, ...,mn, there is a
ternary term p satisfying the following two properties:

(i) p satisfies the identity p(y, y, x) ≈ x, and

(ii) for any (x, y) ∈ θ, θ any congruence, we have p(x, y, y) [θ, θ] x.

Furthermore, in a congruence modular variety, a ternary term p satisfies (i) and (ii) iff it satisfies
the following property:

(iii) for any congruences α, β, γ with α ∧ β ≤ γ, the implication in the following picture holds.

p(x, y, z) zx y

z′y′

γ
β

α

Finally, if a variety has a term p which satisfies (iii), then it is congruence modular.

Proof. Recall the identities satisfied by Day terms:

m0(x, y, z, w) ≈ x,
mi(x, x, z, z) ≈ x for all i,

mi(x, y, x, y) ≈ mi+1(x, y, x, y) for i even,

mi(x, y, z, z) ≈ mi+1(x, y, z, z) for i odd,

mn(x, y, z, w) ≈ y.

We inductively define a sequence of ternary terms qi(x, y, z) by q0(x, y, z) = z, and

qi+1(x, y, z) =

{
mi+1(qi(x, y, z), qi(x, y, z), y, x) i odd,

mi+1(qi(x, y, z), qi(x, y, z), x, y) i even,

and we set p(x, y, z) = qn(x, y, z).
To see that (i) holds, we just check inductively that qi(y, y, x) ≈ x:

qi+1(y, y, x) = mi+1(qi(y, y, x), qi(y, y, x), y, y) ≈ mi+1(x, x, y, y) ≈ x.

For (ii), we will inductively check that

qi(y, x, x) [θ, θ]

{
mi(x, y, x, y) i even,

mi(x, y, x, x) i odd.
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Taking i = n, this will give us p(y, x, x) [θ, θ] mn(x, y, x, ?) = y.
The base case is easy: q0(y, x, x) = x = m0(x, y, x, y). For the inductive step, we divide into

cases based on whether i is even or odd.
If i is even, then the induction hypothesis gives

qi+1(y, x, x) = mi+1(qi(y, x, x), qi(y, x, x), y, x) [θ, θ] mi+1(mi(x, y, x, y),mi(x, y, x, y), y, x).

Using the term condition C(θ, θ; [θ, θ]), from

mi+1(mi(x, y, x, y),mi(x, y, x, y), y, y ) = mi(x, y, x, y) = mi+1(x, y, x, y)

= mi+1(mi(x, x, x, x),mi(y, y, y, y), x, y ),

we conclude

mi+1(mi(x, y, x, y),mi(x, y, x, y), y, x ) [θ, θ] mi+1(mi(x, x, x, x),mi(y, y, y, y), x, x )

= mi+1(x, y, x, x),

so qi+1(y, x, x) [θ, θ] mi+1(x, y, x, x).
When i is odd, the proof is very similar. Inductively, we have

qi+1(y, x, x) = mi+1(qi(y, x, x), qi(y, x, x), x, y) [θ, θ] mi+1(mi(x, y, x, x),mi(x, y, x, x), x, y).

Using the term condition C(θ, θ; [θ, θ]), from

mi+1(mi(x, y, x, x),mi(x, y, x, x), x, x ) = mi(x, y, x, x) = mi+1(x, y, x, x)

= mi+1(mi(x, x, x, x),mi(y, y, y, y), x, x ),

we conclude

mi+1(mi(x, y, x, x),mi(x, y, x, x), x, y ) [θ, θ] mi+1(mi(x, x, x, x),mi(y, y, y, y), x, y )

= mi+1(x, y, x, y),

so qi+1(y, x, x) [θ, θ] mi+1(x, y, x, y). This conclude the proof of (ii).
Now we show that (i) and (ii) imply (iii). Suppose we have the configuration

zx y

z′y′

γ β
α

with γ ≥ α ∧ β. From x ≡β y ≡β z, we have p(x, y, z) ≡β z. Additionally, we have p(x, y, z) ≡γ
p(y′, y, z), so we just need to prove that p(y′, y, z) ≡γ z′ to finish.

We have p(y′, y, z) ≡α p(y′, y′, z′) = z′, and p(y′, y, z) ≡β p(z′, z, z). From (z, z′) ∈ α ∧ (β ∨ γ),
we have

p(z′, z, z) [α ∧ (β ∨ γ), α ∧ (β ∨ γ)] z′.

The commutator above is bounded by

[α ∧ (β ∨ γ), α ∧ (β ∨ γ)] ≤ [α, β ∨ γ] = [α, β] ∨ [α, γ] ≤ (α ∧ β) ∨ (α ∧ γ) = α ∧ γ.
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Thus, we have (p(y′, y, z), z′) ∈ α∧ (β ∨ (α∧ γ)), and by the modular law this is (α∧β)∨ (α∧ γ) =
α ∧ γ ≤ γ.

Finally, assume that p is a term which satisfies (iii). Taking x = y = y′, z = z′, α = γ = 0A, β =
1A, we get p(y, y, z) = z, which is (i). Taking x = y and using p(y, y, z) = z, we see that (iii) implies
the Shifting Lemma in every algebra, so our variety is congruence modular.

To prove that (iii) implies (ii), suppose (x, y) ∈ θ, and consider the congruences kerπ1, kerπ2,∆
θ
θ

on θ. Applying (iii) in the picture

[
x

p(x, y, y)

] [
x
y

][
x
x

] [
x
y

]

[
y
y

][
y
y

]

∆θ
θ

kerπ1

kerπ2

we see that

[
x y

p(x, y, y) y

]
∈ ∆θ

θ, so by Theorem A.2.8 we have p(x, y, y) [θ, θ] x.

Corollary A.3.2 (Factor Permutability). If A = A1 × A2 is contained in a congruence modular
variety, then the factor congruences kerπ1, kerπ2 permute with every congruence γ ∈ Con(A).

Proof. A pair of congruences α, β ∈ Con(A) correspond to a pair of factor congruences iff they
satisfy α ∧ β = 0A and α ◦ β = 1A. Thus, if x γ y′ α z′, then by α ◦ β = 1A we can find y, z ≡α x
with (y, y′), (z, z′) ∈ β. Then from γ ≥ 0A = α ∧ β we can use property (iii) of a difference term to
see that x α p(x, y, z) γ z′, so (x, z′) ∈ γ ◦ α =⇒ (x, z′) ∈ α ◦ γ.

Corollary A.3.3. Any abelian algebra which is contained in a congruence modular variety is affine.

Corollary A.3.4. A nontrivial algebra A in a congruence modular variety is abelian iff there is
some B ≤sd A× A such thatM3 is a 0, 1-sublattice of Con(B).

Proof. If A is abelian, then it is affine and we can take B = A × A. For the other direction, it
suffices to prove that B is abelian if M3 is a 0, 1-sublattice of Con(B), since then B is affine and A
is a quotient of B, so A is also affine.

Let α, β, γ ∈ Con(B) generate a copy of M3 which is a 0, 1-sublattice. Then

[1, 1] = [α ∨ β, α ∨ γ] = [α, α] ∨ [α, γ] ∨ [β, α] ∨ [β, γ] ≤ α ∨ (β ∧ γ) = α.

Similarly we have [1, 1] ≤ β, so [1, 1] ≤ α ∧ β = 0.

By plugging a difference term into itself, we can strengthen property (ii) of a Gumm difference
term, to get terms which act as Mal’cev operations on solvable algebras.

Definition A.3.5. For any congruence α, define [α]n inductively by [α]0 = α, [α]n+1 = [[α]n, [α]n].

Proposition A.3.6. If p is a Gumm difference term, and if we define terms pn inductively by
p0 = p and

pn+1(x, y, z) = pn(x, pn(x, y, y), pn(x, y, z)),

then each pn is also a Gumm difference term, and for any (x, y) ∈ θ we have pn(x, y, y) [θ]2
n
x.
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Proof. Inductively, we have

pn+1(y, y, x) = pn(y, pn(y, y, y), pn(y, y, x)) = pn(y, y, x) = x,

and from (x, pn(x, y, y)) ∈ [θ]2
n
, we have

pn+1(x, y, y) = pn(x, pn(x, y, y), pn(x, y, y)) [[θ]2
n
]2

n
x.

Corollary A.3.7. Any solvable algebra in a congruence modular variety is Mal’cev.

The last result of this section is useful for understanding the center of an algebra in terms of
the difference term.

Theorem A.3.8. Suppose p is a Gumm difference term for a congruence modular variety and
α ≥ β. Then ∆α

β is given by[
x w
y z

]
∈ ∆α

β ⇐⇒ (p(x, y, z) [α, β] w) ∧ (x β y α z).

Proof. If

[
x w
y z

]
∈ ∆α

β then clearly (x β y α z), and from

p

([
x x
x x

]
,

[
x x
y y

]
,

[
x w
y z

])
=

[
x w

p(x, y, y) p(x, y, z)

]
∈ ∆α

β ,

we see that from p(x, y, y) [β, β] x, [β, β] ≤ [α, β], and the term condition for [α, β] we have
w [α, β] p(x, y, z).

For the other direction, if x β y α z then from α ≥ β we have (x, y), (x, z) ∈ α, so we can apply
the defining property (iii) of the difference term to congruences on α to see the implication in the
following picture.

[
x

p(x, y, z)

] [
x
z

][
x
x

] [
x
y

]

[
y
z

][
y
y

]

∆β
α

kerπ1

kerπ2

Taking transposes, we have

[
x p(x, y, z)
y z

]
∈ ∆α

β by Theorem A.2.11. By Theorems A.2.8 and

A.2.11, if p(x, y, z) [α, β] w then

[
p(x, y, z) w

z z

]
∈ ∆α

β , so

[
x w
y z

]
∈ ∆α

β by the fact that ∆α
β is

transitively closed.

Corollary A.3.9. If α ≥ β and [α, β] = 0, then the restriction of the graph of p(x, y, z) to triples
with x β y α z is preserved by all polynomial operations of A.
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Using this, it’s possible to show that if A has center ζ, then we can write A as an extension of
the quotient A/ζ by the abelian algebra ζ/∆1

ζ after making a choice of a section s : A/ζ → A, with

each n-ary basic operation f inducing a map t : (A/ζ)n → ζ/∆1
ζ so that the action of f on A can

be decomposed as (x, y) 7→ (f ζ/∆
1
ζ (x)+ t(y), fA/ζ(y)). If A is idempotent, then we can simplify this

description slightly by noting that in this case, ζ/∆1
ζ is isomorphic to any congruence class of ζ.

As a consequence of the decomposition of an algebra via its center, nilpotent algebras in con-
gruence modular varieties turn out to be very well-behaved (e.g. they are always Mal’cev and they
have regular congruences), and after selecting an element to serve as the identity, one can define
an associated nilpotent loop. See Chapter 7 of Freese and McKenzie [70] for details.

A.4 (Directed) Jónsson and Gumm terms

First we give Jónsson’s [92] characterization of congruence distributive varieties.

Definition A.4.1. A variety V is congruence distributive if for every A ∈ V, Con(A) is a distributive
lattice, that is, if the inequality

α ∧ (β ∨ γ) ≤ (α ∧ β) ∨ (α ∧ γ)

holds for all α, β, γ ∈ Con(A).

The prototypical modular lattice which is not distributive is the latticeM3, as the next propo-
sition shows.

Proposition A.4.2 (Birkhoff [29]). In any modular lattice, if a, b, c do not satisfy the distributive
law, and if we define elements d, e, f by

d = (b ∧ c) ∨ (a ∧ (b ∨ c)) = ((b ∧ c) ∨ a) ∧ (b ∨ c),

with e, f defined by cyclic permutations of the variables a, b, c in the above formula, then d, e, f
generate a sublattice isomorphic to the diamond latticeM3.

Proof. Using the modular law, we can check the formulas

d ∧ e = e ∧ f = f ∧ d = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a)

and
d ∨ e = e ∨ f = f ∨ d = (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).

If any two of d, e, f are equal, then so are the two displayed expressions, and if we take the wedge
of both with a we get

a ∧ ((a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a)) = a ∧ (b ∨ c)

and (using the modular law again)

a ∧ ((a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a)) = (a ∧ b) ∨ (a ∧ c).

Proposition A.4.3. A variety is congruence distributive iff it is congruence modular and none
of its algebras has a nontrivial abelian congruence. In particular, the commutator is given by
[α, β] = α∧ β and p(x, y, z) = z is a Gumm difference term in any congruence distributive variety.
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Proof. If α is an abelian congruence, then kerπ1, kerπ2,∆
α
α ∈ Con(α) generate a sublattice isomor-

phic to M3, with top element α × α|α. The other direction follows from Proposition 1.9.32, since
M3 does not satisfy the meet-semidistributive law SD(∧).

Example A.4.1. The variety of unital rings is not congruence distributive, even though it is congru-
ence modular (in fact, congruence permutable, since it has a Mal’cev term x− y+ z) and contains
no nontrivial abelian algebras (any such algebra would have x · y = 0 for all x, y, and plugging in
y = 1 would give x = 0 for all x). The reason for this is that the congruence on the ring Z/p2
corresponding to the ideal (p) is abelian, but no congruence class of this ideal forms a unital subring
of Z/p2.

Theorem A.4.4 (Jónsson terms). A variety is congruence distributive iff it has ternary terms
q0, ..., qn satisfying the system of identities

q0(x, y, z) ≈ x,
qi(x, y, x) ≈ x for all i,

qi(x, y, y) ≈ qi+1(x, y, y) for i odd,

qi(x, x, y) ≈ qi+1(x, x, y) for i even,

qn(x, y, z) ≈ z.

Proof. Consider the congruences θx,y, θy,z, θx,z corresponding to identifying pairs of variables on
the free algebra F(x, y, z) in a congruence distributive variety. From (x, z) ∈ θx,z ∧ (θx,y ∨ θy,z) and
distributivity, we have

x (θx,z ∧ θx,y) ∨ (θx,z ∧ θy,z) z.

Thus there exist q0, ..., qn ∈ F(x, y, z) with q0 = x, qi (θx,z ∧θx,y) qi+1 for i even, qi (θx,z ∧θy,z) qi+1

for i odd, and qn(x, y, z) = z. In particular, we have qi θx,z x for all i by induction on i. Thus
q0, ..., qn satisfy the desired system of identities.

For the converse, suppose that α, β, γ are congruences on any algebra and that (a, c) ∈ α∧(β∨γ).
We need to show that (a, c) ∈ (α ∧ β) ∨ (α ∧ γ).

From (a, c) ∈ β∨γ, there is a sequence b0, ..., bm with a = b0, bj β∪γ bj+1 for all j, and bm = c.
Since qi(a, bj , c) α qi(a, bj , a) = a for all i, j, we then have

qi(a, bj , c) (α ∧ β) ∪ (α ∧ γ) qi(a, bj+1, c)

for each i, j, so qi(a, a, c) (α ∧ β) ∨ (α ∧ γ) qi(a, c, c) for all i. Stringing these together with the
identities relating qi to qi+1, we see that a = q0(a, c, c) (α ∧ β) ∨ (α ∧ γ) qn(a, a, c) = c.

Example A.4.2. The variety of lattices is congruence distributive. For the Jónsson terms, we may
take n = 2 and q1(x, y, z) to be the majority term (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x). More generally, any
variety with a near-unanimity term is congruence distributive.

We now prove a permutability result which is directly related to the fact that every congruence
modular variety has a sequence of ternary terms known as Gumm terms, which look like Jónsson
terms “glued to” a Mal’cev term.

Theorem A.4.5. If α, β are any two congruences in a congruence modular variety, then

α ◦ β ⊆ [α, α] ◦ β ◦ α.
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Proof. If (a, c) ∈ α ◦ β, then there is some b with a α b β c. Applying the Gumm difference term
p, we have

a [α, α] p(a, b, b) β p(a, b, c) α p(b, b, c) = c.

Corollary A.4.6. If α, β, γ are congruences in a congruence modular variety, then

(α ◦ β) ∩ γ ⊆ ((α ∧ β) ∨ (α ∧ γ)) ◦ β ◦ α.

Proof. We have (α ◦ β) ∩ γ = ((α ∧ (β ∨ γ)) ◦ β) ∩ γ, and

[α ∧ (β ∨ γ), α ∧ (β ∨ γ)] ≤ [α, β ∨ γ] = [α, β] ∨ [α, γ] ≤ (α ∧ β) ∨ (α ∧ γ).

Thus, by the previous theorem we have

(α ◦ β) ∩ γ ⊆ (α ∧ (β ∨ γ)) ◦ β ⊆ ((α ∧ β) ∨ (α ∧ γ)) ◦ β ◦ α.

A very similar argument shows that

(α ◦ β) ∩ γ ⊆ ((α ∧ γ) ∨ (β ∧ γ)) ◦ β ◦ α,

which we will use to prove the following result (the corollary above could also be used to prove
it, but there is an extra step of reordering the variables if we do it that way). Note that this
containment can be viewed as a combination of a distributivity result with a permutability result.

Theorem A.4.7 (Gumm terms). A variety is congruence modular iff it has ternary terms q0, ..., qn, p
satisfying the system of identities

q0(x, y, z) ≈ x,
qi(x, y, x) ≈ x for all i,

qi(x, y, y) ≈ qi+1(x, y, y) for i odd,

qi(x, x, y) ≈ qi+1(x, x, y) for i even,

qn(x, y, y) ≈ p(x, y, y),

p(x, x, y) ≈ y.

Furthermore, a ternary term p is a Gumm difference term iff there exist terms q0, ..., qn satisfying
the above system of identities.

Proof. Consider the congruences θx,y, θy,z, θx,z corresponding to identifying pairs of variables on the
free algebra F(x, y, z) in a congruence distributive variety. From (x, z) ∈ θx,z ∧ (θx,y ∨ θy,z) and

[θx,z ∧ (θx,y ∨ θy,z), θx,z ∧ (θx,y ∨ θy,z)] ≤ (θx,z ∧ θx,y) ∨ (θx,z ∧ θy,z),

which is proved as in the previous corollary, we see that for any Gumm difference term p we have

x (θx,z ∧ θx,y) ∨ (θx,z ∧ θy,z) p(x, z, z).

Thus there exist q0, ..., qn ∈ F(x, y, z) with q0 = x, qi (θx,z ∧θx,y) qi+1 for i even, qi (θx,z ∧θy,z) qi+1

for i odd, and qn(x, y, z) = p(x, z, z). Therefore q0, ..., qn, p satisfy the desired system of identities.
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To see that Gumm terms imply congruence modularity, we just need to show that they imply
the existence of Day terms. If we assume without loss of generality that n is odd and take

m0(x, y, z, w) = x,

m2i−1(x, y, z, w) = qi(x,w, y) for i even,

m2i(x, y, z, w) = qi(x, z, y) for i even,

m2i−1(x, y, z, w) = qi(x, z, y) for i odd,

m2i(x, y, z, w) = qi(x,w, y) for i odd,

m2n+1(x, y, z, w) = p(z, w, y),

m2n+2(x, y, z, w) = y,

then we havemi(x, x, z, z) ≈ x for all i, mi(x, y, x, y) ≈ mi+1(x, y, x, y) for i even, andmi(x, y, z, z) ≈
mi+1(x, y, z, z) for i odd, so m0, ...,m2n+2 are Day terms.

To show that any such p is a Gumm difference term, we just need to show that if (x, y) ∈ θ,
then p(x, y, y) [θ, θ] x. We will show by induction that qi(x, y, y) [θ, θ] x for all i. For the inductive
step, we just need to show that for all i, we have qi(x, y, y) [θ, θ] qi(x, x, y). This follows from the
term condition for [θ, θ]:

qi(x, y, x ) = qi(x, x, x ) =⇒ qi(x, y, y ) [θ, θ] qi(x, x, y ).

The need to constantly divide into cases for even vs. odd i can be eliminated by the main result
of [96], which establishes the existence of directed Jónsson and Gumm terms. The idea behind the
directed variants is that if we have idempotent ternary terms f, g which satisfy

f(x, y, y) ≈ g(x, x, y),

then they can also be indirectly connected by a ternary term h which satisfies h(x, y, x) ≈ x and
joins f, g by f θy,z h θx,y g, that is,

f(x, y, y) ≈ h(x, y, y),

h(x, x, y) ≈ g(x, x, y).

In fact, we can just take h(x, y, z) = f(x, z, z): then we will have h(x, y, y) = h(x, x, y) = f(x, y, y) =
g(x, x, y), and h(x, y, x) = f(x, x, x) = x. The goal of the directed Jónsson and Gumm terms is to
cut out the middleman h, to obtain a substantially stronger system of identities.

Another reason to prefer the directed equations fi(x, y, y) ≈ fi+1(x, x, y) is that they have a
clearer connection to higher arity terms, especially near-unanimity terms. Suppose that ϕ is an
n-ary operation, and define terms fi by

fi(x, y, z) = ϕ(x, ..., x, y, z, ..., z),

where the lone y occurs in the i-th position from the right (so there are i− 1 zs). Then the fi will
automatically satisfy

fi(x, y, y) = ϕ(x, ..., x, y, y, ..., y) = fi+1(x, x, y),

and if ϕ is idempotent they will satisfy f1(x, x, y) ≈ x and fn(x, y, y) ≈ y. Finally, ϕ will be a
near-unanimity term iff each fi satisfies fi(x, y, x) ≈ x.
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Theorem A.4.8 (Directed Gumm terms [96]). A variety is congruence modular iff it has ternary
terms f1, ..., fm, p with

f1(x, x, y) ≈ x,
fi(x, y, x) ≈ x for all i,

fi(x, y, y) ≈ fi+1(x, x, y) for all i,

fm(x, y, y) ≈ p(x, y, y),

p(x, x, y) ≈ y,

and if the variety is congruence distributive then we can take fm(x, y, y) ≈ y (directed Jónsson
terms).

Proof. Assume without loss of generality that our variety is idempotent. Suppose that there are
Gumm terms q1, ..., q2k+1, p1 with

q1(x, x, y) ≈ x,
qi(x, y, x) ≈ x for all i,

q2i−1(x, y, y) ≈ q2i(x, y, y) for all i,

q2i(x, x, y) ≈ q2i+1(x, x, y) for all i,

q2k+1(x, y, y) ≈ p1(x, y, y),

p1(x, x, y) ≈ y.

Let F be the free algebra on x, y. Let ⇝ be the transitive closure of the binary relation on F
generated by x⇝ x, x⇝ y, y ⇝ y, so binary terms a(x, y), b(x, y) have a⇝ b iff there is a sequence
of ternary terms ti with t1(x, x, y) = a(x, y), ti(x, y, y) = ti+1(x, x, y), and tn(x, y, y) = b(x, y).

Additionally, let→ be the relation on F with a→ b iff there is a sequence of ternary terms ti with
t1(x, x, y) = a(x, y), ti(x, y, y) = ti+1(x, x, y), tn(x, y, y) = b(x, y), and additionally ti(x, y, x) = x
for all i. Then for any ternary term q satisfying q(x, y, x) = x, we have

q(→,⇝,→) ⊆→ .

For any binary term a(x, y), we define an(x, y) recursively by a0(x, y) = y, a1(x, y) = a(x, y),
and

an+1(x, y) = a(x, an(x, y))

for each n.
Setting bk(x, y) = q2k+1(x, y, y) = p1(x, y, y), our goal will be to prove that

∃b ∈ F x→ b2
k

k (b(x, y), b2
k−1
k (x, y)).

It will then be easy to construct a ternary term p with p(x, y, y) = b2
k

k (b, b2
k−1
k ) and p(x, x, y) = y,

by recursively plugging p1 into itself in a similar way to the way we constructed Mal’cev terms on
solvable algebras.

Claim 1: If a⇝ b and c(x, y)→ d(x, y), then c(a, b)→ d(a, b).
Proof of Claim 1: We just have to check this in the case where c→ d in one step. So suppose

that t(x, x, y) = c(x, y), t(x, y, y) = d(x, y), t(x, y, x) = x. Then[
c(a, b)
d(a, b)

]
= t

([
a
a

]
,

[
a
b

]
,

[
b
b

])
∈ t(→,⇝,→) ⊆→ .
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Claim 1.5: If a⇝ b and c(x, y)← d(x, y), then c(b, a)→ d(b, a).
Proof of Claim 1.5: This follows from Claim 1 and the fact that c(x, y) ← d(x, y) ⇐⇒

c(y, x)→ d(y, x).
Claim 2: If a→ b, then an → bn for every n.
Proof of Claim 2: Induct on n. For the inductive step, we have

an+1(x, y) = a(x, an(x, y))→ b(x, an(x, y))→ b(x, bn(x, y)) = bn+1(x, y),

where the first → follows from x = an(x, x) ⇝ an(x, y) and Claim 1, while the second → follows
from the fact that → is preserved by b and the inductive hypothesis.

The sequence of Gumm terms q1, ..., q2k+1 gives us a k-fence:

x = a0 → b0 ← a1 → b1 ← a2 → · · · ← ak → bk,

where ai(x, y) = q2i+1(x, x, y) = q2i(x, x, y), bi(x, y) = q2i+1(x, y, y) = q2i+2(x, y, y). Our strategy
will be to use Claims 1 and 1.5 to iteratively reduce the length of the fence.

Claim 3: If x→ b← a→ c is a 1-fence, then x→ bk(b, c(b, c)).
Proof of Claim 3: We define a sequence of terms di by d0 = x and

di+1 = b(di, a),

and define terms ei by
ei = a(di, a).

We claim that for each i we have

• di ⇝ a, di → di+1, di ⇝ ei, di → b,

• ei → di+1, ei → ei+1, ei → c(b, c).

x = d0 d1 d2 b

e0 e1 e2 c(b, c)

To see this, note first that d0 = x⇝ a, so by induction on i we have di+1 = b(di, a)⇝ b(a, a) = a
for each i. So from x→ b← a we get di → b(di, a)← a(di, a) by Claim 1, that is, di → di+1 ← ei
for each i.

Then we have ei = a(di, a)→ a(di+1, a) = ei+1 for each i, and di = a(di, di)⇝ a(di, a) = ei for
each i. This finishes up all of the arrows other than the rightmost two in the picture.

For di → b, note that d0 = x→ b by assumption, and di+1 = b(di, a)→ b(b, b) = b inductively.
Finally, for each i we have

ei = a(di, a)→ c(di, a)→ c(b, c),

where the first arrow follows from Claim 1.
Now we can use all these arrows to see that

x = d0 = a0(d0, e0)→ b0(d0, e0)→ b0(d1, e0)→ a1(d1, e0)→ a1(d1, e1)→ b1(d1, e1)→ · · · ,

where we have used Claim 1 and Claim 1.5 several times. Chaining these together, we get

x→ bk(dk, ek)→ bk(b, c(b, c)).
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This completes the proof of Claim 3.
Claim 4: For each i < k, there is a k − i-fence

x→ b0,i ← a1,i → b1,i ← a2,i → · · · ← ak−i,i → bk−i,i = b2
i+1−1
k .

Proof of Claim 4: We prove this by induction on i. The base case i = 0 comes from the
Gumm terms. Suppose it is known for i, then by Claim 3 we have

x→ bk(b0,i, b1,i(b0,i, b1,i)),

and from b0,i ← x we have

bk(b0,i, b1,i(b0,i, b1,i))← bk(x, b1,i(x, b1,i)) = bk(x, b
2
1,i).

By Claim 2, we have b21,i ← a22,i → b22,i ← · · · , so if we take

b0,i+1 = bk(b0,i, b1,i(b0,i, b1,i))

and
aj,i+1 = bk(x, a

2
j+1,i), bj,i+1 = bk(x, b

2
j+1,i),

we get
x→ b0,i+1 ← a1,i+1 → b1,i+1 ← a2,i+1 → · · · ← ak−i−1,i+1 → bk−i−1,i+1,

and
bk−i−1,i+1 = bk(x, b

2
k−i,i) = bk(x, (b

2i+1−1
k )2) = b2

i+2−1
k .

This completes the proof of Claim 4.
By Claim 4 applied with i = k − 1, we get a 1-fence

x→ b0,k−1 ← a1,k−1 → b1,k−1 = b2
k−1
k .

Applying Claim 3, we get

x→ bk(b0,k−1, b
2k−1
k (b0,k−1, b

2k−1
k )) = b2

k

k (b0,k−1, b
2k−1
k ).

Letting b = b0,k−1, we see that we have succeeded in showing that x → b2
k

k (b, b2
k−1
k ). Thus there

exist ternary terms fi with

f1(x, x, y) ≈ x,
fi(x, y, x) ≈ x for all i,

fi(x, y, y) ≈ fi+1(x, x, y) for all i,

fm(x, y, y) ≈ b2kk (b(x, y), b2
k−1
k (x, y))).

Note that if bk(x, y) = y, then we also have b2
k

k (b(x, y), b2
k−1
k (x, y))) = y, so the above becomes a

sequence of directed Jónsson terms.

To finish, we just need to construct p with p(x, y, y) = b2
k

k (b(x, y), b2
k−1
k (x, y))) and p(x, x, y) =

y. Recall that p1 satisfied p1(x, y, y) = bk(x, y) and p1(x, x, y) = y. We construct terms pi induc-
tively. For 2 ≤ i+ 1 < 2k, we set

pi+1(x, y, z) = p1(x, pi(x, y, y), pi(x, y, z)),

and for 2k ≤ i+ 1, we set

pi+1(x, y, z) = p1(b(x, y), pi(x, y, y), pi(x, y, z)),

and finally we set p(x, y, z) = p2k+1−1(x, y, z).
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A.5 Subdirectly irreducible algebras, ultraproducts, and residu-
ally small varieties

In this section, we go over the proof of an extension of Jónsson’s Lemma [92], which shows that
subdirectly irreducible algebras in a finitely generated congruence distributive variety have bounded
size, to the congruence modular case. The key technical tool is the concept of an ultraproduct, and
the fact that any ultrapower of a finite algebra A is isomorphic to A.

