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1 Projective Geometry and Cross ratios

Projective geometry is the geometry of a painter living in three-dimensional space, who wants to
capture what they see on a flat two-dimensional canvas. The symmetries of projective geometry
correspond to tilting or rotating the canvas (without the painter moving their head). These sym-
metries can distort angles and change the ratios between lengths, but at least straight lines will
always remain straight.

One important fact about projective geometry is that lines which look parallel on one canvas
can meet when projected onto a tilted canvas. Another way of saying this is that two lines in
the true three-dimensional world can meet at a point which can’t be projected onto the canvas,
and the painter’s drawings of these lines will appear to be parallel. From the point of view of the
canvas, this missing point lives “at infinity”, but the painter can see the missing point quite clearly.
The “projective plane” is what we get when we complete the plane of the canvas by adding in the
missing points at infinity where parallel lines meet.

Definition 1. The projective plane P2 is the set of lines through an observation point O in three
dimensional space. A projective line l is a plane passing through O, and a projective point P is
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a line passing through O. If the line defining P is contained in the plane defining l, we say that
P ∈ l.

The following facts about the projective plane can be verified using standard facts from linear
algebra about the dimensions of linear spaces passing through O:

• if P 6= Q are different projective points, then there is exactly one projective line l which
contains P and Q, and

• if l 6= m are different projective lines, then there is exactly one projective point P which is
contained in both l and m.

The projective line containing the projective points P and Q is written as PQ, and the projective
point which is contained in both l and m is written as l ∩m. The fact that every pair of distinct
lines has exactly one intersection point makes the projective plane much easier to work with than
the ordinary plane.

If A2 is an ordinary plane which does not pass through O, then we can identify most projective
points of P2 with ordinary points on A2 by taking the intersection of the line defining the projective
point with A2. The projective line which is defined by a plane passing through O and parallel to A2

is called the line at infinity, or the horizon line. Projective points contained in the line at infinity
are called infinite points.

If we take O = (0, 0, 0), then we can put coordinates on the projective plane as follows. Every
projective point P is a line through O and some other point (p, q, r). Then every point on the line
defining P is of the form (λp, λq, λr) for some λ. We write P = [p : q : r], where the colons indicate
that we only care about the ratios of the coordinates. If A2 is the plane z = 1, then the ordinary
point on A2 corresponding to P is (pr ,

q
r , 1), or if we ignore the z-coordinate it is just (pr ,

q
r ). If

r = 0, then P is an infinite point with slope q
p .

We can define projective coordinates for projective lines as well. A projective line l is defined
by a single linear equation

dx+ ey + fz = 0,

with not all of d, e, f equal to 0. Furthermore, this equation defines the same line if all of d, e, f are
rescaled by the same nonzero λ. Thus we say that l = (d : e : f). If P = [p : q : r], then we have
P ∈ l if and only if

dp+ eq + fr = 0.

The intersection of l with the ordinary plane A2 defined by z = 1 is just the line dx+ ey + f = 0.
The line at infinity has coordinates (0 : 0 : 1).

The coordinate system described above can be called cartesian projective coordinates. There are
other projective coordinate systems, one of the most useful of which is the barycentric coordinate
system. In the barycentric coordinate system, a triangle ABC in A2 is fixed and the coordinates of
three dimensional space are chosen such that A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1) - so the plane
A2 is now defined by the equation x+y+z = 1. If P is an ordinary point in A2, then the projective
coordinates [p : q : r] of P are defined to be any three numbers p, q, r, not all zero, proportional
to the three directed areas [PBC], [APC], [ABP ]. In the barycentric coordinate system, a line
l = (d : e : f) is the set of points P such that

d[PBC] + e[APC] + f [ABP ] = 0.

The line at infinity has barycentric coordinates (1 : 1 : 1).
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1.1 Cross Ratios

Before we study the geometry of a painter living in a three-dimensional world with a two-dimensional
canvas, we should start by understanding the simpler situation of a painter living in a two-
dimensional world who paints on a one-dimensional canvas.

We need to relate the geometry of our one-dimensional canvas to the geometry of what the
painter sees, i.e. the geometry of the collection of lines which pass through the painter’s eyeball.
We’ll start with a careful definition of the (signed) ratio, which we will use as a coordinate on a
one-dimensional space, analogous to barycentric coordinates.

Definition 2. If A,B,C are three points on a line, not all equal, then we define their ratio to be

(A,B;C) =
AC

BC
,

where the ratio is taken to be positive if the rays AC and BC point in the same direction, and
negative otherwise.

If l1, l2, l3 are three directed lines passing through a point, not all equal, then their ratio is
defined by

(l1, l2; l3) =
sin∠l1l3
sin∠l2l3

,

where the angles are oriented in the counterclockwise sense.

Exercise 1. (a) Show that if A 6= B then there is a bijection between points C on the line AB
and ratios (A,B;C). Thus we can use the ratio as a coordinate on the line AB.

(b) Show that the ratio (l1, l2; l3) does not depend on the orientation of line l3. Show that if
l1 6= l2 we can use the ratio (l1, l2; l3) as a coordinate on the set of lines through the point
l1 ∩ l2.

Exercise 2. Suppose that points A,B,C, not all equal, are on a line, and that point O is not on
that line. Show that

(A,B;C)

(OA,OB;OC)
=
|OA|
|OB|

.

Definition 3. If A,B,C,D are four points on a line, no three of them equal, then we define their
cross ratio to be

(A,B;C,D) =
(A,B;C)

(A,B;D)
=
AC

CB

/
AD

DB
.

If l1, l2, l3, l4 are four lines passing through a point, no three of them equal, then their cross ratio
is defined by picking an orientation for each line, and then setting

(l1, l2; l3, l4) =
(l1, l2; l3)

(l1, l2; l4)
=

sin∠l1l3
sin∠l3l2

/
sin∠l1l4
sin∠l4l2

.

Theorem 1 (The fundamental theorem of cross ratios). If A,B,C,D are on a line, no three of
them equal, and if O is a point not on that line, then

(OA,OB;OC,OD) = (A,B;C,D).
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We would like to extend the above definitions to any four points or lines in the projective
plane. One way to do this is to make special definitions if one of A,B,C,D is an infinite point: for
instance, if ∞ is the infinite point on line AB, then we have

(A,B;C,∞) = (A,B;C) = −AC
CB

.

Similarly, if all of A,B,C,D are infinite points with slopes a, b, c, d, then their cross ratio is

(a, b; c, d) =
c− a
b− c

/
d− a
b− d

.

However, the best way to do this is to simply change our canvas to get a coordinate system where
none of A,B,C,D is an infinite point. In other words, we find a new plane A′2 not passing through
the observation point O, which intersects the four lines corresponding to the projective points
OA,OB,OC,OD at some new points A′, B′, C ′, D′. Then for finite points A,B,C,D we have

(A,B;C,D) = (OA,OB;OC,OD) = (A′, B′;C ′, D′),

so the cross ratio in the new coordinate system will be the same as the original cross ratio. If one
of A,B,C,D is an infinite point we use this formula as the definition of the cross ratio.

To check your understanding, calculate the cross ratio of four parallel lines in terms of the
distances between them (parallel lines intersect at the infinite point corresponding to their common
slope).

Exercise 3. Let ABC be a triangle, let M be the midpoint of AC, and let N be a point on line
BM such that AN is parallel to BC. Let P be any point on line AC, and let Q be the intersection
of line BP with line AN . Use cross ratios to prove that

AQ

QN
=

1

2

AP

PM
.

Exercise 4. Suppose a painter is painting a square-tiled floor which he is looking at from an angle.
Given that the painter draws the four corners of one of the squares at the four points ABCD,
construct the rest of the points that the painter draws using only a straightedge. If the next two
points that the painter draws along the line AB are X and Y , compute the value of the cross ratio
(A,B;X,Y ).

Exercise 5. (a) Check that for any number λ we have (λ, 1; 0,∞) = λ.

(b) Show that (A,B;D,C) = 1
(A,B;C,D) .

(c) Show that (A,C;D,B) = 1
1−(A,B;C,D) .

Exercise 6. (a) Show that if A 6= B and (A,B;C,X) = (A,B;C, Y ) then X = Y .

(b) Show that if (A,B;C,D) = 1 then either A = B or C = D.

(c) Show that if A 6= B, C 6= D, and (A,B;C,D) = (A,B;D,C) then (A,B;C,D) = −1.

Definition 4. If (A,B;C,D) = −1, then the four points A,B,C,D are called harmonic. We also
say that D is the harmonic conjugate of C with respect to A,B. Sometimes we say that A,B,C,D
are harmonic when three of them are equal.
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Example 1. (i) If M is the midpoint of AB and if ∞ is the infinite point along line AB, then
(A,B;M,∞) = −1.

(ii) If ABC is a triangle, and if X,Y are the feet of the internal and external angle bisectors
through C, then (A,B;X,Y ) = −1 by the angle bisector theorem.

(iii) We have (1,−1;x, 1
x) = −1 and (0,∞;x,−x) = −1 for any x.

A

B

C
D

FE X Y

Figure 1: Quadrilateral Theorem

Theorem 2 (Quadrilateral Theorem). Let ABCD be any quadrilateral. Let E be the intersection
of sides AB and CD, and let F be the intersection of sides BC and DA. Let X be the intersection
of diagonal AC with the line EF , and let Y be the intersection of diagonal BD with line EF . Then

(E,F ;X,Y ) = −1.

Proof 1, using Ceva and Menelaus. By Ceva applied to triangle AEF and point C, we have

AB

BE

EX

XF

FD

DA
= 1.

By Menelaus applied to triangle AEF and line BD, we have

AB

BE

EY

Y F

FD

DA
= −1.

Dividing these two equations, we get (E,F ;X,Y ) = −1.

Proof 2, using cross ratios. Let P be the intersection of the diagonals AC and BD. We have

(E,F ;X,Y ) = (AE,AF ;AX,AY ) = (B,D;P, Y ) = (CB,CD;CP,CY ) = (F,E;X,Y ).

Since E 6= F and X 6= Y , we conclude that (E,F ;X,Y ) = −1.

If EA,EB,EC,ED intersect a line l at points A′, B′, C ′, D′, it often saves space to abbreviate
the inference

(A,B;C,D) = (EA,EB;EC,ED) = (A′, B′;C ′, D′)

by just writing

(A,B;C,D)
E
= (A′, B′;C ′, D′).

Now let’s use this notation to give a compact proof of Desargues’ Theorem:
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Theorem 3 (Desargues’ Theorem). Suppose that triangles ABC and XY Z are perspective from
a point, that is, suppose that the lines AX,BY,CZ all meet at a point P . Then the triangles ABC
and XY Z are perspective from a line, that is, the intersections AB ∩XY , BC ∩ Y Z, CA ∩ ZX
all lie on a line.

Proof. Let U = BC ∩ Y Z, V = CA ∩ ZX, W = AB ∩XY . We want to show that U, V,W lie on
a line, so we may as well suppose that V 6= W . Let Q,M,N be the intersections of line BY with
the lines WV , AC, XZ, respectively. Then we have

(W,V ;Q,BC ∩ VW )
B
= (A, V ;M,C)

P
= (X,V ;N,Z)

Y
= (W,V ;Q,Y Z ∩ VW ).

Thus BC ∩ VW = Y Z ∩ VW , so the three lines BC, Y Z, V W meet at the point U .

P

A

B
C

X

Y
Z

U W VQ

M

N

Figure 2: Desargues’ Theorem

Exercise 7 (Pappus’s Hexagon Theorem). Let A,B,C be on a line, and let D,E, F be on another
line. Let X = AE ∩BD,Y = BF ∩ CE,Z = CD ∩AF . Use cross ratios to show that X,Y, Z are
on a line. (Hint: let P = CD ∩BF , and show that (C,D;P,Z) = (C,D;P,CD ∩XY ).)

Theorem 4 (Cross Ratio Equality). Let A,B,C,D be on a line, and let E,F,G,H be on another
line. Let X = AF ∩BE, Y = BG ∩ CF,Z = CH ∩DG. Then X,Y, Z are on a line if and only if
(A,B;C,D) = (E,F ;G,H).

Proof. Let P = AG ∩ CE,Q = CG ∩ XY . By Pappus’s Theorem, P is on line XY . Project-

ing through G, we have (A,B;C,D)
G
= (P, Y ;Q,DG ∩ XY ), and projecting through C, we have

(E,F ;G,H)
C
= (P, Y ;Q,CH ∩XY ). Thus (A,B;C,D) = (E,F ;G,H) if and only if CH,DG, and

XY meet at a point.
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A B C D

E F G

Y
X

Z

H

Q
P

Figure 3: Equal cross ratios

1.2 Cross Ratios on a Conic Section

Proposition 1. Suppose that A,C,B,D are on circle ω, and that the (directed) arcs AC,CB,BD,DA
of ω have central angles 2α, 2β, 2γ, 2δ. Let E be any other point on ω. Then

(EA,EB;EC,ED) = −sinα

sinβ

/
sin δ

sin γ
.

In particular, we have

(EA,EB;EC,ED) = ±|AC||BD|
|AD||BC|

,

where the sign is negative if and only if the points A,B separate the points C,D.

Corollary 1. Let ω be any conic section, that is, any intersection of a cone C through the obser-
vation point O with the plane A2. If A,B,C,D,E, F are any six points on ω, then we have

(EA,EB;EC,ED) = (FA,FB;FC,FD).

Proof. First we prove it when ω is a circle. By Proposition 2, we have

(EA,EB;EC,ED) = −sinα

sinβ

/
sin δ

sin γ
= (FA,FB;FC,FD).

For the general case, we choose another plane A′2 such that C ∩A′2 is a circle. Let A′, B′, ... be the
intersections of lines OA,OB, ... with the plane A′2. Then we have

(EA,EB;EC,ED)
O
= (E′A′, E′B′;E′C ′, E′D′) = (F ′A′, F ′B′;F ′C ′, F ′D′)

O
= (FA,FB;FC,FD).

Definition 5. If A,B,C,D are four points on a conic section ω, then we define the cross ratio of
A,B,C,D with respect to ω by choosing any fifth point E on ω and setting

(A,B;C,D)ω = (EA,EB;EC,ED).

By Corollary 2, this doesn’t depend on the choice of E.
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Exercise 8. Check that the cross-ratio formula (A,B;C,D)ω = 1 − (A,C;B,D)ω is equivalent to
Ptolemy’s theorem when ω is a circle.

Remark 1. The concept of separation can be defined on lines and conics as follows: we say that
the points A,B separate the points C,D on ω if deleting the points A,B from ω cuts ω into two
disconnected components, one of which contains C and the other of which contains D. To make
sense of this definition on a hyperbola, parabola, or line, it is necessary to include the points at
infinity in the conic ω. Then we have

(A,B;C,D)ω < 0

exactly when the points A,B separate the points C,D on ω.
Separation is the fundamental ordering-like concept which is appropriate when we study real

projective geometry. For Euclidean geometry, the analogous concept is betweenness: if A,B,C
lie on a line `, then we say that C is between A and B when deleting C from ` cuts ` into two
disconnected components (ignoring the point at infinity), one of which contains A and the other
of which contains B. Betweenness is a special case of separation: C is between A,B on the line `
exactly when the points A,B separate the points C,∞` along `. There turn out to be exactly four
fundamental ordering-like concepts on lines and circles:

• order, for two points on a directed line,

• betweenness, for three points on an undirected line,

• cyclic order, for three points on an oriented circle, and

• separation, for four points on an unoriented circle.

Each of these concepts has an elegant axiomatic system which goes along with it. Facts about
betweenness are often used without explicit mention in Euclidean geometry, and were left out of
Euclid’s five axioms for geometry but included in Hilbert’s more careful list of axioms for geome-
try. In two-dimensional Euclidean geometry, the main nontrivial fact about betweenness is called
Pasch’s axiom, which states that if a line meets one side of a triangle internally, then it meets one
of the other two sides of the triangle internally.

Our first application of the cross ratio on a conic is to give a short proof of Pascal’s theorem.

Theorem 5 (Pascal’s Theorem). If ABCDEF is any hexagon with vertices lying on a conic ω,
then the three intersections of opposite sides AB ∩DE, BC ∩ EF , CD ∩ FA lie on a line.

Proof. Let L = BC ∩EF , M = CD ∩ FA, N = AB ∩DE be the intersections of opposite sides of
the hexagon. Let P = AF ∩BC and Q = AB ∩ CD. Then

(C,L;P,B)
F
= (C,E;A,B)ω

D
= (Q,N ;A,B)

M
= (C,MN ∩BC;P,B).

Thus L = MN ∩BC, so L is on the line MN .

Exercise 9.

(a) Given points A,B,C,D,E and a line l through A construct, using only a straightedge, the sec-
ond point of intersection F between the line l and the conic through the points A,B,C,D,E.
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Figure 4: Pascal’s Theorem

(b) Given points A,B,C,D,E construct, using only a straightedge, the line l which is tangent to
the conic through the points A,B,C,D,E at A.

Exercise 10. Suppose points A,B,C,D,E, F,G,H lie on a conic ω. Let X = AF ∩ BE, Y =
BG ∩CF,Z = CH ∩DG. Show that (A,B;C,D)ω = (E,F ;G,H)ω if and only if X,Y, Z are on a
line.

Another easy application is a short proof of the butterfly theorem.

A

P

D
B

C

M
Q

YX

Figure 5: The Projective Butterfly Theorem

Theorem 6 (Projective Butterfly Theorem). Let ω be a conic, and let PQ be a chord on ω
through the point M . Let AB and CD be two more chords of ω passing through M , and set
X = AD ∩ PQ, Y = BC ∩ PQ. Then (P,Q;M,X) = (Q,P ;M,Y ). In particular, if M is the
midpoint of PQ then |MX| = |MY |.

Proof.

(P,Q;M,X)
A
= (P,Q;B,D)ω

C
= (P,Q;Y,M) = (Q,P ;M,Y ).

We leave the proof of the last claim as an easy exercise to the reader.

Definition 6. A cyclic quadrilateral ACBD is called harmonic if A 6= B,C 6= D, and |AC||BD| =
|AD||BC|.
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Exercise 11. (a) Suppose P is a point outside circle ω. Let the two tangents from P to ω meet ω
at A and B. Let l be a line through P meeting ω at two points C and D. Show that ACBD
is a harmonic quadrilateral.

(b) Let P, ω,A,B,C,D be as in (a), and let Q be the intersection of AB and CD. Show that
(C,D;P,Q) = −1.

(c) Let P, ω,A,B be as in (a). Show that P ′, the inverse P with respect to ω, is on the line AB.

Exercise 12. Let ω be the unit circle, given in affine coordinates by the equation x2 + y2 = 1. Let
A = (1, 0), B = (0, 1), C = (−1, 0) in affine coordinates. Find the affine coordinates of the point D
on ω such that ACBD is a harmonic quadrilateral.

Exercise 13. Let ABCDE be a regular pentagon inscribed in a circle ω. Compute (A,B;C,D)ω.

Figure 6: Exercise 14

Exercise 14. Let A,B,C,D,E, F be six distinct points in the plane. Let U = BC ∩ DE,V =
CA ∩ EF,W = AB ∩ FD,X = AB ∩ EF, Y = BC ∩ FD,Z = CA ∩ DE, so that hexagon
UZV XWY is the intersection of triangles ABC and DEF if it is convex. Show that the lines
UX, V Y,WZ meet in a point if and only if the points A,B,C,D,E, F lie on a conic.

1.3 Cross Ratios on the Inversive Plane

Just as we used three projective coordinates for the projective plane, we use two projective coor-
dinates to describe a projective line. Specifically, the projective point [s : t] will correspond to the
ordinary point with coordinate z = s

t if t 6= 0, and to the point∞ if t = 0. When we allow s, t to be
complex numbers, we get what is sometimes called the complex projective line CP1, the inversive
plane, or the Riemann sphere.

We define cross ratios on the inversive plane the same way we define cross ratios on a line:

(a, b; c, d) =
c− a
b− c

/
d− a
b− d

,

where now a, b, c, d are complex numbers corresponding to ordinary pointsA,B,C,D in the inversive
plane.
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Proposition 2. The points A,B,C,D corresponding to the complex numbers a, b, c, d are on a
circle or a line if and only if (a, b; c, d) is a real number. If they are on a line, we have (a, b; c, d) =
(A,B;C,D), and if they are on a circle ω, we have (a, b; c, d) = (A,B;C,D)ω.

Proof. Left as an exercise.

Inversion around the unit circle is given by the simple formula z 7→ 1
z̄ in the inversive plane.

We have (
1

ā
,
1

b̄
;
1

c̄
,

1

d̄

)
=

1
c −

1
a

1
b −

1
c

/ 1
d −

1
a

1
b −

1
d

=
a− c
c− b

/
a− d
d− b

= (a, b; c, d),

so inversion takes cross ratios to their complex conjugates. As a consequence, we see that inversion
takes circles and lines to circles and lines, and furthermore it takes harmonic quadrilaterals to
harmonic quadrilaterals.

Definition 7. To every two by two matrix M =

(
a b
c d

)
with determinant ad− bc not equal to

zero, we associate a transformation fM of the inversive plane as follows. In projective coordinates
[s : t], we write

fM ([s : t]) = [as+ bt : cs+ dt].

In ordinary coordinates z = s
t , we write

fM (z) =
az + b

cz + d
.

The maps fM are called Möbius Transformations.

Exercise 15. Show that for any two by two matrix M with nonzero determinant, and for any four
points a, b, c, d on the inversive plane, we have

(fM (a), fM (b); fM (c), fM (d)) = (a, b; c, d).

Exercise 16. Check that composition of Möbius transformations corresponds to matrix multiplica-
tion, i.e. that for any two matrices M,N and any point [s : t] we have

fM (fN ([s : t])) = fMN ([s : t]).

Exercise 17. Let A,B,C,X, Y, Z be six points on the projective line, no two of A,B,C equal and no
two of X,Y, Z equal. Prove that there is a Möbius transformation f such that f(A) = X, f(B) =
Y, f(C) = Z.

1.4 Invertible functions on the line

Suppose a projective line P1 has coordinate z, and we have defined an invertible map f : P1 → P1

via some geometric procedure that has no “configuration issues” (so for instance, taking the leftmost
intersection of a circle with a line would not count). Since any geometrically defined map can be
described algebraically by writing every point out in coordinates, our function f may be written
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as an algebraic function of z, and if there are no “configuration issues”, then f must be a rational
function, i.e. a ratio of two polynomials:

f(z) =
p(z)

q(z)
.

Since f is invertible, the equation f(z) = w should have exactly one solution, so the polynomial

p(z)− wq(z)

should have degree 1 for every constant w. Thus p and q are both linear polynomials, and we can
write

f(z) =
az + b

cz + d
.

Thus, f is in fact a Möbius transformation, and so f preserves the cross ratio. We record this as
an informal theorem.

Theorem 7. If f is an invertible function from a line to a line that is defined by a geometric
procedure that has no “configuration issues”, then f preserves the cross ratio. Furthermore, in this
case f is a Möbius transformation.

Exercise 18. Prove the converse: if f : P1 → P1 is any function that preserves the cross ratio, prove
that f is a Möbius transformation, and find a geometric construction of the function f .