Before we discuss ultraproducts, we first review some basic results about subdirect representa-
tions of algebras due to Birkhoff [30]. The following result is elementary.

Proposition A.5.1. If A ≤sd
∏
i∈I Ai is a subdirect product, then

∧
i∈I kerπi = 0A. In particular,

if no πi is an isomorphism then the congruence 0A can be written as a meet of some family of
nontrivial congruences.

Conversely, if 0A can be written as a meet of congruences αi ∈ Con(A) for i ∈ I, then A ≤sd∏
i∈I A/αi.

Definition A.5.2. An algebraic structure A is subdirectly irreducible if every way of writing A
as a subdirect product A ≤sd

∏
i∈I Ai has at least one coordinate i such that the projection map

πi : A→ Ai is an isomorphism. The least nontrivial congruence on a subdirectly irreducible algebra
is called its monolith.

The preceeding proposition can now be rephrased as saying that A is subdirectly irreducible iff
0A is meet-irreducible.

Definition A.5.3. An element α of a complete lattice L is meet-irreducible if for any set of elements
αi ∈ L with

∧
i∈I αi = α, some αi is equal to α. In this case, we define the cover of α, written α∗,

to be the least element of L with α < α∗.

In particular, the monolith of a subdirectly irreducible algebra is the cover 0∗A of 0A.

Theorem A.5.4 (Birkhoff’s Subdirect Representation Theorem). Any algebraic structure A can
be represented as a subdirect product of subdirectly irreducible algebras.

Proof. For any a ̸= b ∈ A, Zorn’s Lemma implies that there is a maximal congruence θ′a,b such that
(a, b) ̸∈ θ′a,b. Any such θ′a,b is necessarily meet-irreducible, since any congruence which properly
contains θ′a,b necessarily contains (a, b), and therefore contains the congruence generated by θ′a,b
and the pair (a, b).

Since we clearly have 0A =
∧
a̸=b θ

′
a,b, we have the subdirect representation A ≤sd

∏
a̸=bA/θ′a,b.

Birkhoff’s subdirect representation theorem has a purely lattice-theoretic generalization to al-
gebraic lattices.

Definition A.5.5. An element α of a complete lattice is called compact if for any family αi such
that α ≤

∨
i∈I αi, there is some finite subset {i1, ..., ik} ⊆ I such that α ≤ αi1∨· · ·∨αik . A complete

lattice is called algebraic if every element can be written as a join of compact elements.

Every congruence lattice Con(A) is an algebraic lattice, since for any a, b ∈ A the congruence
θa,b generated by (a, b) is compact, and every congruence is a join of such congruences.
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Proposition A.5.6. Let L be an algebraic lattice. Then every element α of L can be written as a
meet of some family of meet-irreducible elements of L.

Proof. Let θ be any compact element of L with α ̸≥ θ. By Zorn’s Lemma and the compactness of
θ, there is some θ′ ≥ α which is maximal such that θ′ ̸≥ θ, and this θ′ is necessarily meet-irreducible
with cover θ′ ∨ θ. Then

∧
θ ̸≤α θ

′ is ≥ α, and is not ≥ any compact element θ with α ̸≥ θ, so it must
be equal to α.

Corollary A.5.7. If α < β in an algebraic lattice, then there is a meet-irreducible γ such that
γ ≥ α but γ ̸≥ β.

Now we can briefly discuss ultrafilters and ultraproducts before moving on to the main result
of this section.

Definition A.5.8. If I is a set, then a collection of subsets U ⊆ P(I) is a filter if U does not
contain ∅, U, V ∈ U =⇒ U ∩ V ∈ U , and U ⊆ V,U ∈ U =⇒ V ∈ U . We say that U is an
ultrafilter if additionally for every U ⊆ I, one of U, I \ U is in U .

Proposition A.5.9. Any filter is contained in an ultrafilter.

Proof. We apply Zorn’s Lemma to see that any filter is contained in a maximal filter. To finish, we
just need to show that any maximal filter is an ultrafilter. Suppose that U, I \ U ̸∈ U , and let U ′

be the collection of V ⊆ I such that V ∪ U ∈ U . Then U ′ is a filter which strictly contains U .

Definition A.5.10. If Ai is a collection of structures which share a common signature σ and are
indexed by i ∈ I, and if U is an ultrafilter on I, then we define the ultraproduct

∏
iAi/U to be the

quotient of
∏
iAi by the congruence defined by

a ≡U b ⇐⇒ {i | ai = bi} ∈ U .

That ≡U is compatible with functions f ∈ σ follows from the fact that U is a filter. If R ∈ σ is an
m-ary relation, then R is interpreted on

∏
iAi/U by

R(a1/U , ..., am/U) ⇐⇒ {i | R(a1i , ..., a
m
i )} ∈ U .

If all the Ai are isomorphic to A, then we call AI/U an ultrapower of A.

Note that in terms of the congruence lattice Con(
∏
iAi), the congruence ≡U is equal to the join∨

U∈U
kerπU ,

where πU :
∏
i∈I Ai →

∏
i∈U Ai is projection onto the coordinates in U . That this join is equal to

the union
⋃
U∈U kerπU follows from the fact that U is a filter.

Proposition A.5.11. If U is an ultrafilter on I and U1, ..., Uk partition I into k disjoint parts,
then exactly one of U1, ..., Uk is in U .

Corollary A.5.12. If |Ai| ≤ n for all i ∈ I, then |
∏
iAi/U| ≤ n as well. If each Ai is finite and

only finitely many isomorphism classes occur among the Ai, then
∏
iAi/U is isomorphic to some

Ai.
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In fact, much more is true about ultraproducts, and the corollary above also follows from the
following result from model theory.

Theorem A.5.13 ( Loś’s Theorem). Let φ(x1, ..., xn) be any first order formula in the signature σ
with parameters x1, ..., xn, then for any a1, ..., an ∈

∏
i∈I Ai and any ultrafilter U on I, we have∏

i

Ai/U |= φ(a1/U , ..., an/U) ⇐⇒ {i | Ai |= φ(a1i , ..., a
n
i )} ∈ U .

Proof. If φ is atomic, then this follows directly from the definitions. Otherwise, φ can be built
up from atomic formulas via ¬,∧, ∃, and we can induct on the structure of φ: for ¬, we use the
ultrafilter property that exactly one of U, I \ U is in U for each U , for ∧ we use the filter property
that intersections of sets in U are in U , and for ∃ we just need the fact that supersets of sets in U
are in U .

Now for the main result. We extend Birkhoff’s H,S, P notation by the operation Pu, where
Pu({Ai}) is the collection of ultraproducts of the Ais. Recall that for β a congruence, the centralizer
(0 : β) of β is defined as the largest α such that [α, β] = 0, and more generally (δ : β) is defined as
the largest α such that [α, β] ≤ δ.

Theorem A.5.14. Let {Ai} be a family of algebras, and let V = V({Ai}) be the variety they
generate. If V is congruence modular, B ∈ V is subdirectly irreducible, and α = (0B : 0∗B) is
the centralizer of the monolith 0∗B of B, then B/α is a homomorphic image of a subalgebra of an
ultraproduct of the Ais, that is, B/α ∈ HSPu({Ai}).

Proof. (From [70], where a stronger statement is proved.) By Birkhoff’s HSP Theorem, we can
write B = C/θ for C ≤

∏
iAi. Then B will be subdirectly irreducible iff θ is meet-irreducible in

Con(C), so θ will have a cover θ∗. The preimage φ of α under C→ B is the largest congruence on
C such that [φ, θ∗] ≤ θ (i.e. φ = (θ : θ∗)), and we have B/α = C/φ.

The main step of the proof is the following claim: if β ∧ γ ≤ θ but γ ̸≤ θ, then β ≤ φ.
Proof of claim: We have

[β, θ∗] ≤ [β, γ ∨ θ] = [β, γ] ∨ [β, θ] ≤ (β ∧ γ) ∨ θ = θ,

so β ≤ φ by φ = (θ : θ∗).
Using the claim, we can now argue as follows: let F be a maximal filter such that U ∈ F implies

kerπU ≤ θ, and let U be any ultrafilter which extends F . Then for any U ∈ U , we were unable to
adjoin its complement to F , so there is some V ∈ F such that kerπV \U ̸≤ θ. Then

kerπU ∧ kerπV \U = kerπU∪V ≤ kerπV ≤ θ,

so by the claim we have kerπU ≤ φ. Thus the congruence
∨
U∈U kerπU corresponding to U is also

≤ φ, and we see that B/α = C/φ is a quotient of C/U ≤
∏
iAi/U .

Corollary A.5.15 (Jónsson’s Lemma [92]). Let {Ai} be a family of algebras, and let V = V({Ai})
be the variety they generate. If V is congruence distributive and B ∈ V is subdirectly irreducible,
then B ∈ HSPu({Ai}). In particular, if {Ai} is a finite set of finite algebras, then B ∈ HS({Ai}).

Corollary A.5.16. For any two finite subdirectly irreducible algebras A,B with the same signature
which generate congruence distributive varieties, we have A ∼= B iff the set of identities that hold
in A is the same as the set of identities that hold in B.
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Example A.5.1. Consider the variety of distributive lattices, and the two-element lattice ({0, 1},max,min).
It is easy to see that every identity that holds in the two-element lattice is implied by the lattice
axioms together with distributivity (since these allow us to put every term into conjunctive normal
form), so the variety of distributive lattices is generated by the two-element lattice.

By Jónsson’s Lemma, the only subdirectly irreducible distributive lattice is the two-element
lattice itself, so we see that in fact every distributive lattice is a sublattice of {0, 1}I for some index
set I, that is, every distributive lattice is a sublattice of the lattice of subsets of some set I.

In order to understand subdirectly irreducible algebras in congruence modular varieties, we
need to combine the above results with an understanding of subdirectly irreducible modules over
rings.

Proposition A.5.17. Let G,M be abelian groups and let R be a finite subgroup of Hom(G,M),
such that there is a nonzero element a ∈ M so that for all x ∈ G there is an r ∈ R with rx = a.
Then |G| is a prime power dividing |R|.

Proof. First we show that G is finite, following [70]. Let r1, ..., rk be the nontrivial elements of R.
We will show by induction on k that |G| ≤ (k+ 1)!. For the base case, if k = 0 then G can have

no nonzero elements, so |G| = 1 = (k + 1)!. For the inductive step, note that by the pigeonhole

principle there is some ri such that at least |G|−1
k elements are mapped to a by ri, so | ker ri| ≥ |G|−1

k
(this is the ordinary group theoretic kernel), and every nonzero element of ker ri can be mapped to
a by some rj with j ̸= i, so | ker ri| ≤ k! by the induction hypothesis. Thus |G| ≤ 1+k ·k! ≤ (k+1)!.

Now that we know that G is finite, we know that every element of G has finite order, so some
element x has order p for some prime p. Then there is some r ∈ R with rx = a, so a must also
have order p. From this argument, we see that every element of G must have order a power of p,
so |G| is also a power of p.

We may assume without loss of generality that M is generated by the image of G under all
elements of R, so in particular that M is finite. Then there exists an element π ∈ M̂ = Hom(M,Q/Z)
such that π(a) ̸= 0.

Define a linear map ϕ : R → Ĝ = Hom(G,Q/Z) by ϕ : r 7→ ϕr, where ϕr is the linear map
ϕr : x 7→ π(rx). Then ϕ must be surjective, or else the image will be a proper subgroup of Ĝ and
so there will be some nonzero x ∈ G with ϕr(x) = 0 for all r ∈ R, which implies rx ̸= a for all r.
Thus |G| = |Ĝ| divides |R|.

Corollary A.5.18. Let R be a finite ring, and let M be a subdirectly irreducible module over R.
Then |M| is a prime power dividing |R|.

Proof. If M is subdirectly irreducible, then it has a least nontrivial submodule N, which is generated
by some nonzero element a ∈ N. Then for each nonzero x ∈ M we have N ≤ Rx, so there is some
r ∈ R with rx = a. Thus we can apply the previous proposition with G = M.

Now we can use this result to bound the sizes of subdirectly irreducible algebras in congruence
modular varieties in the special case where the centralizer of the monolith is abelian.

Theorem A.5.19. Suppose that B ∈ V is subdirectly irreducible, and V is locally finite and con-
gruence modular. If α ∈ Con(B) is abelian and |B/α| = k, then every congruence class of α has
size a prime power bounded by |FV(k + 1)|.
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Proof. (Adapted from [129].) Assume α is nontrivial, so 0∗B ≤ α. Let p be a Gumm difference
term. By Corollary A.3.9, the restriction of the graph of p to the blocks of α is preserved by
every operation of B. Choose elements 0 ̸= a with (0, a) ∈ 0∗B, and note that 0, a are in the same
congruence block of α.

Pick constants c0, ..., ck−1 with c0 = 0 such that each congruence class of α contains some ci.
We will treat each congruence class ci/α of α as an abelian group with zero element ci, addition
given by x+i y = p(x, ci, y), and subtraction given by x−i y = p(x, y, ci).

Suppose that x ̸= y with (x, y) ∈ α. Then since 0∗B is the least nontrivial congruence, the pair
(0, a) must be in the congruence generated by (x, y), so there must be a chain of unary polynomials
fi such that 0 = f0(x), fi(y) = fi+1(x), and fm(y) = a. Note that this implies that fi(x), fi(y) are
all in the congruence class 0/α. Thus, it makes sense to define a unary polynomial f such that

f(z) = f0(z) +0 f1(z)−0 f1(x) +0 · · ·+0 fm(z)−0 fm(x)

for z in the congruence class x/α. One explicit way to construct such an f is given by

f(z) = p(p(· · · p(p(f0(z), f1(x), f1(z)), f2(x), f2(z)), · · · ), fm(x), fm(z)).

It’s easy to check that we have f(x) = 0 and f(y) = a. Since f preserves the graph of p restricted
to congruence classes of α, if x, y ∈ ci/α then we have f(x −i y) −0 f(ci) = a, and the unary
polynomial z 7→ f(z)−0 f(ci) defines a linear map in Hom(ci/α, c0/α).

To finish, we just need to bound the size of the subgroup Ri,0 of linear maps in Hom(ci/α, c0/α)
which can be defined by unary polynomials f . Suppose that f(z) = t(z, b1, ..., bm) for some term t
and constants b1, ..., bm ∈ B, such that f(ci) = c0. For each bi, we choose ji such that bi ∈ cji/α.
Define a unary polynomial f ′ by

f ′(z) = t(z, cj1 , ..., cjm)−0 t(ci, cj1 , ..., cjm).

Then for z ∈ ci/α, we have f ′(z) ∈ c0/α, and since t preserves the graph of p restricted to
congruence classes of α, we have f ′(z) = f(z) for z ∈ ci/α (alternatively, we could prove this by the
term condition for [α, α] = 0B). Thus every element of Hom(ci/α, c0/α) which can be defined by a
unary polynomial can also be defined by a polynomial f ′ which has the form f ′(z) = t′(z, c0, ..., ck−1)
for some k + 1-ary term t′, so

|Ri,0| ≤ |FV(k + 1)|.

Applying the previous proposition, we see that |ci/α| is a prime power dividing |Ri,0|.

Corollary A.5.20. If |A| = m is finite and V(A) is congruence modular, and if B ∈ V(A) is
subdirectly irreducible with (0B : 0∗B) abelian, then |B| ≤ m ·mmm+1

.

Definition A.5.21. A variety V is called residually small if there is a cardinal κ such that every
subdirectly irreducible algebra B ∈ V has |B| < κ, and residually finite if every subdirectly irre-
ducible algebra in V is finite. An algebra A is called residually small if the variety V(A) generated
by A is residually small.

First we show that if a locally finite variety contains an infinite subdirectly irreducible algebra,
then it contains infinitely many distinct finite subdirectly irreducible algebras.

Theorem A.5.22. If B is subdirectly irreducible, then B is a subalgebra of an ultraproduct of a
family of finitely generated subdirectly irreducible algebras in HS(B).
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Proof. (From [70].) Let the monolith 0∗B of B be generated (as a congruence) by the pair (a, b).
Let I be the family of finitely generated subalgebras S ≤ B with a, b ∈ S, and for each S ∈ I, pick
a congruence αS on S which is maximal among all congruences which do not contain (a, b). Then
each S/αS is subdirectly irreducible, since every congruence which properly contains αS contains
(a, b).

Let U be an ultrafilter on I such that the set US = {S | S ⊆ S} is in U for every finite S ⊆ B.
Such an ultrafilter exists since for any S1, S2 we have US1 ∩ US2 = US1∪S2 , and for S finite US is
nonempty since it contains SgB(S ∪ {a, b}).

Define a map φ : B → (
∏

S∈I S/αS)/U as the ultraproduct of the family of maps φS given by
φS(x) = x/αS for x ∈ S and φS(x) = a/αS for x ̸∈ S. Then for x1, ..., xk ∈ B and t a k-ary term of
B, we have

{S | φS(t(x1, ..., xk)) = t(φS(x1), ..., φS(xk))} ∈ U ,

since it contains U{x1,...,xk}. Thus φ is a homomorphism. To see that it is injective, just note that
φS(a) ̸= φS(b) for all S ∈ I.

Corollary A.5.23. If a locally finite variety contains an infinite subdirectly irreducible algebra,
then it contains arbitrarily large finite subdirectly irreducible algebras.

It turns out that finite residually small algebras can be understood in terms of a commutator
condition. We say that an algebra A satisfies a commutator identity hereditarily if every congruence
lattice of every subalgebra of A satisfies the identity.

Proposition A.5.24. The commutator identity [α∧β, β] = α∧[β, β] is equivalent to the implication
α ≤ [β, β] =⇒ [α, β] = α.

Proof. The implication clearly follows from the identity. For the other direction, we apply the
implication to α ∧ [β, β] ≤ [β, β] to see that

α ∧ [β, β] = [α ∧ [β, β], β] ≤ [α ∧ β, β] ≤ α ∧ [β, β].

Proposition A.5.25. If A is in a congruence modular variety and satisfies the commutator identity
[α ∧ β, β] = α ∧ [β, β] hereditarily, then so does every quotient B of A.

Proof. Suppose B = A/γ and α, β ∈ Con(A) with α, β ≥ γ. We need to check that if α ≤ [β, β]γ ,
then α = [α, β]γ . By the modular law, if α ≤ [β, β] ∨ γ then

α = α ∧ ([β, β] ∨ γ) = (α ∧ [β, β]) ∨ γ = [α, β] ∨ γ = [α, β]γ .

Proposition A.5.26. If A1,A2 are in a congruence modular variety and satisfy the commutator
identity [α ∧ β, β] = α ∧ [β, β] hereditarily, then so does their product A1 × A2.

Proof. Let B ≤ A1×A2, we can assume without loss of generality that this inclusion is subdirect by
replacing the Ai with πi(B). Suppose α, β ∈ Con(B) with α ≤ [β, β], we will show that [α, β] = α.
We have

α ∨ kerπ1 ≤ [β ∨ kerπ1, β ∨ kerπ1]kerπ1 ,

so from the assumption on A1 we get

α ∨ kerπ1 = [α ∨ kerπ1, β ∨ kerπ1]kerπ1 = [α, β] ∨ kerπ1.
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Thus by the modular law and [α, β] ≤ α, we have

α = α ∧ (kerπ1 ∨ [α, β]) = (α ∧ kerπ1) ∨ [α, β].

Similarly, we have α = (α ∧ kerπ2) ∨ [α, β]. Since α ∧ kerπ2 ≤ α ≤ [β, β], we may apply the same
reasoning to α ∧ kerπ2 to see that

α ∧ kerπ2 = (α ∧ kerπ2 ∧ kerπ1) ∨ [α ∧ kerπ2, β],

so α ∧ kerπ2 ≤ [α, β], so
α = (α ∧ kerπ2) ∨ [α, β] = [α, β].

Theorem A.5.27. If |A| = m is finite and V(A) is congruence modular, and if A satisfies the
commutator identity [α ∧ β, β] = α ∧ [β, β] hereditarily, then every subdirectly irreducible algebra
B ∈ V(A) has |B| ≤ m ·mmm+1

.

Proof. By Corollary A.5.23, we just need to check the bound in the case where B is finite. In this
case, we have B ∈ HSPfin(A), so B satisfies the commutator identity [α ∧ β, β] = α ∧ [β, β] by the
previous propositions. Let 0∗B be the monolith of B, and let α = (0B : 0∗B) be its centralizer.

We claim that α is abelian. To see this, note that from [α, 0∗B] = 0B we have

0B = [0∗B ∧ α, α] = 0∗B ∧ [α, α],

so [α, α] = 0B. Now we can apply Corollary A.5.20 to see that |B| ≤ m ·mmm+1
.

Example A.5.2. The symmetric group S3 on three letters is residually small, since it satisfies
the commutator identity [α ∧ β, β] = α ∧ [β, β] hereditarily: the only interesting case to check
is that [A3, S3] = A3, where A3 is the alternating group on three letters. We have HS(S3) =
{1,Z/2,Z/3, S3}, and all three nontrivial elements are subdirectly irreducible.

The general theory shows that every subdirectly irreducible G ∈ V(S3) has an abelian normal
subgroup N with G/N ∈ HS(S3), with |N| a prime power bounded by |FV(S3)(|G/N| + 1)| ≤ 66

7
.

Since N ∈ V(S3) and every element of S3 has order dividing 6, N has exponent 2 or 3. From here
it is not too hard to check that the only nontrivial subdirectly irreducible algebras in V(S3) are
Z/2,Z/3, S3, and all three of these are subgroups of S3. Thus every group in V(S3) is a subgroup
of a power of S3.

Proposition A.5.28. If A is contained in a congruence modular variety but does not satisfy the
commutator identity [α ∧ β, β] = α ∧ [β, β] hereditarily, then there is some subdirectly irreducible
B ∈ HS(A) such that the centralizer of the monolith of B is not abelian.

Proof. Suppose that A fails to satisfy the commutator identity. In this case there must be α, β ∈
Con(A) with α ≤ [β, β] and [α, β] < α. Let θ be a meet-irreducible congruence such that θ ≥ [α, β]
but θ ̸≥ α, and let θ∗ be its cover. Then

θ∗ ≤ α ∨ θ ≤ [β, β] ∨ θ ≤ [β ∨ θ, β ∨ θ]θ

and
[θ∗, β ∨ θ]θ ≤ [α ∨ θ, β ∨ θ]θ = [α, β] ∨ θ = θ,

so if we take B to be A/θ, then the monolith of B is θ∗/θ, and β∨θ/θ is contained in the centralizer
of the monolith of B but is not abelian.
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Theorem A.5.29. If A is contained in a congruence modular variety but does not satisfy the
commutator identity [α ∧ β, β] = α ∧ [β, β], then V(A) is not residually small. In fact, for every
cardinal κ, V(A) contains a subdirectly irreducible algebra whose congruence lattice has size at least
κ.

Proof. (From [70].) By the proposition, we can reduce to the case where A is subdirectly irreducible
and the centralizer β of the monolith 0∗ is not abelian.

Consider β as a subalgebra of A2, and ∆0∗
β as a congruence on β. From [β, 0∗A] = 0A we have

∆0∗
β ∧ kerπ1 = ∆0∗

β ∧ kerπ2 = 0β, and from the definition of ∆0∗
β we have ∆0∗

β ∨ kerπi = π−1
i (0∗).

Set 0∗i = π−1
i (0∗) and θ = 0∗1 ∧ 0∗2, θi = 0∗i ∧ kerπ{1,2}\{i}, then (after several applications of the

modular law - don’t worry about the details just yet) we have the following sublattice in Con(β).

ββ

0∗1 0∗2

kerπ1 θ kerπ2

θ2 θ1∆0∗
β

0β

In the picture, we see that ∆0∗
β appears to be meet-irreducible in Con(β), and the interval J∆0∗

β , ββK
contains the incomparable elements 0∗1, 0

∗
2. If ∆0∗

β isn’t meet-irreducible, we can still try to find a

meet-irreducible congruence λ on β which is above ∆0∗
β but not above θ, and then β/λ should give

us a subdirectly irreducible algebra whose congruence lattice contains two distinct elements coming
from kerπ1 ∨ λ and kerπ2 ∨ λ (that neither of these is equal to ββ will come from the assumption
that β is not abelian). This is the basic idea behind the general construction, but we will need to
scale up by considering higher dimensional analogues of β ≤ A2.

Let κ be any cardinal, considered as the set of all ordinals below κ. Define B ≤ Aκ by

B = {a ∈ Aκ | ai ≡β aj ∀i, j ∈ κ}.

Then B has a natural map to A/β, and we call the kernel of this map βB. Inside Con(B), we have
kerπi ∨ kerπj = βB for all i ̸= j ∈ κ. The strategy is to construct a congruence λ on B such
that B/λ is subdirectly irreducible and kerπi ∨ λ ̸≥ βB for all i, which will guarantee that the
congruences kerπi ∨ λ/λ ∈ Con(B/λ) are pairwise distinct. The congruence λ will be constructed
by first constructing congruences ∆, θ with ∆ < θ and θ ∨ kerπi ̸≥ βB.

We need a congruence on B generalizing ∆0∗
β on β. We define ∆i by

(a, b) ∈ ∆i ⇐⇒
[
a0 b0
ai bi

]
∈ ∆0∗

β ∧ (aj = bj ∀j ̸= 0, i),

and define ∆ by

∆ =
∨

0<i<κ

∆i.
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We also define congruences θi by

(a, b) ∈ θi ⇐⇒ (ai, bi) ∈ 0∗A ∧ (aj = bj ∀j ̸= i),

and define θ by

θ =
∨
i<κ

θi.

We need to check some basic properties of these congruences, to see that they behave as in the
picture of Con(β). First, we check that θ0 ≤ θi ∨∆i for all i. Letting πi′ be the projection onto all
coordinates other than i, then it’s easy to check that θ0 ≤ kerπi′ ∨∆ by reasoning about just the
two coordinates 0, i and keeping all other coordinates fixed:[

a0
ai

]
kerπi′

[
a0
a0

]
∆i

[
b0
b0

]
kerπi′

[
b0
bi

]
.

Then by the modular law, if we let 0∗i = π−1
i (0∗A) and note that ∆i ≤ 0∗i , we get

θ0 = θ0 ∧ 0∗i ≤ (∆i ∨ kerπi′) ∧ 0∗i = ∆i ∨ (kerπi′ ∧ 0∗i ) = ∆i ∨ θi.

Similarly, we get θi ≤ θ0 ∨∆i for all i.
Next, for each i we have ∆ ∨ θi = θ: for each j ∈ κ, we have

∆ ∨ θi = ∆ ∨∆i ∨ θi ≥ ∆ ∨ θ0 ≥ ∆j ∨ θ0 ≥ θj ,

so ∆ ∨ θi ≥
∨
j∈κ θj = θ, while the other containment follows from ∆i ≤ θ0 ∨ θi for all i.

We now check that ∆ ̸= θ. It’s enough to check that θ0 ̸≤ ∆, since ∆ ∨ θ0 = θ. Note first that
θ0 is compact, since 0∗A is compact. Thus we just need to check that θ0 ̸≤

∨
j≤n ∆ij for all i1, ..., in.

In fact, we can assume that i1, ..., in are 1, ..., n by a symmetry argument.
We will show by induction on n that θ0 ∧ (∆1 ∨ · · · ∨∆n) = 0B for all n. The base case follows

from the fact that [β, 0∗A] = 0A =⇒ kerπ2∧∆0∗
β = 0β in Con(β), which in turn implies θ0∧∆1 = 0B.

For the inductive step, we argue as follows:

θ0 ∧ (∆1 ∨ · · · ∨∆n) = θ0 ∧ (θ0 ∨ θn) ∧ (∆1 ∨ · · · ∨∆n)

= θ0 ∧ (((θ0 ∨ θn) ∧ (∆1 ∨ · · · ∨∆n−1)) ∨∆n)

= θ0 ∧ ((θ0 ∧ (∆1 ∨ · · · ∨∆n−1)) ∨∆n)

= θ0 ∧∆n = 0B,

where the second equality used the modular law and the fact that ∆n ≤ θ0 ∨ θn, the third equality
used the fact that θn is independent of everything that happens on the coordinates 0, ..., n− 1, and
the last two equalities used the inductive hypothesis.

We have shown that ∆ < θ. We can now apply Corollary A.5.7 to see that there is some meet-
irreducible congruence λ with λ ≥ ∆ but λ ̸≥ θ. To finish, we just need to check that λ∨kerπi ̸≥ βB.
To see this, note that λ ̸≥ θi, since otherwise we would have λ ≥ ∆∨ θi = θ, a contradiction. Since
θi is the minimal nonzero element of the interval J0B, kerπi′K, this means that λ ∧ kerπi′ = 0B.
Thus if (for contradiction) λ ∨ kerπi ≥ βB, then we would have

[βB, βB] ≤ [kerπi′ ∨ kerπi, λ ∨ kerπi] ≤ (λ ∧ kerπi′) ∨ kerπi = kerπi,
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and applying πi we would get [β, β] = 0A, a contradiction to the assumption that β was not abelian.
Putting it all together, we have a meet-irreducible congruence λ such that λ ∨ kerπi ̸≥ βB

for each i, but kerπi ∨ kerπj ≥ βB for all i ̸= j. Thus B/λ is subdirectly irreducible, and the
congruences kerπi ∨ λ/λ are mutually distinct elements of Con(B/λ).

Corollary A.5.30. Let V be a finitely generated congruence modular variety. Then the following
are equivalent:

• V is residually small,

• every algebra in V satisfies the commutator identity [α ∧ β, β] = α ∧ [β, β],

• V is generated by a finite algebra A such that for every subdirectly irreducible B ∈ HS(A), the
centralizer of the monolith of B is abelian,

• V is generated by a finite algebra which satisfies the commutator identity [α∧β, β] = α∧ [β, β]
hereditarily,

• V has a finite bound on the size of its subdirectly irreducible elements.

Corollary A.5.31. If A is in a congruence modular variety and has size |A| ≤ 3, then V(A) is
residually small.

Proof. Suppose for contradiction that A is subdirectly irreducible with a monolith 0∗A whose cen-
tralizer (0A : 0∗A) is not abelian. Then since Con(A) has height at most 2, we necessarily have

0A < 0∗A < (0A : 0∗A) = 1A.

Thus |A| = 3, and we may name the elements of A as a, b, c, such that 0∗A corresponds to the
partition {a, b}, {c} of A. Letting p(x, y, z) be a Gumm difference term, we see from Theorem A.3.8
that [

a p(a, b, c)
b c

]
∈ ∆1A

0∗A
.

Modulo 0∗A, we have p(a, b, c) ≡0∗A
p(a, a, c) = c, so we must have p(a, b, c) = c. Then by Theorem

A.2.8 we have (a, b) ∈ [1A, 0
∗
A], which contradicts (0A : 0∗A) = 1A.

Proposition A.5.32. If A satisfies the commutator identity [α ∧ β, β] = α ∧ [β, β], then every
nilpotent congruence on A is abelian.

Proof. The commutator identity implies that

[[α, α], α] = [[α, α] ∧ α, α] = [α, α] ∧ [α, α] = [α, α].

Proposition A.5.33 (Ol’̌sanskĭı [133]). If all the Sylow subgroups of a finite group G are abelian,
then the center Z(G) and the commutator subgroup [G,G] intersect trivially, that is, Z(G)∧[G,G] =
0G.
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Proof. Fix a Sylow subgroup S of G, and consider the transfer map G → S/[S, S]. Recall that
the transfer homomorphism from a finite group to the abelianization of a subgroup is defined by
making a choice of coset representatives xi with G =

⋃
i xiS, and sending g ∈ G to

∏
i si/[S, S],

where for each i, si ∈ S is given by gxi = xjsi for some j. Since S is assumed to be abelian, this
gives us a homomorphism from G to S.

Now consider any g ∈ Z(G) ∩ S. The transfer homomorphism sends g to
∏
i g = g[G:S] since

gxi = xig for each i, and if g ̸= 1 then g[G:S] ̸= 1 as well since [G : S] is relatively prime to the order
of g. Thus there is a map from G to an abelian group such that g is not in the kernel, so g ̸∈ [G,G].
Since every nontrivial element of Z(G)∧ [G,G] has a power which has prime order and is therefore
contained in a Sylow subgroup of G, we must have Z(G)∧ [G,G] = 0G to avoid a contradiction.

Corollary A.5.34 (Ol’̌sanskĭı [133]). A finite group is residually small iff all of its Sylow subgroups
are abelian.

Proof. By Proposition A.5.32, all nilpotent subgroups of a finite residually small group must be
abelian, so in particular the Sylow subgroups must be abelian since all p-groups are nilpotent.

For the other direction, note that for any B ∈ HS(A), the Sylow subgroups of B are quotients
of subgroups of the Sylow subgroups of A by the Sylow theorems. Thus we just have to check that
if the Sylow subgroups of a subdirectly irreducible group are abelian, then the centralizer C of its
monolith 0∗ is abelian.

Note that if C centralizes 0∗, then 0∗ ≤ Z(C). By Proposition A.5.33, we have Z(C)∧[C,C] = 0,
so 0∗ ∧ [C,C] = 0, which implies that [C,C] = 0.

A.5.1 Similarity

Even if a finitely generated congruence modular variety is not residually small, we can still classify
its subdirectly irreducible algebras by using the concept of similarity from Freese and McKenzie
[70]. We will use a different definition of similarity than their definition, but which they prove to
be equivalent.

Definition A.5.35. We say that subdirectly irreducible algebras A,B in a congruence modular
variety V are similar if there exists an algebra C ∈ V with congruences α, β, γ, δ ∈ C such that
C/α ∼= A, C/β ∼= B, and

Jα, α∗K↘ Jγ, δK↗ Jβ, β∗K.

If furthermore C ≤sd A× B and α, β are the kernels of the projections to A,B, then we say that C
is the graph of a similarity from A to B.

Proposition A.5.36. If A,B are similar, then there is a witnessing algebra C ≤sd A × B which
is the graph of a similarity from A to B. If α, β are the kernels of the projections to A,B, then
(α : α∗) = (β : β∗) and C/(α : α∗) is the graph of an isomorphism

A/(0A : 0∗A)
∼−→ B/(0B : 0∗B).

If A,B are similar but not isomorphic, then they must both have abelian monoliths.

Proof. For the first statement, let C ∈ V and α, β, γ, δ ∈ Con(C) be as in the definition of similarity.
It’s enough to show that we have

Jα, α∗K↘ Jα ∧ β, (α ∧ β) ∨ δK↗ Jβ, β∗K,
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since then we can replace C by C/(α ∧ β), which is a subdirect product of C/α ∼= A and C/β ∼= B.
We have

α ∨ ((α ∧ β) ∨ δ) = α ∨ δ = α∗,

and by the modular law and the fact that γ ≤ α ∧ β, we have

α ∧ ((α ∧ β) ∨ δ) = (α ∧ δ) ∨ (α ∧ β) = γ ∨ (α ∧ β) = (α ∧ β),

so Jα, α∗K↘ Jα ∧ β, (α ∧ β) ∨ δK, and the other perspectivity follows by a symmetric argument.
The remaining statements follow from the Diamond Isomorphism Theorem A.2.5: if Jα, α∗K↘

Jγ, δK↗ Jβ, β∗K, then (α : α∗) = (γ : δ) = (β : β∗), so

A/(0A : 0∗A) ∼= C/(α : α∗) = C/(β : β∗) ∼= B/(0B : 0∗B),

and
[α∗, α∗]α = α ⇐⇒ [δ, δ]γ = γ ⇐⇒ [β∗, β∗]β = β,

so 0∗A is abelian iff 0∗B is abelian, and if neither is abelian then α = (α : α∗) = (β : β∗) = β and
A ∼= C/α = C/β ∼= B.

Proposition A.5.37. If A,B are similar such that σ is the corresponding isomorphism

σ : A/(0A : 0∗A)
∼−→ B/(0B : 0∗B),

then they are similar via the algebra R = {(x, y) ∈ A× B | σ(x/(0A : 0∗A)) = y/(0B : 0∗B)}.

Proof. Suppose C ≤ R is the graph of a similarity from A to B, with

Jkerπ1, (kerπ1)
∗K↘ J0C, δK↗ Jkerπ2, (kerπ2)

∗K

in Con(C). We may assume that A,B have abelian monoliths, so [δ, δ] = 0C by the Diamond
Isomorphism Theorem A.2.5. Then by Theorem A.4.5, δ permutes with all congruences in Con(C),
so in particular (kerπ1)

∗ = δ ◦ kerπ1. In other words, for any (a, b) ∈ C and any a′ ∈ a/0∗A, there
exists a b′ such that [

a
b

]
δ

[
a′

b′

]
.

In fact, this b′ is uniquely determined by a, b, a′, since δ ∧ kerπ1 = 0C. Additionally, we must have
b′ ∈ b/0∗B, since δ ≤ (kerπ2)

∗.
Now we can extend δ to a congruence δR ∈ Con(R) as follows. For (a, b), (a′, b′) ∈ R with a 0∗A a

′

and b 0∗B b
′, we pick any (u, v) ∈ C with u (0A : 0∗A) a and write[

a a′

b b′

]
∈ δR ⇐⇒

[
p(a, a′, u) u
p(b, b′, v) v

]
∈ δ,

where p is a Gumm difference term. Note that by Corollary A.3.9, this choice of δR is preserved by
the operations of A so long as it is well-defined. To check that this is in independent of the choice
of (u, v) ∈ C, suppose (u′, v′) ∈ C with u′ (0A : 0∗A) a, and apply Corollary A.3.9 again to see that

p

([
p(a, a′, u) u
p(b, b′, v) v

]
,

[
p(a, a, u) u
p(b, b, v) v

]
,

[
p(a, a, u′) u′

p(b, b, v′) v′

])
=

[
p(a, a′, u′) u′

p(b, b′, v′) v′

]
,

425



where we have used 0∗A, 0
∗
B abelian to see that p(a′, a, a) = a′ and p(b′, b, b) = b′.

We need to check that δR is a congruence on R. It clearly contains the equality relation on R.
For symmetry and transitivity, note that

p

([
p(a, a′, u)
p(b, b′, v)

]
,

[
p(a′′, a′, u)
p(b′′, b′, v)

]
,

[
u
v

])
= p

([
p(a, a′, u)
p(b, b′, v)

]
,

[
p(a′′, a′, u)
p(b′′, b′, v)

]
,

[
p(a′′, a′′, u)
p(b′′, b′′, v)

])
=

[
p(a, a′′, u)
p(b, b′′, v)

]
.

Finally, we need to check that δR∧kerπ1 = 0R and δR∨kerπ1 = (kerπ1)
∗. That δR∧kerπ1 = 0R

follows from the fact that if we pick u such that (u, b′) ∈ C, then[
a a
b b′

]
∈ δR ⇐⇒

[
p(a, a, u) u
p(b, b′, b′) b′

]
=

[
u u
b b′

]
∈ δ,

and so this can only occur when b = b′ since δ ∧ kerπ1 = 0C (by assumption). That δR ∨ kerπ1 =
(kerπ1)

∗ follows from δ ⊆ δR ⊆ (kerπ1)
∗ and δ ̸⊆ kerπ1.

Corollary A.5.38. A similarity from A to B can be described by the following data: an isomor-
phism

σ : A/(0A : 0∗A)
∼−→ B/(0B : 0∗B)

together with a congruence δ ∈ Con(R), where R = {(x, y) ∈ A×B | σ(x/(0A : 0∗A)) = y/(0B : 0∗B)},
such that for every (a, b) ∈ R and every a′ ∈ a/0∗A, there exists a unique b′ ∈ b/0∗B such that[

a a′

b b′

]
∈ δ.

In particular, if A,B are idempotent, then for any (a, b) ∈ R the congruence classes a/0∗A and b/0∗B
are isomorphic to each other.

Corollary A.5.39. Similarity is an equivalence relation on subdirectly irreducible algebras.

Proof. Suppose we have similarities from A to B and from B to C, described by isomorphisms

A/(0A : 0∗A)
σ−→ B/(0B : 0∗B)

σ′
−→ C/(0C : 0∗C)

and congruences δ, δ′. We define a congruence δ ◦ δ′ by[
a a′

c c′

]
∈ δ ◦ δ′ ⇐⇒ ∃(b, b′) ∈ 0∗B

([
a a′

b b′

]
∈ δ

)
∧
([
b b′

c c′

]
∈ δ′

)
.

We need to check that for each a, c, a′ there exists a unique c′ satisfying the above. Existence is
easy: for each b, we can fill in a unique b′ to satisfy δ, and then there is a unique c′ which satisfies
δ′. We just need to show that the choice of b doesn’t affect the final c′ we get. Suppose that instead
of b we had picked v. Then the claim is that if we leave a, a′, c, c′ unchanged and replace b by v
and b′ by p(b′, b, v), we get another valid solution. For δ, this follows from

p

([
a a′

b b′

]
,

[
a a
b b

]
,

[
a a
v v

])
=

[
a a′

v p(b′, b, v)

]
,

and it follows for δ′ similarly.

426



We will show that every subdirectly irreducible algebra A with abelian monolith is similar
to a subdirectly irreducible algebra D(A) such that the monolith of D(A) is equal to its own
centralizer. The size of the algebra D(A) can then be bounded using Theorem A.5.14 and the
following proposition.

Proposition A.5.40. If B ∈ V(A) is subdirectly irreducible, A is finite, and V(A) is congruence
modular, then every congruence class of 0∗B has size at most |A|.

Proof. By Theorem A.5.22 and Corollary A.5.12, we may assume without loss of generality that B
is finite. By Theorem A.5.14, we may also assume that 0∗B is abelian. Take m minimal such that
there exists C ≤ Am and θ ∈ Con(C) with B ∼= C/θ, so [θ∗, θ∗] ≤ θ.

Let π1′ be the projection onto all but the first coordinate, then by the minimality of m we have
kerπ1′ ̸≤ θ. Thus we have

Jθ, θ∗K↘ Jθ ∧ kerπ1′ , θ
∗ ∧ kerπ1′K.

By Theorem A.4.5, the congruences θ and θ∗ ∧ kerπ1′ permute. Thus for every congruence class
C∗ of θ∗ containing some c ∈ C, the size of C∗/θ is equal to the size of C ′/(θ ∧ kerπ1′), where C ′

is the congruence class of θ∗ ∧ kerπ1′ containing c. But |C ′/(θ ∧ kerπ1′)| ≤ |C/ kerπ1′ | = |A|, so
every congruence class of 0∗B has size bounded by |A|.

Definition A.5.41. Suppose A is a subdirectly irreducible algebra in a congruence modular variety.

If 0∗A is nonabelian, define D(A) to be A. Otherwise, consider 0∗A as a subalgebra of A2 and ∆
(0:0∗)
0∗A

as a congruence on 0∗A, and define D(A) = 0∗A/∆
(0:0∗)
0∗A

.

Recall that by Theorem A.3.8, if 0∗A is abelian and p is a Gumm difference term, then (0A :
0∗A) ≥ 0∗A and [(0A : 0∗A), 0∗A] = 0A, so we have[

x w
y z

]
∈ ∆

(0:0∗)
0∗A

⇐⇒ (p(x, y, z) = w) ∧ (x ≡0∗A
y ≡(0:0∗) z).

In this case, the subalgebra {(x, x)/∆
(0:0∗)
0∗A

} ≤ D(A) meets every congruence class of (0A : 0∗A)D(A)
(that is, the congruence (0A : 0∗A) considered as a congruence on D(A)) exactly once, and is
isomorphic to A/(0A : 0∗A).

Proposition A.5.42. If A is a subdirectly irreducible algebra in a congruence modular variety with
an abelian monolith, then D(A) is subdirectly irreducible with monolith (0A : 0∗A)D(A), and A, D(A)

are similar via the algebra 0∗A and the congruences kerπ1,∆
(0:0∗)
0∗A

∈ Con(0∗A). Furthermore, the

monolith (0A : 0∗A)D(A) of D(A) is its own centralizer.

Proof. Note that kerπ1 is covered by kerπ1 ∨ kerπ2, since π1(kerπ1 ∨ kerπ2) = 0∗A. First we check
that in Con(0∗A) we have the perspectivities

Jkerπ1, kerπ1 ∨ kerπ2K↘ J00∗A , kerπ2K↗ J∆(0:0∗)
0∗A

, (0A : 0∗A)0∗AK.

The hardest step here is checking that kerπ2 ∨ ∆
(0:0∗)
0∗A

= (0A : 0∗A)0∗A : if (x, y), (w, z) ∈ 0∗A with

(y, z) ∈ (0A : 0∗A), then we have[
x
y

]
∆

(0:0∗)
0∗A

[
p(x, y, z)

z

]
kerπ2

[
w
z

]
.
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To see that kerπ2∧∆
(0:0∗)
0∗A

= 00∗A , note that by Theorem A.2.8 the inequality kerπ2∧∆
(0:0∗)
0∗A

≤ kerπ1

is equivalent to [(0A : 0∗A), 0∗A] = 0A.

Next we show that (0A : 0∗A)0∗A is the unique cover of ∆
(0:0∗)
0∗A

in Con(0∗A). Note first that (0A :

0∗A)0∗A is a cover of ∆
(0:0∗)
0∗A

, since the interval J∆(0:0∗)
0∗A

, (0A : 0∗A)0∗AK is isomorphic to Jkerπ1, kerπ1 ∨
kerπ2K ∼= J0A, 0∗AK by the Diamond Isomorphism Theorem A.2.5.

Suppose that ψ is any congruence in Con(0∗A) with ψ > ∆
(0:0∗)
0∗A

. If ψ ≥ kerπ2, then ψ ≥

∆
(0:0∗)
0∗A

∨ kerπ2 = (0A : 0∗A)0∗A , and we are done. Otherwise, since kerπ2 is a cover of 00∗A , we must

have ψ ∧ kerπ2 = 00∗A . Then we have

[ψ ∨ kerπ1, kerπ2 ∨ kerπ1]kerπ1 ≤ [ψ, kerπ2] ∨ kerπ1 ≤ (ψ ∧ kerπ2) ∨ kerπ1 = kerπ1.

Applying π1 to both sides, we see that π1(ψ ∨ kerπ1) ≤ (0A : 0∗A), so ψ ∨ kerπ1 ≤ (0A : 0∗A)0∗A . Thus

ψ ∈ J∆(0:0∗)
0∗A

, (0A : 0∗A)0∗AK, so again we must have ψ = (0A : 0∗A)0∗A . We have finished showing that

D(A) is subdirectly irreducible.
To see that the monolith (0A : 0∗A)D(A) of D(A) is its own centralizer, note that by the Diamond

Isomorphism Theorem A.2.5 we have

(∆
(0:0∗)
0∗A

: (0A : 0∗A)0∗A) = (kerπ1 : kerπ1 ∨ kerπ2) = π−1
1 ((0A : 0∗A)) = (0A : 0∗A)0∗A .

Proposition A.5.43. If A,B are subdirectly irreducible algebras in a congruence modular variety,
then A is similar to B iff D(A) ∼= D(B).

Proof. Since similarity is an equivalence relation, we may as well replace A,B by D(A), D(B).
Thus we just need to prove that if A,B have monoliths equal to their own centralizers, and have
subalgebras XA, XB which intersect their monoliths transversely, then they are similar iff they are
isomorphic.

Let σ : A/0∗A → B/0∗B be the isomorphism and δ ∈ Con(R), where R = {(x, y) ∈ A × B |
σ(x/(0A : 0∗A)) = y/(0B : 0∗B)}, be the data describing a similarity from A to B. Then σ induces an
isomorphism σX : XA → XB, and the graph of σX is a subalgebra of R. Let S be the subalgebra
of (a, b) ∈ R such that (a, b) is congruent to some element of σX modulo δ. Then S must be the
graph of an isomorphism from A to B.

Theorem A.5.44. If B ∈ V(A) is subdirectly irreducible, A is finite, and V(A) is congruence
modular, then B is similar to a subdirectly irreducible algebra in HS(A).

Proof. We may as well replace B by D(B), so assume without loss of generality that the monolith
of B is either nonabelian or equal to its own centralizer. If the monolith of B is nonabelian, then
B ∈ HS(A) by Theorem A.5.14, so we just need to handle the case where 0∗B = (0B : 0∗B). In this case,
Theorem A.5.14 implies that B/0∗B ∈ HS(A), so by Proposition A.5.40 we have |B| ≤ |A|2 <∞.

Since B is finite, we can write B = R/θ for some R ≤ An and θ ∈ Con(R). Then we can write
R as a subdirect product R ≤sd A1 × · · · × Am of finitely many subdirectly irreducible algebras
Ai ∈ HS(A). We assume that the Ai are chosen such that none of them can be replaced by a
subdirect product of some number of proper quotients of Ai while still keeping the isomorphism
R/θ ∼= B.
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Then for any i, we must have θ ∧ kerπ[m]\{i} = 0R: if not, we could replace Ai with a subdirect
representation of R/(kerπi ∨ (θ ∧ kerπ[m]\{i})), since by the modular law we have

kerπ[m]\{i} ∧ (kerπi ∨ (θ ∧ kerπ[m]\{i})) = (kerπ[m]\{i} ∧ kerπi) ∨ (θ ∧ kerπ[m]\{i}) ≤ θ.

Since kerπ[m]\{i} ̸= 0R, we have θ ∨ kerπ[m]\{i} ≥ θ∗, so θ∗ ∧ kerπ[m]\{i} is a cover of 0R, and we
have

Jθ, θ∗K↘ J0R, θ∗ ∧ kerπ[m]\{i}K↗ Jkerπi, (kerπi)
∗K,

so B = R/θ is similar to Ai = R/ kerπi.

Example A.5.3. Let’s work out what D(G) is when G is a subdirectly irreducible group. Let M�G
be the normal subgroup corresponding to the monolith 0∗G, and let N = CG(M) �G be the normal
subgroup corresponding to the centralizer (0G : 0∗G). First off, what is the group structure on the
congruence 0∗G?

By definition, we have
0∗G = {(x, y) ∈ G2 | x−1y ∈M}.

We have a natural exact sequence of groups

0→M ↪→ 0∗G ↠ G→ 0,

where the inclusion is the map m 7→ (1,m) and the quotient map is the first projection π1. The
quotient 0∗G ↠ G has a section ∆ : G ↪→ 0∗G given by g 7→ (g, g). Thus we can write 0∗G as a
semidirect product

0∗G
∼= M⋊G,

where the action of G on M is the standard conjugation action.

How about the congruence ∆
(0:0∗)
0∗G

∈ Con(0∗G)? By Theorem A.3.8, we have[
x w
y z

]
∈ ∆

(0:0∗)
0∗G

⇐⇒ (xy−1z = w) ∧ (x ≡M y ≡N z).

Since this is a congruence on a group, we just need to understand the congruence class of the

identity, so we plug in x = y = 1 and ask what values (w, z) can take. We find that ∆
(0:0∗)
0∗G

corresponds to the normal subgroup
{(n, n) | n ∈ N},

so under the isomorphism 0∗G
∼= M⋊G it corresponds to N, considered as a subgroup of G. Thus

we have
D(G) = 0∗G/∆

(0:0∗)
0∗G

∼= (M⋊G)/N ∼= M⋊ (G/N).

That any of this makes sense follows from N = CG(M). We see that M is the normal subgroup
corresponding to the monolith of D(G), that M is equal to its own centralizer in D(G), and that
the natural map G/N ↪→ D(G) has image transverse to the monolith, and induces an isomorphism

σ : G/N ∼−→ D(G)/M.
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To complete the description of the similarity from G to D(G), we let R be the fiber product of G
and D(G) over G/N, and define the congruence δ ∈ Con(R) as the 4-ary relation[

a a′

b b′

]
∈ δ ⇐⇒

[
a
b

]
,

[
a′

b′

]
∈ R ∧ a−1a′ = b−1b′ ∈M.

That δ is closed under multiplication must be checked - it follows from the fact that N centralizes M,
and the fact that for any a, b, a′, b′ satisfying the above conditions all of a, b, a′, b′ must necessarily
map to the same element of G/N.

What are the possible values for D(G), assuming the monolith is abelian? Note that if we
consider M as a module via the G/N action, then it must be a simple module, since if it has
any nontrivial submodule M′, then M′ will be a smaller normal subgroup of G. Thus the general
situation is that M is some simple module over the ring Z[G/N] (where G/N acts faithfully on M),
and D(G) ∼= M⋊ (G/N).

Example A.5.4. If we take G = S3 in the above, we find that D(S3) ∼= Z/3 ⋊Z/2 ∼= S3. The 4-ary
relation δ ≤ S2×2

3 corresponding to the trivial similarity from S3 to itself is given by[
a a′

b b′

]
∈ δ ⇐⇒ s(a) = s(b) = s(a′) = s(b′) ∧ a−1a′ = b−1b′,

where s : S3 → {±1} is the sign homomorphism.
We can think of the relation δ as having two “strands” corresponding to the two possible signs

of permutations, and if we restrict to either strand then δ becomes an affine relation over Z/3. The
fact that we can multiply elements of δ which come from different strands and still get an element
of δ is worth thinking about.

Now suppose that G is some other subdirectly irreducible group such that D(G) ∼= S3, with
monolith corresponding to M � G and N = CG(M). Then since G is similar to S3, we must
have M ∼= Z/3 and G/N ∼= Z/2 by Corollary A.5.38, with G/N acting on M by negation since
D(G) ∼= M ⋊ (G/N) ∼= S3. If the action of G/N on N is given by an involution τ , then for any
n ∈ N \ {1} we must have M contained in the normal subgroup of N generated by n, nτ .

In particular, if N is abelian then we see that n+nτ , n−nτ ∈M for all n ∈ N, and additionally
in this case N must have prime power order by Theorem A.5.19. Thus if N is abelian then we must
actually have N = M, and G ∼= S3.

Example A.5.5. If we take G = Q8 = {±1,±i,±j,±k} the quaternion group with i2 = j2 = k2 =
ijk = −1, then the monolith is equal to the center, corresponding to the normal subgroup {±1},
and the centralizer of the monolith is the full congruence 1Q8 . Thus

D(Q8) ∼= {±1} ∼= Z/2.

The relation δ ≤ (Q8 × Z/2)2 is then given by[
a a′

b b′

]
∈ δ ⇐⇒ a′ = (−1)b+b

′
a.

This relation closely resembles an affine relation over Z/2.
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Appendix B

Tame Congruence Theory

Tame congruence theory was introduced by Hobby and McKenzie [82] in order to answer questions
about congruence lattices of finite algebras. Since every congruence contains the diagonal, every
congruence is automatically invariant under the polynomial clone of our algebra, and in fact the
congruence lattice of an algebra is completely determined by the collection of unary polynomials
of the algebra.

Proposition B.0.1. An equivalence relation θ on an algebra A is a congruence of A iff θ is
preserved by every unary polynomial operation of A. More generally, a quasiorder ⪯ on A is a
subalgebra of A2 if and only if ⪯ is preserved by every unary polynomial of A.

Proof. Recall that a quasiorder is just a binary relation which contains the diagonal and is tran-
sitively closed, so any quasiorder which is preserved by every basic operation of A will also be
preserved by any unary polynomial of A.

Conversely, suppose that the quasiorder ⪯ is closed under all unary polynomials of A. Let t be
any k-ary term of A, and suppose that ai ⪯ bi for i ∈ [k]. Then for each i, we have

t(b1, ..., bi−1, ai, ai+1, ..., ak) ⪯ t(b1, ..., bi−1, bi, ai+1, ..., ak),

since ⪯ is closed under the unary polynomial

x 7→ t(b1, ..., bi−1, x, ai+1, ..., ak).

Since ⪯ is transitively closed, we can string these inequalities together to show that

t(a1, a2, ..., ak) ⪯ t(b1, a2, ..., ak)
⪯ t(b1, b2, ..., ak)
⪯ · · ·
⪯ t(b1, b2, ..., bk).

Corollary B.0.2. Suppose A is an algebra and let Pol1(A) be the set of unary polynomials of A.
If R is any quasiorder of A, then among all quasiorders on A which are also subalgebras of A2, the
minimal compatible quasiorder containing R is the transitive closure of the set

{(f(a), f(b)) | (a, b) ∈ R and f ∈ Pol1(A)},

and the maximal compatible quasiorder contained in R is given by

{(a, b) | ∀f ∈ Pol1(A), (f(a), f(b)) ∈ R}.
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So tame congruence theory is really about the how the identities satisfied in a (usually locally
finite) variety affect the behavior of unary polynomials, and how this in turn affects the behavior of
congruences. Because of the important role of polynomial operations in tame congruence theory, we
will use Poln(A) to represent the set of n-ary polynomial operations of A throughout this appendix
(hopefully this doesn’t cause any confusion with the notation for the polymorphism clone of a
relational structure).

The material in this appendix is mostly taken from Hobby and McKenzie’s wonderful book [82]
(some of it is my solutions to various exercises from their book).

B.1 Shrinking algebras with unary polynomials, minimal sets, and
traces

As soon as you have a unary operation φ on a finite set, the natural thing to do with it is to iterate
it until we get the compositionally idempotent operation

φ∞ := lim
n→∞

φ◦n!.

This gives us a large collection of (compositionally) idempotent unary polynomial operations on any
finite algebra. For unary operations, I will drop the qualifier “compositionally” on “idempotent”,
since idempotent unary operations in the usual sense are not very interesting.

Definition B.1.1. For any algebra A, we define E(A) to be the set of unary polynomials e ∈
Pol1(A) such that e ◦ e = e. Elements of E(A) might be called the idempotents or projections of A.

Recall from Section 3.2 that for any idempotent e ∈ E(A), the clone of restrictions to e(A) of
polynomial operations of A which preserve e(A) is essentially the same as the clone of operations
of the form

(x1, ..., xn) 7→ e(f(e(x1), ..., e(xn))),

for f ∈ Poln(A) (strictly speaking, the es on the inside are not really necessary, they are only there
to stop us from caring about how f behaves outside the set e(A)). This gives us a rich enough
source of polynomial operations which preserve e(A) to make it worth studying the restricted clone
and introducing notation for it.

Definition B.1.2. If A is an algebra and U ⊆ A, then we define the restriction Pol(A)|U to be the
set of restrictions f |U of polynomial operations f ∈ Pol(A) which preserve the subset U , and we
define the induced algebra A|U to be (U,Pol(A)|U ) (up to term equivalence).

Restrictions are related to the congruence lattice using the following result.

Lemma B.1.3 (Pálfy and Pudlák [136], [82]). For any idempotent e ∈ E(A), if we set U =
e(A), then the map taking the congruence θ ∈ Con(A) to e(θ) = θ|U defines a surjective lattice
homomorphism:

θ 7→ θ|U : Con(A)↠ Con(A|U ).