As an application, we consider the harmonic conjugation map. For any points A,B on P1, we
define

hA,B(C) = D if (A,B;C,D) = −1.

We can construct D geometrically using the Quadrilateral Theorem, and hA,B is clearly invertible,
so by the above discussion hA,B is a Möbius transformation. In coordinates, if A has coordinate a
and B has coordinate b, we have

ha,b(z) =
(a+ b)z − 2ab

2z − a− b
.

Harmonic conjugation has the property that hA,B(hA,B(C)) = C - in other words, harmonic con-
jugation is always an involution. In fact, this property characterizes harmonic conjugation.

Theorem 8. If f is a Möbius transformation with the further property that f is an involution,
i.e. f(f(C)) = C for all points C, then f is either the identity map or there is a pair of (possibly
imaginary) points A,B such that f = hA,B.

Proof. In coordinates, the equation f(z) = z becomes a quadratic after clearing the denominator.
If f is not the identity map, this quadratic will have two solutions, corresponding to two distinct
points A,B. For any point C, write D = f(C). Since f preserves the cross ratio, we have

(A,B;C,D) = (f(A), f(B); f(C), f(D)) = (A,B;D,C),

so the points A,B,C,D are harmonic.
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1.5 Angles and the circle points

Two special points in the projective plane allow us to talk about angles using cross ratios. These
points are both infinite and imaginary, but we can treat them the same way we treat any other
points in projective geometry. This allows us to solve many problems that are traditionally thought
to be out of the scope of projective geometry.

Definition 8. The circle points are the points α= [i : 1 : 0] and ¯α= [1 : i : 0]. These are the
points at infinity of slope −i and i.

I used the symbols αand ¯αfor the circle points, since some people might find points which are
both infinite and imaginary to be slightly fishy.

Theorem 9 (Angle Theorem). If lines l,m intersect the line at infinity in points L,M , then

(L,M ; α, ¯α) = e2i∠lm.

In particular, lines l and m are orthogonal if and only if points L,M, α, ¯αare harmonic.

Proof. Let s be the slope of line l and let t be the slope of line m. By the tangent subtraction
formula, we have

tan(∠lm) =
t− s
1 + st

.

We have

(L,M ; α, ¯α) = (s, t;−i, i)

=
s+ i

−i− t

/
s− i
i− t

=
(s+ i)2(t− i)2

(s2 + 1)(t2 + 1)

=
(st+ 1)2 − (t− s)2 + 2i(t− s)(st+ 1)

(st+ 1)2 + (t− s)2

=
1− tan2(∠lm)

1 + tan2(∠lm)
+ i

2 tan(∠lm)

1 + tan2(∠lm)

= cos(2∠lm) + i sin(2∠lm)

= e2i∠lm.

Theorem 10. A conic ω is a circle if and only if it passes through the two circle points.

Proof. First, suppose ω is a circle with center (a, b) and radius r. In projective coordinates, ω is
the set of points [x : y : z] such that

(x− az)2 + (y − bz)2 = (rz)2.

Plugging in, we can check that [x : y : z] = [i : 1 : 0] and [x : y : z] = [1 : i : 0] satisfy the equation
defining ω.

13



Now suppose ω is any conic passing through α, ¯α. Let A,B,C,D be any four points on ω. Then
we have

e2i∠CAD = (AC,AD;A α,A¯α) = (C,D; α, ¯α)ω = (BC,BD;B α,B¯α) = e2i∠CBD,

so the directed angles ∠CAD and ∠CBD are congruent modulo π. Thus A,B,C,D are concyclic.

Corollary 2. Let A,B be two points on a circle ω with center O. Then

(A,B; α, ¯α)ω = ei∠AOB.

In particular, if A,B are diametrically opposite then A,B, α, ¯αare harmonic.

Exercise 19. Say that four distinct points A,B,C,D on a line are melodic if we have

(A,B;C,D) = (A,D;B,C),

and make a similar definition for four points on a conic. Let ABCDEF be a regular hexagon
inscribed in a circle ω. Prove that the four points A,B, α, ¯αare melodic with respect to ω.

1.6 Polar maps

Definition 9. We say that two points P,Q are harmonic conjugates with respect to a conic ω if
P,Q,X, Y are harmonic, where X,Y are the (possibly imaginary) points of intersection of ω and
PQ.

Theorem 11. Let P be a point and ω a conic. Then the locus p of harmonic conjugates of P with
respect to ω is a line.

Proof 1, using tangents. Let U, V be the feet of the two tangents from P to ω. We will show that
every point Q on the line UV is a harmonic conjugate of P with respect to ω. Let the line PQ
meet ω at X,Y .

U

V

X
Y

Q
P

Figure 7: Proving P,Q are conjugate
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Chasing cross ratios, we have

(P,Q;X,Y )
U
= (U, V ;X,Y )ω

V
= (Q,P ;X,Y ),

so P,Q,X, Y are harmonic.

Proof 2, using chords. Let AC and BD be any two chords of ω passing through P . Let E = AB ∩
CD,F = AD∩BC. We will show that every point Q on the line EF is a harmonic conjugate of P
with respect to ω. Let AP ∩EF = R, let ω meet PQ at X,Y , and let U = AB∩PQ, V = CD∩PQ.

A

YB
C

D
P

X

FE R Q

V

U

Figure 8: Proving P,Q are conjugate

By the quadrilateral theorem applied to the quadrilateral BEDF , the points A,C, P,R are
harmonic. Projecting through E, we see that the four points U, V, P,Q are harmonic. Furthermore,
by the projective butterfly theorem we have

(X,Y ;P,U) = (Y,X;P, V ).

Now suppose that Q′ is the harmonic conjugate of P with respect to X,Y . Then if hPQ′ denotes
harmonic conjugation with respect to P,Q′ we have

(X,Y ;P,U) = (hPQ′(X), hPQ′(Y );hPQ′(P ), hPQ′(U)) = (Y,X;P, hPQ′(U)),

so hPQ′(U) = V . Thus U, V, P,Q′ are harmonic, so in fact we have Q = Q′.

Definition 10. If P is a point, ω a conic, and p is the locus of harmonic conjugates of P with
respect to ω then we say that P is the pole of the line p, and p is the polar of the point P . When
several conics are around, we will usually write ρω for the polar map taking a point P to its polar
p with respect to ω and taking a line p to its pole P with respect to ω.

Proposition 3. Every line p has a unique pole P with respect to ω.

Proof. Let Q,R be any two distinct points on p, and let their polars be q, r. Then q, r intersect in
at least one point P . By definition, P is conjugate to Q and R with respect to ω, so the polar of
P must be the line QR = p. Uniqueness is left as an exercise (consider the line joining two distinct
poles of p).
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Proposition 4. Let ω be a conic, let P,Q be points, and let p, q be their polars with respect to ω.

(a) P is on q if and only if Q is on p.

(b) P is on p if and only if P is on ω, in which case p is tangent to ω.

(c) If X,Y are the feet of the tangent lines from P to ω, then p = XY .

Proof. The claims (a) and (b) are obvious from the definitions, while (c) follows easily from (a)
and (b).

Proposition 5. Let ω be a conic. The either ω is a parabola or ω is centrally symmetric around
a point O. If ω is a hyperbola, then O is the intersection of the asymptotes of ω.

Proof. Let O be the pole of the line at infinity. If O is infinite, then ω must be tangent to the line
at infinity at O, in which case ω is a parabola.

Now assume O is finite. Then for any chord X,Y through O, the points X,Y,O, and the point
at infinity along XY are harmonic conjugates, so O is the midpoint of XY , i.e. ω is centrally
symmetric around O. If ω is a hyperbola, then the asymptotes intersect at the pole of the line at
infinity, which is O (this is still true if ω is an ellipse or a circle, but in that case the asymptotes
have imaginary slopes).

Theorem 12. Let ω be a circle with center O. Let P 6= O be a finite point, and let P ′ be its inverse
with respect to the circle ω. Then the polar of P passes through P ′ and is perpendicular to the line
OP .

Proof. Let ω meet OP in the points X,Y . When we restrict inversion to the line OP , we see that it
is a nontrivial involution fixing X and Y , so it must be harmonic conjugation with respect to X,Y .
Thus X,Y, P, P ′ are harmonic conjugates (this can also be checked using coordinates, or alterna-
tively by drawing tangents and using facts we have already proven about harmonic quadrilaterals).

Now let OP meet the line at infinity in the point L, and let M be the harmonic conjugate of
L with respect to the circle points α, ¯α. Let l,m, o, p denote the polars of L,M,O, P , respectively.
Since the circle points are the intersection of ω with the line at infinity, L and M are conjugate
with respect to ω, so M = o∩ l and thus m = OL. Since P is on m, M must be on p, so p = MP ′.
By the angle theorem, MP ′ is perpendicular to OP , so we are done.

Theorem 13. Let ω be a conic, and let points A,B,C,D on a line l have polars a, b, c, d. Then
we have

(A,B;C,D) = (a, b; c, d).

Proof. Note that all four lines a, b, c, d pass through L, the pole of l. First suppose that l is
not tangent to ω. Let ω intersect l in points X,Y , and let a, b, c, d intersect l at the points
A′, B′, C ′, D′. Then by the definition of the polar, the points A′, B′, C ′, D′ are the harmonic conju-
gates of A,B,C,D with respect to X,Y . Thus if hXY denotes harmonic conjugation with respect
to X,Y , we have

(A,B;C,D) = (hXY (A), hXY (B);hXY (C), hXY (D)) = (A′, B′;C ′, D′)
L
= (a, b; c, d).

Now suppose the line l is tangent to ω. Let M be any point not on l or ω, and let m be its
polar with respect to ω. Then by the previous case applied to the line m,

(A,B;C,D) = (MA,MB;MC,MD) = (m ∩ a,m ∩ b;m ∩ c; ,m ∩ d) = (a, b; c, d).
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Exercise 20. Give a direct proof of Theorem 13 in the case that the line l is tangent to ω. (Hint:
consider the map from l to ω taking a point P on l to the foot of the second tangent from P to ω.
Prove that this map preserves the cross ratio.)

Exercise 21. Suppose ω1, ω2 are two conics which intersect at points A,B,C,D, and let P =
AB ∩ CD. Show that the the polar of P with respect to ω1 and the polar of P with respect to ω2

are the same.

Figure 9: A self-polar triangle (Exercise 22)

Exercise 22.

(a) Let ABCD be a quadrilateral inscribed in a conic ω. Let E = AB ∩ CD,F = AD ∩ BC
be the intersections of the opposite sides, and let G = AC ∩ BD be the intersection of the
diagonals. Prove that the triangle EFG is self-polar with respect to ω, that is, that the polars
of E,F,G are FG,GE,EF , respectively.

(b) Let ABC be a self-polar triangle with respect to a conic ω, and let X,Y, Z be points on ω
such that Z,A, Y are collinear and X,B,Z are collinear. Prove that Y,C,X are collinear.

Exercise 23. If a, b, c, d, e are lines tangent to a conic ω, define the cross ratio of a, b, c, d with
respect to ω by

(a, b; c, d)ω = (a ∩ e, b ∩ e; c ∩ e, d ∩ e).

(a) Show that (a, b; c, d)ω is independent of the choice of e.

(b) If a, b, c, d meet ω at A,B,C,D, show that

(a, b; c, d)ω = (A,B;C,D)ω.

Exercise 24 (Anders Kaseorg). Let ω,Ω be distinct circles, and let ρω, ρΩ be the polar maps with
respect to ω,Ω. Show that the composite map ρω ◦ ρΩ ◦ ρω ◦ ρΩ ◦ ρω ◦ ρΩ is the identity if and only
if the circles ω,Ω have equal radii and intersect in 60◦ arcs.
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1.7 Coharmonic points

For any two pairs of distinct points {A,X} and {B, Y } on a line, we can find a Möbius transfor-
mation f satisfying f(A) = X, f(X) = A, f(B) = Y (since Möbius transformations have three
independent parameters). Since f preserves the cross ratio, for any other point C we must have

(X,A; f(C), C) = (A,X;C, f(C)) = (f(A), f(X); f(C), f(f(C))) = (X,A; f(C), f(f(C))),

so C = f(f(C)) and f is a harmonic conjugation in a pair of points {M,N}. Motivated by this
fact, we make the following definition.