More generally, if N ⊆ U , then:

• A|N = (A|U )|N ,
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• if N is a union of θ|U congruence classes, then the map α 7→ α|N defines a lattice homomor-
phism from the interval J0A, θK of Con(A) to the interval J0N , θ|N K of Con(A|N ), and

• if N is equal to a congruence class of θ|U , then the map α 7→ α|N is a surjective lattice
homomorphism J0A, θK↠ Con(A|N ).

Proof. (Following [82]) First, we will prove the statements about the map θ 7→ θ|U . For any
α ∈ Con(A|U ), we define the equivalence relation α̂ on A to be the largest congruence of A which
is contained in the equivalence relation e−1(α), which is given by

α̂ := {(x, y) | ∀f ∈ Pol1(A), (e(f(x)), e(f(y))) ∈ α}

by Corollary B.0.2. Then for any α ∈ Con(A|U ) and θ ∈ Con(A) we have α̂ ∈ Con(A), α̂|U = α,
and

θ|U ≤ α ⇐⇒ θ ≤ α̂.

Since restriction obviously preserves meets of congruences, we just need to check that it preserves
joins. For this, let α = θ1|U ∨ θ2|U , and note that

θi|U ≤ α =⇒ θi ≤ α̂ =⇒ θ1 ∨ θ2 ≤ α̂ =⇒ (θ1 ∨ θ2)|U ≤ α,

while the inequality α ≤ (θ1 ∨ θ2)|U is obvious.
To see that A|N = (A|U )|N , note that if f ∈ Pol(A) preserves N , then e ◦ f preserves U and

(e ◦ f)|N = f |N . Since we have α|N = (α|U )|N for α ∈ Con(A), to prove the remaining claims we
just need to think about the restriction map J0U , θ|U K→ J0N , θ|N K.

If N is a union of congruence classes of θ|U , then for any θ1, θ2 ≤ θ|U neither θi connects
any element inside N to any element outside N , so (θ1 ∨ θ2)|N = θ1|N ∨ θ2|N . Thus the map
J0U , θ|U K→ J0N , θ|N K is a lattice homomorphism.

To finish, we need to show that if N is a congruence class of θ|U then this map is surjective. For
this, we extend a congruence α ∈ Con(A|N ) to the largest congruence α̌ on A|U which is contained
in

α ∪ (U \N)2,

which is given by

α̌ := {(x, y) | ∀f ∈ Pol1(A|U ), f(x) ∈ N or f(y) ∈ N =⇒ (f(x), f(y)) ∈ α}

by Corollary B.0.2. Since every f ∈ Pol1(A|U ) preserves θ|U , if f(x) ∈ N for any x ∈ N then f
must preserve N , so we have α̌|N = α.

Definition B.1.4. Write B ⪯| A if there is some idempotent e ∈ E(A), congruence θ ∈ Con(A),
and a ∈ e(A), such that if we define

U = e(A)

and
N = U ∩ (a/θ),

then B is polynomially equivalent to A|N . (Note that in general B will have a different signature
than A.)
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Proposition B.1.5. The relation ⪯| is transitively closed on finite algebras: if C ⪯| B ⪯| A and
A is finite, then C ⪯| A.

Proof. Suppose that B = A|N for N = U ∩ (a/θ), U = e(A), e ∈ E(A). Additionally, suppose that
C = B|N ′ , for N ′ = U ′ ∩ (a′/α), α ∈ Con(B), U ′ = e′(B), e′ ∈ E(B).

Since α is a congruence on B, by Lemma B.1.3 there is some congruence ᾱ ∈ J0A, θK such
that ᾱ|N = α. Additionally, e′ is the restriction of some unary polynomial ê′ of A to N , and by
composing e ◦ ê′ and iterating it, we get ē′ ∈ E(A) such that

ē′(A) ⊆ U and ē′(N) = U ′.

Thus we have

N ′ ⊆ ē′(A) ∩ (a′/ᾱ) ⊆ ē′(U ∩ (a′/ᾱ)) ∩ (a′/ᾱ) ⊆ ē′(N) ∩ (a′/ᾱ) ⊆ N ′.

To finish, we need to check that for every polynomial f ∈ Pol(A) which preserves N ′, there is
a polynomial f̄ ∈ Pol(A|N ) such that f̄ |N ′ = f |N ′ . If we take f̄ = e ◦ f , then f̄ automatically
preserves U , and since f preserves N ′, we have

f̄(a′, ..., a′) ∈ a′/ᾱ ⊆ a/θ,

so f̄ also preserves a/θ, and therefore f̄ preserves U ∩ (a/θ) = N .

Proposition B.1.6. If A is finite and B ⪯| A is such that every constant of B is a term of B, and
if D ∈ HSPfin(B), then there is some C ∈ HSPfin(A) such that D ⪯| C.

Proof. Suppose that B = A|B with B = e(A) ∩ (a/α), where e ∈ E(A), α ∈ Con(A), and a ∈ e(A).
We handle quotients and subpowers separately - for quotients, we will not need to assume that
every constant of B is a term of B. In fact, if D = B/θ, we just choose θ̄ ∈ J0A, αK such that θ̄|B = θ
using Lemma B.1.3, and take C = A/θ̄.

Now suppose that D ≤ Bn. Note that since every constant operation of B is a term of B, every
D ≤ Bn must contain the diagonal B(n) = {b(n) | b ∈ B}, where b(n) = (b, b, ..., b). Let C ≤ An be
given by

C = SgAn(A(n) ∪ D).

Note that C is exactly the closure of D under coordinatewise application of polynomials of A. Define
e(n) ∈ Pol(An) by replacing each constant c in the definition of e by c(n). Since each c(n) is also an
element of C, we see that e(n) is also a polynomial of C, which acts like e on each coordinate, so
e(n) ∈ E(C). We need to check that if we set

D = e(n)(C) ∩ (a(n)/αn),

then D is the underlying set of D and C|D is polynomially equivalent to D. This follows from the
facts that e(n)(C) is the closure of D under coordinatewise application of polynomials of A which
have been composed with e, and that a polynomial f ∈ Pol(A) has f (n)(D, ...,D) ∩ (a(n)/αn) ̸= ∅
iff e ◦ f preserves B.

In order to get any use out of this to study an interval Jα, βK of the congruence lattice, we need
to find idempotents e such that e(α) ̸= e(β), or equivalently such that e(β) ̸⊆ α.
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Definition B.1.7. If α < β ∈ Con(A), then we define UA(α, β) to be the collection of sets given
by

UA(α, β) = {f(A) | f ∈ Pol1(A) and f(β) ̸⊆ α}.

We define MA(α, β) to be the collection of minimal sets in UA(α, β), and we call the sets in MA(α, β)
the (α, β)-minimal sets of A.

Proposition B.1.8. If β is a cover of α in Con(A) and A is finite, then for each (α, β)-minimal
set U ∈MA(α, β), there is some e ∈ E(A) such that U = e(A).

Proof. Pick any g ∈ Pol1(A) such that g(A) = U and g(β) ̸⊆ α. Then since β covers α and
g(β) ⊆ β, the congruence generated by g(β)∪α must be β. Thus for any (x, y) ∈ β, there must be
some hi ∈ Pol1(A) and (ui, vi) ∈ g(β)∪α such that x = h1(u1), hi(vi) = hi+1(ui+1), and hn(vn) = y
for some n.

If we choose (x, y) ∈ β such that (g(x), g(y)) ̸∈ α, we see that there must be some i such that
(g(hi(ui)), g(hi(vi))) ̸∈ α, and for this i we must have (ui, vi) ∈ g(β). Setting f = g ◦ hi, we see
that

f(g(β)) ̸⊆ α

and
f(g(A)) ⊆ U.

Since U is (α, β)-minimal, we must have f(g(A)) = U , so f(U) = U . Iterating f gives us e = f∞ ∈
E(A) with e(A) = U .

We will also want to prove similar results for certain other pairs of congruences α < β. Precisely
stating what we are going for requires a bit more work.

Definition B.1.9. A 0, 1-lattice is defined to be a lattice with constants 0 and 1 which satisfy
0 ≤ x ≤ 1 for all x. Note that every interval Jα, βK in a lattice can be regarded as a 0, 1-lattice,
with 0 interpreted as α and 1 interpreted as β.

A 0, 1-separating homomorphism is a lattice homomorphism such that f−1(f(0)) = {0} and
f−1(f(1)) = {1}.

Definition B.1.10. A congruence quotient is defined to be an ordered pair of congruences (α, β)
such that α < β. A congruence quotient (α, β) is called prime if β covers α.

A congruence quotient (α, β) is called tame if there is some U ∈ MA(α, β) and some e ∈ E(A)
such that e(A) = U , and such that the restriction homomorphism

Jα, βK↠ Jα|U , β|U K

is a 0, 1-separating homomorphism, that is, for α ≤ γ ≤ β we have γ|U = α|U =⇒ γ = α and
γ|U = β|U =⇒ γ = β. An algebra A is called tame if (0A, 1A) is tame.

So far we have shown that every prime quotient on a finite algebra is tame. There is a more
general lattice theoretic condition that implies tameness, but first we should try to see what being
tame is good for. The first important result is that all of the minimal sets for a tame quotient look
the same as each other.
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Definition B.1.11. If U, V ⊆ A, then we say that U, V are polynomially isomorphic in A if there
are unary polynomials f, g ∈ Pol1(A) such that

f(U) = V, g(V ) = U, g ◦ f |U = idU , f ◦ g|V = idV .

In this case we write f : U ≃ V .

Proposition B.1.12. If f : U ≃ V in A, then f |U defines an isomorphism from A|U to A|V (up
to term equivalence). Furthermore, for any θ ∈ Con(A) we have f |U (θ|U ) = θ|V .

Proposition B.1.13. If U, V ⊆ A and A is finite, then U ≃ V iff there are f, g ∈ Pol1(A) such
that f(U) = V and g(V ) = U . If additionally we have f(A) = V , then there is some idempotent
e ∈ E(A) such that e(A) = U .

Proof. Take g′ = (g ◦ f)∞−1 ◦ g and e = g′ ◦ f = (g ◦ f)∞, so e ∈ E(A). Then g′(V ) = U ,
g′ ◦ f |U = idU , f ◦ g′|V = idV , and if f(A) = V then e(A) = g′(f(A)) = g′(V ) = U .

Theorem B.1.14 (Minimal sets for tame quotients [82]). If (α, β) is a tame congruence quotient
on a finite algebra A, then all of the following are true.

(a) For all U, V ∈MA(α, β), we have U ≃ V in A.

(b) For all U ∈ MA(α, β), there is some e ∈ E(A) such that e(A) = U , and the restriction
homomorphism Jα, βK↠ Jα|U , β|U K is a 0, 1-separating homomorphism.

(c) For all U ∈MA(α, β) and (x, y) ∈ β \ α, there is some f ∈ Pol1(A) such that f(A) = U and
(f(x), f(y)) ̸∈ α.

(d) For all U ∈MA(α, β), β is the transitive closure of α ∪
⋃
g∈Pol1(A) g(β|U ).

(e) For all U ∈ MA(α, β) and f ∈ Pol1(A) such that f(β|U ) ̸⊆ α, we have f(U) ∈ MA(α, β) and
f : U ≃ f(U).

(f) For any f ∈ Pol1(A) such that f(β) ̸⊆ α, there is some U ∈MA(α, β) such that f : U ≃ f(U).

(g) For any (x, y) ∈ β \ α, there is some U ∈ MA(α, β) and e ∈ E(A) such that e(A) = U and
(e(x), e(y)) ̸∈ α.

Proof. (Following [82]) By the definition of tameness, there is some U ∈ MA(α, β) that satisfies
(b). We will first show that (c) and (d) hold for this U , and then use this to prove (a), which will
imply that (b) is true in general. Then we will use these to prove (e), (f), and (g).

Suppose that (b) holds for U . To prove (c), let γ ∈ Jα, βK be the congruence generated by
α and (x, y). Then since γ ̸= α we must have γ|U ̸= α|U (since restriction is 0, 1-separating).
Since γ|U = e(γ), this means that γ ̸⊆ e−1(α), so there must be some g ∈ Pol1(A) such that
(g(x), g(y)) ̸∈ e−1(α). Taking f = e ◦ g proves (c).

To see that (b) implies (d), let γ ∈ Jα, βK be the transitive closure of α ∪
⋃
g∈Pol1(A) g(β|U ).

Then γ|U = β|U , so we must have γ = β (since restriction is 0, 1-separating).
Now suppose that U, V ∈MA(α, β) and that V satisfies (b), (c), (d). Since U ∈MA(α, β), there

must be some h ∈ Pol1(A) and (x, y) ∈ h(β)\α with h(A) = U , so by (c) applied to V there is some
f ∈ Pol1(A) such that f(A) = V and (f(x), f(y)) ̸∈ α. Then from f(h(A)) ⊆ V and f(h(β)) ̸⊆ α
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we have f(h(A)) = V by (α, β)-minimality of V , so f(U) = V . Next, by (d) applied to V we see
that there must be some g ∈ Pol1(A) such that g(β|V ) ̸⊆ h−1(α). Then if e ∈ E(A) has e(A) = V ,
we see that

h(g(e(β))) ̸⊆ α

and h(g(e(A))) ⊆ U , so since U is (α, β)-minimal we see that h(g(V )) = U . Now we can apply the
previous proposition to see that f : U ≃ V and that U satisfies (b) as well.

To prove (e), we use (b) to see that there is some e ∈ E(A) with e(A) = U , and note that
f(e(β)) = f(β|U ) ̸⊆ α, so f(U) = f(e(A)) must contain some minimal V ∈ MA(α, β). By (a) we
see that |V | = |U |, so we must in fact have f(U) = V and f : U ≃ V .

To prove (f), we apply (d) to any V ∈MA(α, β) to see that there is some g ∈ Pol1(A) such that
g(β|V ) ̸⊆ f−1(α). Then by applying (e) twice we see that we can take U = g(V ).

To prove (g), we apply (c) to any V ∈ MA(α, β) to see that there is some f ∈ Pol1(A) such
that f(A) = V and (f(x), f(y)) ̸∈ α. By (f), there is some U ∈ MA(α, β) such that f : U ≃ f(U),
and since f(U) ⊆ f(A) = V , we must have f(U) = V by (α, β)-minimality. Thus there is some
g ∈ Pol1(A) such that g ◦ f |U = idU , and we can take e = g ◦ f .

Corollary B.1.15. If (α, β) is a tame congruence quotient on a finite algebra A and U ∈MA(α, β),
then every unary polynomial f of A|U is either a permutation of U or has f(β|U ) ⊆ α|U .

If we restrict to a congruence class of β|U , we get an even stronger result.

Definition B.1.16. If (α, β) is a tame congruence quotient on A and U ∈ MA(α, β), then a set
N ⊆ U is called an (α, β)-trace in U if N is a congruence class of β|U which is not also a congruence
class of α|U .

We define the body of the (α, β)-minimal set U to be the union of the (α, β)-traces, and we
define the tail of U to be the set of congruence classes of β|U which are also congruence classes of
α|U .

Since β|U ̸⊆ α|U by the definition of an (α, β)-minimal set, we see that every (α, β)-minimal set
U has a nonempty body, i.e. there is at least one (α, β)-trace N in U .

Corollary B.1.17. If (α, β) is a tame congruence quotient on a finite algebra A and N is an
(α, β)-trace, then every unary polynomial f of A|N is either a permutation, or has f(N) contained
in some congruence class of α|N . In particular, every unary polynomial of A|N/α|N is either a
permutation or is constant.

Definition B.1.18. We say that an algebra is permutational or minimal if every unary polynomial
is either a permutation or is constant.

More generally, if (α, β) is a congruence quotient on A, we say that A is (α, β)-minimal if every
unary polynomial f of A is either a permutation or has f(β) ⊆ α. Note that in this case, (α, β) is
necessarily tame, with MA(α, β) = {A}.

The general strategy will be to understand an algebra by first understanding the structure of
the traces, and then reconstructing the algebra from the traces. When we apply unary polynomials
of A to (α, β)-traces, the result will often also be an (α, β)-trace.

Corollary B.1.19. If (α, β) is a tame congruence quotient on a finite algebra A and N is an
(α, β)-trace, then for every unary polynomial f of A either f(N) is contained in some congruence
class of α, or f(N) is another (α, β)-trace and f : N ≃ f(N).
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Proof. This follows directly from Theorem B.1.14(e).

For the purpose of stitching together the traces to reconstruct the algebra, we have another
consequence of Theorem B.1.14.

Corollary B.1.20. If (α, β) is a tame congruence quotient on a finite algebra A, then β is the
transitive closure of

α ∪ {N2 | N is an (α, β)-trace}.

Proof. This follows from Theorem B.1.14(d) and the previous corollary, once we note that for each
(α, β)-minimal set U , every congruence class of β|U is either a congruence class of α|U or is an
(α, β)-trace.

Proposition B.1.21. If (α, β) is a prime congruence quotient of a finite algebra A (i.e., if β is a
cover of α), then all of the (α, β)-traces are polynomially isomorphic in A.

Proof. Let U be any (α, β)-minimal set. By Theorem B.1.14(a) it’s enough to show that any pair
of (α, β)-traces N , K contained in U are polynomially isomorphic in A|U . By Lemma B.1.3, the
restriction homomorphism

Jα, βK→ Jα|U , β|U K

is surjective, so β|U covers α|U in A|U . Then since N is not contained in a congruence class of α,
the congruence of A|U generated by α|U ∪N2 must be β|U . In particular, there must be some unary
polynomial f ∈ Pol1(A|U ) such that f(N) ⊆ K and f(N) is not contained in any congruence class
of α. Then f must be a permutation of U , and so we have f : N ≃ K.

Tameness can also be derived from some of its consequences.

Proposition B.1.22. If α < β ∈ Con(A) and there is some finite (α, β)-minimal set U which
satisfies Theorem B.1.14(c) and B.1.14(d), then (α, β) is tame.

Proof. If we make a digraph on (x, y) ∈ β|U \α|U with an edge from (x, y) to (u, v) whenever there
is some f ∈ Pol1(A) with f(A) = U and f(x) = u, f(y) = v, then Theorem B.1.14(c) for U implies
that every vertex in this digraph has outdegree at least one, so there must be a directed cycle.

By composing the unary polymorphisms corresponding to the edges of this directed cycle, we
find an f ∈ Pol1(A) such that f(A) ⊆ U and f(x) = x, f(y) = y for some (x, y) ∈ β|U \ α|U .
Taking e = f∞, we see that e ∈ E(A) with e(A) ⊆ U and e(β) ̸⊆ α. Finally, Theorem B.1.14(c)
and B.1.14(d) for U directly imply that the restriction homomorphism Jα, βK↠ Jα|U , β|U K is 0, 1-
separating.

Many of the previous results simplify if α = 0A. To relate the general case to that situation, we
need to know how tameness behaves when we pass to a quotient.

Proposition B.1.23. If δ ≤ α < β are congruences on a finite algebra A, then (α, β) is tame on
A iff (α/δ, β/δ) is tame on A/δ. If (α, β) is tame, then we have

MA/δ(α/δ, β/δ) = {U/δ | U ∈MA(α, β)}.

In particular, the (α/δ, β/δ)-traces are exactly the quotients of the (α, β)-traces by δ.
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Proof. (Following [82]) For any unary polynomial f ∈ Pol1(A), we have f(β) ⊆ α iff f(β/δ) ⊆ α/δ
in A/δ, and for any γ, γ′ ∈ Jα, βK we have γ = γ′ ⇐⇒ γ/δ = γ′/δ and similarly for restrictions.
The challenge is showing that the minimal sets correspond.

First we show that if U ∈ MA(α, β) and there is an e ∈ E(A) with e(A) = U , then U/δ ∈
MA/δ(α/δ, β/δ). To see this, suppose that some f ∈ Pol1(A) has f(β) ̸⊆ α and f(A/δ) ⊆ U/δ.
Then e(f(A)) ⊆ U and e(f(β)) ̸⊆ α, so e(f(A)) = U , so f(A/δ) = U/δ. This shows that if (α, β)
is tame then (α/δ, β/δ) is tame.

Now suppose (α/δ, β/δ) is tame, and let U be any (α, β)-minimal set. Pick f ∈ Pol1(A) with
f(A) = U and f(β) ̸⊆ α. By Theorem B.1.14(f) we see that there is some

V ∈MA/δ(α/δ, β/δ)

such that f : V ≃ f(V ). Pick g ∈ Pol1(A) such that g : f(V ) → V inverts f : V → f(V ), then by
iterating f ◦ g we get an idempotent e ∈ E(A) with e(f(V )) = f(V ). Thus e(β) ̸⊆ α, and from

e(A) ⊆ f(A) = U

we get e(A) = U . Then by the previous paragraph we see that U/δ is (α/δ, β/δ)-minimal, which
allows us to conclude that the restriction homomorphism Jα, βK↠ Jα|U , β|U K is 0, 1-separating.

To finish, we need to show that any V ∈MA/δ(α/δ, β/δ) is a quotient of an (α, β)-minimal set
when (α, β) is tame. Pick any U ∈ MA(α, β), then since U/δ is (α/δ, β/δ)-minimal we can apply
Theorem B.1.14(a) to see that there is an f ∈ Pol1(A) with f : U/δ ≃ V . Then f(β|U ) ̸⊆ α, so by
Theorem B.1.14(e) we have f(U) ∈MA(α, β), and V = f(U)/δ.

Proposition B.1.24. If α ≤ γ < β and (α, β), (γ, β) are both tame quotients on a finite algebra
A, then MA(α, β) = MA(γ, β).

Proof. If U ∈ MA(α, β), then β|U ̸⊆ γ|U since the restriction map is 0, 1-separating (by Theorem
B.1.14(b)), so U ∈ UA(γ, β). If f(A) ⊆ U and f(β) ̸⊆ γ, then we have f(β) ̸⊆ α, so f(A) = U by
(α, β)-minimality, so U ∈MA(γ, β).

Conversely, if V ∈MA(γ, β), then by Theorem B.1.14(a) we have V ≃ U for some U ∈MA(α, β),
so V ∈MA(α, β) by Theorem B.1.14(e).

Recall that two intervals are perspective, written Jα, βK↘ Jγ, δK, if α ∧ δ = γ and α ∨ δ = β.

Proposition B.1.25. If Jα, βK ↘ Jγ, δK in Con(A), then MA(α, β) = MA(γ, δ) and MA(γ, β) ⊆
MA(γ, α) ∪MA(γ, δ).

Proof. For any f ∈ Pol1(A), we have

f(β) = f(α ∨ δ) ⊆ α ⇐⇒ f(α) ∪ f(δ) ⊆ α ⇐⇒ f(δ) ⊆ α ⇐⇒ f(δ) ⊆ α ∩ δ = γ,

so MA(α, β) = MA(γ, δ). Similarly, we have f(β) ⊆ γ iff f(β) ⊆ α and f(β) ⊆ δ, so

UA(γ, β) = UA(α, β) ∪ UA(δ, β),

so MA(γ, β) ⊆MA(α, β) ∪MA(δ, β) = MA(γ, α) ∪MA(γ, δ).

Corollary B.1.26. If α, β are congruences on a finite algebra and the interval Jα, βK is isomorphic
to the diamond lattice Mn for some n ≥ 3, then (α, β) is tame and every congruence quotient
contained in Jα, βK has the same collection of minimal sets.
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Proposition B.1.27. If (α, β) is a tame congruence quotient on a finite algebra A and U is an
(α, β)-minimal set, then for any γ′ < δ′ ∈ Jα|U , β|U K, there are lifts γ < δ ∈ Jα, βK such that
γ|U = γ′, δ|U = δ′, with (γ, δ) a tame quotient. For any such γ, δ we have MA(γ, δ) = MA(α, β).

Proof. Since any unary polynomial which collapses β into α necessarily collapses δ into γ for any
γ, δ ∈ Jα, βK, we see that U is (γ, δ)-minimal for any γ < δ which restrict to γ′, δ′, so we just need
to ensure that the restriction homomorphism from Jγ, δK is 0, 1-separating.

Since restriction to U is a lattice homomorphism, we can take γ to be maximal among congru-
ences which restrict to γ′ and are ≤ β, and take δ to be minimal among congruences which restrict
to δ′ and are ≥ γ. By Theorem B.1.14(a) and B.1.14(e) every (γ, δ)-minimal set V has U ≃ V and
so is also (α, β)-minimal, and similarly every (α, β)-minimal set is (γ, δ)-minimal.

Some basic examples to keep in mind follow.

Example B.1.1. If A is a finite lattice and α < β ∈ Con(A), then the (α, β)-minimal sets all have
the form {a, b} with a < b and (a, b) ∈ β \ α, and any pair {a, b} which satisfies those conditions
and additionally has b covering a is an (α, β)-minimal set. Each such set with b covering a is the
image of the idempotent unary polynomial

x 7→ (x ∧ b) ∨ a,

however, in order for the restriction homomorphism to be 0, 1-separating, β must be a cover of α.
Thus the tame congruence quotients of A are exactly the same as the prime quotients. Additionally,
every (α, β)-minimal set consists of just a single (α, β)-trace (i.e., the minimal sets have no tails),
and every trace is the image of some pair {a, b} with b covering a under some unary polynomial of
A, and is polynomially equivalent to a two element lattice.

Example B.1.2. If A is a finite module over a ring R (which we may assume acts faithfully on A
without loss of generality) and α < β ∈ Con(A), then we can represent the congruences α, β by the
submodules Mα = 0/α, Mβ = 0/β of A. Every unary polynomial f of A has the form f : x 7→ rx+c,
and we have

f(β) ⊆ α ⇐⇒ rMβ ⊆Mα.

The set of r ∈ R such that rMβ ⊆Mα is called the annihilator of Mβ/Mα, and forms a (two-sided)
ideal I of R. Then Mβ/Mα is a module over R/I, and R/I acts faithfully on Mβ/Mα.

We will show that (α, β) is a tame congruence quotient if and only if I is maximal among two-
sided ideals of R, that is, iff R/I is a simple ring. By the classification of finite simple rings, this
is equivalent to proving that R/I is isomorphic to a matrix ring Mn(Fpk) over a finite field Fpk for

some n and some prime power pk. Additionally, we will show that Mβ/Mα is one of the modules
Fn×m
pk

for some m, with the action of R/I on Mβ/Mα given by matrix multiplication. To prove this,

it is simpler to think only about the module Mβ/Mα - note that Mβ/Mα is a tame algebra, with
(eA ∩Mβ)/Mα = eMβ/Mα as a (0, 1)-minimal set, for any e ∈ R such that e2 = e and eA is an
(α, β)-minimal set.

Proposition B.1.28. Suppose that M is a finite module over a finite ring R which acts faithfully
on M, and suppose that M is a tame algebra. Then R is isomorphic to a matrix ring Mn(Fpk) over

a finite field Fpk for some n and some prime power pk, and M is Fn×m
pk

for some m.
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Proof. By Corollary B.1.17, every (0M, 1M)-trace N has M|N a permutational algebra. If N = eM
for some e ∈ E(A), the restriction Pol(M)|N consists of the linear functions with coefficients in the
ring eRe, so we see that every nonzero element of the ring eRe is invertible, that is, eRe is a division
ring. Since every finite division ring is a field by Wedderburn’s little theorem, we have eRe ∼= Fpk
for some finite field Fpk (note, the rest of the argument still works over a division ring rather than
a field).

We claim that we can pick e1, ..., en ∈ R idempotent such that
∑

i ei = 1, eiej = ejei = 0
for i ̸= j, and each eiM is (0M, 1M)-minimal. Suppose that e1, ..., en is a maximal collection of
idempotents such that eiej = ejei = 0 for i ̸= j and each eiM is (0M, 1M)-minimal, and let
f = 1−

∑
i ei (that such a maximal set exists and is finite follows from the fact that eiM∩ ejM = ∅

for i ̸= j, since eiej = 0). Then we have f2 = f , and if f ̸= 0 then there must be some (0M, 1M)-
minimal set U ⊆ fM. If e′ ∈ E(M) has e′M = U , then we set en+1 = e′f , and note that we have
en+1M = e′M = U , and en+1ei = eien+1 = 0 for each i ≤ n, contradicting the maximalilty of the
collection e1, ..., en. Therefore we must have f = 0, that is,

∑
i ei = 1. Note that every element

x ∈M has a unique decomposition

x =
∑
i

eixi,

so as a group, M is the direct sum of the eiMs.
By Theorem B.1.14(a), for each pair i, j ≤ n we have eiM ≃ ejM. Pick fi : e1M ≃ eiM for each

i, and pick inverses gi : eiM ≃ e1M to each fi (with f1 = g1 = e1 for i = 1). Then for any i, j,
define the matrix element eij by

eij = figjej ,

and note that each eij is an isomorphism eij : ejM ≃ eiM, with eieij = eij and eijej = eij , with
eijeji = eii = ei, with eijejk = eik, and eijekl = 0 for j ̸= k. For each r1 ∈ e1Re1 we can additionally
define the corresponding scalar r ∈ R by

r1 ∈ e1Re1 7→ r =
∑
i

ei1r1e1i,

and we identify the set of such scalars r with Fpk , noting that reij = eijr for all r ∈ Fpk and i, j ≤ n,
and that the multiplication in Fpk is the same as the multiplication in e1Re1. We claim that every
element m ∈ R can be written uniquely in the form

m =
∑
i,j

ri,jeij

for some ri,j ∈ Fpk . To prove this, note that since
∑

i ei = 1, we have

m =
∑
i,j

eimej ,

and each eimej defines a map ejM→ eiM. If we define the element ri,j ∈ Fpk by

ri,j :=
∑
k

ekimejk,

then we have
ri,jeij =

∑
k

ekimejkeij = eiimejieij = eimej ,
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so m =
∑

i,j ri,jeij . For the uniqueness, note that
∑

i,j ri,jeij = 0 implies that each ri,jeij = 0,
and if ri,j ̸= 0 then ri,j is invertible, since Fpk is a field. Thus we have an explicit isomorphism
Mn(Fpk) ∼= R. Finally, e1M is a vector space of some dimension m over Fpk , and since M is the

direct sum of n copies of e1M as a vector space over Fpk we have M ∼= Fn×m
pk

, with the action of R
on M corresponding to matrix multiplication.