Definition 11. Three pairs of points {A,X}, {B, Y }, {C,Z} on the same line are called coharmonic
if there is another pair of (possibly imaginary) points {M,N} such that

(M,N ;A,X) = (M,N ;B, Y ) = (M,N ;C,Z) = −1.

Remark 2. Most geometers use the phrase “quadrangular hexad” to describe a collection of six
coharmonic points.

Theorem 14 (Main theorem of coharmonic points). Let A,B,C,X, Y, Z be on a line, no three the
same, and suppose A 6= X. The following are equivalent:

(a) The three pairs of points {A,X}, {B, Y }, {C,Z} are coharmonic.

(b) There is a Möbius transformation f satisfying f(A) = X, f(B) = Y, f(C) = Z which is an
involution.

(c) (A,X;B,C) = (X,A;Y,Z).

(d) AY
Y C

CX
XB

BZ
ZA = −1.

Proof. By the above discussion, (a) and (b) are clearly equivalent. To see the equivalence of (b)
and (c), let f be the Möbius function satisfying f(A) = X, f(X) = A, f(B) = Y . Then since f
preserves the cross ratio, we have

(A,X;B,C) = (f(A), f(X); f(B), f(C)) = (X,A;Y, f(C)),

so f(C) = Z if and only if (A,X;B,C) = (X,A;Y,Z).
Now we show that (b) implies (d). We start by making the definition

(A,B,C;X,Y, Z) =
AY

Y C

CX

XB

BZ

ZA
.

This can also be written as

(A,B,C;X,Y, Z) = −(A,C;Y,B)(B,A;Z,C)(C,B;X,A),

so it is preserved by any Möbius transformation. Thus

(A,B,C;X,Y, Z) = (f(A), f(B), f(C); f(X), f(Y ), f(Z)) = (X,Y, Z;A,B,C) = 1/(A,B,C;X,Y, Z),

so (A,B,C;X,Y, Z) = ±1. To determine whether it is 1 or −1, we need to work with coordinates.
Since (A,B,C;X,Y, Z) is a projective invariant, we can choose coordinates so that the fixed points
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of f are 0 and ∞. Then f(z) = −z for any z. Let the coordinates of A,B,C be a, b, c so the
coordinates of X,Y, Z are −a,−b,−c. Then

(A,B,C;X,Y, Z) =
a+ b

−b− c
· c+ a

−a− b
· b+ c

−c− a
= −1.

Finally, to see that (d) implies (b), note that for any A,B,C,X, Y there is a unique Z such
that (A,B,C;X,Y, Z) = −1, and if f is a Möbius involution taking A to X and B to Y , then
(A,B,C;X,Y, f(C)) = −1 by the above.

Theorem 15 (Three Conic Law). Let A,B,C,D be any four points, no three on a line. Let l be a
line passing through at most one of A,B,C,D. Let ω1, ω2, ω3 be three (possibly degenerate) conics
passing through A,B,C,D. For each i = 1, 2, 3, let Xi, Yi be the two points of intersection of conic
ωi with line l. Then the three pairs {X1, Y1}, {X2, Y2}, {X3, Y3} are coharmonic.

Proof. Consider the following map f from the line l to itself. For any point P on l, let ωP be
the conic passing through the points A,B,C,D, P , and define f(P ) to be the second point of
intersection of ωP with the line l. By Theorem 7, or more concretely by the solution to Exercise
9, f is a Möbius transformation. Since f is clearly also an involution satisfying f(Xi) = Yi for
i = 1, 2, 3, the main theorem of coharmonic points shows that {X1, Y1}, {X2, Y2}, {X3, Y3} are
coharmonic.

Figure 10: Coharmonic points on a conic

Exercise 25. (a) Let ω be a conic, and let P be a point not on ω, and let A,B,C be three points
on ω. Let X,Y, Z be the second intersections of the lines PA,PB,PC with ω. Show that
the three pairs {A,X}, {B, Y }, {C,Z} are coharmonic with respect to the conic ω. (Hint: see
Exercise 5.)

(b) Suppose that ABCDEF is a convex hexagon inscribed in a circle ω. Show, using part (a),
that the lines AD,BE,CF meet in a point if and only if

|AB||CD||EF | = |BC||DE||FA|.

(Hint: define (A,E,C;D,B,F )ω for any conic ω, and calculate it in the special case that ω
is a circle.) How is this related to the trigonometric form of Ceva’s Theorem?

Exercise 26. Suppose that A,B,C,X, Y, Z are six points on a conic ω. Let U be the intersection
between the line BC and the tangent to ω at X, and similarly let V be the intersection between
AC and the tangent to ω at Y , and W the intersection between AB and the tangent to ω at Z.
Show that if {A,X}, {B, Y }, {C,Z} are coharmonic with respect to ω, then U, V,W are collinear.
Is the converse true?
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Exercise 27. Apply the Three Conic Law to give a second proof of the projective Butterfly Theorem:
if ω is a conic, PQ is a chord on ω, M is a point on PQ, AB and CD are two more chords of ω
passing through M , and X = AD ∩ PQ, Y = BC ∩ PQ, then (P,Q;M,X) = (Q,P ;M,Y ). (Hint:
show that {P,Q}, {M,M}, {X,Y } are coharmonic.)

Exercise 28. Apply a degenerate case of the Three Conic Law to give a second proof of the Quadri-
lateral Theorem. (Hint: what does it mean for {X,Y }, {E,E}, {F, F} to be coharmonic?)

Exercise 29. Apply the Three Conic Law to give a second proof of Desargues’ Theorem. (Hint: In
the notation of Theorem 3, show that {PA∩ VW,BC ∩ VW}, {PB ∩ VW, V }, {PC ∩ VW,W} are
coharmonic, and compare the corresponding statement with A,B,C replaced by X,Y, Z.)

Exercise 30. Let ω,Ω be a pair of circles intersecting at points A,B, and let P be a point on the
line AB. Let l be a line through P , let X,Y be the points of intersection between l and ω, and let
U, V be the points of intersection between l and Ω. Show that

PX · PY = PU · PV.

Exercise 31. Let A,B,C,D,E lie on a conic ω, and let l be a line which is tangent to ω at E.
Construct, using only a straightedge, the point F 6= E on l such that the conic ω′ passing through
A,B,C,D, F is tangent to the line l at F .

D
E

F

G

H

N

O

A

P

B

I

C

J

K

L

M

Figure 11: Octagrammum Mysticum

Theorem 16 (Octagrammum Mysticum). Let A,B,C,D,E, F,G,H be eight points, no three
on a line. Let I = GH ∩ BC, J = HA ∩ CD,K = AB ∩ DE, etc., as in Figure 11. Then
A,B,C,D,E, F,G,H lie on a conic if and only if I, J,K,L,M,N,O, P lie on a conic.

Proof 1 (using coharmonicity). Suppose that I, J,K,L,M,N,O, P lie on a conic ω. It’s enough to
show that (AF,AD;AH,AB) = (J, P ;L,N)ω, since then by symmetry we will have

(J, P ;L,N)ω = (CF,CD;CH,CB) = (EF,ED;EH,EB) = (GF,GD;GH,GB),
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Figure 12: Proving (AF,AD;AH,AB) = (J, P ;L,N)ω

from which we can conclude that C,E,G are on the conic through A,F,D,H,B. To this end, we
project everything onto the line DF . Let S = AB ∩ DF, T = AH ∩ DF,U = ML ∩ DF, V =
MN ∩DF , and let X,Y be the (possibly imaginary) points of intersection between ω and DF . We
have

(AF,AD;AH,AB) = (F,D;T, S)

and
(J, P ;L,N)ω

M
= (D,F ;U, V ),

so by Theorem 14 it’s enough to show that {D,F}, {U, T}, {S, V } are coharmonic.
Applying Three Conic Law to the points M,L, J,O, the line DF , the conic ω and the degenerate

conics ML∪JO,MJ ∪LO, we see that {D,F}, {X,Y }, {U, T} are coharmonic. Similarly, applying
the Three Conic Law to the points M,N,K,P , the line DF , the conic ω and the conics MN ∪
KP,MP ∪NK, we see that {D,F}, {X,Y }, {S, V } are coharmonic.

Thus the harmonic conjugation map that exchanges D with F and exchanges X with Y also
exchanges U with T and S with V , so {D,F}, {U, T}, {S, V } are coharmonic and we are done.

Proof 2 (from [2], using Pascal’s Theorem). Again, we assume that I, J,K,L,M,N,O, P lie on a
conic ω. It’s enough to show that G,H,A,B,C,D lie on a conic, since then by symmetry we have
H,A,B,C,D,E on a conic, etc.

Let X be the intersection of lines KP and IJ . Applying Pascal’s Theorem to the hexagon
MPKNIJ inscribed in the conic ω, we see that D,G,X lie on a line. From this we see that I, J,X
are the intersections of the opposite sides of the hexagon GHABCD, so by the converse to Pascal’s
Theorem GHABCD is also inscribed in a conic.
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Figure 13: Applying Pascal

1.8 Symmetries of the plane

Definition 12. Let M =

 a b c
d e f
g h i

 be a three by three matrix with nonzero determinant.

The map fM : P2 → P2 defined by f([x : y : z]) = [ax + by + cz : dx + ey + fz : gx + hy + iz] is
called a projective transformation of the plane.

Exercise 32.

(a) Show that every projective transformation sends straight lines to straight lines, sends conics
to conics, and preserves cross ratios.

(b) Show that if M,N are three by three matrices with nonzero determinants, then fM ◦ fN =
fMN .

(c) Show that if A,B,C,D are any four points with no three on a line, and E,F,G,H are
any four points with no three on a line, then there is a projective transformation f with
f(A) = E, f(B) = F, f(C) = G, f(D) = H.

Definition 13. A bijection f : P2 → P2 is a collineation if it takes straight lines to straight lines.

Exercise 33.

(a) Let A,B,C,D,E, F be six distinct points on a line. Show that {A,B}, {C,D}, {E,F} are
coharmonic if and only if

(A,B;C,D) = (A,B;C,E)(A,B;C,F ).

(b) Given distinct points A,B,C,D,E on a line, construct points F and G on the same line such
that

(A,B;C,F ) = (A,B;C,D)(A,B;C,E)
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and
(A,B;C,G) = (A,B;C,D) + (A,B;C,E)

using only a straightedge.

Exercise 34. Let f : R → R be a function such that f(1) = 1 and such that for any x, y ∈ R we
have f(xy) = f(x)f(y) and f(x+ y) = f(x) + f(y). Show that f(x) = x for all x ∈ R.

Theorem 17 (Fundamental theorem of projective geometry). A bijection f : RP2 → RP2 is a
collineation if and only if it is a projective transformation (here we write RP2 for the real points of
the projective plane).

Proof. We start by showing that if f is a collineation then it must preserve cross ratios. If A,B,C,D
are distinct points on a line and E,F,G,H are distinct points on another line, then by Theorem 4 we
can check whether (A,B;C,D) = (E,F ;G,H) by checking whether the points X = AF ∩BE, Y =
BG∩CF,Z = CH ∩DG lie on a line. Since f is a collineation, we have f(X) = f(AF )∩ f(BE) =
f(A)f(F ) ∩ f(B)f(E) and so on, and f(X), f(Y ), f(Z) lie on a line if and only if X,Y, Z lie on a
line, so

(A,B;C,D) = (E,F ;G,H) ⇐⇒ (f(A), f(B); f(C), f(D)) = (f(E), f(F ); f(G), f(H)).

Thus we get a well-defined bijection f̃ : R ∪ {∞} → R ∪ {∞} by taking

f̃((A,B;C,D)) = (f(A), f(B); f(C), f(D)).

This bijection automatically satisfies f̃(0) = 0, f̃(1) = 1, f̃(∞) = ∞. By Exercise 33 we have
f̃(xy) = f̃(x)f̃(y) and f̃(x + y) = f̃(x) + f̃(y) for any real x, y, and thus by Exercise 34 we must
have f̃(x) = x for all real x. Thus f preserves cross ratios.

To finish, note that by Exercise 32 we may assume without loss of generality that f fixes some
collection of four points A,B,C,D such that no three are on a line. Letting P = AB ∩CD, we see
that f(P ) = P , and thus for any point X on AB we have

(A,B;P,X) = (f(A), f(B); f(P ), f(X)) = (A,B;P, f(X)),

so f(X) = X. Thus if l is any line through C, and X = l ∩AB, then f(l) = f(C)f(X) = CX = l,
so every line through C is sent to itself. Similarly, every line through A or B is sent to itself. Since
any point E is determined by the three lines AE,BE,CE, every point E must be sent to itself,
and we are done.

Remark 3. A collineation of CP2 might not preserve cross ratios: for instance, the map [x : y :
z] 7→ [x̄ : ȳ : z̄] taking every point to its complex conjugate sends every cross ratio to its complex
conjugate. More generally, if f̃ : C→ C satisfies f̃(1) = 1, f̃(xy) = f̃(x)f̃(y), f̃(x+y) = f̃(x)+f̃(y),
then the map [x : y : z] 7→ [f̃(x) : f̃(y) : f̃(z)] is called an automorphic collineation, and sends a set
of four points on a line with cross ratio c to a set of four points with cross ratio f̃(c).

The same argument as above can be used to show that every collineation of CP2 can be written
as the composition of an automorphic collineation and a projective transformation.

Definition 14. Let P be a point and l be a line not passing through P . Define the projective
reflection rP,l by sending a point Q 6= P to the harmonic conjugate of Q with respect to P, PQ ∩ l
along the line PQ, and sending P to P .
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Example 2. (a) Let l intersect the line at infinity at L. If P is on the line at infinity with L,P, α, ¯α
harmonic, then rP,l is (ordinary) reflection across the line l. As a consequence, (ordinary)
reflections always interchange the two circle points.

(b) If l is the line at infinity, then rP,l is a 180◦ rotation around P (sometimes called a reflection
through the point P ).

Theorem 18. For any point P and any line l not passing through P , the projective reflection rP,l
is a projective transformation.

Proof. We just need to show that rP,l sends lines to lines and preserves cross ratios. We leave this
as an easy exercise to the reader.

Definition 15. If A,B,C,D are four points with no three on a line and σ : {A,B,C,D} →
{A,B,C,D} is a permutation, define rσ to be the projective transformation taking A to σ(A), B
to σ(B), etc. We will often write σ using its cycle decomposition, including the cycles of length
1, so that for instance r(A)(B)(C D) is the projective transformation taking A and B to themselves,
and swapping C and D.

Exercise 35. Suppose A,B,C,D are four points with no three on a line.

(a) If P = AB ∩ CD and l is the line connecting AC ∩ BD to AD ∩ BC, show that r(A B)(C D)

is the projective reflection rP,l.

(b) Show that if ω is a conic passing through A,B,C,D then r(A B)(C D)(ω) = ω.

(c) Show that if ω is as in (b) and P, l are as in (a), then l is the polar of P with respect to ω.

Exercise 36. (a) Show that for every permutation σ : {A,B,C,D} → {A,B,C,D} we can write
rσ as a composition of two projective reflections.

(b) Show that a projective transformation defined by a three by three matrix M can be written
as a composition of two projective reflections if and only if the eigenvalues of M are in a
geometric progression.

Exercise 37. Let f(p, q, r), g(p, q, r), h(p, q, r) be homogeneous polynomials of the same degree hav-
ing no common factor. The map [p : q : r] 7→ [f(p, q, r) : g(p, q, r) : h(p, q, r)] is called biregular if it
is defined everywhere (i.e. f, g, h are never simultaneously 0 unless p, q, r are all 0) and is a bijec-
tion of the complex points of the projective plane. Prove that every biregular map is a projective
transformation.

One rather boring way to use symmetries of the plane is to choose a coordinate system in which
four points A,B,C,D in general position are assigned the coordinates [1 : 0 : 0], [0 : 1 : 0], [0 : 0 :
1], [1 : 1 : 1]. If a geometric configuration is completely determined by the locations of five points
A,B,C,D,E, then every other point has coordinates given by homogenous algebraic functions of
the coordinates [x : y : z] of the point E. Problems involving such configurations can then be
straightforwardly transformed into simple algebra problems, which typically will state that if one
homogenous polynomial of the coordinates [x : y : z] of E vanishes, then so does another (often
these polynomials will be linear or quadratic). Many problems in triangle geometry have this form:
the five relevant points are the vertices A,B,C of the triangle, and the two circle points αand ¯α.
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Theorem 19. If A,B,C,D,E are five points in general position, and if we choose a coordinate
system where A,B,C,D,E are assigned the coordinates [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1], [x :
y : z], respectively, then we have

y

z
= (AB,AC;AD,AE)

and
x

z
= (BA,BC;BD,BE).

In particular, the pair of values of these two cross ratios completely determines which statements
of projective geometry are true of the configuration ABCDE.

Proof. We will only prove the first equality, the second one is similar. We have

(AB,AC;AD,AE) = (B,C;AD ∩BC,AE ∩BC)

= ([0 : 1 : 0], [0 : 0 : 1]; [0 : 1 : 1], [0 : y : z]) = (∞, 0; 1, y/z) = y/z.

In the special case where A,B,C are the vertices of a triangle and D,E are the circle points α, ¯α,
the previous theorem becomes the statement that every triangle ABC is determined up to direct
similarity by the ordered pair of directed angles ∠BAC and ∠ABC modulo π. So for instance,
the correct projective generalization of the concept of an isosceles triangle is a configuration of five
points ABCDE, no three on a line, which satisfies the symmetry

r(A B)(D E)(C) = C,

and the projective analogue of an equilateral triangle will additionally satisfy the symmetry

r(A C)(D E)(B) = B.

Exercise 38. Show that if no three of A,B,C,D,E are on a line, and if the configuration ABCDE
satisfies the symmetries r(A B)(D E)(C) = C and r(A C)(D E)(B) = B, then it also satisfies the
symmetry r(B C)(D E)(A) = A. Show that in this case, the cross ratio (EA,EB;EC,ED) is melodic
in the sense of Exercise 19.

Exercise 39. Show that if no three of A,B,C,D,E are on a line, and if the configuration ABCDE
satisfies the symmetries r(B E)(C D)(A) = A and r(A C)(D E)(B) = B, then it also satisfies the
symmetry r(A E)(B D)(C) = C. Show that in this case, the cross ratio (EA,EB;EC,ED) is either
the golden ratio φ or its algebraic conjugate −1/φ.

1.9 The Cross Cross Ratio

Since any four points (no three on a line) can be sent to any other four points (no three on a line) by
a projective transformation, there are no interesting invariants of four general points in the plane.
If we have five general points A,B,C,D,E, then we can form the cross ratio (EA,EB;EC,ED).
Going one step further, we have the following natural definition.

Definition 16. Let A,B,C,D,E, F be six points in the plane, such that either none of ACE,ADF ,
BCF,BDE are lines or none of ACF,ADE, BCE,BDF are lines. Define their cross cross ratio
to be

(A,B;C,D;E,F ) =
(EA,EB;EC,ED)

(FA,FB;FC,FD)
.
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Figure 14: Symmetry of the cross cross ratio

First we will prove that this definition is more symmetric than it seems.

Theorem 20. Let A,B,C,D,E, F be as above. Then we have

(A,B;C,D;E,F ) = (A,B;E,F ;C,D).

Proof. We start by projecting everything onto the line AB. Let M = EC∩AB,N = ED∩AB,X =
FC ∩AB, Y = FD ∩AB. Then we have

(A,B;C,D;E,F ) =
(EA,EB;EC,ED)

(FA,FB;FC,FD)
=

(A,B;M,N)

(A,B;X,Y )

=
(A,B;M)

(A,B;N)

/
(A,B;X)

(A,B;Y )
=

(A,B;M)

(A,B;X)

/
(A,B;N)

(A,B;Y )

=
(A,B;M,X)

(A,B;N,Y )
=

(CA,CB;CE,CF )

(DA,DB;DE,DF )
= (A,B;E,F ;C,D).

Proposition 6. Let two circles ω, ω′ intersect at points A,B, and let C be a point on ω, D a point
on ω′. Let θ be the (directed) angle of intersection between the circles ω, ω′ at A. Then we have

(A,B; α, ¯α;C,D) = e2iθ.

In particular, ω and ω′ are orthogonal if and only if (A,B; α, ¯α;C,D) = −1.

Proof.

(A,B; α, ¯α;C,D) =
(A,B; α, ¯α)ω
(A,B; α, ¯α)ω′

= e2i(∠ACB−∠ADB) = e2iθ.

Definition 17. If conics ω, ω′ meet in points A,B,C,D, set

(A,B;C,D;ω, ω′) =
(A,B;C,D)ω
(A,B;C,D)ω′

.

If (A,B;C,D;ω, ω′) = −1, we say that the conics ω, ω′ are projectively orthogonal with respect to
the partition {A,B}, {C,D} of their intersection points.
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Figure 15: Projectively orthogonal conics

Theorem 21. Two conics ω,Ω meeting in points A,B,C,D are projectively orthogonal with respect
to the partition {A,B}, {C,D} if and only if the two tangents to ω at A and B meet the two tangents
to Ω at C and D.

Proof. Let E = AC ∩ BD,F = AD ∩ BC. We will project everything onto the line EF : let
X = AB ∩ EF , let Y = CD ∩ EF , let P be the intersection of the tangent to ω at A with EF ,
and let Q be the intersection of the tangent to Ω at C with EF .

C

B

D

A

F
E

YXPQ

Figure 16: Checking orthogonality

Projecting through A or B, we have

(A,B;C,D)ω
A
= (P,X;E,F )

B
= (BP ∩ ω,A;D,C)ω,

so BP is also tangent to ω, and similarly we have

(A,B;C,D)Ω
C
= (E,F ;Q,Y )

D
= (B,A;DQ ∩ Ω, C)Ω

27



and DQ is tangent to Ω. By the quadrilateral theorem, we have

(E,F ;X,Y ) = −1,

so
(A,B;C,D)ω
(A,B;C,D)Ω

=
(E,F ;P,X)

(E,F ;Q,Y )
=

(E,F ;P,Q)

(E,F ;X,Y )
= −(E,F ;P,Q).

Thus (A,B;C,D;ω,Ω) = −1 if and only if P = Q.

Figure 17: Exercise 40

Exercise 40. Let H be the orthocenter of triangle ABC, and let P be any point other than H. Let
ω be the circle with diameter HP , and let Ω be the conic through A,B,C,H, P .

(a) Show that the asymptotes to Ω meet at a right angle.

(b) Show that if ω, Ω also meet at points X,Y , then ω is projectively orthogonal to Ω with
respect to the partition {H,P}, {X,Y }.

Exercise 41. Suppose conics ω,Ω meet at A,B,C,D and are projectively orthogonal with respect
to the partition {A,B}, {C,D} of their intersection points. Let l be a line meeting ω at P,Q and
meeting Ω at R,S.