For the sake of completeness, we include Witt’s proof of Wedderburn’s little theorem here.

Theorem B.1.29 (Wedderburn’s little theorem). If R is a finite division ring, then R is a field.

Proof. (Following Witt [161]) Let R× be the group of nonzero elements of R, and let Z(R×) be the
center of the group R×. Then F = Z(R) = Z(R×)∪ {0} is a finite field, of some prime power order
q = pk. Since R is an F-algebra, R is in particular a vector space over F of some dimension n, so
|R| = qn and |R×| = qn − 1.

We consider the conjugation action of R× on itself: if x ∈ R \ F, then the centralizer CR(x) =
{r ∈ R | rx = xr} is a proper F-subalgebra of R, so |CR(x)| = qk for some k < n, and since R can
be thought of as a module over the division ring CR(x), we have k | n. Then the conjugacy class of
x in R× has size qn−1

qk−1
, so we have

qn − 1 = |R×| = |Z(R×)|+
∑

conj. classes of R\F

qn − 1

qki − 1
= q − 1 +

∑
conj. classes of R\F

qn − 1

qki − 1
.

If we let Φn(x) be the nth cyclotomic polynomial, then we have Φn(q) | q
n−1
qki−1

for each conjugacy

class, so q − 1 must be a multiple of Φn(q). However, |Φn(q)| is the product of |q − ζ| over various
nth roots of unity ζ, so |Φn(q)| > q − 1 for n > 1, a contradiction.

B.1.1 Tight lattices produce tame quotients

The purpose of this subsection is to give a purely lattice-theoretic criterion which we can use to
prove that certain congruence quotients are tame. As we will see later, nontrivial occurences of
this sort of sublattice imply the existence of abelian congruence quotients.

Definition B.1.30. Suppose L is a lattice with a 0 and a 1. A lattice homomorphism f : L → L′
is 0, 1-separating if we have

f−1(f(0)) = {0}, f−1(f(1)) = {1}.

A lattice L is 0, 1-simple if it has a 0 and a 1 which are not equal to each other, and if every
nonconstant lattice homomorphism L → L′ is 0, 1-separating.

A meet endomorphism of a lattice L is a function µ : L → L which preserves ∧, i.e. such that

µ(x ∧ y) = µ(x) ∧ µ(y).

A function µ : L → L is called increasing if

µ(x) ≥ x

for all x ∈ L, and is called strictly increasing if

µ(x) > x
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for all x ∈ L \ {1}.
A lattice L is called tight if L is 0, 1-simple and every strictly increasing meet endomorphism

of L is constant.

Theorem B.1.31. If A is a finite algebra and if the interval Jα, βK of Con(A) is tight, then
the congruence quotient (α, β) is tame: for every U ∈ MA(α, β), there is an idempotent unary
polynomial e ∈ E(A) such that e(A) = U .

Proof. (Following [82]) Since L is 0, 1-simple, the restriction homomorphism will automatically
be 0, 1-separating once we show that such an e exists. It’s enough to show that there is some
f ∈ Pol1(A) such that f(A) = U and f(U) = U , since then we can iterate f to produce e. To find
such an f , we just need to find a pair f, g ∈ Pol1(A) such that f(A), g(A) ⊆ U and f(g(β)) ̸⊆ α.

Let K be the set of unary polynomials f ∈ Pol1(A) such that f(A) ⊆ U . One way to check
whether there is some f ∈ K with f(β) ̸⊆ α is to try to find the largest congruence µ below β
such that f(µ) ⊆ α for all f ∈ K, and then to check if µ = β. This leads to defining the following
mapping on congruences:

µ(θ) := {(x, y) ∈ β | ∀f ∈ K, (f(x), f(y)) ∈ θ}.

It’s easy to see that µ(θ) is automatically a congruence, that θ ≤ µ(θ), and that

µ(θ1 ∧ θ2) = µ(θ1) ∧ µ(θ2).

Thus µ is an increasing meet endomorphism of Jα, βK.
Since U ∈MA(α, β), there must be some f ∈ K such that f(β) ̸⊆ α, so

µ(α) < β.

Thus µ is not constant. By the assumption that Jα, βK is tight, µ must not be strictly increasing,
so there must be some θ < β such that

µ(θ) = θ.

Thus we have
µ(µ(α)) ≤ µ(µ(θ)) = θ < β.

The point is that µ ◦ µ is what we would get if we replaced K by K2 in the definition of µ, that is,

µ(µ(α)) = {(x, y) ∈ β | ∀f, g ∈ K, (f(g(x)), f(g(y))) ∈ α},

so from µ(µ(α)) ̸= β we conclude that there must be some f, g ∈ K such that f(g(β)) ̸⊆ α, and we
are done.

At first it may seem that the proof only needs us to require that Jα, βK has no nonconstant
increasing meet endomorphisms µ such that µ ◦ µ is constant. However, this is actually equivalent
to having no nonconstant strictly increasing meet endomorphisms: if µ is a nonconstant strictly
increasing meet endomorphism, then there is some minimal k > 1 such that µ◦k(α) = β, and then
µ◦(k−1) will be nonconstant but µ◦(k−1) ◦ µ◦(k−1) will be constant.

In the remainder of this subsection, we will give alternative lattice-theoretic characterizations
of what it means for a finite lattice to tight. We start by examining what it means for a lattice to
be 0, 1-simple.
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Proposition B.1.32. A lattice L is 0, 1-simple iff there is a unique dual atom θ ≺ 1L ∈ Con(L)
and the associated map L↠ L/θ is 0, 1-separating.

Proof. Call a congruence η on L 0, 1-separating if the quotient map L ↠ L/η is 0, 1-separating,
that is, if 0/η = {0} and 1/η = {1}. Then any join of 0, 1-separating congruences is 0, 1-separating,
so there is always a unique maximal 0, 1-separating congruence θ ∈ Con(L). Then L is 0, 1-simple
iff all congruences η < 1L satisfy η ≤ θ.

Proposition B.1.33. If a complete lattice L is 0, 1-simple and θ is a proper congruence on L,
then L is tight iff L/θ is tight.

Proof. Let f : L/θ → L be the meet homomorphism given by

f(a/θ) =
∨
b∈a/θ

b.

Then f is a section of the quotient map π : L → L/θ, i.e. π ◦ f is the identity on L/θ, and
furthermore f ◦ π is an increasing meet endomorphism of L which maps 0 to 0 and 1 to 1. Then
for any nonconstant strictly increasing meet endomorphism µ of L, the map

π ◦ µ ◦ f

is a strictly increasing meet endomorphism of L/θ which sends 0/θ to µ(0)/θ ̸= 1/θ, and similarly
for any nonconstant strictly increasing meet endomorphism µ′ of L/θ, the map

f ◦ µ′ ◦ π

is a strictly increasing meet endomorphism of L which sends 0 to f(µ′(0/θ)) ̸= 1.

From this we see that we only need to characterize simple tight lattices. Recall that a tolerance
on an algebraic structure is a compatible binary relation which is symmetric and which contains
the diagonal, and that a tolerance is called connected if its transitive closure is the full congruence.

Proposition B.1.34. A simple lattice L of finite length is tight iff it has no nontrivial tolerances.
Equivalently, a 0, 1-simple lattice of finite length is tight iff it has no proper connected tolerances.

Proof. If S ≤sd L×L is a tolerance, then we can define a corresponding increasing meet endomor-
phism µS by

µS(a) =
∨

(a,b)∈S

b.

The tolerance S is connected iff µS is strictly increasing: the largest element 0 can be connected to
via S in k steps is µ◦kS (0).

Conversely, if µ is an increasing meet endomorphism, then we can define a corresponding toler-
ance Sµ by

(a, b) ∈ Sµ ⇐⇒ (a ≤ µ(b)) ∧ (b ≤ µ(a)).

In fact, the constructions S 7→ µS and µ 7→ Sµ invert each other.

We say that a lattice is order polynomially complete if every monotone operation Ln → L is a
polynomial of L.
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Proposition B.1.35. If L is a finite lattice, then the following are equivalent:

(a) L is simple and tight,

(b) for any a < b ∈ L, there is a unary polynomial f of L such that f(a) = 0 and f(b) = 1,

(c) the only compatible binary relations on L which contain the diagonal are the diagonal ∆L,
the partial orders ≤L and ≥L, and the full relation L2,

(d) L is order polynomially complete.

Proof. For (a) =⇒ (b), note that if L has no nontrivial tolerances, then the tolerance generated
by the diagonal and {(a, b), (b, a)} must contain (0, 1), so there is some binary polynomial g such
that

g
([
a
b

]
,

[
b
a

])
=

[
0
1

]
.

Since g is monotone, we must also have

g
([
a
b

]
,

[
a
a

])
=

[
0
1

]
,

so we can take f(x) = g(x, a).
For (b) =⇒ (c), we just have to prove that the binary relation R generated by the diagonal

and {(a, b)} contains ≤L as long as a ̸≥ b. Note that a ̸≥ b implies a < a ∨ b, so by (b) there is
some unary polynomial f such that f(a) = 0 and f(a ∨ b) = 1. Since

(a, a ∨ b) = (a, a) ∨ (a, b) ∈ R,

we see that (0, 1) ∈ R. But then for any c ≤ d, we have

(c, d) = ((c, c) ∨ (0, 1)) ∧ (d, d) ∈ R,

so ≤L is contained in R.
For (c) =⇒ (d), note that the collection of n-ary polynomials of L is equal to the sublattice

R ≤ LLn
which is generated by the constant tuples and the projections πi : x 7→ xi. Since every

lattice has a majority term, we see that R is equal to the intersection of its binary projections, each
of which contains the diagonal. Applying (c), we see that f ∈ R if and only if for every x, y ∈ Ln
such that

πi(x) = xi ≤ πi(y) = yi

for all i, we have f(x) ≤ f(y).
For (d) =⇒ (b), we check that the map f : L → L given by

f : x 7→

{
0 x ≤ a,
1 x ̸≤ a

is monotone. Finally, (c) =⇒ (a) follows from the previous proposition.

Proposition B.1.36. If L is a lattice of finite length, then the smallest connected tolerance on L
is generated by the diagonal and the pairs (x, y) such that either y covers x or x covers y.
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Proof. Let S be any connected tolerance of L. Suppose that y covers x, and consider an increasing
path x = x0 < x1 < · · · < xn = 1 from x to 1 through S. Then there must be some first i such that
xi ≥ y, and we see that

(x, y) = (y, y) ∧ (xi−1, xi) ∈ S.

Proposition B.1.37. If the join of the atoms of a 0, 1-simple lattice L of finite length is equal to
1, or if the meet of the co-atoms is equal to 0, then L is tight.

Proof. We will check that in either case L has no proper connected tolerances. Suppose that S is
a connected tolerance, and let a be any atom of L. In order for a to be connected to 0 via S in
any number of steps, a must be connected to something strictly less than a via S in one step, so
we must have

(0, a) ∈ S.

Since this is true for all atoms of L, joining them together we see that (0, 1) ∈ S if the join of the
atoms is 1.

Proposition B.1.38. The lattice LM of subspaces of a finite-dimensional vector space M over a
field F is always tight.

Proof. By the previous result, we just need to check that LM is in fact simple. If θ is a nontrivial
congruence on LM which identifies subspaces u ̸= v, then by taking meets with a one-dimensional
subspace which is contained in one of u, v but not the other, we see that 0 is congruent to some
atom a = SgM{x} of LM.

Now let b = SgM{y} be any other atom, and note that c = SgM{x + y} is necessarily different
from both a and b. Then 0, a, b, c, and a∨ b = SgM{x, y} form a sublattice of LM isomorphic to the
diamond lattice M3. Since M3 is simple, we see that (0, a) ∈ θ implies (0, b) ∈ θ - so in fact, any
nontrivial congruence θ on LM must contain every atom in 0/θ. Since the join of the atoms is the
whole space, we have (0, 1) ∈ θ, so θ was not a proper congruence on LM.

Proposition B.1.39. If A is a finite set, then the lattice LA of equivalence relations on A is tight.

Proof. The proof is very similar to the previous proof - this time we use the fact that for any distinct
x, y, z ∈ A, the equivalence relations 0A,CgA{(x, y)},CgA{(y, z)},CgA{(x, z)},CgA{(x, y), (y, z)}
form a sublattice of LA which is isomorphic to M3.

We say that a 0, 1-lattice L is complemented if for all x ∈ L there is some x′ ∈ L such that

x ∨ x′ = 1, x ∧ x′ = 0.

Such an x′ is called a complement of x (and in general there may be more than one complement).
Both types of lattices just considered (the subspaces of a finite dimensional vector space and the
equivalence relations on a finite set) are complemented.

Proposition B.1.40. If a lattice L of finite length is complemented, then the join of the atoms of
L is 1 and the meet of the co-atoms is 0.

Proof. Let x be the join of the atoms of L, and suppose that x′ is a complement of x. Then since
x ∧ x′ = 0, x′ is not greater than any atom of L, so x′ = 0. Thus we have 1 = x ∨ x′ = x.
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Proposition B.1.41. If L↠ L′ is 0, 1-separating, then L is complemented iff L′ is complemented,
and the atoms of L join to 1 iff the atoms of L′ join to 1.

The theory of tight lattices simplifies dramatically when we restrict our attention to modular
lattices.

Proposition B.1.42. If L is a modular lattice of finite length, then the map µ given by

µ : x 7→ x ∨
∨
{y | x ≺ y},

which takes x to the join of the collection of covers of x, is a strictly increasing meet endomorphism.

Proof. First we check that µ is monotone, i.e. that x ≤ z implies µ(x) ≤ µ(z). If x ≤ z and x ≺ y,
then modularity of L implies that either y ≤ z or y ∨ z is a cover of z. Thus we have

y ≤ y ∨ z ≤ µ(z)

for all x ≺ y, so µ(x) ≤ µ(z).
Define a dual map σ by

σ : x 7→ x ∧
∧
{y | y ≺ x}.

Note that σ is also monotone (by a dual argument to the above). Our strategy is to prove that

x ≤ µ(y) ⇐⇒ σ(x) ≤ y. (∗)

If we prove (∗), then we will have

x ≤ µ(a ∧ b) ⇐⇒ σ(x) ≤ a ∧ b ⇐⇒ x ≤ µ(a) ∧ µ(b),

which will prove that µ is a meet endomorphism.
By the monotonicity of σ, we just need to check that we have σ(x) ≤ y when x = µ(y) in order

to verify the forward direction of (∗). Let y1, ..., yk be a minimal collection of covers of y such that

x = y ∨ y1 ∨ · · · ∨ yk.

For each i, define xi by
xi = y ∨ y1 ∨ · · · ∨ yi−1 ∨ yi+1 ∨ · · · ∨ yk.

By modularity of L and the choice of k, we have xi ≺ x for all i. It’s now easy to prove by induction
that for any I ⊂ [k], we have

x ∧
∧
i∈I

xi = y ∨
∨

j∈[k]\I

yj ,

so
σ(x) ≤ x ∧

∧
i∈[k]

xi = y.

Proposition B.1.43. If L is a modular lattice of finite length, then L is tight iff L is simple and
complemented.
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Proof. We’ve already proven that if L is simple and complemented then L is tight, so suppose that
L is tight. Let µ be the strictly increasing meet endomorphism from the previous result. Since L
is tight, we must have µ(0) = 1, so 1 must be a join of atoms.

By the Jordan-Hölder Theorem A.0.10 and the fact that 1 is a join of atoms, we see that any
cover x ≺ y of L is projective to 0 ≺ a for some atom a. Thus any nontrivial congruence θ of
L which includes (x, y) also includes (0, a), so in order for L to be 0, 1-simple L must actually be
simple.

To finish, we just need to check that L is complemented. Letting x be any element of L, pick
a minimal set of atoms a1, ..., ak such that

x ∨ a1 ∨ · · · ∨ ak = 1,

and let x′ = a1 ∨ · · · ∨ ak. We claim that x ∧ x′ = 0. Suppose for contradiction that there is some
atom a′ with

a′ ≤ x ∧ x′.

Then since
a′ ∨ a1 ∨ · · · ∨ ak = x′

is not a cover of x′, modularity of L implies that there must be some i such that

a′ ∨ a1 ∨ · · · ∨ ai−1 = a1 ∨ · · · ∨ ai.

But then we can leave ai out of the list of atoms and we still have

x ∨ a1 ∨ · · · ∨ ai−1 ∨ ai+1 ∨ · · · ∨ ak = 1,

contradicting the choice of k.

B.2 Pálfy’s classification of finite permutational algebras: the five
types

In the last section we proved that if (α, β) is a tame congruence quotient of a finite algebra A, then
for every (α, β)-trace N the restriction A|N/α|N is permutational, i.e. every unary polynomial
of A|N is either a constant (modulo α|N ) or a permutation. In [135], Pálfy gave a complete
classification of the finite permutational algebras (up to polynomial equivalence), which was one of
the key ingredients needed for tame congruence theory.

The classification splits into two very different cases: algebras of size 2, and algebras of size
≥ 3. Since every unary operation on a set of size 2 is either constant or is a permutation, the
classification of permutational algebras on a set of size 2 is the same as the classification of all
algebras on a set of size 2, up to polynomial equivalence. There turn out to be exactly 7 of these.
On the other hand, the number of polynomial clones on any set of size ≥ 3 is uncountable [168]
- but as we will see, the permutational algebras on a set of size ≥ 3 are all either unary or affine
algebras, so they end up being much simpler than general algebras.

We start by giving some definitions in order to rule out the least interesting case - the case of
unary operations only.
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Definition B.2.1. An operation f of arity n depends on its ith input if there is some tuple a1, ..., an
and some bi such that

f(a1, ..., an) ̸= f(a1, ..., ai−1, bi, ai+1, ..., an).

An operation f is essentially unary if it only depends on one of its inputs - equivalently, f is
essentially unary if it can be written as the composition of a projection πi and a unary operation.

If f does not depend on its ith input, then we can express f in terms of the function we get by
replacing its ith input by some other input, such as its first input. So there is no need to ever think
too deeply about functions which do not depend on all their inputs. In order to gain a foothold, it
is helpful to start by considering the case of a binary operation which depends on all of its inputs
- for this, we will replace one of the inputs of a higher arity polynomial with some constant to get
a lower arity polynomial which also depends on all its inputs.

The next result is much stronger than what we will need: all we really need is the fact that if
f depends on at least two of its inputs, then there is a way to plug in constants for some subset of
the inputs to f to get a polynomial in two variables that depends on both of its inputs.

Proposition B.2.2 (Salomaa [150]). If a polynomial f of arity n depends on all of its inputs, then
it is possible to substitute a constant for one of its inputs to get a polynomial of arity n− 1 which
also depends on all of its inputs.

In fact, if n ≥ 2, then it is possible to find at least two different inputs to f where constants can
be substituted to get polynomials depending on all n− 1 of their inputs.

Proof. Following [82], we write f [a, i] for the polynomial we get by substituting a for the ith input
of f . Suppose that for some a and i, j, k, f [a, i] does not depend on the jth input but does depend
on the kth input. Then for every b we see that f [b, j] depends on the kth input, by considering the
case where we plug in a in the ith input and b in the jth input. Additionally, since f depends on
all its inputs there must be some a′ such that f [a′, i] depends on its jth input, so there must be
some b such that f [b, j] depends on the ith coordinate (consider plugging in a tuple with an a′ in
the ith input such that varying the jth input changes the value, and note that if we change a′ to
a in the ith position then varying the jth input no longer changes the value of f). Thus if f [a, i]
does not depend on its jth input, then there is some b such that f [b, j] depends on a strictly larger
subset of its inputs than f [a, i] does, which proves the first claim.

For the second claim, note that for each i ≤ n and each j ̸= i, there is some a such that f [a, j]
depends on the ith input, as long as f depends on its ith input. Then if we choose a pair a, j such
that j ̸= i, f [a, j] depends on the ith input, and f [a, j] depends on as many inputs as possible
subject to the previous constraints, then the argument of the previous paragraph shows that f [a, j]
must depend on all of its inputs.

Lemma B.2.3. Suppose that f ∈ Pol2(A) is a binary polynomial of a finite permutational algebra
A which depends on both of its inputs, and suppose that |A| ≥ 3. Then f is a quasigroup operation,
that is, every unary polynomial of the form f(a, ·) or f(·, b) is a permutation.

Proof. Suppose for the sake of contradiction that f depends on both of its inputs, but that there is
some a such that f(a, ·) is constant, with f(a, y) = e for all y ∈ A. Since f depends on its second
coordinate, there must be some a′ ̸= a such that f(a′, ·) is a permutation, which implies that there
is some b ∈ A such that f(a′, b) = e. Then since f(a, b) = e = f(a′, b), we must have f(x, b) = e for
all x ∈ A as well.
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For any a′ ̸= a, if f(a′, ·) is constant, then since f(a′, b) = e, we must have f(a′, y) = e for all
y ∈ A, and then for each y from f(a′, y) = e = f(a, y) we conclude that f(x, y) = e for all x, so
f is constant. This contradicts the assumption that f depends on its inputs, so for all a′ ̸= a the
unary polynomial f(a′, ·) must be a permutation.

So far we have not used the fact that |A| ≥ 3, and we have not fully exploited the fact that A
is finite and permutational. For this, we iterate f on its second argument: define f1 = f , and for
each n define fn+1(x, y) by

fn+1(x, y) = f(x, fn(x, y)),

and take f∞(x, y) = limn→∞ fn!(x, y), so

f∞(x, y) = f∞(x, f∞(x, y)).

Then f∞(a, ·) is constant, while for a′ ̸= a we have f∞(a′, y) = y for all y ∈ A since each f(a′, ·) is
a permutation. But then for any distinct a′, a′′ ̸= a, we have f∞(a′, y) = y = f∞(a′′, y), so f∞(·, y)
must be constant for all y, and in particular f∞(a, y) = y for all y, which contradicts the fact that
f∞(a, ·) is constant.

Corollary B.2.4. Suppose A is a finite permutational algebra with |A| ≥ 3, and suppose that some
operation of A is not essentially unary. Then A has a Mal’cev polynomial p(x, y, z).

Proof. This follows from the previous lemma and Proposition 1.7.10.

Corollary B.2.5. Suppose A is a finite permutational algebra with |A| ≥ 3, and suppose f ∈
Poln(A) has f(a1, ..., an) = f(a1, ..., ai−1, bi, ai+1, ..., an) for some a1, ..., an and some bi ̸= ai. Then
f does not depend on its ith coordinate.

Proof. We will show that for any j ̸= i, any a′j , and any b′i, we have

f(a1, ..., aj−1, a
′
j , aj+1, ..., an) = f(a1, ..., ai−1, b

′
i, ai+1, ..., aj−1, a

′
j , aj+1, ..., an).

For this, we define a two-variable polynomial from f by substituting the kth input of f with ak
for all k ̸= i, j, and apply the previous lemma to this two variable polynomial to see that it can’t
depend on its ith input. Applying this repeatedly, we can mutate the tuple a1, ..., an into any tuple
a′1, ..., a

′
n, so f does not depend on its ith coordinate.

Lemma B.2.6. Suppose A is a finite permutational algebra with |A| ≥ 3, f, g ∈ Poln(A), and
suppose that for some 0 ∈ A we have f(x1, ..., xn) = g(x1, ..., xn) for all x1, ..., xn ∈ A such that all
but one xi is 0. Then f = g.

Proof. If every operation of A is essentially unary, then this is obvious. Otherwise, let p ∈ Pol3(A)
be the Mal’cev operation from Corollary B.2.4. Then the polynomial

h(x1, ..., xn) = p(f(x1, ..., xn), g(x1, ..., xn), 0)

is 0 whenever f(x1, ..., xn) = g(x1, ..., xn), and since any Mal’cev operation must depend on its
second input, we can apply Corollary B.2.5 to p(x, y, z) to see that h(x1, ..., xn) = 0 if and only if
f(x1, ..., xn) = g(x1, ..., xn). For any input i, since we have

h(0, ..., 0, xi, 0, ..., 0) = 0

for all xi, we can apply Corollary B.2.5 to see that h does not depend on any of its inputs, so h
must be constantly 0, which implies that f = g.
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Theorem B.2.7 (Pálfy [135]). Suppose A is a finite permutational algebra with |A| ≥ 3, and
suppose that some operation of A is not essentially unary. Then A is affine, and in fact A is
polynomially equivalent to a vector space over a finite field.

Proof. Let p(x, y, z) ∈ Pol3(A) be the Mal’cev operation from Corollary B.2.4, pick an element to
call 0 in A, and define a binary polynomial + ∈ Pol2(A) by

x+ y = p(x, 0, y).

Then since p is Mal’cev, we have 0+x = x = x+0 for all x, so by Lemma B.2.6 we have x+y = y+x
for all x, y. Similarly, from

0 + (0 + x) = x = (0 + 0) + x, 0 + (x+ 0) = x = (0 + x) + 0, x+ (0 + 0) = x = (x+ 0) + 0,

we can apply Lemma B.2.6 to conclude that x + (y + z) = (x + y) + z for all x, y, z. Since
x+ 0 = x = 0 + x for all x, + depends on both of its arguments, so by Lemma B.2.3, we see that
every element x ∈ A has an inverse −x such that x+ (−x) = 0. Thus + defines an abelian group
structure on A with identity element 0.

For any f ∈ Pol1(A), if f(0) = c, then we can define r ∈ Pol1(A) by r(x) = f(x) − c, so that
r(0) = 0. We will show that any such r distributes over addition: since

r(x+ 0) = r(x) = r(x) + r(0), r(0 + y) = r(y) = r(0) + r(y),

we can apply Lemma B.2.6 to conclude that r(x+ y) = r(x) + r(y) for all x, y. Thus every unary
polynomial f ∈ Pol1(A) can be written in the form f(x) = r(x) + c, where r distributes over
addition and takes 0 to 0. Letting F be the ring of r ∈ Pol1(A) such that r(0) = 0, we see that
every nonzero element of F is invertible, so F is a finite division ring, and therefore F is a finite field
by Wedderburn’s little theorem B.1.29.

Now suppose f ∈ Poln(A) is any n-ary polynomial. Then if we define unary polynomials ri by

ri(xi) = f(0, ..., 0, xi, 0, ..., 0)− f(0, ..., 0),

then each ri has ri(0) = 0, so ri ∈ F for all i. If we define g ∈ Poln(A) by

g(x1, ..., xn) = r1(x1) + · · ·+ rn(xn) + f(0, ..., 0),

then we can apply Lemma B.2.6 to see that f = g, so every operation of A is linear over the finite
field F.

To complete the classification, we just need to classify the polynomial clones on the two-element
set {0, 1}. We use ¬ to denote the unary negation operation on {0, 1}, ⊕ to denote xor, and of
course ∧,∨ to denote and and or.

Proposition B.2.8. If A has underlying set {0, 1}, then A is polynomially complete iff ¬,∧ ∈
Pol(A). Additionally, we have ⊕ ∈ Pol(A) =⇒ ¬ ∈ Pol(A).

Lemma B.2.9. If A has underlying set {0, 1} and if there is some f ∈ Pol(A) which is not
monotone, then the unary negation ¬ is a polynomial of A.
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Proof. If f is not monotone, then there is some tuple a1, ..., an ∈ {0, 1} and some i such that

f(a1, ..., ai−1, 0, ai+1, ..., an) > f(a1, ..., ai−1, 1, ai+1, ..., an).

Then the left hand side of the displayed inequality must be 1 and the right hand side must be 0,
so we have

¬(x) = f(a1, ..., ai−1, x, ai+1, ..., an).

Lemma B.2.10. If A has underlying set {0, 1} and ⊕ ∈ Pol(A), and if there is any f ∈ Pol(A)
which is not affine-linear over Z/2, then ∧ ∈ Pol(A), so A is polynomially complete.

Proof. By xoring with an affine-linear function over Z/2, we may assume without loss of generality
that f(x1, ..., xn) = 0 whenever at most one xi is nonzero. Since f is not identically 0, there must be
some a1, ..., an ∈ {0, 1} with f(x1, ..., xn) = 1, and we may suppose that

∑
i ai is minimal. By our

assumption on f , the number of nonzero ai must be at least 2, so there is some pair of coordinates
i ̸= j such that ai = aj = 1. If we decrease either ai or aj , then by the minimality assumption f
becomes 0, so we have

x ∧ y = f(a1, ..., ai−1, x, ai+1, ..., aj−1, y, aj+1, ..., an).

Proposition B.2.11. The polynomial clone of ({0, 1},∧,∨) is exactly the clone of all monotone
functions.

Proof. We prove that every monotone function f of arity n is in the clone generated by ∧,∨ by
induction on n:

f(x1, ..., xn) = f(x1, ..., xn−1, 0) ∨ (f(x1, ..., xn−1, 1) ∧ xn).