(a) Show that (P,Q;A,B)ω = −1 if and only if (R,S;C,D)Ω = −1.

(b) Show that if (P,Q;A,B)ω = −1 then (P,Q;R,S) = −1.

1.10 A few miscellaneous exercises

Exercise 42.

(a) Let ABC be a triangle, let D be a point on BC, let E be a point on CA, and let F be a
point of AB. Show that the lines AD,BE,CF meet in a point if and only if there is a conic
ω which is tangent to BC at D, tangent to CA at E, and tangent to AB at F .
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Figure 18: Exercise 42(a)

(b) Let ABC be a triangle and let P be a point not lying on any edge of ABC. Let U,X be
points on BC with X = r(A)(P )(B C)(U), let V, Y be points on CA with Y = r(B)(P )(A C)(V ),
and let W,Z be points on AB with Z = r(C)(P )(A B)(W ). Show that U, V,W,X, Y, Z lie on a
conic.

Exercise 43 (Holden Mui). Suppose Ω, ω1, ω2 are conics such that Ω is tangent to ω1 at A and B
and Ω is tangent to ω2 at C and D. Let P = AB ∩ CD, and let X,Y, Z,W be the four points of
intersection between ω1 and ω2.

(a) Show that there is a way to order X,Y, Z,W such that XZ ∩ YW = P .

(b) Show that if X,Y, Z,W are ordered as in (a), then the four lines AB,CD;XZ, YW are
harmonic.

Figure 19: Exercise 44

Exercise 44.

(a) Given points A,B,C,D and a line e, there are two conics ω,Ω passing through A,B,C,D
and tangent to e. Construct the other three common tangent lines f, g, h to the conics ω,Ω
using only the points A,B,C,D, the line e, and a straightedge.

(b) Show that if you order e, f, g, h correctly, you have

(A,B;C,D)ω = (e, f ; g, h)Ω.
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Figure 20: Exercise 45

(c) Show that polar maps send projectively orthogonal pairs of conics to projective orthogonal
pairs of conics.

Exercise 45. Suppose that A,B,C,D,E, F,G,H are eight distinct points in the plane such that
the four lines AB,CD,EF,GH meet in a point, the four lines AC,BD,EG,FH meet in a point,
and the four lines AD,BC,EH,FG meet in a point. Show that A,B,C,D,E, F,G,H all lie on a
single conic.

Figure 21: Triangular grid lemma

Exercise 46 (Triangular grid lemma). Let a1, a2, a3, a4, b1, b2 be six distinct lines. Let c1 be the
line through a3 ∩ b1 and a2 ∩ b2. Let c2 be the line through a4 ∩ b1 and a3 ∩ b2. Let b3 be the line
through a1 ∩ c1 and a2 ∩ c2. Let c3 be the line through a4 ∩ b2 and a3 ∩ b3. Let b4 be the line
through a1 ∩ c2 and a2 ∩ c3. Let c4 be the line through a4 ∩ b3 and a3 ∩ b4. Let b5 be the line
through a1 ∩ c3 and a2 ∩ c4. Let c5 be the line through a4 ∩ b4 and a3 ∩ b5. Show that the three
points b1 ∩ c3, b2 ∩ c4, b3 ∩ c5 are on a line. (Hint: use Theorem 4.)
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2 Cross ratios in other geometries

2.1 Cremona involutions and blow ups

Why would someone want to blow up a perfectly good projective plane? The issue is that some-
times we have geometric correspondences which work almost everywhere, but have a few annoying
exceptions. As an example, for any pair of points A,B there is an almost perfect one-to-one corre-
spondence between points P and pairs of lines l = AP,m = BP through A,B (respectively), given
by P = l ∩m, with just two aggravating problems:

• if P is on the line AB, then l = AP = AB = BP = m, and we can’t recover the point P
from the pair of lines l = AB,m = BA, and

• if P = A, then there are infinitely many lines which contain A and P , so for any line l through
A, the pair l,m = BA describes P .

Simplifying a bit, the issue is that the map from points P to lines l = AP through A isn’t
always well-defined. Often, we won’t be considering just a single point P in isolation, but rather
we will be considering a curve C which happens to pass through the point A. In this case, there is
a sensible way to extend the map from points P ∈ C to lines l = AP through A to the case P = A:
we just take the line l to be the tangent to the curve C at A. So what we would like to do is to
remember “which direction we approached the point A from” when P hits A, replacing the single
point A with the collection of all lines through A. This operation is called blowing up the point A.

Formally, what we will do will look a little bit stupid. Instead of just having our space consist
of points P in the plane P2, we will instead consider the following collection of ordered pairs:

BlAP2 = {(P, l) | P ∈ P2, {A,P} ⊂ l}.

For P 6= A, the only line l such that the ordered pair (P, l) is in BlAP2 is the line AP , so there is
a one-to-one correspondence between points in P2 other than A and points (P, l) of the blown-up
plane BlAP2 with P 6= A. On the other hand, when P = A, l can be any line through A, so
there is a one-dimensional family of pairs (A, l) ∈ BlAP2 corresponding to the point A ∈ P2 - this
one-dimensional family is called the exceptional line above A, and written as eA.

To convince ourselves that BlAP2 is an honest geometric space (and not just a formal trick), we
can write it down in coordinates. Supposing that A = [0 : 0 : 1], we have

BlAP2 = {([p : q : r], (a : b : 0)) | ap+ bq = 0},

where the third coordinate of l = (a : b : 0) is forced to be 0 since A ∈ l, and the equation ap+bq = 0
is equivalent to P ∈ l. Concentrating on the pairs (P, l) with r, b 6= 0, and writing x = p/r, y = q/r,
and s = a/b, we see that most of BlAP2 corresponds to the surface

{(x, y, s) | sx+ y = 0},

and the exceptional line eA corresponds to the line s 7→ (0, 0, s) which is contained within this
surface. This surface can be visualized as a sort of spiral staircase, where for each fixed value of s
we have a line x 7→ (x,−sx, s) passing through the exceptional line eA. So we can visually confirm
that BlAP2 ends up being a smooth two-dimensional surface, with a map BlAP2 → P2 (given by

31



(P, l) 7→ P ) which is one-to-one aside from the exceptional line eA, which gets crushed down to the
point A.

The same trick can be used to blow up a sequence of points - introducing an exceptional line
for every point which gets blown up - and hopefully once we blow up the right collection of points
we can cure whatever defects we had in our geometric constructions which almost worked. The
main example of such a geometric construction is the Cremona involution, which generalizes the
following geometric operations:

• isogonal (or isotomic) conjugation of a point with respect to a triangle, which fails at the
vertices of the triangle, and

• inversion around a point O in the projective plane, which fails at the points O, α, ¯α.

The fix will require us to blow up the three points where the operation fails.
Let A,B,C,D be four points in the projective plane, no three on a line. Choose projective

coordinates such that A = [1 : 0 : 0], B = [0 : 1 : 0], C = [0 : 0 : 1], D = [1 : 1 : 1] (one way to do this
is to start with barycentric coordinates on the triangle A,B,C, and then rescale the coordinates
to make D = [1 : 1 : 1]). For future reference, let E = [−1 : 1 : 1], F = [1 : −1 : 1], G = [1 : 1 : −1]
in this coordinate system.

Exercise 47. Show that E,F,G satisfy DE ∩ FG = A,DF ∩ EG = B,DG ∩ EF = C, and that
they are uniquely determined by these conditions. Show that E is the harmonic conjugate of D
with respect to A,AD ∩BC.

One of the simplest nonlinear functions we can write down is the Cremona involution: if p, q, r
are all nonzero, it takes the point P = [p : q : r] in the above coordinate system to the point

fABCD(P ) =
[1

p
:

1

q
:

1

r

]
.

We would like to extend this to an involution of the plane. Clearing denominators, we get

fABCD(P ) = [qr : pr : pq],

and this lets us define fABCD(P ) as long as no two of p, q, r are 0, i.e. as long as P is not equal to
one of A,B,C. If P is on line BC, then p = 0, so fABCD(P ) = [qr : 0 : 0] = A, and fABCD is not
injective. We can fix these problems by blowing up the points A,B,C.

Definition 18. If A,B,C are three distinct points in the projective plane, we set

BlABCP2 = {(P, lA, lB, lC) | P ∈ P2, {A,P} ⊂ lA, {B,P} ⊂ lB, {C,P} ⊂ lC}.

If (P, lA, lB, lC) ∈ BlABCP2 has P 6= A,B,C, then lA = AP, lB = BP, lC = CP , and we write P
as shorthand for (P, lA, lB, lC). Let eA be the set of points (P, lA, lB, lC) in BlABCP2 with P = A,
that is,

eA = {(A, l, AB,AC) | A ∈ l},

and define eB, eC similarly. If (A, l, AB,AC) ∈ eA, we write (A, l) as shorthand for it. If P = (A, l),
we write AP as shorthand for l. The three lines eA, eB, eC are called the exceptional lines above
A,B,C. We say that a curve ω passing through A intersects the exceptional line eA in the point
(A, lA) if line lA is tangent to ω at A.
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In coordinates, we have

BlABCP2 = {([p : q : r], (0 : a : b), (c : 0 : d), (e : f : 0)) | aq + br = cp+ dr = ep+ fq = 0}.

Proposition 7. The map [p : q : r] 7→ [1
p : 1

q : 1
r ], defined for p, q, r 6= 0, extends to an involution

fABCD : BlABCP2 → BlABCP2. The extended involution fABCD takes eA (resp. eB, eC) bijectively
to BC (resp. AC,AB). The fixed points of fABCD are D,E, F,G, and we have fABCD = fABCE =
fABCF = fABCG.

Proof. In coordinates, if P = ([p : q : r], (0 : a : b), (c : 0 : d), (e : f : 0)) we set

fABCD(P ) =


([aq : ap : −bp], (0 : b : a), (d : 0 : c), (f : e : 0)) if p 6= 0,

([−cq : dr : dq], (0 : b : a), (d : 0 : c), (f : e : 0)) if q 6= 0,

([er : −fr : ep], (0 : b : a), (d : 0 : c), (f : e : 0)) if r 6= 0.

Checking that this is well-defined, along with checking the other claims of the proposition, is left
as an easy exercise to the reader.

Remark 4. More generally, for any three homogeneous polynomials f(p, q, r), g(p, q, r), h(p, q, r) of
the same degree having no common factor we can define a map

[p : q : r]→ [f(p, q, r) : g(p, q, r) : h(p, q, r)],

which is well-defined whenever f, g, h are not simultaneously zero. Such a map is called a rational
map. It is called birational if it is usually one-to-one - in this case you can write down a ratio-
nal function which inverts it whenever both are defined. Noether and Castelnuovo have proved
that every birational map P2 → P2 can be built out of projective transformations and Cremona
involutions.

Proposition 8. Let A,B,C,D,E, F,G be such that A = DE∩FG,B = DF ∩EG,C = DG∩EF ,
and suppose that fABCD(P ) = Q. Then we have

(AP,AQ;DE,FG) = (BP,BQ;DF,EG) = (CP,CQ;DG,EF ) = −1.

In other words, AQ is the harmonic conjugate of AP with respect to AD,AF , and similarly for
BQ,CQ.

Proof. By symmetry, it’s enough to show that (AP,AQ;DE,FG) = −1. In the coordinate system
described above, suppose that AP = (0 : a : b). We then have DE = (0 : 1 : −1), FG = (0 : 1 :
1), AQ = (0 : b : a), so

(AP,AQ;DE,FG) = (a/b, b/a;−1, 1) = −1.