Lemma B.2.12. If A has underlying set {0, 1} and ∨ ∈ Pol(A), and if f ∈ Pol(A) is monotone
but is not contained in the clone generated by ∨, then ∧ ∈ Pol(A), so Pol(A) contains the clone of
all monotone functions.

Proof. We may suppose without loss of generailty that f depends on all of its inputs. If f is not
contained in the clone generated by ∨, then in particular f(x1, ..., xn) ̸= x1 ∨ · · · ∨ xn, so since f is
monotone there must be some input i such that f(0, ..., 0, 1, 0, ..., 0) = 0. Since f is monotone and
depends on its ith input, there must be some a1, ..., an ∈ {0, 1} such that

f(a1, ..., ai−1, 0, ai+1, ..., an) = 0, f(a1, ..., ai−1, 1, ai+1, ..., an) = 1.

Choose the a1, ..., an such that
∑

j aj is minimized subject to the displayed equations above. Then
there is at least one j such that aj = 1, by the choice of i, and for this j we have

x ∧ y = f(a1, ..., ai−1, x, ai+1, ..., aj−1, y, aj+1, ..., an).

Putting everything together, we have the following classification of finite permutational algebras.

Theorem B.2.13. If A is a finite permutational algebra, then up to isomorphism and polynomial
equivalence, A is one of the following:

(1) a unary algebra, with the set of unary operations equal to a finite permutation group,

(2) a vector space over a finite field,
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(3) the boolean algebra ({0, 1},∨,∧,¬),

(4) the lattice ({0, 1},∨,∧), or

(5) the semilattice ({0, 1},∨).

Proof. If every polynomial of A is essentially unary, then we are in case (1). Otherwise, by Propo-
sition B.2.2 there is some binary polynomial f ∈ Pol2(A) which depends on both of its inputs.
If |A| ≥ 3, then Theorem B.2.7 shows that we are in case (2). Otherwise, we assume that the
underlying set of A is {0, 1}.

If ⊕ ∈ Pol2(A), then Lemma B.2.10 shows that we are either in case (2) or case (3). If
⊕ ̸∈ Pol2(A), then we must also have ¬ ̸∈ Pol2(A), since ⊕ is in the clone generated by ¬ and any
binary operation f which depends on both its inputs. Then by Lemma B.2.9 every polynomial
operation of A is monotone, and f is either ∨ or ∧. By possibly swapping 0 and 1, we may assume
without loss of generality that f = ∨. Then Lemma B.2.12 shows that we are either in case (4) or
(5).

Corollary B.2.14. If A is a finite permutational algebra, then Pol(A) is generated by the binary
polynomials of A.

The previous corollary is a general feature of tame congruence theory: most concrete computa-
tions in tame congruence theory depend only on the set of binary polynomials.

Definition B.2.15. If (α, β) is a tame congruence quotient of a finite algebra A, and if N is an
(α, β)-trace, then we say that N has

• unary type, or type 1, if A|N/α|N is polynomially equivalent to a unary algebra,

• affine type, or type 2, if A|N/α|N is polynomially equivalent to a vector space over a finite
field,

• boolean type, or type 3, if A|N/α|N is polynomially equivalent to a boolean algebra,

• lattice type, or type 4, if A|N/α|N is polynomially equivalent to a lattice,

• semilattice type, or type 5, if A|N/α|N is polynomially equivalent to a semilattice.

We say that the tame congruence quotient (α, β) has type i if there is any (α, β)-trace with type i.
As we will see in the next section, all of the traces of a tame congruence quotient (α, β) have the
same type as each other.

The numbering of the five types can be remembered with the following visual mnemonic lattice,
where the ordering corresponds to the richness of the operations in the polynomial clone.
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1
unary

2 affine

3

boolean

4lattice

5semilattice

B.3 The structure of minimal sets

So far we have classified the traces of tame congruence quotients, by classifying the permutational
algebras. In order to classify the minimal sets of an algebra, we note that for any (α, β)-minimal
set U , the restriction A|U has the property that for each unary polynomial f ∈ Pol1(A|U ), either f
is a permutation or f(β|U ) ⊆ α|U . Thus the restricted algebra A|U is (α|U , β|U )-minimal:

Definition B.3.1. A finite algebra A is called (α, β)-minimal, for α < β ∈ Con(A), if for every
unary polynomial f ∈ Pol1(A), either f is a permutation or f(β) ⊆ α.

By Proposition B.1.23, an algebra A is (α, β)-minimal iff A/α is (0A/α, β/α)-minimal, and for
each (α, β)-trace N there is a corresponding (0A/α, β/α)-trace N/α of the same type, so we can
often reduce to the case α = 0 without loss of generality. We can simplify some of the arguments
of [82] about types 3, 4, and 5 by using the concept of a partial semilattice operation from Section
3.2.

Definition B.3.2. We say that an idempotent binary operation s is a partial semilattice if it
satisfies the identity

s(x, s(x, y)) ≈ s(s(x, y), x) ≈ s(x, y).

Equivalently, s is a partial semilattice if for all x, y, the set {x, s(x, y)} is closed under s, and acts
like a semilattice subalgebra with absorbing element s(x, y) under s.

We write a→s b if s is a partial semilattice and s(a, b) = b.

Proposition B.3.3. If A is (α, β)-minimal and has a trace N of type 3, 4, or 5 (that is, of either
boolean, lattice, or semilattice type), then A has a partial semilattice polynomial s ∈ Pol2(A) such
that N is closed under s, and such that (N/α, s) is a two-element semilattice.

Furthermore, if N has type 3 or 4 (i.e. boolean or lattice type), then there is another partial
semilattice s′ ∈ Pol2(A) such that (N, s, s′) is a two-element lattice.

If s is a partial semilattice term and a, b ∈ N have s(a, b) ̸≡α a, then a→s x for all x ∈ A and
a/α = {a}.

Proof. Let t ∈ Pol2(A) be such that N is closed under t and (N/α, t) is a two-element semilattice.
Since the unary polynomial t(x, x) is not constant on N/α, (α, β)-minimality implies the unary
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polynomial t(x, x) must be invertible, so we may assume without loss of generality that t is idem-
potent. Then we may apply the semilattice iteration argument from Proposition 3.2.9 to produce
a partial semilattice polynomial s ∈ Clo(t) such that the restriction of s and t to N/α agree.

For the last statement, if a, b ∈ N have s(a, b) ̸≡α s(a, a) = a, then by (α, β)-minimality the
unary polynomial x 7→ s(a, x) must be a permutation, and since s(a, s(a, x)) = s(a, x), it must
be the identity, so s(a, x) = x for all x ∈ A. If a′ ∈ a/α, then the same argument shows that
s(a′, x) = x for all x, so a→s a

′ and a′ →s a, which is only possible if a′ = a.

Hobby and McKenzie [82] like to think of their semilattices as meet-semilattices, so they call
the partial semilattice polynomial s from Proposition B.3.3 a pseudo-meet operation. If the type
is 3 or 4, then they call the second partial semilattice operation s′ a pseudo-join operation. If the
type is 3 (i.e. boolean), then you can additionally find a unary polynomial f which preserves N
and swaps the elements of N , and any such f will be invertible. We can assume without loss of
generality that this f has even order, and we might call such an f a pseudo-negation operation.

Proposition B.3.4. If A is (α, β)-minimal and has at least two different (α, β)-traces, then all of
the (α, β)-traces have type 1 or 2 (that is, they all have either unary or affine type).

Proof. We assume without loss of generality that α = 0A. Suppose that N is a (0A, β)-trace of
type 3, 4, or 5 (that is, of either boolean, lattice, or semilattice type). Then N has two elements,
call them a, b, and by Proposition B.3.3 there is some partial semilattice polynomial s ∈ Pol2(A)
such that N = {a, b} is closed under s and such that s acts as a semilattice operation on {a, b},
say with s(a, b) = b. By the second part of Proposition B.3.3, we then have s(a, x) = s(x, a) = x
for all x ∈ A.

Now suppose, for the sake of a contradiction, that K is a different (0A, β)-trace. Since s(a, b) =
s(b, b) = b, (0A, β)-minimality implies that the unary polynomial f : x 7→ s(x, b) has f(β) ⊆ 0A, so
s(K, b) is a singleton. Thus there must be some c ∈ K such that s(c, b) ̸= c. Since s(c, a) = c ̸=
s(c, b), the unary polynomial g : x 7→ s(c, x) must be a permutation by (0A, β)-minimality. However,
we have g(K) = s(c,K) ⊆ s(c, c)/β = c/β = K and g(N) = s(c,N) ⊆ s(c, a)/β = c/β = K, so g
can’t be a permutation, which is a contradiction.

Proposition B.3.5. If A is (α, β)-minimal, then β is abelian over α if and only if all of the
(α, β)-traces have type 1 or 2 (i.e., unary or affine type).

Proof. We assume without loss of generality that α = 0A. If some (α, β)-trace N has type 3, 4, or
5 (i.e., boolean, lattice, or semilattice), then there is a partial semilattice polynomial s ∈ Pol2(A)
which acts nontrivially on N by Proposition B.3.3. Since semilattices aren’t abelian, A|N is not
abelian, and therefore β isn’t abelian either (since N is a congruence class of β).

Now suppose for contradiction that all the traces have type 1 or 2, but that β is not abelian.
The plan is to transport the nonabelianness of β into one of the (0A, β)-traces to contradict the
fact that traces of type 1 or 2 must be abelian. Recall that β not being abelian means that there
is some polynomial g ∈ Pol(A) and some (u, v), (a1, b1), ..., (an, bn) ∈ β such that

g(u, a1, ..., an) = g(u, b1, ..., bn)

but
g(v, a1, ..., an) ̸= g(v, b1, ..., bn),
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and we may assume without loss of generality that n is minimal. By the minimality of n, we have
ai ̸= bi for all i (else we could just substitute ai for the ith argument), and we clearly have u ̸= v,
so there are (0A, β)-traces N0, N1, ..., Nn such that u, v ∈ N0 and ai, bi ∈ Ni for each i. Let K be
the (0A, β)-trace which contains g(u, a1, ..., an), then since g is compatible with β we have

g(N0, N1, ..., Nn) ⊆ K.

The restriction of g to N0×N1× · · · ×Nn must depend on all of its inputs by the minimality of n,
so for each i there are cj ∈ Nj such that the unary polynomial

fi : x 7→ g(c0, ..., ci−1, x, ci+1, ..., cn)

is not constant on Ni. Each such fi must be a permutation by (0A, β)-minimality, so we have
fi : Ni ≃ K for each i. Then the polynomial h given by

h(x0, ..., xn) = g(f−1
0 (x0), ..., f

−1
n (xn))

preserves K, and we have

h(f0(u), f1(a1), ..., fn(an)) = h(f0(u), f1(b1), ..., fn(bn))

but
h(f0(v), f1(a1), ..., fn(an)) ̸= h(f0(v), f1(b1), ..., fn(bn)).

Thus A|K is not abelian, so A|K can’t be polynomially equivalent to a unary or affine algebra,
which is a contradiction.

The next challenge is to construct a pseudo-Mal’cev operation when the type is 2, and to use
it to prove that all of the (α, β)-traces are isomorphic when at least one of them has type 2.

Lemma B.3.6. If A is (α, β)-minimal and has an (α, β)-trace N of type 2, then there is a ternary
polynomial p ∈ Pol3(A) such that, if B is the union of all (α, β)-traces (the “body”), we have

(a) N is closed under p, and the restriction of p(x, y, z) to A|N/α is the Mal’cev operation x−y+z,

(b) p is idempotent, that is p(a, a, a) = a for all a ∈ A,

(c) for all a ∈ A, b ∈ B we have p(a, b, b) = a, and

(d) for all a ∈ A, b ∈ B we have p(b, b, a) = a.

Proof. (Following [82]) We construct p in stages, in each step getting a ternary polynomial which
satisfies one more of (a), (b), (c), (d). To start, sinceN has type 2, there is a polynomial f ∈ Pol3(A)
satisfying (a). Next, since the restriction of the unary polynomial g(x) = f(x, x, x) to A|N/α is
nonconstant, (α, β)-minimality implies that g(x) is a permutation, and since the restriction of g to
A|N/α is the identity, the polynomial h(x, y, z) = g−1(f(x, y, z)) satisfies (a) and (b).

Claim. Suppose that f is any polynomial satisfying (a) and (b). For any b ∈ B, the polynomials
x 7→ f(x, b, b) and x 7→ f(b, b, x) are permutations.

Proof of claim. Suppose not - suppose for contradiction that the unary polynomial x 7→
f(x, b, b) is not a permutation for some b ∈ B, and let K be the (α, β)-trace which contains b.
Iterate f on its first argument to get f∞ ∈ Pol3(A) such that

f∞(f∞(x, y, z), y, z) = f∞(x, y, z)
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for all x, y, z, define a unary polynomial g by

g(x) = f∞(x, b, b),

and note that if x 7→ f(x, b, b) is not a permutation, then g is also not a permutation. By (a) and
(α, β)-minimality, K can’t be N : for any a ∈ N , the restriction of x 7→ f∞(x, a, a) to A|N/α is the
identity, so (α, β)-minimality and the identity f∞(f∞(x, a, a), a, a) = f∞(x, a, a) imply that

f∞(x, a, a) = x

for all x ∈ A and a ∈ N . Since g is not a permutation, (α, β)-minimality implies that g(K) is
contained in a single α-congruence class, so in particular there is some c ∈ K such that g(c) ̸≡α c.
Then if we define the unary polynomial h by h(x) = f∞(c, x, x), we have

h(c) = f∞(c, c, c) = c ̸≡α g(c) = f∞(c, b, b) = h(b),

so by (α, β)-minimality h is a permutation. But then

h(c) = f∞(c, c, c) = c = f∞(c, a, a) = h(a)

for any a ∈ N , so h is not injective, a contradiction.
Now we use the claim to upgrade an f satisfying (a) and (b) to one which also satisfies (c). Let

t(x, y) = f(x, y, y), and iterate t on its first argument, to get t∞ ∈ Pol2(A) with t∞(t∞(x, y), y) =
t∞(x, y). By the claim, for any b ∈ B we have t∞(x, b) = x. Now define g ∈ Pol3(A) by

g(x, y, z) = t∞−1(f(x, y, z), z).

The restriction of t to A|N/α is just first projection, so g satisfies (a), since f is idempotent g will
be idempotent as well, and by construction we have g(x, b, b) = t∞(x, b) = x for any b ∈ B.

Finally, we use the claim to upgrade an f satisfying (a), (b), (c) to one which also satisfies (d).
By swapping the first and third inputs to f , this is equivalent to upgrading an f which satisfies
(a), (b), (d) to one which also satisfies (c). We use the exact same construction for this as in the
previous step - we just have to check that the resulting g also satisfies (d): for b ∈ B, we have

g(b, b, x) = t∞−1(f(b, b, x), x) = t∞−1(x, x) = x,

where the last step follows from idempotence.

Definition B.3.7. If A is (α, β)-minimal and has a trace of type 2 (i.e. affine type), and if B is
the union of the (α, β)-traces, then we call any idempotent ternary polynomial p ∈ Pol3(A) such
that p(a, b, b) = p(b, b, a) = a for all a ∈ A and all b ∈ B a pseudo-Mal’cev polynomial for A.

Theorem B.3.8. Suppose that A is (α, β)-minimal and has a trace of type 2 (i.e. affine type), let
B be the union of the (α, β)-traces, and let p be any pseudo-Mal’cev polynomial for A. Then

• for all a, b ∈ B, the unary polynomials x 7→ p(x, a, b), p(a, x, b), p(a, b, x) are all permutations,

• B is closed under p and the restriction of p to B is Mal’cev, and

• all of the (α, β)-traces are polynomially isomorphic.
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In particular, if one of the (α, β)-traces has type 2 then they all do.

Proof. (Following [82]) We assume without loss of generality that α = 0A. First we show that for
a, b ∈ B, the unary polynomial x 7→ p(x, a, b) is a permutation iff x 7→ p(a, x, b) is. For this, let
c be any element of the (0A, β)-trace N = a/β, and note that since β is abelian (by Proposition
B.3.5) and (a, c) ∈ β, we have

p(c, a, b) = p(a, a, b) = b ⇐⇒ p(a, c, b) = p(c, c, b) = b,

so x 7→ p(x, a, b) is not a permutation iff p(N, a, b) = {b}, which happens iff p(a,N, b) = {b}, which
happens iff x 7→ p(a, x, b) is not a permutation (and in fact, these all occur iff p(N,N, b) = {b}).
Similarly, x 7→ p(a, x, b) is a permutation iff x 7→ p(a, b, x) is a permutation.

Now suppose for a contradiction that x 7→ p(a, x, b) and x 7→ p(a, b, x) are not permutations,
and consider the unary poynomial f(x) = p(a, p(a, x, b), x). If x ∈ N = a/β, then we have

f(x) = p(a, p(a, a, b), x) = p(a, b, x) = p(a, b, a),

so f is not a permutation. If x ∈ b/β, then we have

f(x) = p(a, p(a, b, b), x) = p(a, a, x) = x,

so by (0A, β)-minimality f must be a permutation, which is a contradiction.
To see that B is closed under p, let a, b ∈ B, then since the unary polynomial x 7→ p(a, b, x)

is a permutation and therefore takes (0A, β)-traces to (0A, β)-traces, we see that it takes B to B.
Finally, if N,K are two (0A, β)-traces and a ∈ N, b ∈ K, then the unary polynomial g(x) = p(a, x, b)
takes N to K bijectively.

Putting these results together, we have proved the main result of this section.

Theorem B.3.9. If (α, β) is a tame congruence of a finite algebra A, then all of the (α, β)-traces
have the same type. If this type is not 1, or if (α, β) is a prime quotient, then all of the (α, β)-traces
are polynomially isomorphic to each other. If the type is not 1 or 2, then each (α, β)-minimal set
has just one trace, and if the type is 3 or 4 then every (α, β)-trace has size two.

In order to rule out type 1 in most cases, we introduce a stronger version of abelianness which
is characteristic of unary algebras.

Definition B.3.10. If α ≤ β ∈ Con(A), then β is strongly abelian over α if for all f ∈ Pol(A), all
(u, v) ∈ β and all tuples x, y, z with xi ≡ yi ≡ zi (mod β), we have

f(u, x1, ..., xn) ≡α f(v, y1, ..., yn) =⇒ f(u, z1, ..., zn) ≡α f(v, z1, ..., zn).

An algebra A is strongly abelian if 1A is strongly abelian over 0A.

It’s easy to see that every unary algebra is strongly abelian, while any group or semilattice is
not strongly abelian. We can now characterize type 1 in terms of strong abelianness.

Proposition B.3.11. If A is (α, β)-minimal, then β is strongly abelian over α iff all of the (α, β)-
traces have type 1 (i.e. unary type).

Proof. The proof is almost identical to the proof of Proposition B.3.5.
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Proposition B.3.12. Suppose that A has a Taylor polynomial and that α < β ∈ Con(A). Then
β is not strongly abelian over α. As a consequence, if A is a finite Taylor algebra then no tame
congruence quotient of A has type 1.

Proof. Suppose for contradiction that β is strongly abelian over α, and pick some (a, b) ∈ β \ α.
Let t be a Taylor term, then for each input of t we have an equation of the form

t(?, ..., ?, a, ?, ..., ?) = t(?, ..., ?, b, ?, ..., ?),

where each ? is either an a or a b, so strong abelianness of β over α implies that

t(a, ..., a, a, b, ..., b) ≡α t(a, ..., a, b, b, ..., b)

at each input. Stringing these equations together and using the idempotence of t, we get

a = t(a, ..., a) ≡α · · · ≡α t(b, ..., b) = b,

which contradicts the assumption (a, b) ̸∈ α.
For the last statement, note that if t is a Taylor polynomial for A and e ∈ E(A) has e(A) = U

for some (α, β)-minimal set U , then e(t(x1, ..., xn)) is a Taylor polynomial for A|U . In fact, by the
idempotence of t, the restriction of e ◦ t to any (α, β)-trace N would be a Taylor polynomial for
the unary algebra A|N/α|N , which gives an even simpler contradiction.

The following reformulation of strong abelianness from [128] should give a more concrete idea
of just how strong it is.

Proposition B.3.13. An algebra A is strongly abelian iff, for each n-ary polynomial t of A, there
are equivalence relations Ri on A such that

t(a1, ..., an) = t(b1, ..., bn) ⇐⇒ ∀i ≤ n, (ai, bi) ∈ Ri.

In particular, if A is finite and strongly abelian then every polynomial of A depends on at most
log2 |A| of its inputs.

Corollary B.3.14. Every finite, idempotent, strongly abelian algebra can be written as a product
of algebras where every operation is a projection.

Proof. Let t be any m-ary operation of A, and let the equivalence relations Ri be as in the previous
proposition. If t is idempotent, then t is the graph of a bijection between

∏
iA/Ri and A: the

inverse map takes a ∈ A to (a/R1, ..., a/Rm). If any Ri is 0A, then t must be the ith projection,
otherwise each A/Ri is smaller than A. To finish the proof, we just need to verify that each Ri is
a congruence of A. It’s enough to prove this for R1.

Let s be any other operation of A, say of arity n, and consider the term

t(s(y1, ..., yn), x2, ..., xm).

Then by the previous proposition, there are equivalence relations S1, ..., Sn on A such that

t(s(a1, ..., an), c2, ..., cm) = t(s(b1, ..., bn), d2, ..., dm)
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iff each (ai, bi) ∈ Si and each (cj , dj) ∈ Rj . Taking all ai to be equal to a and all bi to be
equal to b, by idempotence we see that (a, b) ∈ R1 iff (a, b) ∈ Si for all i. In particular, we have
(a, b) ∈ R1 =⇒ (a, b) ∈ Si, so

∀i (ai, bi) ∈ R1 =⇒ ∀i (ai, bi) ∈ Si =⇒ (s(a1, ..., an), s(b1, ..., bn)) ∈ R1.

Since s was arbitrary, R1 is a congruence of A.

Example B.3.1. A rectangular band is an idempotent semigroup which satisfies the identity

xyx ≈ x.

This identity implies the apparently stronger identity

xyz ≈ xz,

as follows:
xyz ≈ xy(zxz) ≈ (xyzx)z ≈ xz.

Every rectangular band A is strongly abelian, and is therefore isomorphic to a product of two
semigroups A1,A2 such that ·A1 = π1 and ·A2 = π2. The multiplication on the rectangular band
A1 × A2 is explicitly given by the rule

(a, b) · (c, d) = (a, d).

Example B.3.2 (From [107]). There is a 5-element strongly abelian algebra A = ({a, b, c, d, e}, ·1, ·2)
which is not quasiaffine (of course, this algebra is not idempotent). The basic binary operations of
A are given below.

·1 a b c d e

a a b a b b
b a b a b b
c c d c d d
d c d c d d
e c d c d d

·2 a b c d e

a a b a b b
b a b a b b
c c e c e e
d c e c e e
e c e c e e

This algebra fails to be quasiaffine because it fails to satisfy the two term condition:

a ·1 a = a ·2 a, a ·1 b = a ·2 b, c ·1 a = c ·2 a, but c ·1 b ̸= c ·2 b.

To see that it is strongly abelian, note that for each i, j we have the identities

x ·i (y ·j z) ≈ x ·i z, (x ·i y) ·j z ≈ x ·j z,

so every term of A is one of x, x ·i x, x ·i y for some i ∈ {1, 2}, up to permuting its inputs.

Example B.3.3. A p-cyclic groupoid is an idempotent binary operation · which satisfies the following
identities:

x(yz) ≈ xy,
(xy)z ≈ (xz)y,

(...((x y)y) · · · )y︸ ︷︷ ︸
p ys

≈ x.
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See [140] for the theory of p-cyclic groupoids for arbitrary primes p.
The free 2-cyclic groupoid on two generators a, b is isomorphic to the idempotent algebra A =

({a, b, c, d}, ·) with basic operation · given below.

· a b c d

a a c a c
b d b d b
c c a c a
d b d b d

This algebra has a congruence θ corresponding to the partition {a, c}, {b, d}, such that · on A/θ is
first projection - in particular, 1A is strongly abelian over θ. Additionally, θ is strongly abelian over
0A, so A is strongly solvable. The algebra A is (0A, θ)-minimal, and the (0A, θ)-traces are {a, c}
and {b, d}. The reader may check that the (0A, θ)-traces {a, c} and {b, d} are not polynomially
isomorphic in A. The algebra A|{a,c} is polynomially equivalent to the unary algebra with the
unary operation which swaps a and c, corresponding to the polynomial x 7→ x · b.

The reader may check that A is abelian (and even quasiaffine) as well. If we let η be the
congruence corresponding to the partition {a}, {c}, {b, d}, however, then we see that A/η is not
abelian - so quotients of idempotent abelian algebras are not necessarily abelian. This is one of the
senses in which type 1 can be pathological.

More generally, the free p-cyclic groupoid on n generators is (up to isomorphism) the subalgebra
of (

(Z/p2)n, (x, y) 7→ x+ p(y − x)
)

generated by the basis vectors (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, ..., 0, 1) - this algebra has npn−1 ele-
ments. The free p-cyclic groupoid on n generators is always quasiaffine and strongly solvable in
2 steps via the congruence corresponding to reduction modulo p, and for p, n ≥ 2 it always has a
quotient which is not abelian.

B.4 The abelian types: type 1 (unary) and 2 (affine)

In case the reader has lost track, we briefly recap what we have done so far before moving on.

• For any α < β ∈ Con(A), we defined MA(α, β) to be the collection of minimal sets U ⊆ A
such that there is some unary polynomial f ∈ Pol1(A) with f(A) = U and f(β) ̸⊆ α.

• We showed that if β is a cover of α in Con(A), then the congruence quotient (α, β) is auto-
matically tame, that is, for every U ∈ MA(α, β) there is some idempotent unary polynomial
e ∈ E(A) with e(A) = U , and the restriction homomorphism Jα, βK ↠ Jα|U , β|U K is a 0, 1-
separating homomorphism (Proposition B.1.8).

• We showed that if (α, β) is tame, then any two minimal sets U, V ∈MA(α, β) are polynomially
isomorphic (Theorem B.1.14).

• We defined an (α, β)-trace N to be any congruence class of β|U which is not contained in a
congruence class of α|U , for any minimal set U ∈MA(α, β).

• We showed that if (α, β) is tame, then β is the transitive closure of α∪{N2 | N is an (α, β)-trace}
(Corollary B.1.20).
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• We showed that if (α, β) is tame, then each trace N has A|N/α|N a permutational algebra
(Corollary B.1.17), and we classified the permutational algebras into five types (Theorem
B.2.13).

• We showed that if (α, β) is tame and U ∈ MA(α, β) is a minimal set, then all of the (α, β)-
traces N ⊆ U have the same type, and if that type is not 1 (i.e. unary) or if (α, β) is prime,
then in fact all of the (α, β)-traces are polynomially isomorphic (Theorem B.3.9).

• We showed that if (α, β) is tame with type 1 or 2 (i.e. unary or affine), then β|U is abelian
over α|U for any minimal set U ∈MA(α, β) (Proposition B.3.5), and if the type is 1 then β|U
is strongly abelian over α|U (Proposition B.3.11).

We would like to have some results which don’t directly reference minimal sets or traces. In
this section, we will upgrade the results in the last bullet point to the claims that if (α, β) is tame
with type 1 or 2, then β is abelian over α, and if the type is 1 then β is strongly abelian over α.
We start with the strongly abelian case, but the reader may prefer to read the next two results in
the opposite order (or even to skip the strongly abelian case entirely, if they only care about Taylor
algebras).

Theorem B.4.1. If A is a finite algebra and (α, β) is a tame congruence quotient, then β is
strongly abelian over α if and only if the type of (α, β) is 1 (i.e., unary).

Proof. (Following [82]) We assume without loss of generality that α = 0A. If the type of (0A, β) is
not 1, then every (0A, β)-trace N has A|N not strongly abelian, so in this case β definitely can’t be
strongly abelian. We just need to prove that if the type is 1 then β is strongly abelian.

Suppose for contradiction that β is not strongly abelian, i.e. that there is some f ∈ Poln(A)
and ai ≡ bi ≡ ci (mod β) such that

f(a1, ..., an) = f(b1, ..., bn)

but
f(a1, c2, ..., cn) ̸= f(b1, c2, ..., cn).

Since
f(a1, c2, ..., cn) ≡ f(b1, c2, ..., cn) (mod β),

by Theorem B.1.14(c) or (g) there is some e ∈ Pol1(A) and U ∈MA(0A, β) such that e(A) = U and

e(f(a1, c2, ..., cn)) ̸= e(f(b1, c2, ..., cn)) ∈ U.

Let f ′ be the restriction of e ◦ f to C =
∏
i ci/β. Then if we let N be the (0A, β)-trace in U which

contains f ′(c), we have
f ′(C) ⊆ U ∩ f ′(c)/β = N.

Since
f ′(a1, c2, ..., cn) ̸= f ′(b1, c2, ..., cn),

we see that f ′ must depend on its first variable, and since

f ′(a) = e(f(a)) = e(f(b)) = f ′(b),
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we see that f ′ must depend on at least one other variable. By Salomaa’s Proposition B.2.2, there
must be some binary polynomial g ∈ Pol2(A) which we get by fixing some of the coordinates of f ′

to constants which depends on both of its inputs (with the inputs restricted to the relevant ci/βs).
In other words, we have a binary polynomial g ∈ Pol2(A) and a pair of congruence classes

ci/β, cj/β such that
g(ci/β, cj/β) ⊆ N,

such that the restriction of g to Cij = (ci/β)× (cj/β) depends on both of its inputs. We will show
that this already gives us a contradiction.

Claim. If N1, N2 are a pair of (0A, β)-traces such that g(N1, N2) ⊆ N , then the restriction of
g to N1 ×N2 depends on at most one of its arguments.

Proof of Claim. Suppose not, for a contradiction. Then by plugging in constants to the first
and second argument of g, we can apply Corollary B.1.19 to see that Ni ≃ N . Thus we may assume
without loss of generality that N1 = N2 = N . But in this case, g preserves N , so g|N must be
unary since A|N is a unary algebra. This contradiction proves the claim.

Now note that if (0A, β)-traces N2, N
′
2 overlap, and if the restriction of g to N1 × N2 depends

on its first input, then by the claim g restricts to a nonconstant unary function of its first input on
N1×N2, so the restriction of g to N1×N ′

2 also depends on its first input, and is equal to the same
nonconstant unary function of its first input.

Since every congruence class of β is connected through (0A, β)-traces by Corollary B.1.20, we see
that if the restriction of g to Cij depends on its first input, then there is some trace Ni ⊆ ci/β such
that the restriction of g to N1× (cj/β) is a nonconstant unary function of its first input. Similarly,
there is some trace N2 ⊆ cj/β such that the restriction of g to (ci/β)×N2 is a nonconstant unary
function of its second input. But then the restriction of g to N1×N2 depends on both of its inputs,
which is a contradiction.

Theorem B.4.2. If A is a finite algebra and (α, β) is a tame congruence quotient, then β is abelian
over α if and only if the type of (α, β) is 1 or 2 (i.e., unary or affine type).

Proof. (Following Pálfy’s argument from [82]) We assume without loss of generality that α = 0A.
If the type of (0A, β) is 3, 4, or 5, then every (0A, β)-trace N has A|N nonabelian, so in this case β
definitely can’t be abelian. We just need to prove that if the type is 1 or 2 then β is abelian. We
handled the case where the type is 1 in Theorem B.4.1, so from here on we assume that (0A, β) has
type 2.

Suppose for contradiction that β is not abelian, i.e. that there is some f ∈ Poln+1(A) and a ≡ b
(mod β), ci ≡ di (mod β), such that

f(a, c1, ..., cn) = f(a, d1, ..., dn),

but
f(b, c1, ..., cn) ̸= f(b, d1, ..., dn).

Since every congruence class of β is connected through (0A, β)-traces by Corollary B.1.20, we may
assume without loss of generality that a, b are both contained in some (0A, β)-trace N .

By Theorem B.1.14(c) or (g), we see that there is some unary polynomial e with e(A) ∈
MA(0A, β) such that

e(f(b, c1, ..., cn)) ̸= e(f(b, d1, ..., dn)).
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For this choice of e, we see that we have

e(f(b/β, c1/β, ..., cn/β)) ⊆ e(A) ∩ e(f(b, c))/β = N ′

for some (0A, β)-trace N ′. Since the type of (0A, β) is not 1, we can apply Theorem B.3.9 to see that
the traces N and N ′ are polynomially isomorphic. Thus we may assume without loss of generality
that N ′ = N , and to simplify the notation we replace f with e ◦ f , so that we have

f(b/β, c1/β, ..., cn/β) ⊆ N.

The purpose of ensuring that the output of f is in the same trace as the elements a, b which
we used in the first input is as follows. Suppose that we have traces Ni ⊆ ci/β for each i. Then by
Theorem B.3.9 there are unary polynomials gi ∈ Pol1(A) such that

gi : N ≃ Ni

for each i. Then the function
f(x, g1(y1), ..., gn(yn))

has
f(N, g1(N), ..., gn(N)) = f(N,N1, ..., Nn) ⊆ N,

so it preserves N . Since A|N is affine, we can fix once and for all a vector space structure on A|N
with coefficients in some fixed finite field F. Then there are coefficients r, r1, ..., rn, c ∈ F such that

f(x, g1(y1), ..., gn(yn))|N ≈ rx+ r1y1 + · · ·+ rnyn + c.

The coefficients ri depend on the choice of the maps gi : N ≃ Ni, but the coefficient r on x does
not - this is what we will exploit to complete the proof.

Claim. Suppose that Ni, N
′
i ⊆ ci/β are (0A, β)-traces for each i, such that each Ni overlaps

with N ′
i . If we choose unary polynomials gi, g

′
i ∈ Pol1(A) with

gi : N ≃ Ni, g′i : N ≃ N ′
i ,

and if we let r, r′, ri, ..., r
′
i, c, c

′ ∈ F be the coefficients which satisfy

f(x, g1(y1), ..., gn(yn))|N ≈ rx+ r1y1 + · · ·+ rnyn + c,

f(x, g′1(y1), ..., g
′
n(yn))|N ≈ r′x+ r′1y1 + · · ·+ r′nyn + c′,

then r = r′.
Proof of Claim. Since Ni and N ′

i overlap, we can find ui, u
′
i ∈ N such that

gi(ui) = g′i(u
′
i) ∈ Ni ∩N ′

i .

Pluggin in ui, u
′
i for the yis, we get

rx+
∑
i

riui + c = f(x, g(u)) = f(x, g′(u′)) = r′x+
∑
i

r′iu
′
i + c′

for all x ∈ N . Thus the difference (r − r′)x is a constant function on N , so r = r′, which proves
the claim.
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Since every congruence class of β is connected through (0A, β)-traces by Corollary B.1.20, we
can apply the claim repeatedly to see that if we let Ni, N

′
i ⊆ ci/β be any (0A, β)-traces with ci ∈ Ni

and di ∈ N ′
i (with Ni, N

′
i not necessarily overlapping any more), and if we define unary polynomials

gi, g
′
i and coefficients r, r′, ri, ..., r

′
i, c, c

′ ∈ F as in the claim, then we must still have r = r′.
Let ui, u

′
i ∈ N have gi(ui) = ci, g

′
i(u

′
i) = di. Then from

f(a, c1, ..., cn) = f(a, d1, ..., dn)

we conclude that

ra+
∑
i

riui + c = f(a, g(u)) = f(a, g′(u′)) = ra+
∑
i

r′iu
′
i + c′.

Adding r(b− a) to both sides, we see that

f(b, g(u)) = rb+
∑
i

riui + c = rb+
∑
i

r′iu
′
i + c′ = f(b, g′(u′)),

and this contradicts our assumption that

f(b, c1, ..., cn) ̸= f(b, d1, ..., dn),

completing the proof.

Corollary B.4.3. If A is a finite algebra and if the interval Jα, βK is a tight sublattice of Con(A)
of size at least 3, then β is abelian over α.

If additionally Jα, βK does not have a 0, 1-separating homomorphism onto the congruence lattice
of a vector space, then β is strongly abelian over α.

B.5 The basic tolerance, and orderability

The main idea of this section is to take a prime congruence quotient (α, β) in Con(A), and try to
study the simplest binary relations R with α ≤ R ≤ β. Actually, we want to study this in a way
that doesn’t give a different answer for the pair (α, β) on A from the answer it gives for the pair
(0A/α, β/α) on A/α. So we mainly focus on relations which are compatible with α in the following
sense.

Definition B.5.1. If α is a congruence on A and R is a binary relation on A, then we say that R
is α-closed if whenever (a, b) ∈ R and a ≡ c (mod α), b ≡ d (mod α), we also have (c, d) ∈ R.

We define the α-closure of R to be the binary relation

α ◦ R ◦ α.

Proposition B.5.2. For α ∈ Con(A) and R ≤ A2, the α-closure of R is the smallest α-closed
relation on A which contains R. There is a bijection between α-closed binary relations on A and
binary relations on A/α.
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So we can mainly focus on the case α = 0A. In this case, we are studying the simplest binary
relations R which contain the diagonal (and are contained in some atomic congruence β) - but
relations which contain the diagonal are exactly the same as relations which are preserved by Pol(A),
so we are really studying the simplest binary relations on the algebraic structure (A,Pol(A)).

The simplest thing we can do is to take some pair (a, b) ∈ β with a ̸= b, and consider the binary
relation generated by ∆A∪{(a, b)}, where ∆A = 0A is the diagonal of A. This can be written down
explicitly as

SgA2(∆A ∪ {(a, b)}) = {(f(a), f(b)) | f ∈ Pol1(A)}.

So we really just need to know what unary polynomials do to the pair (a, b). Now we can see how
tame congruence theory will be helpful: each trace N of (0A, β) contains an image of every pair
(a, b) ∈ β \ 0A under some unary polynomial by Theorem B.1.14(c) and Proposition B.1.21.

We start by studying tolerances - recall that a tolerance on A is just a symmetric reflexive
relation which is compatible with the algebraic structure of A.

Theorem B.5.3. If (α, β) is a prime congruence quotient of a finite algebra A with type different
from 1, then there is a unique minimal α-closed tolerance τ with

α ⊊ τ ⊆ β.

This tolerance τ is the α-closure of the relation

SgA2

(
∆A ∪ {N2 | N is an (α, β)-trace}

)
.

Furthermore, if the type is 2 or 3, then τ is also minimal among reflexive α-closed relations which
properly contain α and are contained in β.

Proof. We can assume without loss of generality that α = 0A. We just need to prove that every
nontrivial tolerance τ ⊆ β contains N2 for every (0A, β)-trace N .

Since τ is nontrivial, it must contain some (a, b) ∈ β \ 0A, and by Theorem B.1.14(c) and
Proposition B.1.21 we can assume without loss of generality that a, b ∈ N , for any particular
(α, β)-trace N . Thus τ ∩N2 is a nontrivial tolerance on A|N , and we just have to check that A|N
has no nontrivial proper tolerances to finish the proof.

If the type is 3, 4, or 5, then |N | = 2, so in this case we have N = {a, b}, and

N2 = ∆N ∪ {(a, b), (b, a)} ⊆ τ,

since (a, b) ∈ τ and since τ is symmetric and reflexive.
If the type is 2 or 3, then A|N is a Mal’cev algebra, so every reflexive relation on A|N is

a congruence, and we see that N2 ⊆ τ in these cases, even without the assumption that τ is
symmetric.

Example B.5.1. If the type is equal to 1, then there might not be a unique minimal α-closed
tolerance containing α. Consider the unary algebra A = (Z/5, x 7→ x+ 1 (mod 5)), which is simple
and permutational. The minimal tolerances of A are

τ1 = {(x, y) | x− y ∈ {−1, 0, 1} (mod 5)}

and
τ2 = {(x, y) | x− y ∈ {−2, 0, 2} (mod 5)}.
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Definition B.5.4. If (α, β) is a prime congruence quotient with type different from 1, then we
define the basic tolerance of (α, β) to be the minimal α-closed tolerance τ with α ⊊ τ ⊆ β.

If the type is 2 or 3 the situation simplifies - in these cases, the basic tolerance really is basic.

Theorem B.5.5. If (α, β) is a prime congruence quotient of a finite algebra A with type 2 or 3,
then the basic tolerance of (α, β) is just the α-closure of

∆A ∪ {N2 | N is an (α, β)-trace},

without needing to apply SgA2.

Proof. We can assume without loss of generality that α = 0A. By the argument of Theorem B.5.3,
for any (0A, β)-trace N and for any a ̸= b ∈ N , the basic tolerance τ is given by

τ = SgA2(∆A ∪ {(a, b)})
= {(f(a), f(b)) | f ∈ Pol1(A)}.

By Corollary B.1.19, for every f ∈ Pol1(A) either f(a) = f(b) or f(N) is another (0A, β)-trace and
f : N ≃ f(N). In other words, we have

τ = ∆A ∪ {f(N)2 | f(N) is a (0A, β)-trace}.

If the type is 4 or 5, then we can find smaller reflexive relations within the basic tolerance.

Theorem B.5.6. If (α, β) is a prime congruence quotient of a finite algebra A with type 4 or 5,
then there are exactly two minimal α-closed reflexive relations ρ0, ρ1 which strictly contain α and
are contained in β. These relations have the following properties:

• ρ1 = ρ−0 , that is, ρ1 = {(y, x) | (x, y) ∈ ρ0},

• ρ0 ∩ ρ1 = α,

• ρ0 ∪ ρ1 is the α-closure of ∆A ∪ {N2 | N is an (α, β)-trace},

• the basic tolerance of (α, β) is the α-closure of SgA2(ρ0 ∪ ρ1).

Proof. We can assume without loss of generality that α = 0A. By the argument of Theorem B.5.3,
if ρ is a nontrivial reflexive relation contained in β, then for any (0A, β)-trace N the restriction
ρ ∩N2 is a nontrivial reflexive relation on A|N .

Since the type is 4 or 5, N has size 2, say N = {a, b}. Then we see that ρ must either contain
(a, b) or (b, a), so the minimal α-closed relations are

ρ0 = SgA2(∆A ∪ {(a, b)})

and
ρ1 = SgA2(∆A ∪ {(b, a)}) = ρ−0 .

As in the previous argument, we have

ρ0 = {(f(a), f(b)) | f ∈ Pol1} ⊆ ∆A ∪ {f(N)2 | f(N) is a (0A, β)-trace},
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and
ρ0 ∪ ρ1 = ∆A ∪ {f(N)2 | f(N) is a (0A, β)-trace}.

To finish the proof, we just need to check that ρ0 ∩ ρ1 = ∆A, or equivalently that (b, a) ̸∈ ρ0. To
see this, note that if there was a unary polynomial f such that

(f(a), f(b)) = (b, a),

then f |N would be a unary operation of A|N which swaps the elements of N . In this case, A|N
would actually have type 3 (i.e. boolean type), contradicting our assumption that the type was 4
or 5 (i.e. lattice or semilattice type, respectively).

The “α-antisymmetry” of the relation ρ0 is intriguing, and leads us to wonder if we can produce
a nice quasiorder by taking the transitive closure of ρ0 when the type is 4 or 5.

Definition B.5.7. We say that a compatible binary relation ζ ≤ A2 is an (α, β)-preorder if

• ζ is a quasiorder on A,

• ζ ∩ ζ− = α, and

• the transitive closure of ζ ∪ ζ− is β.

Note that every compatible quasiorder ζ on A is an (α, β)-preorder for some pair of congruences
(α, β), since the transitive closure of ζ ∪ ζ− is exactly the linking congruence of ζ.

We say that a congruence quotient (α, β) is orderable if an (α, β)-preorder exists.

Theorem B.5.8. If (α, β) is a tame congruence quotient with type different from 1, then (α, β) is
orderable if and only if the type of (α, β) is 4 or 5.

In fact, if the type of (α, β) is 4 or 5, then there are exactly two minimal (α, β)-preorders ζ0, ζ1
and two maximal (α, β)-preorders ξ0, ξ1 such that every (α, β)-preorder η satisfies

ζi ⊆ η ⊆ ξi

for either i = 0 or i = 1.

Proof. (Following [82]) Once again, we assume without loss of generality that α = 0A. Theorem
B.5.3 shows that if the type is 2 or 3 then every nontrivial reflexive relation η contained in β
contains the basic tolerance, and therefore can’t be a (0A, β)-preorder.

Now suppose that the type is 4 or 5. Let ρ0, ρ1 be the minimal nontrivial reflexive relations
contained in β from Theorem B.5.6. Note that any compatible relation η which contains both ρ0
and ρ1 also contains the basic tolerance, and therefore can’t be a (0A, β)-quasiorder. Clearly we
need to let ζi be the transitive closure of ρi, but the difficulty lies in verifying that ζ0 ∩ ρ1 = ∆A.
To pull this off, we need to understand the maximal quasiorder ξ0 ⊆ β which satisfies ξ0∩ρ1 = ∆A.

Let N = {a, b} be a (0A, β)-trace, and suppose that (a, b) ∈ ρ0. Then we define ξ0 by

ξ0 = {(x, y) ∈ β | ∀f ∈ Pol1(A) s.t. f(x/β) ⊆ N and f(x) = b, we also have f(y) = b}.

Since (x, y) ∈ ξ0 is defined in terms of an implication from x to y, we see that ξ0 is a quasiorder.
By the definition of ξ0 and the fact that (0A, β) is tame, we have

(b, a) ̸∈ ξ0,
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so ξ0 ∩ ρ1 = ∆A, and ξ0 is clearly maximal among quasiorders which are contained in β and only
meet ρ1 at ∆A. Additionally, we have

(a, b) ∈ ξ0
since there is no unary polynomial which swaps a and b if (0A, β) has type 4 or 5, so ζ0 ⊆ ξ0. By
Proposition B.0.1, to finish we just need to check that ξ0 is closed under unary polynomials - but
this follows directly from the definition of ξ0.

Example B.5.2. If the type of (α, β) is 1, then (α, β) can sometimes be orderable and sometimes
not. To see this, consider the unary algebra A1 = ({0, 1}) with no operations, and the unary algebra
A2 = ({0, 1}, 1− x) with just a single operation which swaps the two elements. Then (0A1 , 1A1) is
orderable but (0A2 , 1A2) is not.

B.6 Snags and (strong) solvability

Recall that Theorem B.4.2 says that a tame congruence quotient (α, β) of A is abelian iff it has
type 1 or 2. Since the type of a tame congruence quotient is determined by the collection of binary
polynomials Pol2(A), we should be able to tell if (α, β) is abelian by examining Pol2(A). We can
make this more explicit by recalling that minimal sets of congruence quotients of type 3, 4, and
5 all have a binary pseudo-meet polynomial s, by Proposition B.3.3. This naturally leads to the
concept of a snag.

Definition B.6.1. If A is an algebra, then an ordered pair of elements (a, b) ∈ A2 is a 2-snag if
there is a binary polynomial s ∈ Pol2(A) such that

s(a, a) = s(a, b) = s(b, a) = a, s(b, b) = b.

In other words, we require ({a, b}, s) to be a semilattice with b →s a. We write Sn2(A) ⊆ A2 for
the set of 2-snags of A.

Similarly, Theorem B.4.1 says that a tame congruence quotient (α, β) is strongly abelian iff it
has type 1. If we already know that (α, β) is abelian, then we can use the fact that the minimal
sets for congruence quotients of type 2 all have a ternary pseudo-Mal’cev polynomial p, by Lemma
B.3.6. The trick to deal with this case is to pick an element b in the body of one of the minimal
sets (recall that the “body” of a minimal set is defined to be the union of the traces contained in
it), and to examine the binary polynomial

s(x, y) = p(x, b, y).

The pseudo-Mal’cev property ensures that for any a in the minimal set, we have s(a, b) = p(a, b, b) =
a and s(b, a) = p(b, b, a) = a, while s(b, b) = p(b, b, b) = b, so s depends on both of its arguments in
a way that can’t occur in a strongly abelian algebra.

Definition B.6.2. If A is an algebra, then an ordered pair of elements (a, b) ∈ A2 is a 1-snag if
there is a binary polynomial s ∈ Pol2(A) such that

s(a, b) = s(b, a) = a, s(b, b) = b.

We write Sn1(A) for the set of 1-snags of A, and note that Sn2(A) ⊆ Sn1(A).
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Theorem B.6.3. If (α, β) is a tame congruence quotient of a finite algebra A, then

• β is abelian over α iff β ∩ Sn2(A) = α ∩ Sn2(A), and

• β is strongly abelian over α iff β ∩ Sn1(A) = α ∩ Sn1(A).

As a consequence, for any α ≤ β ∈ Con(A), we have

• β is solvable over α iff β ∩ Sn2(A) = α ∩ Sn2(A), and

• β is strongly solvable over α iff β ∩ Sn1(A) = α ∩ Sn1(A).

This motivates the definition of two equivalence relations
s∼,

ss∼ on Con(A).

Definition B.6.4. If A is an algebra and α, β ∈ Con(A), then we write

α
s∼ β

when β ∩ Sn2(A) = α ∩ Sn2(A), and
α
ss∼ β

when β ∩ Sn1(A) = α ∩ Sn1(A).

Theorem B.6.5. If A is a finite algebra, then each of the equivalence relations
s∼, ss∼ defines a

congruence on the lattice Con(A).
In particular, we have α

s∼ β iff α ∨ β is solvable over α ∧ β, and similarly α
ss∼ β iff α ∨ β is

strongly solvable over α ∧ β.

Proof. That
s∼, ss∼ are compatible with ∧ is immediate from the definition, so we just have to prove

that they are compatible with ∨. Note that the compatibility with ∧ immediately implies that

α
s∼ β ⇐⇒ α

s∼ α ∧ β and α ∧ β s∼ β,

so we just have to check that

α
s∼ β and γ

s∼ δ =⇒ α ∨ γ s∼ β ∨ δ

in the special case where α ≤ β and γ ≤ δ (and similarly for
ss∼). In fact, we just have to check

this in the special case where δ = γ and (α, β) is a prime congruence quotient, and we may as well
assume further that α ≤ γ. By taking γ as large as possible among potential counterexamples, we
see that we just need to prove the following claim.

Claim. If (α, β) and (γ, η) are tame congruence quotients such that

α ≤ γ < η ≤ β ∨ γ,

and if η \ γ contains a snag, then β \ α contains a snag of the same type.
Proof of Claim. Let U ∈MA(γ, η) be a (γ, η)-minimal set. By Lemma B.1.3, we have

η|U ⊆ β|U ∨ γ|U .
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If η \ γ contains a snag, then (γ, η) fails to be abelian (or strongly abelian), so η|U \ γ|U will
also contain a snag (a, b) of the same type, with a, b contained in some (γ, η)-trace N . From
(a, b) ∈ β|U ∨ γ|U , we see that there must be some (a′, b′) ∈ β|U such that

b′ ∈ b/γ, a′ ̸∈ b/γ.

We clearly have (a′, b′) ∈ β \ γ ⊆ β \ α, so we just need to check that (a′, b′) is a snag of the same
type as (a, b).

If (γ, η) has type 3, 4, or 5 (which must always occur if (a, b) is a 2-snag), then by Proposition
B.3.3 we see that b′ = b, and that A|U has a partial semilattice polynomial s such that b→s x for
all x ∈ U . In particular, (a′, b′) = (a′, b) is a 2-snag via s.

If (γ, η) has type 2 (which may only occur if (a, b) is a 1-snag), then by Lemma B.3.6 we see
that A|U has a pseudo-Mal’cev operation p which satisfies

p(x, b′, b′) = p(b′, b′, x) = x

for all x ∈ U , since b′ ∈ b/γ ∩ U ⊆ N is contained in the body of U . In particular, defining the
binary polynomial s by

s(x, y) = p(x, b′, y),

we see that (a′, b′) is a 1-snag via s.

The equivalence relations
s∼, ss∼ still make sense on infinite algebras A, but they lose some of

their meaning. We can still make use of them for locally finite algebras - recall that an algebra A
is locally finite if every finitely generated subalgebra of A is finite.

Corollary B.6.6. If A is a locally finite algebra, then each of the equivalence relations
s∼, ss∼ defines

a congruence on the lattice Con(A).
In particular, we have α

s∼ β iff α∨ β|B is solvable over α∧ β|B for every finite subalgebra B of
A, and similarly for

ss∼.

It therefore makes sense to read
s∼ as “locally solvably equivalent”, and

ss∼ as “locally strongly
solvably equivalent” when studying locally finite algebras. In the infinite case, we may want to
know slightly more than just the fact that

s∼, ss∼ are congruences - we want to know if they are
compatible with infinite meets and joins, for instance. Recall from Definition A.5.5 that a complete
lattice is called algebraic if every element can be written as a join of compact elements.

Proposition B.6.7. If A is locally finite, then the congruences
s∼, ss∼ are compatible with arbitrary

meets and joins, and the lattices Con(A)/
s∼,Con(A)/

ss∼ are algebraic.

Proof. The only tricky claim to check is that the quotient lattices are algebraic. For this, we
use the fact that each

s∼-class α/
s∼ is determined by the intersection α ∩ Sn2(A), and for any

2-snag (a, b) ∈ Sn2(A), we can prove that CgA{(a, b)}/
s∼ is a compact element of Con(A)/

s∼. The
argument for

ss∼ is similar.

We would like to claim that as long as we avoid type 1, locally solvable algebras behave like
Mal’cev algebras - i.e., that they are congruence modular. We can actually prove a much stronger
claim about copies of the pentagon lattice N5 in Con(A).
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α ∨ β

α

α ∧ γ

β

γ

s∼

s∼

ss∼

Theorem B.6.8. If A is locally finite and α, β, γ ∈ Con(A) form a copy of the pentagon lattice N5

with
α ∧ γ ≤ β ≤ γ ≤ α ∨ β,

then
α

s∼ α ∧ γ =⇒ β
ss∼ γ.

Proof. (Following [82]) We may assume without loss of generality that A is finite and that (β, γ)
is a prime congruence quotient. Since

s∼ is a congruence on Con(A), we know that (β, γ) must be
abelian, so assume for the sake of contradiction that (β, γ) has type 2.

Let U be a (β, γ)-minimal set, let B be the body of U (i.e., B is the union of the (β, γ)-traces),
and T = U \ B the “tail” of U . Let p be a pseudo-Mal’cev operation for A|U . Then (B, p) is a
Mal’cev algebra by Theorem B.3.8, so

γ|B ̸⊆ α|B ∨ β|B,

since otherwise we would have a copy of the pentagon lattice N5 in the congruence lattice of (B, p),
contradicting Proposition 1.7.8. Since γ|U ≤ α|U ∧ β|U by Lemma B.1.3, we see that we must have

α ∩ (B × T ) ̸= ∅.

We will use this to show that α can’t possibly be solvable over α∧ γ, which will give us our desired
contradiction. We just need to prove the following claim.

Claim. If δ < θ is a pair of congruences such that

δ ∩ (B × T ) = ∅ and θ ∩ (B × T ) ̸= ∅,

then θ is not abelian over δ.
Proof of Claim. Pick (b, t) ∈ θ ∩ (B× T ), and assume for contradiction that θ is abelian over

δ. Since p is pseudo-Mal’cev, we have

p(b, b, t) = p(t, t, t) = t,

so abelianness of θ over δ implies that

b = p(b, b, b) ≡ p(t, t, b) (mod δ),

so
p(t, t, b) ∈ B
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by the assumption δ ∩ (B × T ) = ∅. Let a be any element in the (β, γ)-trace U ∩ b/γ which is not
in b/β. Then we have

p(t, a, b) ≡ p(t, b, b) = t (mod γ),

and since t is in the tail of U , we have U ∩ t/γ = U ∩ t/β, so

p(t, a, b) ≡ t (mod β).

Then if we define the unary polynomial f by

f(x) = p(x, p(t, p(t, x, b), b), b),

we have

f(b) = p(b, p(t, t, b), b),

f(a) ≡ p(a, p(t, t, b), b) (mod β),

f(t) ≡ p(t, p(t, b, b), b) = p(t, t, b) ≡ b (mod δ).

Since p(t, t, b) ∈ B, Theorem B.3.8 implies that f(a) ̸≡ f(b) (mod β), so f |U is a permutation of
U by the (β, γ)-minimality of U . But then we must have f(T ) = T , so

(b, f(t)) ∈ δ ∩ (B × T ),

which is a contradiction.

Corollary B.6.9. If A is locally finite, then every equivalence class of
s∼/ ss∼ is a modular sublattice

of Con(A)/
ss∼.

Definition B.6.10. If V is a locally finite variety, then we say that V omits type i if for every
finite A ∈ V and every tame congruence quotient (α, β) of A, the type of (α, β) is not i. We write
typ(V) for the set of types which V does not omit.

Proposition B.6.11. If V is a locally finite variety, then the locally solvable algebras in V form a
subvariety Vs, and similarly the locally strongly solvable algebras in V form a subvariety Vss.

Corollary B.6.12. If V is a locally finite variety which omits type 1, then the subvariety Vs of
locally solvable algebras in V has a Mal’cev term.

Proof. We’ve already shown that in this case Vs is congruence modular, so by Corollary A.3.7
applied to the free algebra on two generators in Vs (which is finite, and therefore solvable), the
variety Vs has a Mal’cev term.

If we are only studying idempotent algebras, then this result is satisfying - but for general
algebras, we need to be able to “restrict to a congruence class” if we want to get the most use out
of this. Recall the partial order ⪯| from Definition B.1.4.

Proposition B.6.13. If A is finite and B ⪯| A is such that every constant of B is a term of B,
then typ(V(B)) ⊆ typ(V(A)).
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Proof. If there is some finite C ∈ V(B) which has a congruence quotient (α, β) of type i, then we
pick an (α, β)-trace N and note that C|N/α|N is a permutational algebra (of type i) by Corollary
B.1.17. Then by Propositions B.1.5 and B.1.6, we see that there is some finite A′ ∈ V(A) such that
C|N/α|N ⪯| A′.

Pick e ∈ E(A′), θ ∈ Con(A′), and a ∈ e(A′) such that the permutational algebra C|N/α|N is
polynomially equivalent to A′|N ′ , where N ′ is given by

N ′ = e(A′) ∩ (a/θ).

Pick η ≤ θ maximal such that η|N ′ ̸= θ|N ′ , and let θ′ ≤ θ be a cover of η. Then (η, θ′) is tame by
Proposition B.1.8, so to finish we just need to check that N ′ is an (η, θ′)-trace.

Note that e(a/θ′) ̸⊆ a/η, so by Corollary B.1.20 there must be some (η, θ′)-trace N ′′ ⊆ a/θ′ and
some b, c ∈ N ′′ such that e(b)/η ̸= e(c)/η. Then by Corollary B.1.19 e(N ′′) is also an (η, θ′)-trace,
and we have

e(N ′′) ⊆ e(A′) ∩ (e(a)/θ′) = e(A′) ∩ (a/θ) = N ′.