Example 3. Let G be the centroid of triangle ABC, and suppose fABCG(P ) = Q. Let FED have
parallel sides to ABC, such that A is the midpoint of DE, B is the midpoint of DF , and C is the
midpoint of EF . Let M = AG ∩BC,X = AP ∩BC, Y = AQ ∩BC,∞ = AD ∩BC. Then

(X,Y ;∞,M) = (AP,AQ;DE,FG) = −1,

so X is the reflection of Y across M , the midpoint of BC. Similarly, BP ∩ AC is the reflection of
BQ ∩AC across the midpoint of AC, etc. The point Q is called the isotomic conjugate of P .
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Corollary 3. Let f = fABCD. For any four points P,Q,R, S ∈ BlABCP2 we have

(AP,AQ;AR,AS) = (Af(P ), Af(Q);Af(R), Af(S)).

Proof. Harmonic conjugation preserves the cross ratio.

Theorem 22. Let l be a line which does not pass through any of A,B,C. Then fABCD(l) is a
circumconic, that is, a conic passing through all three of A,B,C. Conversely, if ω is a circumconic
then fABCD(ω) is a line which does not pass through any of A,B,C.

Proof. Write f = fABCD, and let P,Q,R be any three points on l. Let S = l ∩ BC, so that
f(S) ∈ eA. By the Corollary, we have

(Bf(P ), Bf(Q);Bf(R), BA) = (P,Q;R,S) = (Cf(P ), Cf(Q);Cf(R), CA),

so f(R) lies on the conic ω through A,B,C, f(P ), f(Q). The converse is left as an exercise.

Exercise 48. Let I be the incenter of triangle ABC. The map fABCI is called isogonal conjugation.

(a) Show that fABCI( α) = ¯α.

(b) Let Ω be the circumcircle of triangle ABC. Show that fABCI(Ω) is the line at infinity.

(c) Let m be the median through A. Show that fABCI(m) passes through the pole of BC with
respect to Ω. (Hint: show that the intersections of m,BC,AB,AC with the line at infinity
are harmonic, then apply fABCI .)

(d) Let ω be the circumcircle of triangle BCI. Show that fABCI(ω) = ω.

Exercise 49. Write f = fABCD, let l be a line which doesn’t pass through any of A,B,C, let
ω = f(l), and let P,Q,R, S be any four points on l. Show that

(P,Q;R,S) = (f(P ), f(Q); f(R), f(S))ω.

Exercise 50. Let A,B,C,D be in general position, and let ω be a conic passing through A, B, and
C. Let X be the second intersection of the line AD with the conic ω, and let U be the intersection
between the line BC and the tangent to ω at X. Show that U ∈ fABCD(ω). In particular, if we
define points V ∈ AC,W ∈ AB similarly, then U, V,W are collinear.

Theorem 23. If ω is a conic which passes through B and C but not A, then fABCD(ω) is also a
conic passing through B and C but not A. We have fABCD(ω) = ω if and only if ω either passes
through D and E or passes through F and G.

Proof. Write f = fABCD, and let P,Q,R, S be any four points on ω. By Corollary 3, we have

(Bf(P ), Bf(Q);Bf(R), Bf(S))
B
= (P,Q;R,S)ω

C
= (Cf(P ), Cf(Q);Cf(R), Cf(S)),

so B,C, f(P ), f(Q), f(R), f(S) are on a conic. If f(ω) passed through A, then ω would need to be
tangent to BC at either B or C, which is impossible.

Note that if f(ω) = ω then f defines an involution from ω to itself, and so f must fix exactly
two points of ω, which can’t both be contained in the same line through B or C. Conversely,
suppose for instance that D,E are on ω, and let X be any other point on ω. The conic through
B,C,D,X, f(X) is sent to itself, so it must contain E. Thus f(X) must be on ω.

34



2.1.1 Aside: some basic intersection theory

We recall (without proof) a famous theorem of Bézout.

Theorem 24 (Bézout). If Ω, ω are distinct curves in P2 defined by irreducible polynomial equations
of degrees m,n, respectively, then the number of intersection points between Ω and ω is exactly mn,
if you count points “with multiplicity” and remember to include imaginary points and points at
infinity.

In particular, any two curves in P2 meet in at least one point. BlABCP2 doesn’t have this
property: for instance, the line AB doesn’t intersect either of the lines eC , BC in BlABCP2. Luckily,
it’s easy to modify Bézout’s theorem to make it work for BlABCP2.

Definition 19. If ω is a curve in BlABCP2 defined by an irreducible polynomial equation of degree
m, which passes through A,B,C with multiplicities a, b, c, respectively, we say that ω is a curve of
type (m,−a,−b,−c). If ω = eA, we say that ω is a curve of type (0, 1, 0, 0), and similarly eB has
type (0, 0, 1, 0), eC has type (0, 0, 0, 1).

Theorem 25. If Ω, ω are distinct irreducible algebraic curves in BlABCP2 of types (m, p, q, r), (n, x, y, z),
then the number of intersection points between Ω and ω in BlABCP2 is exactly mn− px− qy − rz,
if you count points “with multiplicity” and remember to include imaginary points and points at
infinity.

Definition 20. If ω has type (m, p, q, r), then the self-intersection number of ω is defined to be
m2 − p2 − q2 − r2.

Proposition 9. If ω has type (m, p, q, r) then fABCD(ω) has type (2m+p+q+r,−m−q−r,−m−
p− r,−m− p− q).

Exercise 51. (a) Prove Proposition 9.

(b) Using Proposition 9 and Theorem 25, check that the number of intersection points between
ω and Ω is the same as the number of intersection points between fABCD(ω) and fABCD(Ω).
In particular, the self-intersection number of ω is the same as the self-intersection number of
fABCD(ω).

(c) Use Proposition 9 to give another proof of Theorem 22.

(d) Find all curves in BlABCP2 which have self-intersection number at most 0.

2.2 Hyperbolic geometry

There are many models of hyperbolic geometry. The easiest ones to understand are the models
which live inside disks in the inversive plane CP1.

Definition 21. A disk in CP1 is a circle or line Ω ⊆ CP1, together with a choice of one of the
two connected components of CP1 \ Ω, which we call the interior of the disk (the other connected
component of CP1 is called the exterior of the disk). The circle Ω is the boundary of the disk.
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Note that the choice of which region of CP1 \Ω should be the interior and which should be the
exterior is arbitrary, since an inversion around the center of Ω (or a reflection across Ω, if Ω is a
line) interchanges these two regions. So we really need to explicitly specify which region should
be considered the interior of the disk in order to be unambiguous. When Ω is a circle, generally
people take the interior of Ω to be the region of CP1 which does not contain the point at infinity -
this way, the disk can be drawn using a finite amount of paper.

Definition 22. Let D be a disk in CP1 with boundary Ω. The associated disk model of hyperbolic
geometry works as follows:

• the points of the disk model consist of the points in the interior of D,

• for every circle ω which intersects Ω at a 90-degree angle, the set ω ∩D is a hyperbolic line
of the disk model, and

• every point on the boundary Ω is a point at infinity (aka a rimpoint) of the disk model.

The angle between hyperbolic lines ω1 ∩D,ω2 ∩D are computed in the disk model by computing
the ordinary angle between ω1 and ω2 at their point of intersection inside D; distances are more
complicated and will be defined later. The symmetries of the disk model are defined to be the
set of Möbius transformations and complex conjugates of Möbius transformations of CP1 which
send D bijectively to itself (note that these are all angle-preserving, so our definition of angles is
compatible with our definition of symmetries).

In order to be a legitimate geometry, our model should satisfy some basic properties.

Proposition 10. Suppose D is a disk in CP1, and let P 6= Q be points in D. Then there is a
unique hyperbolic line ` = ω ∩D which goes through P and Q.

Proof. We can assume without loss of generality that the boundary Ω of D is a straight line, by
inverting around a point on Ω if necessary. Let p be the perpendicular bisector of PQ: if p intersects
Ω at a finite point O then ω must be the circle with center O and radius OP . If p is parallel to Ω,
then ω must be the line PQ.

Proposition 11. If D is a disk in CP1 and `,m are hyperbolic lines of D, then ` and m intersect
in at most one point of D.

If ` meets the boundary of D at X and Y , and m meets the boundary of D at U and V , then `
and m intersect in the interior of D if and only if (X,Y ;U, V ) < 0.

Proof. Suppose that P ∈ `∩m, and that ` = α ∩D and m = β ∩D, where α, β are circles or lines
in CP1. Then inversion around the center of the disk D (or reflecting across its boundary, if the
boundary is a line) sends α and β to themselves by Proposition 10, so it sends P to the second
intersection point between α and β. As a consequence, the second intersection point of α and β is
either on the exterior of D, or is P itself (if P is on the boundary of D).

There are two very different ways to prove the second statement. The straightforward way
is to apply a Möbius transformation which takes X to 0, Y to ∞, and U to 1, at which point
the statement becomes obvious. The more visual way is to note that (X,Y ;U, V ) < 0 exactly
when X and Y separate the points U and V along the boundary of the disk D. Therefore, if
(X,Y ;U, V ) < 0, then the number of intersection points (counted with multiplicity) between any
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smooth path connecting X to Y within D and any smooth path connecting U to V within D must
be odd, for purely topological reasons, while if (X,Y ;U, V ) > 0 then the number of intersection
points within D must be even. Since the number of intersection points within D is at most one,
this proves the second claim.

Proposition 12. Suppose D is a disk in CP1, P,Q are points in the interior of D, and `,m are
hyperbolic lines with P ∈ ` and Q ∈ m. Then there are exactly four symmetries of the disk model
which take P to Q and ` to m.

Proof. Let Ω be the boundary of D, let A and B be the intersections of ` with Ω, and let C and
D be the intersections of m with Ω. Then there is a unique Möbius transformation f which takes
A to C, B to D, and P to Q. Thus we have f(`) = m and f(P ) = Q, and we need to check that
f(Ω) = Ω. By the Proposition 10, Ω is the unique circle or line which is perpendicular to ` at A and
B. Therefore f(Ω) is the unique circle or line which is perpendicular to m at C and D, which is also
Ω. The other symmetries which take P to Q and ` to m are the Möbius transformation which takes
A to D, B to C, and P to Q, and the variants of these which involve complex conjugation.

A consequence of the last proposition is that there are no symmetries of the hyperbolic plane
which fix a point and a line through it, but rescale distances by a positive amount. So unlike
Euclidean geometry and projective geometry, in hyperbolic geometry all symmetries will end up
being distance-preserving, once we get around to defining what hyperbolic distance is.

The main advantages of the disk model of hyperbolic geometry are that angles are not distorted,
and that the symmetries are easy to describe. A disadvantage is that if a painter was living in a
three-dimensional hyperbolic space (defined as the interior of a three-dimensional ball in a similar
way to the disk model), and if they were to paint what they saw as they looked at a geometric
configuration in some two-dimensional hyperbolic plane (which would be a portion of a sphere
which is perpendicular to the ball they lived within), then the hyperbolic lines in the picture they
would paint would be perfectly straight, not curved. Of course, when a painter paints a picture
of a plane, angles will generally not be preserved in their painting. So the true projective model
of hyperbolic space will consist of the interior of a conic section, where the hyperbolic lines are
perfectly straight - this is called the Klein model of hyperbolic space, and we will go over it later.

We will start investigating the geometry of hyperbolic space by looking at the least elegant
model: the upper halfplane model. The reason for starting with this model is that the calculations
involving distances and areas are easiest to describe in the upper halfplane.

2.2.1 Upper halfplane model

The upper halfplane is a disk in CP1, with boundary equal to the real line and interior corresponding
to the points with positive imaginary parts. The hyperbolic lines of the upper halfplane model are
just the upright semicircles which have their centers on the real line, together with the upright
half-lines which are perpendicular to the real line. Points P of the upper halfplane model are often
written in the form x+ iy, where x ∈ R and y > 0.