Since e(N ′′) is an (η, θ′)-trace contained in a/θ′, there is some e′ ∈ e(A′) such that

e(N ′′) = e′(A′) ∩ (a/θ′),

and we may assume without loss of generality that e′ = e ◦ e′. But then e′|N ′ is a polynomial of
A′|N ′ , which is permutational, so in fact we have e(N ′′) = N ′, so N ′ is an (η, θ′)-trace.

Putting this together with the previous results, we can prove the existence of a Mal’cev-like
term which behaves nicely on every locally solvable congruence.

Theorem B.6.14. If V is a locally finite variety which omits type 1, then V has an idempotent
ternary term p such that for any A ∈ V and any a, b ∈ A,

CgA{(a, b)}
s∼ 0A =⇒ p(a, b, b) = p(b, b, a) = a.

Proof. Let F = FV(x, y) be the (finite) free algebra on two generators in V. Define β ∈ Con(F)
to be the congruence CgF{(x, y)}, that is, the least congruence which identifies x with y, so that
F/β ∼= FV(x). Then x/β consists of all binary terms t(x, y) of V which satisfy t(x, x) ≈ x, that is,
x/β corresponds exactly to the set of idempotent binary terms of V. Additionally, let α ∈ Con(F)
be minimal such that α

s∼ β.
Taking N = x/β, we have F|N ⪯| F, so the variety generated by F|N omits type 1. Additionally,

F|N/α|N is solvable, so
typ(V(F|N/α|N )) = {2}.

In particular, we see that F|N/α|N has a ternary Mal’cev term p0. By the definition of F|N , p0 is
the restriction to N of some polynomial p1 of F which preserves N . Since F is generated by x and
y, we see that there is some 5-ary term t of V such that

p1(u, v, w) = t(u, v, w, x, y)

for all u, v, w ∈ F. Since p1 preserves N = x/β, we have

t(x, x, x, x, y) = p1(x, x, x) ∈ x/β,
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so t is idempotent. Define an idempotent ternary term p of V by

p(u, v, w) = t(u, v, w, u, w).

Then we have
p(x, x, y) = t(x, x, y, x, y) = p1(x, x, y) ≡α y

and
p(x, y, y) = t(x, y, y, x, y) = p1(x, y, y) ≡α x.

Now suppose that A ∈ V and a, b ∈ A have CgA{(a, b)}
s∼ 0A. Let π : F → A be the unique

map with π(x) = a, π(y) = b. Then

π−1(CgA{(a, b)}) ⊇ β,

so we have β
s∼ kerπ, which implies that α ≤ kerπ by our choice of α. In particular, we have

p(x, x, y) ≡kerπ y, p(x, y, y) ≡kerπ x,

so p(a, a, b) = b and p(a, b, b) = a. Interchanging a and b in the argument gives p(b, b, a) = a as
well, so we are done.

Definition B.6.15. An idempotent ternary term p is called a weak difference term for V if for any
A ∈ V, any a, b ∈ A, and any θ ∈ Con(A) with (a, b) ∈ θ, we have

p(a, b, b) ≡[θ,θ] p(b, b, a) ≡[θ,θ] a.

Corollary B.6.16. A locally finite variety omits type 1 iff it has a weak difference term. In
particular, every locally finite Taylor variety has a weak difference term.

Proof. We always have θ
s∼ [θ, θ], so any term p as in Theorem B.6.14 is automatically a weak

difference term. Conversely, we need to show that if V has a weak difference term p, then V omits
type 1.

Suppose for contradiction that A ∈ V has a tame congruence quotient (α, β) of type 1. We
may assume without loss of generality that α = 0A, in which case Theorem B.4.2 implies that
[β, β] = 0A. Letting U = e(A) (with e ∈ E(A)) be a (0A, β)-minimal set, we see that e ◦ p restricts
to a Mal’cev operation on any (0A, β)-trace N , contradicting the assumption that A|N is a unary
algebra.

Corollary B.6.17. If V is a locally finite variety which omits type 1, A ∈ V, and α, β ∈ Con(A),
then

α
s∼ β =⇒ α ∨ β = α ◦ β = β ◦ α.

Proof. By symmetry, we just need to check that α ◦ β ⊆ β ◦ α. Pick p as in Theorem B.6.14, and
suppose that x, y, z ∈ A satisfy

x α y β z.

Then we have
x β p(x, y, z) α z,

where
p(x, y, z)/β = p(x, y, y)/β = x/β
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follows from (α ∨ β)/β
s∼ 0A/β, and

p(x, y, z)/α = p(x, x, z)/α = z/α

follows from (α ∨ β)/α
s∼ 0A/α.

Corollary B.6.18. If V is a locally finite variety which omits type 1, A ∈ V, and α, β ∈ Con(A),
then

β
s∼ α ∧ β =⇒ α ∨ β = α ◦ β ◦ α.

Proof. Note that the assumption is equivalent to α ∨ β s∼ α, or equivalently (α ∨ β)/α
s∼ 0A/α.

We just need to check that β ◦ α ◦ β ⊆ α ◦ β ◦ α. Pick p as in Theorem B.6.14, and suppose that
w, x, y, z ∈ A satisfy

w β x α y β z.

Then we have
w α p(w, y, y) β p(x, y, z) α z,

with the α congruences following as in the previous corollary, while the β congruence follows directly
from w ≡β x and y ≡β z.

B.7 Pseudocomplements and semidistributivity

In this section we start investigating the consequences of avoiding the abelian types on the congru-
ence lattices of finite algebras. We start with some lattice-theoretic preliminaries.

Definition B.7.1. If L is a lattice and α ≤ β ∈ L, then we say that δ is the weak pseudocomplement
of β over α if δ is the greatest element of L such that β ∧ δ = α, that is, if

β ∧ γ = α ⇐⇒ γ ∈ Jα, δK.

A closely related concept is the relative pseudocomplement: for any α, β ∈ L, δ is called the relative
pseudocomplement of β with respect to α if

β ∧ γ ≤ α ⇐⇒ γ ≤ δ,

and this is written in symbols as δ = β → α or δ = β Ą α. If α = 0, then a weak or relative
pseudocomplement δ of β over 0 is just called a pseudocomplement of β, and written in symbols as
δ = ¬β or δ = β∗.

Similarly, for α ≤ β ∈ L we say that δ is the dual weak pseudocomplement of α under β if

α ∨ γ = β ⇐⇒ γ ∈ Jδ, βK.

Additionally, for any α, β ∈ L, δ is called the dual relative pseudocomplement of α with respect to
β if

α ∨ γ ≥ β ⇐⇒ γ ≥ δ,

and some authors write this in symbols as δ = β − α or δ = β\α.
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Of course, pseudocomplements don’t always exist - for instance, the diamond latticeM3 is not
pseudocomplemented. Note that there can be a weak pseudocomplement of β over α even if there
is no relative pseudocomplement of β with respect to α - this situation occurs in the pentagon
lattice N5. We at least have the following implication between the two concepts.

Proposition B.7.2. If α ≤ β ∈ L and the relative pseudocomplement of β with respect to α exists
and is equal to δ, then δ is also the weak pseudocomplement of β over α.

To put these concepts in context, we recall the definition of a Heyting algebra, from intuitionistic
logic.

Definition B.7.3. A Heyting algebra is an algebraic structure H = (H,∧,∨,Ą, 0, 1) such that
(H,∧,∨, 0, 1) is a 0, 1-lattice and for every pair of elements α, β ∈ H, β Ą α is the relative
pseudocomplement of β with respect to α.

Proposition B.7.4. A complete lattice is the lattice reduct of a Heyting algebra iff it satisfies the
infinite distributive law

α ∧
( ∨
β∈S

β
)

=
∨
β∈S

(α ∧ β). (D∞(∧))

Proof. First we check that any complete lattice L which satisfies the infinite distributive law
(D∞(∧)) can be expanded to a Heyting algebra. For α, β ∈ L, the least possible value for the
relative pseudocomplement β Ą α is given by

β Ą α =
∨

β∧γ≤α
γ.

To check that this definition works, we just need to check that it actually satisfies β ∧ (β Ą α) ≤ α,
which follows from

β ∧
( ∨
β∧γ≤α

γ
)

=
∨

β∧γ≤α
(β ∧ γ) ≤

∨
β∧γ≤α

α = α,

where the first equality is a special case of (D∞(∧)).
Conversely, we need to check that any complete Heyting algebra satisfies the infinite distributive

law (D∞(∧)). For this, we argue as follows:

α ∧
( ∨
β∈S

β
)
≤ γ ⇐⇒

∨
β∈S

β ≤ α Ą γ

⇐⇒ ∀β ∈ S, β ≤ α Ą γ

⇐⇒ ∀β ∈ S, α ∧ β ≤ γ

⇐⇒
∨
β∈S

(α ∧ β) ≤ γ.

Now we compare this to the relationship between weak pseudocomplements and semidistribu-
tivity.

Definition B.7.5. A lattice L is meet-semidistributive, written SD(∧), if for all α, β, γ ∈ L we
have

α ∧ β = α ∧ γ =⇒ α ∧ (β ∨ γ) = α ∧ β.
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Similarly, a lattice L is join-semidistributive, written SD(∨), if for all α, β, γ ∈ L we have

α ∨ β = α ∨ γ =⇒ α ∨ (β ∧ γ) = α ∨ β.

A lattice is called semidistributive if it is both meet-semidistributive and join-semidistributive.

Recall from Definition A.5.5 that a lattice is called algebraic if it is complete and every element
can be written as a join of compact elements.

Proposition B.7.6 ([52]). An algebraic lattice L is meet-semidistributive iff for all α ≤ β ∈ L,
there is a weak pseudocomplement of β over α. In this case, L also satisfies the following infinite
form of meet-semidistributivity:

∀i, j α ∧ βi = α ∧ βj =⇒ ∀i α ∧
(∨

j

βj

)
= α ∧ βi. (SD∞(∧))

Proof. First we prove that every meet-semidistributive lattice has weak pseudocomplements. Note
that the sublattice Jα, 1K of elements of L which are above α also forms an algebraic lattice: if
θ is compact in L, then α ∨ θ is compact as an element of Jα, 1K. Thus we may assume without
loss of generality that α = 0, in which case we just need to prove that every element β has a
pseudocomplement ¬β.

If α = 0, then the least possible value for ¬β is given by

¬β =
∨

β∧γ=0

γ.

Note that meet-semidistributivity implies that every join of finitely many elements γi satisfying
β ∧ γi = 0 will satisfy

β ∧
( ∨
i≤n

γi

)
= 0.

We reduce the infinite case to the finite case by using the algebraicity of the lattice L. Suppose
for the sake of contradiction that β ∧ (¬β) ̸= 0, then since L is algebraic there is some nonzero
compact element θ of L such that

θ ≤ β ∧ (¬β) ≤
∨

β∧γ=0

γ.

Since θ is compact, there is a finite collection of γi satisfying β ∧ γi = 0 such that θ ≤
∨
i≤n γi. But

then we have
θ ≤ β ∧

( ∨
i≤n

γi

)
= 0,

contradicting the assumption that θ is nonzero.
Now suppose that for all α ≤ β ∈ L there is a weak pseudocomplement of β over α. We will

prove the infinite form of the meet-semidistributivity property. Suppose that there is a family βi
such that

α ∧ βi = γ
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for all i. Let δ be a weak pseudocomplement of α over γ. Then by the definition of a weak
pseudocomplement, we have βi ∈ Jγ, δK for all i, so∨

i

βi ∈ Jγ, δK,

which in turn implies that

α ∧
(∨

i

βi

)
= γ.

Remark B.7.1. A similar argument can be used to show that an algebraic lattice satisfies the finite
distributive law if and only if it satisfies the infinite distributive law (D∞(∧)). In particular, if a
variety V is congruence distributive, then for every A ∈ V the congruence lattice Con(A) forms a
Heyting algebra.

For lattices of finite length, we can show that meet-semidistributivity is a consequence of the
existence of weak pseudocomplements for covers α ≺ β.

Proposition B.7.7. If α ∧ β = α ∧ γ = δ but α ∧ (β ∨ γ) ̸= δ, then for any ϵ such that

δ ≺ ϵ ≤ α ∧ (β ∨ γ),

there is no weak pseudocomplement of ϵ over δ.

Proof. Suppose for the sake of contradiction that there was some weak pseudocomplement θ of ϵ
over δ. Then from

δ ≤ ϵ ∧ β ≤ α ∧ β = δ

we see that β ≤ θ, and similarly γ ≤ θ. But then β ∨ γ ≤ θ, so we have

ϵ ≤ ϵ ∧ α ∧ (β ∨ γ) = ϵ ∧ (β ∨ γ) = δ,

contradicting the assumption δ ≺ ϵ.

With the lattice-theoretic preliminaries out of the way, our task is now to show that weak
pseudocomplements exist when we avoid the abelian types. We will use the concept of the relative
centralizer (α : β) from Definition 1.9.35.

Proposition B.7.8. If (α, β) is a nonabelian prime congruence quotient on A, then the relative
centralizer (α : β) is the weak pseudocomplement of β over α in Con(A). In particular, in this case
the weak pseudocomplement of β over α exists.

More generally, if α ≤ β then (α : β) is the weak pseudocomplement of β over α if and only if

β ∧ (α : β) = α,

and this occurs if the lattice Jα, βK is atomic and every prime congruence quotient (α, δ) with
α ≺ δ ≤ β is nonabelian.
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Proof. We may assume without loss of generality that α = 0A, so we just have to prove that if β ∈
Con(A) is a nonabelian atomic congruence, then the centralizer (0A : β) is the pseudocomplement
of β. We just need to check that

C(γ, β; 0A) ⇐⇒ β ∧ γ = 0A.

By Proposition 1.9.30(b) we see that

β ∧ γ = 0A =⇒ C(γ, β; 0A)

without any assumptions on β. For the other direction, since β is an atom we have

β ∧ γ ̸= 0A ⇐⇒ γ ≥ β,

and by Proposition 1.9.30(c) we see that if β is nonabelian and γ ≥ β then C(γ, β; 0A) can’t be
true.

For the more general statement, note that by the argument above every γ which satisfies β∧γ =
α also satisfies γ ≤ (α : β). If β ∧ (α : β) ̸= α, then picking any δ with α ≺ δ ≤ β ∧ (α : β) we see
that C(δ, β;α) holds, so δ is abelian over α by Proposition 1.9.30(c).

In [82], the following alternative tame congruence theoretic characterization of the weak pseu-
docomplement of β over α is given, based on Proposition B.3.3.

Proposition B.7.9. Suppose (α, β) is a nonabelian prime congruence quotient on a finite algebra
A. Let U ∈MA(α, β) be any (α, β)-minimal set, and as in Proposition B.3.3 let a ∈ U be an element
of the unique (α, β)-trace N , such that there is a partial semilattice polynomial s ∈ Pol(A|U ) with
s(a, x) = x for all x ∈ U .

Then the weak pseudocomplement of β over α is equal to the largest congruence δ ∈ Con(A)
such that δ|U has {a} as a congruence class (and this δ exists).

Proof. To see that such a δ exists, we first let δ′ be the largest congruence on A|U with {a} as a
congruence class, and then we apply Lemma B.1.3 to see that the restriction map θ 7→ θ|U is a
surjective homomorphism from Con(A) to Con(A|U ), and we take δ to be the join of all preimages
of δ′ under this map.

To see that δ is the weak pseudocomplement of β over α, first we note that Proposition B.3.4
implies that N is the unique (α, β)-trace contained in U , so since {a} is a congruence class of δ|U
we must have (β ∧ δ)|U ⊆ α|U . Additionally, since {a} is a congruence class of α|U we must have
α ≤ β ∧ δ. Then since the restriction map Jα, βK ↠ Jα|U , β|U K is 0, 1-separating we see that we
must in fact have β ∧ δ = α.

Additionally, for any α ≤ γ ̸≤ δ, {a} is not a congruence class of γ|U , so there is some c ∈ U \{a}
such that (a, c) ∈ γ. If c ∈ N \ {a}, then (a, c) ∈ β \ α, so β ∧ γ ̸= α. Otherwise, let b be any
element of N \ {a}, so we have N/α|N = {a, b}/α|N . Then we have

c = s(a, c) ≡β|U s(b, c),

and since c/β|U = c/α|U (since c ̸∈ N and N is the unique (α, β)-trace contained in U), we have

a ≡γ c ≡α|U s(b, c) ≡γ s(b, a) = b.

Thus, in this case we have (a, b) ∈ (β∧γ)\α, so β∧γ ̸= α. Either way, γ ̸≤ δ implies β∧γ ̸= α.
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There is a corresponding result for dual weak pseudocomplements, as long as we exclude both
the abelian types and the semilattice type.

Proposition B.7.10. Suppose (α, β) is a prime congruence quotient of type 3 or 4 (i.e. boolean
or lattice type) on a finite algebra A, and let N be any (α, β)-trace. Then the dual weak pseudo-
complement of α under β exists and is equal to CgA(N2).

Proof. By Proposition B.3.3, |N | = 2, and by Lemma B.1.3, the restriction map J0A, βK →
Con(A|N ) is a surjective lattice homomorphism. Since |N | = 2 we have α|N = 0A|N , so we have

α ∨ γ = β =⇒ γ ∈ J0A, βK and 0A|N ∨ γ|N = 1A|N

=⇒ γ ≤ β and N2 ⊆ γ
=⇒ γ ≤ β and γ ̸≤ α
=⇒ α ∨ γ = β,

where the last implication follows from the fact that (α, β) is a prime congruence quotient.

The fact that we had to exclude type 5 from the last result isn’t just an artifact of the proof:
if A = ({0, 1},∨) is a two-element semilattice, then Con(A2) is depicted in Example 2.2.3, and we
can see that the congruence Θ = CgA2{((0, 1), (1, 0))} has no dual weak pseudocomplement under
1A2 . As an abstract lattice, Con(A2) is isomorphic to the lattice pictured below, which is called D2.

The occurence of the lattice D2 in Con(A2) is not restricted to this particular example - the next
result from [82] shows that something like this occurs whenever we have a prime congruence quotient
of type 5.

Proposition B.7.11 (Theorem 5.27 of [82]). Suppose (α, β) is a nonabelian prime quotient on a
finite algebra A and let R ≤ A2 be the basic tolerance for (α, β). Consider the sublattice

L = J(α× α)|R, (β × β)|RK

of Con(R). If (α, β) has type 3 or 4 then L is isomorphic to the four-element diamond latticeM2,
and if (α, β) has type 5 then L is isomorphic to the lattice D2 depicted above.

Proof. We can assume without loss of generality that α = 0A. Let N be a (0A, β)-trace, then
|N | = 2 and A|N is polynomially equivalent to either a boolean algebra, a lattice, or a semilattice
according to the type of (0A, β). Suppose N = {a, b} and pick e ∈ E(A) such that

N = e(A) ∩ a/β.

Additionally, if (0A, β) has type 5 then assume that a is the neutral element of A|N and that b is
the absorbing element.
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First we check that each congruence on (A|N )2 extends to a congruence on R which is contained
in (β × β)|R. By Theorem B.5.3, we have

R = SgA2(∆A ∪N2).

Defining the unary polynomial e(2) on R as in the proof of Proposition B.1.6, we see that

N2 = e(2)(R) ∩ (a, a)/(β × β)|R,

and (A|N )2 is polynomially equivalent to R|N2 by the argument of Proposition B.1.6, so Lemma
B.1.3 shows that restriction to N2 defines a surjective lattice homomorphism from J0R, (β × β)|RK
to Con((A|N )2).

The main difficulty is to check that every congruence θ on R which is contained in (β × β)|R
is equal to CgR(θ|N2) - this requires some tedious casework. It’s helpful to note that since the
transitive closure of the tolerance R is β, the congruence (β×β)|R is actually the linking congruence
of R ≤sd A× A. In other words, we have

(β × β)|R = kerπ1 ∨ kerπ2.

First we will show that the containment

CgR(kerπ1|N2) ⊆ kerπ1 = (0A × 1A)|R

is an equality. Consider any (c, d) ∈ R. Since R is generated by ∆A ∪ N2, there is some binary
polynomial p ∈ Pol2(A) such that p(a, b) = c, p(b, a) = d. Then we have[

c
d

]
= p

([
a
b

]
,

[
b
a

])
≡ p

([
a
a

]
,

[
b
b

])
=

[
c
c

]
(mod CgR(kerπ1|N2)).

Since this is true for any (c, d) ∈ R, we see that CgR(kerπ1|N2) = kerπ1.
Now for any θ ≤ (β × β)|R, if π1(θ) ̸= β then θ ⊆ kerπ1 since β is atomic. If π1(θ) = β, then

(a, b) ∈ π1(e(2)(θ)) = π1(θ|N2), so we have the implication

θ|N2 ⊆ kerπ1|N2 =⇒ θ ⊆ kerπ1 = CgR(kerπ1|N2).

Together with CgR(N2) ⊇ kerπ1 ∨ kerπ2, this shows that θ = CgR(θ|N2) if θ|N2 is one of 0N ×
0N , 0N × 1N , 1N × 0N , 1N × 1N . This handles the cases where (0A, β) has type 3 or 4 (lattices and
boolean algebras are congruence distributive, so congruences on (A|N )2 are determined by their
first and second projections in these cases), so from here on we may assume that (0A, β) has type
5 (i.e. semilattice type).

By the analysis of the congruences on the square of the two-element semilattice from Example
2.2.3, we have two remaining cases: either θ|N2 is the congruence generated by ((a, b), (b, a)), or
(possibly after swapping coordinates) θ|N2 is the congruence generated by ((b, a), (b, b)). In the
first case, θ|N2 contains both ((b, a), (b, b)) and ((a, b), (b, b)), so for any (c, d) ∈ R, if we choose the
binary polynomial p satisfying p(a, b) = c, p(b, a) = d as before, we get[

c
d

]
= p

([
a
b

]
,

[
b
a

])
≡ p

([
b
b

]
,

[
b
b

])
∈ ∆A (mod CgR(θ|N2)).
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Thus in this case, every element of R is congruent modulo θ to a diagonal element, so θ is determined
by its restriction to ∆A ∼= A. Since θ|∆A ⊆ (β × β)|∆A and (a, a) is not congruent to (b, b) modulo
θ, we see that θ|∆A is trivial, so every pair of elements of R which are congruent modulo θ are
congruent to the same diagonal element of ∆A via the congruence CgR{((a, b), (b, a))}.

To finish the proof, we consider the case where θ|N2 is the congruence generated by ((b, a), (b, b)),
so θ ⊊ kerπ1. Suppose that the pairs (c, d1), (c, d2) ∈ R are congruent modulo θ, and choose binary
polynomials p1, p2 such that pi(a, b) = c and pi(b, a) = di. Then we have[

c
di

]
= pi

([
a
b

]
,

[
b
a

])
≡ pi

([
a
b

]
,

[
b
b

])
=

[
c

pi(b, b)

]
(mod CgR(θ|N2)).

We claim that p1(b, b) = p2(b, b). Suppose not, for the sake of contradiction. Since p1(b, b) ̸=
p2(b, b) ∈ c/β, we can apply Theorem B.1.14(c) to see that there is some unary f ∈ Pol1(A)
such that f(p1(b, b)) ̸= f(p2(b, b)) and f(c/β) = N . Suppose without loss of generality that
f(p1(b, b)) = a, and note that since (a, a) is not congruent to (a, b) modulo θ we must have f(c) = b.
Then the unary polynomial g(x) = f(p1(x, b)) preserves N and satisfies

g(b) = f(p1(b, b)) = a, g(a) = f(p1(a, b)) = f(c) = b.

Then g|N is not monotone, which contradicts the assumption that A|N is polynomially equivalent
to a semilattice, so we must have had p1(b, b) = p2(b, b) after all. Therefore (c, d1) is congruent to
(c, d2) modulo CgR(θ|N2), and since this is true for any (c, d1), (c, d2) which are congruent modulo
θ, we are done.

The fact that prime congruences of types 3 and 4 have dual weak pseudocomplements has a
nice concrete consequence.

Proposition B.7.12. If B is a finite simple algebra of boolean or lattice type (i.e., if (0B, 1B) has
type 3 or 4), then for any finite collection of finite algebras Ai, if B ∈ V(A1, ...,An) then B ∈ HS(Ai)
for some i.

Proof. Since B,Ai are finite, if B ∈ V(A1, ...,An) then B ∈ HSPfin(A1, ...,An), so there is some

R ≤
∏
iA

ki
i and some congruence θ ∈ Con(R) such that B ∼= R/θ. Assume for simplicity that the

ki are all 1, by repeating some of the Ais if necessary. We just need to prove that kerπi ≤ θ for
some i to complete the proof, since then B will be isomorphic to a quotient of πi(R) ≤ Ai.

By Proposition B.1.23, the prime quotient (θ, 1R) has the same type as (0B, 1B), so by Proposi-
tion B.7.10 we see that θ has a dual weak pseudocomplement δ under 1R. If every i has kerπi ̸≤ θ,
then each i has θ ∨ kerπ1 = 1R, in which case we must have δ ≤ kerπi for all i. But then we have
δ = 0R, which contradicts θ ∨ δ = 1R.

Even though prime congruences of type 5 might not have dual weak pseudocomplements in
general, the fact that they always have weak pseudocomplements can be use to prove that they
have dual weak pseudocomplements in some special cases.

Proposition B.7.13. If (α, β) is a nonabelian prime quotient on a finite algebra A, and if there
is some γ such that α∨ γ = β and α∧ γ = 0A, then α has a dual weak pseudocomplement under β.

More generally, any nonabelian prime quotient (α, β) of A has the following property: for all γ
such that α ∨ γ = β, there is a least δ such that α ∨ δ = β and α ∧ γ ≤ δ.

483



Proof. The more general statement follows from the first statement by replacing A by A/(α ∧ γ),
so suppose that α ∨ γ = β and α ∧ γ = 0A.

Let δ be any atom of the lattice J0A, γK. Then we have

α ∧ δ ≤ α ∧ γ = 0A

and
δ ̸≤ α, δ ≤ γ ≤ β =⇒ α ∨ δ = β.

Thus the prime congruence quotient (0A, δ) is perspective to (α, β), so it must be nonabelian since
s∼ is a congruence on Con(A) by Theorem B.6.5 (in fact (0A, δ) has the same type as (α, β) by
Proposition B.1.25).

By Proposition B.7.8, δ has a pseudocomplement (0A : δ). Then for any θ such that δ ̸≤ θ we
have

δ ∧ θ = 0A,

and together with α ∧ δ = 0A we see that

α ∨ θ ≤ (0A : δ).

Since δ ≤ β we have β ̸≤ (0A : δ), so we have proven that

δ ̸≤ θ =⇒ α ∨ θ ̸= β.

Thus δ is the dual weak pseudocomplement of α under β.

Putting together the results we have shown so far, we can give a sufficient condition for intervals
in Con(A) to be congruence semidistributive.

Proposition B.7.14. If A is a finite algebra and α ≤ β ∈ Con(A), then

• if no prime congruence quotient (γ, δ) with α ≤ γ ≺ δ ≤ β has type 1 or 2, then Jα, βK is
meet-semidistributive, and

• if no prime congruence quotient (γ, δ) with α ≤ γ ≺ δ ≤ β has type 1, 2, or 5, then Jα, βK is
join-semidistributive.

Proof. This follows from Proposition B.7.7, Proposition B.7.8, and Proposition B.7.10.

We can prove much stronger results by making use of the congruence
s∼ on Con(A).

Theorem B.7.15. If A is locally finite, then Con(A)/
s∼ satisfies the infinite meet-semidistributivity

law (SD∞(∧)).

Proof. Suppose that α, βi ∈ Con(A) satisfy α ∧ βi
s∼ α ∧ βj for all i, j. By Proposition B.6.7, we

may assume without loss of generality that each βi is the join of all the elements of its
s∼-class, in

which case we must actually have
α ∧ βi = α ∧ βj

for all i, j. Let δ be the common value of α ∧ βi. By Proposition 1.9.30(b), we have

α ∧ βi = δ =⇒ C(βi, α; δ)
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for all i, so by Proposition 1.9.30(e) we have

C
(∨

i

βi, α; δ
)
.

Then by Proposition 1.9.30(c) α ∧
(∨

i βi
)

is abelian over δ, which implies α ∧
(∨

i βi
) s∼ δ.

Theorem B.7.16. If A is finite and a convex sublattice L ≤ Con(A) contains no prime con-
gruence quotients of type 5, then L/ s∼ is semidistributive (i.e. both meet-semidistributive and
join-semidistributive).

Proof. We’ve already shown that L/ s∼ is meet-semidistributive, so we only need to check that it is
join-semidistributive. Suppose that α, β, γ ∈ L satisfy α ∨ β s∼ α ∨ γ. We can assume without loss
of generality that α is minimal in α/

s∼ ∩L, and similarly for β and γ, in which case we actually
have

α ∨ β = α ∨ γ,

and if we call the common value δ then δ is minimal in δ/
s∼ ∩L. If we assume for the sake of

contradiction that α ∨ (β ∧ γ) ̸= δ, then there is some prime congruence quotient (ϵ, δ) such that

α ∨ (β ∧ γ) ≤ ϵ ≺ δ,

and by the dual to Proposition B.7.7 there can’t be any dual weak pseudocomplement to ϵ under
δ. Since ϵ ∈ L and δ is minimal in δ/

s∼ ∩L, we see that ϵ ̸ s∼ δ, and by our assumption on L the
type of (ϵ, δ) must therefore be 3 or 4, contradicting Proposition B.7.10.
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