What are the symmetries of the upper half-plane? Any Möbius transformation that takes the
real line to itself must have the form f : z 7→ az+b

cz+d , where a, b, c, d are all real numbers, with ad 6= bc.
To see whether such a Möbius transformation takes the upper halfplane to itself, we just need to
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check whether it takes the point i to a point with positive imaginary part:

f(i) =
ai+ b

ci+ d
=

(ai+ b)(−ci+ d)

c2 + d2
=
ac+ bd+ (ad− bc)i

c2 + d2
.

Since c2 + d2 > 0, we see that f(i) has positive imaginary part if and only if ad − bc > 0. Since
multiplying all of a, b, c, d by the same thing doesn’t change the Möbius transformation but does
scale the value of ad−bc by a square, people usually normalize the symmetries of the upper halfplane
by assuming that ad − bc = 1 (this is still slightly redundant: if we negate all of a, b, c, d, we get
the same Möbius transformation, and ad − bc is still 1). This gives us a three-dimensional family
of symmetries - just enough for the symmetries to be able to take any point and line through it to
any other point and line through it.

Let’s dig a little deeper into the symmetries of the upper halfplane. Suppose that f : z 7→ az+b
cz+d

with a, b, c, d ∈ R and ad− bc = 1. What are the fixed points of f? Solving the equation

z =
az + b

cz + d
,

we get
cz2 + (d− a)z − b = 0,

so

z =
a− d±

√
(a− d)2 + 4bc

2c
=
a− d±

√
(a+ d)2 − 4

2c
.

We get three different cases, depending on whether or not |a+ d| is greater than 2, less than 2, or
equal to 2.

If |a+ d| > 2, then the fixed points of f are both real, that is, they are points at infinity in the
upper halfplane model. The hyperbolic line connecting these fixed points is then preserved by f .
To understand this case better, we may as well assume that the fixed points of f are at 0 and ∞
(by applying a different Möbius transformation, if necessary). In this case we must have b = c = 0,
and d = 1/a, so our Möbius transformation is just the map

z 7→ a2z.

The fact that this map is supposed to preserve hyperbolic distances gives us a hint that along the
hyperbolic line from 0 to ∞ (i.e., the positive part of the imaginary axis), distances will be related
to the logarithm of the imaginary part.

If |a + d| = 2, then the Möbius transformation f has exactly one real fixed point, at a−d
2c .

Again, we may as well assume that this fixed point is at ∞, in which case we must have c = 0 and
a = d = ±1. If we take a = d = +1 (by negating b if necessary), then our Möbius transformation
f is just the map

z 7→ z + b.

Finally, if |a + d| < 2, then the Möbius transformation f has a pair of complex fixed points,
which are conjugates of each other. Exactly one of these fixed points will be in the upper halfplane.
We may as well assume that this fixed point is i, in which case the formula for f(i) we had earlier
implies that c2 + d2 = 1 and ac + bd = 0. A little algebra shows that we must have a = d and
b = −c, so we can write [

a b
c d

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
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for some angle θ. This can be thought of as the hyperbolic geometry analogue of a counterclockwise
rotation around i - but it will be a rotation of angle 2θ, not θ, since flipping the signs of all of
the entries a, b, c, d does not change the Möbius transformation. Note that if we take θ = π/2,
so that 2θ = π, then we see that the analogue of a 180 degree rotation around i is the Möbius
transformation

z 7→ −1/z.

Since rotations around i should certainly preserve the distance to i, this gives us another hint that
hyperbolic distances along the positive part of the imaginary axis will be related to logarithms.
In fact, we can now justify the claim that the scaling map z 7→ az should preserve hyperbolic
distances: we can build this map by composing the 180 degree rotation z 7→ −1/z around i with
the 180 degree rotation z 7→ −a/z around ai.

Now let’s think seriously about how distances should be defined in hyperbolic geometry. Let’s
start by thinking about infinitesimal distances: we start from a point x+iy, and change x by dx and
y by dy. Let ds be the corresponding infinitesimal amount of hyperbolic distance that we travel.
In ordinary Euclidean geometry, we would have ds2 = dx2 + dy2 by the Pythagorean theorem. In
a general “smooth” geometry, we might instead have

ds2 = α(x, y) dx2 + 2β(x, y) dx dy + γ(x, y) dy2,

where α, β, γ could be any (smooth) functions we like of x and y, subject to the conditions α >
0, γ > 0, and αγ > β2 (to guarantee that the right hand side is always positive). Since z 7→ z+ b is
a symmetry of our geometry, we immediately see that the functions α, β, γ can’t depend on x, and
are only functions of y:

ds2 = α(y) dx2 + 2β(y) dx dy + γ(y) dy2.

Since the map z 7→ az is a symmetry of our geometry which should preserve distances, we see that
in fact α(y), β(y), γ(y) should all be proportional to 1/y2, so we can write

ds2 =
α dx2 + 2β dx dy + γ dy2

y2

for some constants α, β, γ. To compute α, β, γ, we may as well assume that x+iy = i, that is, x = 0
and y = 1. Since the negated complex conjugation z 7→ −z̄ is a symmetry of the upper halfplane,
we see that when x+ iy = i the map (dx, dy) 7→ (dx,−dy) has to preserve distances, so β = 0. To
figure out the relationship between α and γ, we consider the hyperbolic 90 degree rotation around
i, which is given by

z 7→ 1 + z

1− z
.

Plugging in z = dx+ i (and dy = 0) and expanding to first order in dx (i.e. ignoring larger powers
of dx), we get

1 + dx+ i

1− dx− i
=

(1 + dx+ i)(1− dx+ i))

1 + (1− dx)2
=

2i

2− 2dx
= i(1 + dx),

so this 90 degree rotation turns an infinitesimal step in the real direction into an infinitesimal step
in the imaginary direction of the same length. This shows that we must have α = γ, and we may
as well take α = 1, in which case our formula for infinitesimal distances becomes

ds =

√
dx2 + dy2

y
.
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Let’s check that this formula really is compatible with our symmetries.

Proposition 13. Suppose that x+ iy is in the upper halfplane, and let f : z 7→ az+b
cz+d be a Möbius

transformation with a, b, c, d ∈ R and ad− bc = 1. If

f(x+ dx+ i(y + dy)) = u+ du+ i(v + dv)

to first order, then we have √
dx2 + dy2

y
=

√
du2 + dv2

v
.

Proof. First we find u and v:

a(x+ iy) + b

c(x+ iy) + d
=

(ax+ b)(cx+ d) + acy2 + i(ad− bc)y
(cx+ d)2 + c2y2

=
(ax+ b)(cx+ d) + acy2

(cx+ d)2 + c2y2
+

iy

(cx+ d)2 + c2y2
.

In particular, we have

v =
y

(cx+ d)2 + c2y2
.

Now let z = x+ iy, so to first order we have

az + b+ a dz

cz + d+ c dz
=
az + b

cz + d
+
a(cz + d)− (az + b)c

(cz + d)2
dz = u+ iv +

dz

(cz + d)2
.

Expanding out the last term, we get

du+ i dv =
dx+ i dy

(cx+ d+ icy)2
,

so

|du+ i dv| = |dx+ i dy|
(cx+ d)2 + c2y2

.

Thus we have
√
du2 + dv2

v
=

√
dx2 + dy2

(cx+ d)2 + c2y2

/ y

(cx+ d)2 + c2y2
=

√
dx2 + dy2

y
.

Intuitively, the formula for infinitesimal distances can be thought of as saying the following:

As you get closer to the real line, you become smaller, in proportion to the imaginary part of your
current position.

In particular, if we were to try to walk directly towards the real line, we would find ourselves
shrinking as we did so, and as a result we would never be able to actually reach the real line. This
is why we can think of the real line as the collection of “points at infinity” of the hyperbolic plane.
Additionally, the shortest path between two points with the same imaginary parts could contain a
detour through points with larger imaginary part: when we walk away from the real line, we get
larger, so we can travel more quickly.

Now that we’ve figured out what infinitesimal distances should look like, we can figure out what
the shortest path between more distant points looks like. We start by considering the easiest case:
distances along the positive part of the imaginary axis.
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Proposition 14. If infinitesimal distances are given by ds =

√
dx2+dy2

y , then the shortest path from
ai to bi travels directly along the positive imaginary axis and has length | log(b/a)|.

Proof. Moving the real part back and forth on a path from ai to bi obviously can only increase the
total distance traveled, so it’s always best to travel directly along the positive imaginary axis. If
b > a, then the length of this path is given by∫ b

a

dy

y
= log(b)− log(a).

Using the fact that infinitesimal distances are preserved by symmetries, we can now understand
the general case of shortest paths in hyperbolic space.

Theorem 26. If infinitesimal distances are given by ds =

√
dx2+dy2

y , then the shortest path from
P to Q travels directly along the hyperbolic line ` connecting P to Q. If ` meets the real line at X
and Y , then the length of this path is equal to∣∣∣ log

(
(P,Q;X,Y )

)∣∣∣.
Proof. Let f be a Möbius transformation which takes the upper halfplane to itself, maps P to i,
and maps ` to the positive imaginary axis. Since Q ∈ `, Q is mapped to ai for some real number
a. Since f preserves infinitesimal distances, f turns a shortest path from P to Q into a shortest
path from i to ai, and the length of these shortest paths are equal. Since the shortest path from i
to ai travels directly along f(`), the shortest path from P to Q must travel directly along `. Since
f preserves cross ratios, the length of this path is given by

| log(a)| =
∣∣∣ log

(
(i, ai; 0,∞)

)∣∣∣ =
∣∣∣ log

(
(f(P ), f(Q); f(X), f(Y ))

)∣∣∣ =
∣∣∣ log

(
(P,Q;X,Y )

)∣∣∣.
Now we can make the result of the previous theorem into a definition.

Definition 23. If D is a disk in CP1, points P,Q are in the interior of D, and the hyperbolic line
` through P and Q meets the boundary of D at points X and Y , then the hyperbolic distance from
P to Q is defined to be

δD(P,Q) =
∣∣∣ log

(
(P,Q;X,Y )

)∣∣∣.
Corollary 4. If D is a disk in CP1 and points P,Q,R are in the interior of D, then the hyperbolic
distances between P,Q, and R satisfy the triangle inequality:

δD(P,R) ≤ δD(P,Q) + δD(Q,R).

Exercise 52. Prove the triangle inequality for hyperbolic distance directly from its definition.

We can also relate angles in hyperbolic geometry to cross ratios between points at infinity.

Theorem 27. If `,m are intersecting hyperbolic lines in the upper halfplane model such that `
meets the real line at X and Y and m meets the real line at U and V , and if ` is directed from X
to Y and m is directed from U to V , then the angle θ between ` and m satisfies

cos(θ) =
1 + (X,Y ;U, V )

1− (X,Y ;U, V )
.

In particular, the hyperbolic lines ` and m meet at a right angle if and only if X,Y, U, V are
harmonic.
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Proof. We may assume without loss of generality that X and Y are 0 and ∞, i.e. that ` is the
positive part of the imaginary axis. Let u, v be the real numbers corresponding to the points U
and V , and note that ` and m intersect if and only if u and v have opposite signs. Computing the
power of the point 0 with respect to the circle with diameter UV in two different ways, we see that
` and m intersect in the point i

√
−uv. Some angle chasing reveals that the angle θ between ` and

the tangent to m at i
√
−uv is equal to twice the angle of the right triangle formed by U, V , and

i
√
−uv at V , which is also equal to the angle of the right triangle formed by 0, V , and i

√
−uv at

V . Thus we have

| tan(θ/2)| =
√
−uv
|v|

=

√
−u
v

=
√
−(0,∞;u, v) =

√
−(X,Y ;U, V ).

To finish, we apply the formula

cos(θ) =
1− tan2(θ/2)

1 + tan2(θ/2)
.
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